Решить онлайн методом гаусса: Онлайн калькулятор. Решение систем линейных уравнений. Метод Гаусса.

Содержание

Метод Крамера решения систем линейных уравнений

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения  и возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.


Пример 1. Решить систему линейных уравнений:

.                         (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.


Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Условия:

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

Условия:

* ,

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Условия:

*

** .

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Пусть дана система

.

На основании теоремы Крамера


………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:


Пример 2.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8.  Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

,

,

,

.

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Другое по теме «Системы уравнений и неравенств»

Начало темы «Линейная алгебра»

Поделиться с друзьями

Решение систем линейных уравнений методом Гаусса

1. Решение систем линейных уравнений методом Гаусса

2. Метод Гаусса – это метод последовательного исключения переменных

• Систему уравнений приводят к
эквивалентной ей системе с
треугольной матрицей. Это называется
прямым ходом.
• Из полученной треугольной системы
переменные находят с помощью
последовательных подстановок. Это
называется обратным ходом.

3. При выполнении прямого хода используют следующие преобразования:

1. Умножение или деление коэффициентов
свободных членов на одно и то же число;
2. Сложение и вычитание уравнений;
3. Перестановка уравнений системы;
4. Исключение из системы уравнений, в
которых все коэффициенты при
неизвестных и свободные члены равны
нулю.

4. Решить систему уравнений методом Гаусса

x y 5
2 x y 7
Нужно записать расширенную матрицу системы
1 1 5
2 1 7
Вертикальная черта внутри матрицы не несёт
никакого математического смысла – это
просто отчеркивание для удобства
оформления.
Матрица системы – это матрица,
составленная только из
коэффициентов при неизвестных.
Расширенная матрица системы – это
та же матрица системы плюс
столбец свободных членов, в
данном случае.

6. Решение. Умножим первую строку на (-2)

1 1 5
2 1 7
2 2 10
2 1 7

7. ко второй строке прибавим первую строку умноженную на -2

1 1 5
2 1 7
2 2 10
0 3 3
2 2 10
2 1 7

8. Разделим опять первую строку на (-2)

1 1 5
2 1 7
2 2 10
0 3 3
2 2 10
2 1 7
1 1 5
0 3 3
строка, которую ПРИБАВЛЯЛИ – не изменилась.
Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ.

9. Цель элементарных преобразований –

Цель элементарных преобразований

привести матрицу к ступенчатому виду.
Сам термин «ступенчатый вид» не
вполне теоретический, в научной и
учебной литературе он часто
называется трапециевидный
вид или треугольный

10. В результате элементарных преобразований получена эквивалентная исходной система уравнений

В результате элементарных преобразований
получена эквивалентная исходной система уравнений
x y 5
2 x y 7
x y 5
y 1
Выполняем обратный ход, т. е. подстановку в первое
уравнение вместо у,
х =-5+у
х=-5+1
х=-4
Ответ: (-4; 1)

11. Решить систему уравнений методом Гаусса

3 x 2 y z 4
2 x y 3z 9
x 2 y 2z 3
Решение.
Переставим третье уравнение на место первого и запишем расширенную
матрицу:
x 2 y 2z 3
3 x 2 y z 4
2 x y 3z 9
1 2 2 3
3 2 1 4
2 1 3 9

12. Чтобы в первом столбце получить а2=а3=0, умножим 1-ю строку сначала на 3, а затем на 2 и вычтем результаты из 2-й и 3-й строк

1 2 2 3
3 2 1 4
2 1 3 9
1 2 2 3
0 8 7 5
0 3 1 3

13. Разделим 2-ю строку на 8, полученные результаты умножим на 3 и вычтем из 3-й строки

1 2 2 3
3 2 1 4
2 1 3 9
1 2 2 3
0 1 7 5
8 8
0 3 1 3
1 2 2 3
0 8 7 5
0 3 1 3
1 2 2 3
0 3 21 15
8
8
0 3 1 3
1 2 2
3
21
15
0
3
8
8
39
0 0 13
8
8

14.

Запишем новую эквивалентную систему с учетом расширенной матрицы x 2 y 2z 3
7
5
y z
8
8
13
39
z
8
8
x 2 y 2z 3
7
5
y z
8
8
13
39
z
8
8
Выполняем обратный ход, с помощью
последовательных подстановок находим
неизвестные
13
39
z
z 3
8
8
7
5
5 21 16
y 3
y
2
8
8
8 8
8
x 2 2 2 3 3 x 3 4 6 1
Ответ: (1; 2; 3)

Матричный метод онлайн калькулятор с подробным решением. Матричный метод онлайн

Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, — так называемые системы крамеровского типа :

a 11 x 1 + a 12 x 2 +… + a 1n x n = b 1 ,

a 21 x 1 + a 22 x 2 +… + a 2n x n = b 2 , (5.3)

… … … … … …

a n1 x 1 + a n1 x 2 +… + a nn x n = b n .

Системы (5.3) решаются одним из следующих способов: 1) методом Гаусса, или методом исключения неизвестных; 2) по формулам Крамера; 3) матричным методом.

Пример 2.12 . Исследовать систему уравнений и решить ее, если она совместна:

5x 1 — x 2 + 2x 3 + x 4 = 7,

2x 1 + x 2 + 4x 3 — 2x 4 = 1,

x 1 — 3x 2 — 6x 3 + 5x 4 = 0.

Решение. Выписываем расширенную матрицу системы:

 .

Вычислим ранг основной матрицы системы. Очевидно, что, например, минор второго порядка в левом верхнем углу = 7  0; содержащие его миноры третьего порядка равны нулю:

Следовательно, ранг основной матрицы системы равен 2, т.е. r(A) = 2. Для вычисления ранга расширенной матрицы A рассмотрим окаймляющий минор

значит, ранг расширенной матрицы r(A) = 3. Поскольку r(A)  r(A), то система несовместна.

Это понятие, которое обобщает все возможные операции, производимые с матрицами. Математическая матрица — таблица элементов. О такой таблице, где m строк и n столбцов, говорят, что это матрица имеет размерность m на n .

Общий вид матрицы:

Для решения матриц необходимо понимать, что такое матрица и знать основные ее параметры. Основные элементы матрицы:

  • Главная диагональ, состоящая из элементов а 11 ,а 22 …..а mn .
  • Побочная диагональ, состоящая из элементов а 1n ,а 2n-1 …..а m1 .

Основные виды матриц:

  • Квадратная — такая матрица, где число строк = числу столбцов (m=n ).
  • Нулевая — где все элементы матрицы = 0.
  • Транспонированная матрица — матрица В , которая была получена из исходной матрицы A путем замены строк на столбцы.
  • Единичная — все элементы главной диагонали = 1, все остальные = 0.
  • Обратная матрица — матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.

Матрица может быть симметричной относительно главной и побочной диагонали. Т.е., если а 12 =а 21 , а 13 =а 31 ,….а 23 =а 32 …. а m-1n =а mn-1 , то матрица симметрична относительно главной диагонали. Симметричными могут быть лишь квадратные матрицы.

Методы решения матриц.

Почти все методы решения матрицы заключаются в нахождении ее определителя n -го порядка и большинство из них довольно громоздки. Чтобы найти определитель 2го и 3го порядка есть другие, более рациональные способы.

Нахождение определителей 2-го порядка.

Для вычисления определителя матрицы А 2го порядка, необходимо из произведения элементов главной диагонали вычесть произведение элементов побочной диагонали:

Методы нахождения определителей 3го порядка.

Ниже приведены правила для нахождения определителя 3го порядка.

Упрощенно правило треугольника, как одного из методов решения матриц , можно изобразить таким образом:

Другими словами, произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «+»; так же, для 2го определителя — соответствующие произведения берутся со знаком «-«, то есть по такой схеме:

При решении матриц правилом Саррюса , справа от определителя дописывают первые 2 столбца и произведения соответствующих элементов на главной диагонали и на диагоналях, которые ей параллельны, берут со знаком «+»; а произведения соответствующих элементов побочной диагонали и диагоналей, которые ей параллельны, со знаком «-«:

Разложение определителя по строке или столбцу при решении матриц.

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку либо столбец, по которой/ому ведется разложение, будут обозначать стрелкой.

Приведение определителя к треугольному виду при решении матриц.

При решении матриц методом приведения определителя к треугольному виду, работают так: с помощью простейших преобразований над строками либо столбцами, определитель становится треугольного вида и тогда его значение, в соответствии со свойствами определителя, будет равно произведению элементов, которые стоят на главной диагонали.

Теорема Лапласа при решении матриц.

Решая матрицы по теореме Лапласа, необходимо знать непосредственно саму теорему. Теорема Лапласа: Пусть Δ — это определитель n -го порядка. Выбираем в нем любые k строк (либо столбцов), при условии k n — 1 . В таком случае сумма произведений всех миноров k -го порядка, содержащихся в выбранных k строках (столбцах), на их алгебраические дополнения будет равна определителю.

Решение обратной матрицы.

Последовательность действий для решения обратной матрицы :

  1. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  2. Вычисляем алгебраические дополнения.
  3. Составляем союзную (взаимную, присоединённую) матрицу C .
  4. Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
  5. Проверяем выполненную работу: умножаем матрицу начальную и полученную матрицы, результатом должна стать единичная матрица.

Решение систем матриц.

Для решения систем матриц наиболее часто используют метод Гаусса.

Метод Гаусса — это стандартный способ решения систем линейных алгебраических уравнений (СЛАУ) и он заключается в том, что последовательно исключаются переменные, т. е., при помощи элементарных изменений систему уравнений доводят до эквивалентной системы треугольного вида и из нее, последовательно, начиная с последних (по номеру), находят каждый элемент системы.

Метод Гаусса является самым универсальным и лучшим инструментом для нахождения решения матриц. Если у системы бесконечное множество решений или система является несовместимой, то ее нельзя решать по правилу Крамера и матричным методом.

Метод Гаусса подразумевает также прямой (приведение расширенной матрицы к ступенчатому виду, т.е. получение нулей под главной диагональю) и обратный (получение нулей над главной диагональю расширенной матрицы) ходы. Прямой ход и есть метод Гаусса, обратный — метод Гаусса-Жордана. Метод Гаусса-Жордана отличается от метода Гаусса лишь последовательностью исключения переменных.

Матричный метод решения СЛАУ применяют к решению систем уравнений, у которых количество уравнений соответствует количеству неизвестных. Метод лучше применять для решения систем низкого порядка. Матричный метод решения систем линейных уравнений основывается на применении свойств умножения матриц.

Этот способ, другими словами метод обратной матрицы, называют так, так как решение сводится к обычному матричному уравнению, для решения которого нужно найти обратную матрицу.

Матричный метод решения СЛАУ с определителем, который больше или меньше нуля состоит в следующем:

Предположим, есть СЛУ (система линейных уравнений) с n неизвестными (над произвольным полем):

Значит, её легко перевести в матричную форму:

AX=B , где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:

Умножим это матричное уравнение слева на A −1 — обратную матрицу к матрице A: A −1 (AX)=A −1 B.

Т.к. A −1 A=E , значит, X=A −1 B . Правая часть уравнения дает столбец решений начальной системы. Условием применимости матричного метода есть невырожденность матрицы A . Необходимым и достаточным условием этого есть неравенство нулю определителя матрицы A :

detA≠0.

Для однородной системы линейных уравнений , т.е. если вектор B=0 , выполняется обратное правило: у системы AX=0 есть нетривиальное (т.е. не равное нулю) решение лишь когда detA=0 . Эта связь между решениями однородных и неоднородных систем линейных уравнений называется альтернатива Фредгольма.

Т.о., решение СЛАУ матричным методом производится по формуле . Либо, решение СЛАУ находят при помощи обратной матрицы A −1 .

Известно, что у квадратной матрицы А порядка n на n есть обратная матрица A −1 только в том случае, если ее определитель ненулевой. Таким образом, систему n линейных алгебраических уравнений с n неизвестными решаем матричным методом только в случае, если определитель основной матрицы системы не равен нулю.

Не взирая на то, что есть ограничения возможности применения такого метода и существуют сложности вычислений при больших значениях коэффициентов и систем высокого порядка, метод можно легко реализовать на ЭВМ.

Пример решения неоднородной СЛАУ.

Для начала проверим, не равен ли нулю определитель матрицы коэффициентов у неизвестных СЛАУ.

Теперь находим союзную матрицу , транспонируем её и подставляем в формулу для определения обратной матрицы.

Подставляем переменные в формулу:

Теперь находим неизвестные, перемножая обратную матрицу и столбик свободных членов.

Итак, x=2; y=1; z=4.

При переходе от обычного вида СЛАУ к матричной форме будьте внимательными с порядком неизвестных переменных в уравнениях системы. Например :

НЕЛЬЗЯ записать как:

Необходимо, для начала, упорядочить неизвестные переменные в кадом уравнении системы и только после этого переходить к матричной записи:

Кроме того, нужно быть внимательными с обозначением неизвестных переменных, вместо x 1 , x 2 , …, x n могут оказаться другие буквы. К примеру :

в матричной форме записываем так:

Матричным методом лучше решать системы линейных уравнений, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы не равен нулю. Когда в системе более 3-х уравнений, на нахождение обратной матрицы потребуется больше вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса.

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить».

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

Учитывая определение обратной матрицы, имеем A −1 A =E , где E — единичная матрица. Следовательно (4) можно записать так:

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b .

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

Матричный вид записи системы линейных уравнений: Ax=b , где

Вычислим все алгебраические дополнения матрицы A :

,
,
,
,
,
,
,
,
.

Обратная матрица вычисляется из следующего выражения.

Решение системы линейных уравнений методом Жордана-Гаусса (метод прямоугольников)

Решение системы линейных уравнений методом Жордана-Гаусса (метод прямоугольников)

Видеоурок: Метод Жордана-Гаусса (метод прямоугольников)

Пример из видеоурока в рукописном виде:

Пример 2.

Запишем систему в виде:

1

-2

2

-1

-1

2

4

0

-1

1

3

-1

2

-2

-2

4

-4

-2

-2

1

1

-1

1

0

-1

1

1

-2

Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
Разрешающий элемент равен (1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника: НЭ = СЭ — (А*В)/РЭ, где РЭ — разрешающий элемент (1), А и В — элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.

1

-2

2

-1

-1

2

4

0

-1

1

3

-1

2

-2

0

0

0

-4

-4

5

9

0

-1

2

-2

0

3

2

Разрешающий элемент равен (-1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули. Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

1

0

0

-7

1

-2

8

0

1

-1

-3

1

-2

2

0

0

0

-4

-4

5

9

0

0

1

-5

1

1

4

 

Разрешающий элемент равен (1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

1

0

0

-7

1

-2

8

0

1

0

-8

2

-1

6

0

0

1

-5

1

1

4

0

0

0

-4

-4

5

9

Разрешающий элемент равен (-4).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

1

0

0

0

8

-10.75

-7.75

0

1

0

0

10

-11

-12

0

0

1

0

6

-5.25

-7.25

0

0

0

1

1

-1.25

-2.25


Теперь исходную систему можно записать как:
x1 = -7.75 — 8×5 — 10.75×6
x2 = -12 — 10×5 — 11×6
x3 = -7.25 — 6×5 — 5.25×6
x4 = -2.25 — x5 — 1.25×6
Необходимо переменные x5,x6 принять в качестве свободных переменных и через них выразить остальные переменные.
Приравняем переменные x5,x6 к 0
x1 = -7.75
x2 = -12
x3 = -7.25
x4 = -2.25
Среди базисных переменных есть отрицательные значения. Следовательно, данное решение не опорное.

Ранг матрицы методом Гаусса | Мозган калькулятор онлайн

Для того что бы вычислить ранг матрицы можно применить метод окаймляющих миноров или метод Гаусса. Рассмотрим метод Гаусса или метод элементарных преобразований.

Рангом матрицы называют максимальный порядок её миноров, среди которых есть хотя бы один, не равный нулю.

Рангом системы строк (столбцов) называется максимальное количество линейно независимых строк (столбцов) этой системы.

Метод Гаусса использует элементарные преобразования, которые не изменяют ее ранг:

  1. Транспонирование.

  2. Перестановка местами строк или столбцов.

  3. Прибавление одной строки/столбца к другой строке/столбцу умноженного на ненулевое число.

  4. Умножение строки или столбца на ненулевое число.

С помощью данного метода нужно привести матрицу к ступенчатому виду и посчитать количество строк, в которых есть хоть один не нулевой элемент.

Пример

Рассмотрим данный метод на примере. Дана матрицы:

Для облегчения дальнейших расчетов поменяем местами строку №1 со строкой №2.

Сделаем элемент a3,1 равный нулю.

Из строки №3 вычтем строку №1, умноженную на 3/2.

Сделаем элемент a4,1 равный нулю.

Из строки №4 вычитаем строку №1, умноженную на 2.

Сделаем элемент a3,2 равный нулю.

Из строки №3 вычтем строку №2, умноженную на -1/4. Мы его получили разделив элимент a3,2 = -0.5 на элимент a2,2 = 2.

Сделаем элемент a4,2 равный нулю.

Из строки №4 вычтем строку №2, умноженную на -1/2.

Сделаем элемент a4,3 равный нулю.

Из строки №4 вычитаем строку №3, умноженную на 2.

В получившейся матрице одна строка содержит нулевые элементы, а три строки имеют не нулевые элементы. Ответ: Ранг=3.

Решить систему уравнений методом жордана гаусса онлайн. Решение систем линейных уравнений методом жордана-гаусса

В данной статье мы рассмотрим метод Жордана-Гаусса для решения систем линейных уравнений, отличие метода Гаусса от метода Жордана-Гаусса, алгоритм действий, а также приведем примеры решений СЛАУ.

Yandex.RTB R-A-339285-1

Основные понятия

Определение 1

Метод Жордана-Гаусса — один из методов, предназначенный для решения систем линейных алгебраических уравнений.

Этот метод является модификацией метода Гаусса — в отличие от исходного (метода Гаусса) метод Жордана-Гаусса позволяет решить СЛАУ в один этап (без использования прямого и обратного ходов).

Примечание

Матричная запись СЛАУ: вместо обозначения А в методе Жордана-Гаусса для записи используют обозначение Ã — обозначение расширенной матрицы системы.

Пример 1

4 x 1 — 7 x 2 + 8 x 3 = — 23 2 x 1 — 4 x 2 + 5 x 3 = — 13 — 3 x 1 + 11 x 2 + x 3 = 16

Как решить?

Записываем расширенную матрицу системы:

à = 4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16

Напоминаем, что слева от черты записывается матрица системы А:

A = 4 — 7 8 2 — 4 5 — 3 11 1

Замечание 1

На каждом шаге решения необходимо выбирать разрешающие элементы матрицы. Процесс выбора может быть различным — в зависимости от того, как выбираются элементы, решения будут отличаться. Можно выбирать в качестве разрешающих элементов диагональные элементы матрицы, а можно выбирать произвольно.

В этой статье мы покажем оба способа решения.

Произвольный способ выбора разрешающих элементов

Следует обратиться к 1-му столбцу матрицы Ã — необходимо выбрать ненулевой (разрешающий) элемент.

В 1-ом столбце есть 3 ненулевых элемента: 4, 2, -3. Можно выбрать любой, но, по правилам, выбирается тот, чей модуль ближе всего к единице. В нашем примере таким числом является 2.

Цель: обнулить все элементы, кроме разрешающего, т.е. необходимо обнулить 4 и -3:

4 — 7 8 2 — 4 5 — 3 11 1

Произведем преобразование: необходимо сделать разрешающий элемент равным единице. Для этого делим все элементы 2-ой строки на 2. Такое преобразование имеет обозначение: I I: 2:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I I ÷ 2 → 4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16

Теперь обнуляем остальные элементы: 4 и -3:

4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — (- 3) × I I

Необходимо выполнить преобразования:

I — 4 × I I и I I I — (- 3) × I I = I I I + 3 × I I

Запись I — 4 × I I означает, что от элементов 1-ой строки вычитаются соответствующие элементы 2-ой строки, умноженные на 4.

Запись I I I + 3 × I I означает, что к элементам 3-ей строки прибавляются соответствующие элементы 2-ой строки, умноженные на 3.

I — 4 × I I = 4 — 7 8 — 23 — 4 1 — 2 5 / 2 — 13 / 2 = = 4 — 7 8 — 23 — 4 — 8 10 — 26 = 0 1 — 2 3

Записываются такие изменения следующим образом:

4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — (- 3) × I I → 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2

Необходимо обнулить 2-ой столбец, следовательно, нужно выбрать разрешающий элемент: 1, -2, 5. Однако 2-ую строку матрицы мы использовали в первом этапе, так что элемент -2 не может быть использован.

Поскольку необходимо выбирать число, чей модуль ближе всего к единице, то выбор очевиден — это 1. Обнуляем остальные элементы 2-го столбца:

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I — (- 2) × I I I I — 5 × I

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I + 2 × I I I I — 5 × I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

Теперь требуется обнулить элементы 3-го столбца. Поскольку первая и вторая строки уже использованы, поэтому остается только один вариант: 37 / 2 . Обнуляем с его помощью элементы третьего столбца:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

Выполнив преобразования

I — (- 2) × I I I = I + 2 × I I I и I I — (- 3 2) × I I I = I I + 3 2 × I I

получим следующий результат:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | — 2 0 0 1 | — 1

Ответ : x 1 = — 2 ; x 2 = 1 ; x 3 = — 1 .

Полное решение:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I I ÷ 2 → 4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — (- 3) × I I →

→ 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I — (- 2) × I I I I — 5 × I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 →

→ 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | — 2 0 0 1 | — 1 .

Выбор разрешающих элементов на главной диагонали матрицы системы

Определение 2

Принцип выбора разрешающих элементов строится на простом отборе соответствующих элементов: в 1-ом столбце выбирается элемент 1-го столбца, во 2-ом — второй, в 3-ем — третий и т.д.

В первом столбце необходимо выбрать элемент первой строки, т.е. 4. Но поскольку в первом столбце есть число 2, чей модуль ближе к единице, чем 4, то можно поменять местами первую и вторую строку:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 → 2 — 4 5 | — 13 4 — 7 8 | — 23 — 3 11 1 | 16

Теперь разрешающий элемент — 2. Как показано в первом способе, делим первую строку на 2, а затем обнуляем все элементы:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I ÷ 2 → 2 — 4 5 / 2 | — 13 / 2 4 — 7 8 | — 23 — 3 11 1 | 16 I I — 4 × I I I I + 3 × I → 1 — 2 5 / 2 | — 13 / 2 0 1 — 2 | 3 0 5 17 / 2 | — 7 / 2

На втором этапе требуется обнулить элементы второго столбца. Разрешающий элемент — 1, поэтому никаких изменений производить не требуется:

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I + 2 × I I I I I — 5 × I I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

На третьем этапе необходимо обнулить элементы третьего столбца. Разрешающий элемент — 37/2. Делим все элементы на 37/2 (чтобы сделать равными 1), а затем обнуляем:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 → 1 0 — 3 / 2 | — 1 / 2 0 1 — 2 | 3 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | — 2 0 1 0 | 1 0 0 1 | — 1

Ответ: x 1 = — 2 ; x 2 = 1 ; x 3 = — 1 .

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I ÷ 2 → 2 — 4 5 / 2 | — 13 / 2 4 — 7 8 | — 23 — 3 11 1 | 16 I I — 4 × I I I I + 3 × I → 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I + 2 × I I I I I — 5 × I I →

→ 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 → 1 0 — 3 / 2 | — 1 / 2 0 1 — 2 | 3 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | — 2 0 1 0 | 1 0 0 1 | — 1

Пример 2

Решить СЛАУ методом Жордана-Гаусса:

3 x 1 + x 2 + 2 x 3 + 5 x 4 = — 6 3 x 1 + x 2 + 2 x 4 = — 10 6 x 1 + 4 x 2 + 11 x 3 + 11 x 4 = — 27 — 3 x 1 — 2 x 2 — 2 x 3 — 10 x 4 = 1

Как решить?

Записать расширенную матрицу данной системы Ã :

3 1 2 5 | — 6 3 1 0 2 | 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1

Для решения используем второй способ: выбор разрешающих элементов на главной диагонали системы. На первом этапе выбираем элемент первой строки, на втором — второй строки, на третьем — третьей и т.д.

Необходимо выбрать разрешающий элемент первой строки, т.е. 3. Затем обнуляем все элементы столбца, разделяя на 3 все элементы:

3 1 2 5 | — 6 3 1 0 2 | — 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1 I ÷ 3 → 1 1 / 3 2 / 3 5 / 3 | — 2 3 1 0 2 | — 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1 I I — 3 × I I I I — 6 × I I V + 3 × I →

→ 1 1 / 3 2 / 3 5 / 3 | — 2 0 0 — 2 — 3 | — 4 0 2 7 1 | — 15 0 — 1 0 — 5 | — 5

Необходимо обнулить элементы второго столбца. Для этого выделяем разрешающий элемент, но элемент первой строки второго столбца равен нулю, поэтому необходимо менять строки местами.

Поскольку в четвертой строке есть число -1, то меняем местами вторую и четвертую строки:

1 1 / 3 2 / 3 5 / 3 | — 2 0 0 — 2 — 3 | — 4 0 2 7 1 | — 15 0 — 1 0 — 5 | — 5 → 1 1 / 3 2 / 3 5 / 3 | — 2 0 — 1 0 — 5 | — 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4

Теперь разрешающий элемент равен -1. Делим элементы второго столбца на -1, а затем обнуляем:

1 1 / 3 2 / 3 5 / 3 | — 2 0 — 1 0 — 5 | — 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4 I I ÷ (- 1) → 1 1 / 3 2 / 3 5 / 3 | — 2 0 1 0 5 | 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4 I — 1 / 3 × I I I I I — 2 × I →

→ 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 7 — 9 | — 25 0 0 — 2 — 3 | — 4

На третьем этапе необходимо также обнулить элементы третьего столбца. Для этого находим разрешающий элемент в третьей строке — это 7. Но на 7 делить неудобно, поэтому необходимо менять строки местами, чтобы разрешающий элемент стал -2:

1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 7 — 9 | — 25 0 0 — 2 — 3 | — 4 → 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 — 2 — 3 | — 4 0 0 7 — 9 | — 25

Теперь делим все элементы третьего столбца на -2 и обнуляем все элементы:

1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 — 2 — 3 | — 4 0 0 7 — 9 | — 25 I I I ÷ (- 2) → 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 9 | — 25 I — 2 / 3 × I I I I V — 7 × I I I →

1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 39 / 2 | — 39

  • Четвертый этап

Обнуляем четвертый столбец. Разрешающий элемент — — 39 2:

1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 39 / 2 | — 39 I V ÷ (- 39 2) → 1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 1 | 2 I + I V I I — 5 × I V I I I — 3 / 2 × I V →

→ 1 0 0 0 | — 3 0 1 0 0 | — 5 0 0 1 0 | — 1 0 0 0 1 | 2 .

Ответ : x 1 = — 3 ; x 2 = — 5 ; x 3 = — 1 ; x 4 = 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Записывается в виде расширенной матрицы, т.е. в столбец свободных членов помещается в одну матрицу с коэффициентами неизвестных. Аалгоритм заключается в приведении исходной матрицы, характеризующей систему линейных уравнений, к единичной путем эквивалентных преобразований (домножения строки матрицы на константу и сложения с другой строкой матрицы). В качестве константы используется 1/a[i][i] , т.е. число, обратное по отношению к элементу диагонали. Естественно, в ряде случаев возникают проблемы, связанные с делением на ноль, которые решаются перестановкой строк и столбцов:

Весь алгоритм можно представить 10 пунктами:

    В качестве опорной выбираем первую строку матрицы.

    Если элемент опорной строки, индекс которого равен номеру опорной строки, равен нулю, то меняем всю опорную строку на первую попавшуюся строку снизу, в столбце которого нет нуля.

    Все элементы опорной строки делим на первый слева ненулевой элемент этой строки.

    Из оставшихся снизу строк вычитают опорную строку, умноженную на элемент, индекс которого равен номеру опорной строки.

    В качестве опорной строки выбираем следующую строку.

    Повторяем действия 2 – 5 пока номер опорной строки не превысит число строк.

    В качестве опорной выбираем последнюю строку.

    Вычитаем из каждой строки выше опорную строку, умноженную на элемент этой строки с индексом равным номеру опорной строки.

    В качестве опорной строки выбираем строку выше.

    Повторяем 8 – 9 пока номер опорной строки не станет меньше номера первой строки.

Пусть имеется система уравнений:

Запишем расширенную матрицу системы:

и выполним элементарные преобразования ее строк.

Для этого умножим первую строку на 1 и вычитаем из второй строки; затем умножим первую строку на 2 и вычтем из третьей строки.

В результате мы исключим переменную x 1 из всех уравнений, кроме первого. Получим:

Теперь вычтем из строки 3 строку 2, умноженную на 3:

Теперь вычитаем из 1 строки сначала 3 строку, а затем 2 строку:

После преобразований получаем систему уравнений:

Из этого следует, что система уравнений имеет следующее решение:

x1 = 1, x2 = 3 , x3 = -1

    В качестве примера решим систему уравнений, представленную в виде матрицы (Таблица 1), методом Гаусса – Жордана.

Делим первую строку на 3 (элемент первой строки, расположенный на главной диагонали), получим:

Умножаем первую строку на 1 и вычитаем из второй строки. Умножаем первую строку на 6 и вычитаем из третьей строки. Получим:

В первом столбце все элементы кроме диагонального равны нулю, займемся вторым столбцом, для этого выберем вторую строку в качестве опорной. Вторая Делим ее на 17/3:

Умножаем строку 2 на -6 и вычитаем из третьей строки:

Теперь третья строка – опорная, делим ее на -33/17:

Умножаем опорную строку на 3/17 и вычитаем ее из второй. Умножаем третью строку на 1 и вычитаем ее из первой

Получена треугольная матрица, начинается обратный ход алгоритма (во время которого получим единичную матрицу). Вторая строка становится опорной. Умножаем третью строку на 4/3 и вычитаем ее из первой:

Последний столбец матрицы – решение системы уравнений.

Здесь вы сможете бесплатно решить систему линейных уравнений методом Гаусса онлайн больших размеров в комплексных числах с очень подробным решением. Наш калькулятор умеет решать онлайн как обычную определенную, так и неопределенную систему линейных уравнений методом Гаусса, которая имеет бесконечное множество решений. В этом случае в ответе вы получите зависимость одних переменных через другие, свободные. Также можно проверить систему уравнений на совместность онлайн, используя решение методом Гаусса.

О методе

При решении системы линейных уравнений онлайн методом Гаусса выполняются следующие шаги.

  1. Записываем расширенную матрицу.
  2. Фактически решение разделяют на прямой и обратный ход метода Гаусса. Прямым ходом метода Гаусса называется приведение матрицы к ступенчатому виду. Обратным ходом метода Гаусса называется приведение матрицы к специальному ступенчатому виду. Но на практике удобнее сразу занулять то, что находится и сверху и снизу рассматриваемого элемента. Наш калькулятор использует именно этот подход.
  3. Важно отметить, что при решении методом Гаусса, наличие в матрице хотя бы одной нулевой строки с НЕнулевой правой частью (столбец свободных членов) говорит о несовместности системы. Решение линейной системы в таком случае не существует.

Чтобы лучше всего понять принцип работы алгоритма Гаусса онлайн введите любой пример, выберите «очень подробное решение» и посмотрите его решение онлайн.

Каждой системе линейных уравнений поставим в соответствие расширенную матрицу , полученную присоединением к матрице А столбца свободных членов:

Метод Жордана–Гаусса применяется для решения системы m линейных уравнений с n неизвестными вида:

Данный метод заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе уравнений с матрицей определенного вида.

Над строками расширенной матрицы осуществляем следующие элементарные преобразования:

1. перестановка двух строк ;

2. умножение строки на любое число, отличное от нуля ;

3. прибавление к одной строке другой строки, умноженной на некоторое число ;

4. отбрасывание нулевой строки (столбца) .

Пример 2.11. Решить методом Жордана–Гаусса системы линейных уравнений:

а ) Х 1 + Х 2 + 2Х 3 = -1

2Х 1 — Х 2 + 2Х 3 = -4

4Х 1 + Х 2 + 4Х 3 = -2

Решение: Составим расширенную матрицу:

Итерация 1

В качестве направляющего элемента выбираем элемент . Преобразуем первый столбец в единичный. Для этого ко второй и третьей строкам прибавляем первую строку, соответственно умноженную на (-2) и (-4). Получим матрицу:

На этом первая итерация закончена.

Итерация 2

Выбираем направляющий элемент . Так как , то делим вторую строку на -3. Затем умножаем вторую строку соответственно на (-1) и на 3 и складываем соответственно с первой и третьей строками. Получим матрицу

Итерация 3

Выбираем направляющий элемент . Так как , то делим третью строку на (-2). Преобразуем третий столбец в единичный. Для этого умножаем третью строку соответственно на (-4/3) и на (-2/3) и складываем соответственно с первой и второй строками. Получим матрицу

откуда Х 1 = 1, Х 2 = 2, Х 3 = -2.

Закончив решение, на этапе обучения необходимо выполнять проверку, подставив найденные значения в исходную систему, которая при этом должна обратиться в верные равенства.

б ) Х 1 – Х 2 + Х 3 – Х 4 = 4

Х 1 + Х 2 + 2Х 3 +3Х 4 = 8

2Х 1 +4Х 2 + 5Х 3 +10Х 4 = 20

2Х 1 – 4Х 2 + Х 3 – 6Х 4 = 4

Решение: Расширенная матрица имеет вид:

Применяя элементарные преобразования, получим:

Исходная система эквивалентна следующей системе уравнений:

Х 1 – 3Х 2 – 5Х 4 = 0

2Х 2 + Х 3 + 4Х 4 = 4

Последние две строки матрицы A (2) являются линейно зависимыми.

Определение. Строки матрицы e 1 , e 2 ,…, e m называются линейно зависимыми , если существуют такие числа , не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:

где 0 =(0, 0…0). Строки матрицы являются линейно независимыми , когда комбинация этих строк равна нулю тогда и только тогда, когда все коэффициенты равны нулю.

В линейной алгебре очень важно понятие ранга матрицы , т.к. оно играет очень большое значение при решении систем линейных уравнений.

Теорема 2.3 (о ранге матрицы). Ранг матрицы равен максимальному числу её линейно независимых строк или столбцов, через которые линейно выражаются все остальные её строки (столбцы).

Ранг матрицы A (2) равен 2, т.к. в ней максимальное число линейно независимых строк равно 2 (это первые две строки матрицы).

Теорема 2.4 (Кронекера–Капели). Система линейных уравнений совместна и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы.

1. Если ранг матрицы совместной системы равен числу переменных, т.е. r = n, то система имеет единственное решение.

2. Если ранг матрицы системы меньше числа переменных, т.е. r

В данном случае система имеет 4 переменных, а её ранг равен 2, следовательно, она имеет бесконечное множество решений.

Определение. Пусть r n , r переменных x 1 , x 2 ,…, x r называются базисными , если определитель матрицы из коэффициентов при них (базисный минор ) отличен от нуля. Остальные n – r переменных называются свободными .

Определение. Решение системы, в котором все n – r свободных переменных равны нулю, называется базисным .

Совместная система m линейных уравнений с n переменными (m ) имеет бесконечное множество решений, среди которых базисных решений конечное число, не превосходящее , где .

В нашем случае , т.е. система имеет не более 6 базисных решений.

Общее решение имеет вид:

Х 1 = 3Х 2 +5Х 4

Х 3 = 4 – 2Х 2 – 4Х 4

Найдем базисные решения. Для этого полагаем Х 2 = 0, Х 4 = 0, тогда Х 1 =0, Х 3 = 4. Базисное решение имеет вид: (0, 0, 4, 0).

Получим другое базисное решение. Для этого в качестве свободных неизвестных примем Х 3 и Х 4 . Выразим неизвестные Х 1 и Х 2 через неизвестные Х 3 и Х 4:

Х 1 = 6 – 3/2Х 2 – Х 4

Х 2 = 2 – 1/2Х 3 – 2Х 4 .

Тогда базисное решение имеет вид: (6, 2, 0, 0).

Пример 2.12. Решить систему:

X 1 + 2X 2 – X 3 = 7

2X 1 – 3X 2 + X 3 = 3

4X 1 + X 2 – X 3 = 16

Решение.Преобразуем расширенную матрицу системы

Итак, уравнение, соответствующее третьей строке последней матрицы, противоречиво – оно привелось к неверному равенству 0 = –1, следовательно, данная система несовместна. Данный вывод можно также получить, если заметить, что ранг матрицы системы равен 2, тогда как ранг расширенной матрицы системы равен 3.

Метод Гаусса-Жордана предназначен для решения систем линейных алгебраических уравнений (СЛАУ). Он является модификацией метода Гаусса . Если метод Гаусса осуществляется в два этапа (прямой ход и обратный) то метод Гаусса-Жордана позволяет решить систему в один этап. Подробности и непосредственная схема применения метода Гаусса-Жордана описаны в примерах.

Во всех примерах $A$ обозначает матрицу системы, $\widetilde{A}$ — расширенную матрицу системы. О матричной форме записи СЛАУ можно прочесть .

Пример №1

Решить СЛАУ $ \left\{ \begin{aligned} & 4x_1-7x_2+8x_3=-23;\\ & 2x_1-4x_2+5x_3=-13;\\ & -3x_1+11x_2+x_3=16. \end{aligned} \right.$ методом Гаусса-Жордана.

Давайте перейдём от последней полученной нами матрице к системе:

$$ \left\{ \begin{aligned} & 0\cdot x_1+1\cdot x_2+0\cdot x_3=1;\\ & 1\cdot x_1+0\cdot x_2+0\cdot x_3=-2;\\ & 0\cdot x_1+0\cdot x_2+1\cdot x_3=-1. \end{aligned} \right. $$

Упрощая полученную систему, имеем:

$$ \left\{ \begin{aligned} & x_2=1;\\ & x_1=-2;\\ & x_3=-1. \end{aligned} \right. $$

Полное решение без пояснений выглядит так:

Хоть этот способ выбора разрешающих элементов вполне допустим, но предпочтительнее выбирать в качестве разрешающих элементов диагональные элементы матрицы системы. Мы рассмотрим этот способ ниже.

Выбор разрешающих элементов на главной диагонали матрицы системы.

Так как этот способ решения полностью аналогичен предыдущему (за исключением выбора разрешающих элементов), то подробные пояснения пропустим. Принцип выбора разрешающих элементов прост: в первом столбце выбираем элемент первой строки, во втором столбце берём элемент второй строки, в третьем столбце — элемент третьей строки и так далее.

Первый шаг

В первом столбце выбираем элемент первой строки, т.е. в качестве разрешающего имеем элемент 4. Понимаю, что выбор числа 2 кажется более предпочтительным, так как это число всё-таки меньше, нежели 4. Для того, чтобы число 2 в первом столбце переместилось на первое место, поменяем местами первую и вторую строки:

$$ \left(\begin{array} {ccc|c} 4 & -7 & 8 & -23\\ 2 & -4& 5 & -13 \\ -3 & 11 & 1 & 16 \end{array} \right)\rightarrow \left(\begin{array} {ccc|c} 2 & -4& 5 & -13\\ 4 & -7 & 8 & -23 \\ -3 & 11 & 1 & 16 \end{array} \right) $$

Итак, разрешающий элемент представлен числом 2. Точно так же, как и ранее, разделим первую строку на 2, а затем обнулим элементы первого столбца:

$$ \left(\begin{array} {ccc|c} 2 & -4& 5 & -13\\ 4 & -7 & 8 & -23 \\ -3 & 11 & 1 & 16 \end{array} \right) \begin{array} {l} I:2 \\\phantom{0} \\ \phantom{0} \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & -2& 5/2 & -13/2 \\4 & -7 & 8 & -23\\ -3 & 11 & 1 & 16 \end{array} \right) \begin{array} {l} \phantom{0} \\ II-4\cdot I\\ III+3\cdot I \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & -2& 5/2 & -13/2\\0 & 1 & -2 & 3\\ 0 & 5 & 17/2 & -7/2 \end{array} \right). $$

Второй шаг

На втором шаге требуется обнулить элементы второго столбца. В качестве разрешающего элемента выбираем элемент второй строки, т.е. 1. Разрешающий элемент уже равен единице, поэтому никаких строк менять местами не будем. Кстати сказать, если бы мы захотели поменять местами строки, то первую строку трогать не стали бы, так как она уже была использована на первом шаге. А вот вторую и третью строки запросто можно менять местами. Однако, повторюсь, в данной ситуации менять местами строки не нужно, ибо разрешающий элемент уже оптимален — он равен единице.

$$ \left(\begin{array} {ccc|c} 1 & -2& 5/2 & -13/2\\0 & 1 & -2 & 3\\ 0 & 5 & 17/2 & -7/2 \end{array} \right) \begin{array} {l} I+2\cdot II \\ \phantom{0}\\ III-5\cdot II \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & 0 & -3/2 & -1/2 \\ 0 & 1 & -2 & 3\\ 0 & 0 & 37/2 & -37/2 \end{array} \right). $$

Второй шаг окончен. Переходим к третьему шагу.

Третий шаг

На третьем шаге требуется обнулить элементы третьего столбца. В качестве разрешающего элемента выбираем элемент третьей строки, т.е. 37/2. Разделим элементы третьей строки на 37/2 (чтобы разрешающий элемент стал равен 1), а затем обнулим соответствующие элементы третьего столбца:

$$ \left(\begin{array} {ccc|c} 1 & 0 & -3/2 & -1/2 \\ 0 & 1 & -2 & 3\\ 0 & 0 & 37/2 & -37/2 \end{array} \right) \begin{array} {l} \phantom{0}\\ \phantom{0}\\ III:\frac{37}{2} \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & 0 & -3/2 & -1/2 \\ 0 & 1 & -2 & 3\\ 0 & 0 & 1 & -1 \end{array} \right) \begin{array} {l} I+2\cdot III\\II+3/2\cdot III\\ \phantom{0} \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & -1 \end{array} \right). $$

Ответ получен: $x_1=-2$, $x_2=1$, $x_3=-1$. Полное решение без пояснений выглядит так:

Все остальные примеры на этой странице будут решены именно вторым способом: в качестве разрешающих будем выбирать диагональные элементы матрицы системы.

Ответ : $x_1=-2$, $x_2=1$, $x_3=-1$.

Пример №2

Решить СЛАУ $ \left\{ \begin{aligned} & 3x_1+x_2+2x_3+5x_4=-6;\\ & 3x_1+x_2+2x_4=-10;\\ & 6x_1+4x_2+11x_3+11x_4=-27;\\ & -3x_1-2x_2-2x_3-10x_4=1. \end{aligned} \right.$ методом Гаусса-Жордана.

Запишем расширенную матрицу данной системы : $\widetilde{A}=\left(\begin{array} {cccc|c} 3 & 1 & 2 & 5 & -6\\ 3 & 1& 0 & 2 & -10 \\ 6 & 4 & 11 & 11 & -27 \\ -3 & -2 & -2 & -10 & 1 \end{array} \right)$.

В качестве разрешающих элементов станем выбирать диагональные элементы матрицы системы: на первом шаге возьмём элемент первой строки, на втором шаге элемент второй строки и так далее.

Первый шаг

Нам нужно обнулить соответствующие элементы первого столбца. В качестве разрешающего элемента возьмём элемент первой строки, т.е. 3. Соответственно первую строку придётся разделить на 3, чтобы разрешающий элемент стал равен единице. А затем обнулить все элементы первого столбца, кроме разрешающего:

$$ \left(\begin{array}{cccc|c} 3 & 1 & 2 & 5 & -6\\ 3 & 1 & 0 & 2 & -10\\ 6 & 4 & 11 & 11 & -27\\ -3 & -2 & -2 & -10 & 1\end{array}\right) \begin{array} {l} I:3\\ \phantom{0}\\\phantom{0}\\\phantom{0}\end{array} \rightarrow \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 3 & 1 & 0 & 2 & -10\\ 6 & 4 & 11 & 11 & -27\\ -3 & -2 & -2 & -10 & 1\end{array}\right) \begin{array} {l} \phantom{0}\\ II-3\cdot I\\III-6\cdot I\\IV+3\cdot I\end{array} \rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & 0 & -2 & -3 & -4\\ 0 & 2 & 7 & 1 & -15\\ 0 & -1 & 0 & -5 & -5\end{array}\right). $$

Второй шаг

Переходим к обнулению соответствующих элементов второго столбца. В качестве разрешающего элемента мы уславливались взять элемент второй строки, но сделать этого мы не в силах, так как нужный элемент равен нулю. Вывод: будем менять местами строки. Первую строку трогать нельзя, так как она уже использовалась на первом шаге. Выбор небогат: или меняем местами вторую и третью строки, или же меняем местами четвёртую и вторую. Так как в четвёртой строке наличествует (-1), то пусть в «обмене» поучавствует именно четвёртая строка. Итак, меняем местами вторую и четвёртую строки:

$$ \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & 0 & -2 & -3 & -4\\ 0 & 2 & 7 & 1 & -15\\ 0 & -1 & 0 & -5 & -5\end{array}\right)\rightarrow \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & -1 & 0 & -5 & -5\\ 0 & 2 & 7 & 1 & -15\\ 0 & 0 & -2 & -3 & -4\end{array}\right) $$

Вот теперь всё в норме: разрешающий элемент равен (-1). Бывает, кстати, что смена мест строк невозможна, но это обговорим в следующем примере №3. А пока что делим вторую строку на (-1), а затем обнуляем элементы второго столбца. Обратите внимание, что во втором столбце элемент, расположенный в четвёртой строке, уже равен нулю, поэтому четвёртую строку трогать не будем.

$$ \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & -1 & 0 & -5 & -5\\ 0 & 2 & 7 & 1 & -15\\ 0 & 0 & -2 & -3 & -4\end{array}\right) \begin{array} {l} \phantom{0}\\II:(-1) \\\phantom{0}\\\phantom{0}\end{array} \rightarrow \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & 1 & 0 & 5 & 5\\ 0 & 2 & 7 & 1 & -15\\ 0 & 0 & -2 & -3 & -4\end{array}\right) \begin{array} {l} I-1/3\cdot II\\ \phantom{0} \\III-2\cdot II\\\phantom{0}\end{array} \rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 7 & -9 & -25\\ 0 & 0 & -2 & -3 & -4\end{array}\right). $$

Третий шаг

Приступаем к обработке третьего столбца. В качестве разрешающего элемента мы условились брать диагональные элементы матрицы системы. Для третьего шага это означает выбор элемента, расположенного в третьей строке. Однако если мы просто возьмём элемент 7 в качестве разрешающего, то всю третью строку придётся делить на 7. Мне кажется, что разделить на (-2) попроще. Поэтому поменяем местами третью и четвёртую строки, и тогда разрешающим элементом станет (-2):

$$ \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 7 & -9 & -25\\ 0 & 0 & -2 & -3 & -4\end{array}\right) \rightarrow \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & -2 & -3 & -4\\ 0 & 0 & 7 & -9 & -25\end{array}\right) $$

Разрешающий элемент — (-2). Делим третью строку на (-2) и обнуляем соответствующие элементы третьего столбца:

$$ \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & -2 & -3 & -4\\ 0 & 0 & 7 & -9 & -25\end{array}\right) \begin{array} {l} \phantom{0}\\ \phantom{0} \\III:(-2)\\\phantom{0}\end{array}\rightarrow \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 7 & -9 & -25\end{array}\right) \begin{array} {l} I-2/3\cdot III\\ \phantom{0} \\ \phantom{0}\\IV-7\cdot III\end{array}\rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & -5\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 0 & -39/2 & -39\end{array}\right). $$

Четвёртый шаг

Переходим к обнулению четвёртого столбца. Разрешающий элемент расположен в четвёртой строке и равен числу $-\frac{39}{2}$.

$$ \left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & -5\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 0 & -39/2 & -39\end{array}\right) \begin{array} {l} \phantom{0}\\ \phantom{0} \\ \phantom{0}\\IV:\left(-\frac{39}{2}\right) \end{array}\rightarrow \left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & -5\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 0 & 1 & 2\end{array}\right) \begin{array} {l} I+IV\\ II-5\cdot IV \\ III-3/2\cdot IV \\ \phantom{0} \end{array}\rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 0 & 0 & 0 & -3\\ 0 & 1 & 0 & 0 & -5\\ 0 & 0 & 1 & 0 & -1\\ 0 & 0 & 0 & 1 & 2\end{array}\right). $$

Решение окончено. Ответ таков: $x_1=-3$, $x_2=-5$, $x_3=-1$, $x_4=2$. Полное решение без пояснений:

Ответ : $x_1=-3$, $x_2=-5$, $x_3=-1$, $x_4=2$.

Пример №3

Решить СЛАУ $\left\{\begin{aligned} & x_1-2x_2+3x_3+4x_5=-5;\\ & 2x_1+x_2+5x_3+2x_4+9x_5=-3;\\ & 3x_1+4x_2+7x_3+4x_4+14x_5=-1;\\ & 2x_1-4x_2+6x_3+11x_5=2;\\ & -2x_1+14x_2-8x_3+4x_4-7x_5=20;\\ & -4x_1-7x_2-9x_3-6x_4-21x_5=-9. \end{aligned}\right.$ методом Гаусса-Жордана. Если система является неопределённой, указать базисное решение.

Подобные примеры разбираются в теме «Общее и базисное решения СЛАУ» . Во второй части упомянутой темы данный пример решён с помощью метод Гаусса . Мы же решим его с помощью метода Гаусса-Жордана. Пошагово разбивать решение не станем, так как это уже было сделано в предыдущих примерах.

$$ \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 4 & -5\\ 2 & 1 & 5 & 2 & 9 & -3\\ 3 & 4 & 7 & 4 & 14 & -1\\ 2 & -4 & 6 & 0 & 11 & 2\\ -2 & 14 & -8 & 4 & -7 & 20\\ -4 & -7 & -9 & -6 & -21 & -9 \end{array}\right) \begin{array} {l} \phantom{0} \\ II-2\cdot I\\ III-3\cdot I\\ IV-2\cdot I\\ V+2\cdot I\\VI+4\cdot I \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 4 & -5\\ 0 & 5 & -1 & 2 & 1 & 7\\ 0 & 10 & -2 & 4 & 2 & 14\\ 0 & 0 & 0 & 0 & 3 & 12\\ 0 & 10 & -2 & 4 & 1 & 10\\ 0 & -15 & 3 & -6 & -5 & -29 \end{array}\right) \begin{array} {l} \phantom{0} \\ II:5 \\ \phantom{0}\\ \phantom{0}\\ \phantom{0} \\ \phantom{0}\end{array} \rightarrow \\ \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 4 & -5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 10 & -2 & 4 & 2 & 14\\ 0 & 0 & 0 & 0 & 3 & 12\\ 0 & 10 & -2 & 4 & 1 & 10\\ 0 & -15 & 3 & -6 & -5 & -29 \end{array}\right) \begin{array} {l} I+2\cdot II \\ \phantom{0}\\ III-10\cdot II\\ IV:3\\ V-10\cdot II\\VI+15\cdot II \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 22/5 & -11/5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & -1 & -4\\ 0 & 0 & 0 & 0 & -2 & -8 \end{array}\right). $$

Полагаю, что одно из сделанных преобразований всё-таки требует пояснения: $IV:3$. Все элементы четвёртой строки нацело делились на три, поэтому сугубо из соображений упрощения мы разделили все элементы этой строки на три. Третья строка в преобразованной матрице стала нулевой. Вычеркнем нулевую строку:

$$ \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 22/5 & -11/5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & -1 & -4\\ 0 & 0 & 0 & 0 & -2 & -8 \end{array}\right) $$

Нам пора переходить к третьему шагу, на котором должны быть обнулены элементы третьего столбца. Однако диагональный элемент (третья строка) равен нулю. И смена мест строк ничего не даст. Первую и вторую строки мы уже использовали, поэтому их трогать мы не можем. А четвёртую и пятую строки трогать нет смысла, ибо проблема равенства нулю разрешающего элемента никуда не денется.

В этой ситуации проблема решается крайне незамысловато. Мы не можем обработать третий столбец? Хорошо, перейдём к четвёртому. Может, в четвёртом столбце элемент третьей строки будет не равен нулю. Однако четвёртый столбец «болеет» той же проблемой, что и третий. Элемент третьей строки в четвёртом столбце равен нулю. И смена мест строк опять-таки ничего не даст. Четвёртый столбец тоже не можем обработать? Ладно, перейдём к пятому. А вот в пятом столбце элемент третьей строки очень даже не равен нулю. Он равен единице, что довольно-таки хорошо. Итак, разрешающий элемент в пятом столбце равен 1. Разрешающий элемент выбран, поэтому осуществим дальшейшие преобразования метода Гаусса-Жордана:

$$ \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 22/5 & -11/5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & -1 & -4\\ 0 & 0 & 0 & 0 & -2 & -8 \end{array}\right) \begin{array} {l} I-22/5\cdot III \\ II-1/5\cdot III \\ \phantom{0}\\ IV+III\\ V+2\cdot III \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 0 & -99/5\\ 0 & 1 & -1/5 & 2/5 & 0 & 3/5\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right) \rightarrow \\ \rightarrow\left|\text{Удаляем нулевые строки}\right|\rightarrow \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 0 & -99/5\\ 0 & 1 & -1/5 & 2/5 & 0 & 3/5\\ 0 & 0 & 0 & 0 & 1 & 4 \end{array}\right)$$

Мы привели матрицу системы и расширенную матрицу системы к ступенчатому виду. Ранги обеих матриц равны $r=3$, т.е. надо выбрать 3 базисных переменных. Количество неизвестных $n=5$, поэтому нужно выбрать $n-r=2$ свободных переменных. Так как $r

На «ступеньках» стоят элементы из столбцов №1, №2, №5. Следовательно, базисными будут переменные $x_1$, $x_2$, $x_5$. Свободными переменными, соответственно, будут $x_3$, $x_4$. Столбцы №3 и №4, соответствующие свободным переменным, перенесём за черту, при этом, конечно, не забыв сменить им знаки.

$$ \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 0 & -99/5\\ 0 & 1 & -1/5 & 2/5 & 0 & 3/5\\ 0 & 0 & 0 & 0 & 1 & 4 \end{array}\right)\rightarrow \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & -99/5 & -13/5 & -4/5\\ 0 & 1 & 0 & 3/5 & 1/5 & -2/5\\ 0 & 0 & 1 & 4 & 0 & 0\end{array}\right). $$

Из последней матрицы получим общее решение: $\left\{\begin{aligned} & x_1=-\frac{99}{5}-\frac{13}{5}x_3-\frac{4}{5}x_4;\\ & x_2=\frac{3}{5}+\frac{1}{5}x_3-\frac{2}{5}x_4;\\ & x_3 \in R;\\ & x_4\in R;\\ & x_5=4. \end{aligned}\right.$. Базисное решение найдём, приняв свободные переменные равными нулю, т.е. $x_3=0$, $x_4=0$:

$$ \left\{\begin{aligned} & x_1=-\frac{99}{5};\\ & x_2=\frac{3}{5};\\ & x_3=0;\\ & x_4=0;\\ & x_5=4. \end{aligned}\right. $$

Задача решена, осталось лишь записать ответ.

Ответ : Общее решение: $\left\{\begin{aligned} & x_1=-\frac{99}{5}-\frac{13}{5}x_3-\frac{4}{5}x_4;\\ & x_2=\frac{3}{5}+\frac{1}{5}x_3-\frac{2}{5}x_4;\\ & x_3 \in R;\\ & x_4\in R;\\ & x_5=4. \end{aligned}\right.$, базисное решение: $\left\{\begin{aligned} & x_1=-\frac{99}{5};\\ & x_2=\frac{3}{5};\\ & x_3=0;\\ & x_4=0;\\ & x_5=4. \end{aligned}\right.$.

Методы решения систем линейных уравнений. Метод Гауса.

Линейными называются такие уравнения, в которых все переменные находятся в первой степени. Так же в высшей математике переменные могут обозначаться не просто x, y, z и т.д., а переменными с индексами —

Решить систему уравнений означает найти такие значения переменных, при которых каждое уравнение системы превращается в верное равенство. Это правило применимо к любым системам уравнений с любым количеством неизвестных.

Существует несколько методов решения систем линейных уравнений:

  • метод подстановки («школьный метод»), или, как его еще называют, методом исключения неизвестных;
  • метод почленного сложения (вычитания) уравнений системы;
  • метод Гаусса;
  • метод Крамера;
  • метод обратной матрицы.

Рассмотрим некоторые из вышеуказанных методов.

Pешение системы уравнений методом Гаусса

Метод Гаусса является самым универсальным и эффективным и заключается в последовательном исключении переменных.

Пример.

Необходимо решить систему:

Решение:

Прямой ход.

Представим исходную систему в следующем виде:


На каждом этапе решения будем располагать с правой стороны расширенную матрицу,
эквивалентную системе уравнений. Расширенная матрица представляет собой несколько иную
форму записи исходной системы уравнений. Это позволит нам вести решение более наглядно.

Исключим переменную x1 из последнего уравнения.

Для удобства переведем систему уравнений в целые числа, для этого умножим коэффициенты
первого уравнения на 3, а коэффициенты второго уравнения на -2:


Умножим коэффициенты первого уравнения на -1.

Обычно, данное преобразование системы выполняется в уме и не указывается при решении.


Прибавим получившееся уравнение ко второму уравнению.

Первое уравнение при этом не изменится в исходной системе.


Обратный ход.

Рассмотрим второе уравнение получившейся системы:

Рассмотрим первое уравнение получившейся системы:

Найдем значение переменной x1

.

Найдем значение переменной x2, подставив найденное значение x1.

Ответ :

Если решили построить дом, то проекты коттеджей (http://www.intexhome.ru/projects/) вам будут необходимы.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Решающих систем с исключением Гаусса

Цели обучения

К концу этого раздела вы сможете:

  • Напишите расширенную матрицу системы уравнений.
  • Напишите систему уравнений из расширенной матрицы.
  • Выполняет операции со строками в матрице.
  • Решите систему линейных уравнений с помощью матриц.

Рис. 1. Немецкий математик Карл Фридрих Гаусс (1777–1855).

Карл Фридрих Гаусс жил в конце 18-го и начале 19-го веков, но до сих пор считается одним из самых плодовитых математиков в истории. Его вклад в математику и физику охватывает такие области, как алгебра, теория чисел, анализ, дифференциальная геометрия, астрономия и оптика. Его открытия в области теории матриц изменили способ работы математиков за последние два столетия.

Мы впервые столкнулись с методом исключения Гаусса в системах линейных уравнений: две переменные.В этом разделе мы еще раз вернемся к этой технике решения систем, на этот раз с использованием матриц.

Расширенная матрица системы уравнений

Матрица может служить устройством для представления и решения системы уравнений. Чтобы выразить систему в матричной форме, мы извлекаем коэффициенты переменных и констант, и они становятся элементами матрицы. Мы используем вертикальную линию, чтобы отделить записи коэффициентов от констант, по сути заменяя знаки равенства.Когда система написана в такой форме, мы называем ее расширенной матрицей .

Например, рассмотрим следующую систему уравнений [латекс] 2 \ times 2 [/ латекс].

[латекс] \ begin {array} {l} 3x + 4y = 7 \\ 4x — 2y = 5 \ end {array} [/ latex]

Мы можем записать эту систему в виде расширенной матрицы:

[латекс] \ left [\ begin {array} {rr} \ hfill 3 & \ hfill 4 \\ \ hfill 4 & \ hfill -2 \ end {array} \ text {} | \ text {} \ begin {array} { r} \ hfill 7 \\ \ hfill 5 \ end {array} \ right] [/ latex]

Мы также можем написать матрицу, содержащую только коэффициенты.Это называется матрицей коэффициентов .

[латекс] \ left [\ begin {array} {cc} 3 & 4 \\ 4 & -2 \ end {array} \ right] [/ latex]

Трехкратная система уравнений типа , например

[латекс] \ begin {array} {l} 3x-yz = 0 \ hfill \\ \ text {} x + y = 5 \ hfill \\ \ text {} 2x — 3z = 2 \ hfill \ end {array} [/ латекс]

имеет матрицу коэффициентов

[латекс] \ left [\ begin {array} {rrr} \ hfill 3 & \ hfill -1 & \ hfill -1 \\ \ hfill 1 & \ hfill 1 & \ hfill 0 \\ \ hfill 2 & \ hfill 0 & \ hfill -3 \ конец {массив} \ справа] [/ латекс]

и представлена ​​расширенной матрицей

[латекс] \ left [\ begin {array} {rrr} \ hfill 3 & \ hfill -1 & \ hfill -1 \\ \ hfill 1 & \ hfill 1 & \ hfill 0 \\ \ hfill 2 & \ hfill 0 & \ hfill -3 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 0 \\ \ hfill 5 \\ \ hfill 2 \ end {array} \ right] [/ latex]

Обратите внимание, что матрица написана так, что переменные выстраиваются в свои собственные столбцы: члены x идут в первый столбец, y -термы во втором столбце и z -термы в третьем столбце.Очень важно, чтобы каждое уравнение было записано в стандартной форме [latex] ax + by + cz = d [/ latex], чтобы переменные совпадали. Если в уравнении отсутствует член переменной, коэффициент равен 0.

Практическое руководство. Для данной системы уравнений напишите расширенную матрицу.

  1. Запишите коэффициенты членов x в виде чисел в первом столбце.
  2. Запишите коэффициенты членов и в виде чисел во втором столбце.
  3. Если есть z -термов, запишите коэффициенты в виде чисел в третьем столбце.
  4. Нарисуйте вертикальную линию и напишите константы справа от нее.

Пример 1: Написание расширенной матрицы для системы уравнений

Напишите расширенную матрицу для данной системы уравнений.

[латекс] \ begin {массив} {l} \ text {} x + 2y-z = 3 \ hfill \\ \ text {} 2x-y + 2z = 6 \ hfill \\ \ text {} x — 3y + 3z = 4 \ hfill \ end {array} [/ latex]

Решение

Расширенная матрица отображает коэффициенты переменных и дополнительный столбец для констант.

[латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill 2 & \ hfill -1 \\ \ hfill 2 & \ hfill -1 & \ hfill 2 \\ \ hfill 1 & \ hfill -3 & \ hfill 3 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 3 \\ \ hfill 6 \\ \ hfill 4 \ end {array} \ right] [/ latex]

Попробуй 1

Запишите расширенную матрицу данной системы уравнений.

[латекс] \ begin {array} {l} 4x — 3y = 11 \\ 3x + 2y = 4 \ end {array} [/ latex]

Написание системы уравнений из расширенной матрицы

Мы можем использовать расширенные матрицы, чтобы помочь нам решать системы уравнений, потому что они упрощают операции, когда системы не обременены переменными.Однако важно понимать, как переключаться между форматами, чтобы поиск решений был более плавным и интуитивно понятным. Здесь мы будем использовать информацию в расширенной матрице, чтобы записать систему уравнений в стандартной форме.

Пример 2: Написание системы уравнений из расширенной матричной формы

Найдите систему уравнений из расширенной матрицы.

[латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill -3 & \ hfill -5 \\ \ hfill 2 & \ hfill -5 & \ hfill -4 \\ \ hfill -3 & \ hfill 5 & \ hfill 4 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill -2 \\ \ hfill 5 \\ \ hfill 6 \ end {array} \ right] [/ latex]

Решение

Если столбцы представляют переменные [latex] x [/ latex], [latex] y [/ latex] и [latex] z [/ latex],

[латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill -3 & \ hfill -5 \\ \ hfill 2 & \ hfill -5 & \ hfill -4 \\ \ hfill -3 & \ hfill 5 & \ hfill 4 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill -2 \\ \ hfill 5 \\ \ hfill 6 \ end {array} \ right] \ to \ begin { array} {l} x — 3y — 5z = -2 \ hfill \\ 2x — 5y — 4z = 5 \ hfill \\ -3x + 5y + 4z = 6 \ hfill \ end {array} [/ latex]

Попробуй 2

Напишите систему уравнений из расширенной матрицы.

[латекс] \ left [\ begin {array} {ccc} 1 & -1 & 1 \\ 2 & -1 & 3 \\ 0 & 1 & 1 \ end {array} | \ begin {array} {c} 5 \\ 1 \\ -9 \ end {array} \ right] [/ latex]

Выполнение операций со строками в матрице

Теперь, когда мы можем писать системы уравнений в форме расширенной матрицы, мы рассмотрим различные операции со строками , , которые могут выполняться с матрицей, такие как сложение, умножение на константу и перестановка строк.

Выполнение строковых операций над матрицей — это метод, который мы используем для решения системы уравнений.Чтобы решить систему уравнений, мы хотим преобразовать матрицу в форму строки-эшелона , в которой единицы по главной диагонали от верхнего левого угла до нижнего правого угла и нули в каждой позиции. ниже главной диагонали, как показано.

[латекс] \ begin {array} {c} \ text {Форма строки-эшелона} \\ \ left [\ begin {array} {ccc} 1 & a & b \\ 0 & 1 & d \\ 0 & 0 & 1 \ end {array } \ right] \ end {array} [/ latex]

Мы используем операции со строками, соответствующие операциям с уравнениями, чтобы получить новую матрицу, эквивалентную строке в более простой форме.Вот рекомендации по получению формы рядного эшелона.

  1. В любой ненулевой строке первым ненулевым числом является 1. Оно называется ведущим 1.
  2. Любые нулевые строки помещаются внизу матрицы.
  3. Любая ведущая 1 находится ниже и правее предыдущей ведущей 1.
  4. Любой столбец, в котором в начале стоит 1, имеет нули во всех остальных позициях в столбце.

Чтобы решить систему уравнений, мы можем выполнить следующие операции со строками, чтобы преобразовать матрицу коэффициентов в строковую форму и выполнить обратную подстановку, чтобы найти решение.

  1. Поменяйте местами ряды. (Обозначение: [латекс] {R} _ {i} \ leftrightarrow {R} _ {j} [/ latex])
  2. Умножить строку на константу. (Обозначение: [латекс] c {R} _ {i} [/ latex])
  3. Добавить произведение одной строки на константу к другой строке. (Обозначение: [латекс] {R} _ {i} + c {R} _ {j} [/ latex])

Каждая из строковых операций соответствует операциям, которые мы уже научились решать системы уравнений с тремя переменными. С помощью этих операций есть несколько ключевых ходов, которые быстро достигнут цели написания матрицы в виде эшелона строк.Чтобы получить матрицу в виде эшелона строк для поиска решений, мы используем метод исключения Гаусса, который использует операции со строками для получения 1 в качестве первой записи, чтобы строку 1 можно было использовать для преобразования оставшихся строк.

Общее примечание: исключение по Гауссу

Метод исключения Гаусса относится к стратегии, используемой для получения матрицы в виде строки-эшелона. Цель состоит в том, чтобы записать матрицу [latex] A [/ latex] с номером 1 в качестве записи вниз по главной диагонали и иметь все нули внизу.

[латекс] A = \ left [\ begin {array} {rrr} \ hfill {a} _ {11} & \ hfill {a} _ {12} & \ hfill {a} _ {13} \\ \ hfill {a} _ {21} & \ hfill {a} _ {22} & \ hfill {a} _ {23} \\ \ hfill {a} _ {31} & \ hfill {a} _ {32} & \ hfill {a} _ {33} \ end {array} \ right] \ stackrel {\ text {После исключения Гаусса}} {\ to} A = \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill { b} _ {12} & \ hfill {b} _ {13} \\ \ hfill 0 & \ hfill 1 & \ hfill {b} _ {23} \\ \ hfill 0 & \ hfill 0 & \ hfill 1 \ end {array} \ справа] [/ латекс]

Первый шаг стратегии Гаусса включает получение 1 в качестве первой записи, так что строка 1 может использоваться для изменения строк ниже.

Практическое руководство. При наличии расширенной матрицы выполните операции со строками для получения формы «строка-эшелон».

  1. Первое уравнение должно иметь старший коэффициент 1. Поменяйте местами строки или умножьте на константу, если необходимо.
  2. Используйте операции со строками, чтобы получить нули в первом столбце под первой записью 1.
  3. Используйте операции со строками, чтобы получить 1 в строке 2, столбец 2.
  4. Используйте операции со строками, чтобы получить нули в нижнем столбце 2, под записью 1.
  5. Используйте операции со строками, чтобы получить 1 в строке 3, столбце 3.
  6. Продолжайте этот процесс для всех строк, пока в каждой записи по главной диагонали не будет 1, а внизу будут только нули.
  7. Если какие-либо строки содержат все нули, поместите их внизу.

Пример 2: Решение системы [латекс] 2 \ times 2 [/ latex] методом исключения Гаусса

Решите данную систему методом исключения Гаусса.

[латекс] \ begin {array} {l} 2x + 3y = 6 \ hfill \\ \ text {} x-y = \ frac {1} {2} \ hfill \ end {array} [/ latex]

Решение

Во-первых, мы запишем это как расширенную матрицу.

[латекс] \ left [\ begin {array} {rr} \ hfill 2 & \ hfill 3 \\ \ hfill 1 & \ hfill -1 \ end {array} \ text {} | \ text {} \ begin {array} { r} \ hfill 6 \\ \ hfill \ frac {1} {2} \ end {array} \ right] [/ latex]

Нам нужна 1 в строке 1, столбце 1. Этого можно добиться, поменяв местами строку 1 и строку 2.

[латекс] {R} _ {1} \ leftrightarrow {R} _ {2} \ to \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill -1 & \ hfill \\ \ hfill 2 & \ hfill 3 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill \ frac {1} {2} \\ \ hfill & \ hfill 6 \ end {array} \ right] [/ latex]

Теперь у нас есть 1 как первая запись в строке 1, столбце 1.Теперь давайте получим 0 в строке 2, столбце 1. Это можно сделать, умножив строку 1 на [latex] -2 [/ latex], а затем прибавив результат к строке 2.

[латекс] -2 {R} _ {1} + {R} _ {2} = {R} _ {2} \ to \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill -1 & \ hfill \\ \ hfill 0 & \ hfill 5 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill \ frac {1} {2} \\ \ hfill & \ hfill 5 \ end {массив } \ right] [/ latex]

У нас есть только один шаг, чтобы умножить строку 2 на [latex] \ frac {1} {5} [/ latex].

[латекс] \ frac {1} {5} {R} _ {2} = {R} _ {2} \ to \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill -1 & \ hfill \ \ \ hfill 0 & \ hfill 1 & \ hfill \ end {array} | \ begin {array} {cc} & \ frac {1} {2} \\ & 1 \ end {array} \ right] [/ latex]

Использовать обратную замену.Вторая строка матрицы представляет [латекс] y = 1 [/ латекс]. Подставьте обратно [latex] y = 1 [/ latex] в первое уравнение.

[латекс] \ begin {array} {l} x- \ left (1 \ right) = \ frac {1} {2} \ hfill \\ \ text {} x = \ frac {3} {2} \ hfill \ end {array} [/ latex]

Решение — точка [латекс] \ left (\ frac {3} {2}, 1 \ right) [/ latex].

Попробуй 3

Решите данную систему методом исключения Гаусса.

[латекс] \ begin {массив} {l} 4x + 3y = 11 \ hfill \\ \ text {} \ text {} \ text {} x — 3y = -1 \ hfill \ end {array} [/ latex]

Пример 3: Использование исключения Гаусса для решения системы уравнений

Используйте метод исключения Гаусса , чтобы решить данную [латекс] 2 \ times 2 [/ латекс] систему уравнений .

[латекс] \ begin {массив} {l} \ text {} 2x + y = 1 \ hfill \\ 4x + 2y = 6 \ hfill \ end {array} [/ latex]

Решение

Запишите систему как расширенную матрицу .

[латекс] \ left [\ begin {array} {ll} 2 \ hfill & 1 \ hfill \\ 4 \ hfill & 2 \ hfill \ end {array} \ text {} | \ text {} \ begin {array} {l} 1 \ hfill \\ 6 \ hfill \ end {array} \ right] [/ latex]

Получите 1 в строке 1, столбце 1. Это можно сделать, умножив первую строку на [latex] \ frac {1} {2} [/ latex].

[латекс] \ frac {1} {2} {R} _ {1} = {R} _ {1} \ to \ left [\ begin {array} {cc} 1 & \ frac {1} {2} \ \ 4 & 2 \ end {array} \ text {} | \ text {} \ begin {array} {c} \ frac {1} {2} \\ 6 \ end {array} \ right] [/ latex]

Далее нам нужен 0 в строке 2, столбце 1.Умножьте строку 1 на [latex] -4 [/ latex] и добавьте строку 1 к строке 2.

[латекс] -4 {R} _ {1} + {R} _ {2} = {R} _ {2} \ to \ left [\ begin {array} {cc} 1 & \ frac {1} {2 } \\ 0 & 0 \ end {массив} \ text {} | \ text {} \ begin {array} {c} \ frac {1} {2} \\ 4 \ end {array} \ right] [/ latex]

Вторая строка представляет уравнение [латекс] 0 = 4 [/ латекс]. Следовательно, система непоследовательна и не имеет решения.

Пример 4: Решение зависимой системы

Решите систему уравнений.

[латекс] \ begin {array} {l} 3x + 4y = 12 \\ 6x + 8y = 24 \ end {array} [/ latex]

Решение

Выполните операции со строками на расширенной матрице, чтобы попытаться получить строчную форму .

[латекс] A = \ left [\ begin {array} {llll} 3 \ hfill & \ hfill & 4 \ hfill & \ hfill \\ 6 \ hfill & \ hfill & 8 \ hfill & \ hfill \ end {array} | \ begin {array} {ll} \ hfill & 12 \ hfill \\ \ hfill & 24 \ hfill \ end {array} \ right] [/ latex]

[латекс] \ begin {array} {l} \ hfill \\ \ begin {array} {l} — \ frac {1} {2} {R} _ {2} + {R} _ {1} = { R} _ {1} \ to \ left [\ begin {array} {llll} 0 \ hfill & \ hfill & 0 \ hfill & \ hfill \\ 6 \ hfill & \ hfill & 8 \ hfill & \ hfill \ end { array} | \ begin {array} {ll} \ hfill & 0 \ hfill \\ \ hfill & 24 \ hfill \ end {array} \ right] \ hfill \\ {R} _ {1} \ leftrightarrow {R} _ {2} \ to \ left [\ begin {array} {llll} 6 \ hfill & \ hfill & 8 \ hfill & \ hfill \\ 0 \ hfill & \ hfill & 0 \ hfill & \ hfill \ end {array} | \ begin {array} {ll} \ hfill & 24 \ hfill \\ \ hfill & 0 \ hfill \ end {array} \ right] \ hfill \ end {array} \ hfill \ end {array} [/ latex]

Матрица заканчивается всеми нулями в последней строке: [latex] 0y = 0 [/ latex].Таким образом, существует бесконечное количество решений и система классифицируется как зависимая. Чтобы найти общее решение, вернитесь к одному из исходных уравнений и решите для [latex] y [/ latex].

[латекс] \ begin {array} {l} 3x + 4y = 12 \ hfill \\ \ text {} 4y = 12 — 3x \ hfill \\ \ text {} y = 3- \ frac {3} {4} x \ hfill \ end {array} [/ latex]

Итак, решение этой системы — [латекс] \ left (x, 3- \ frac {3} {4} x \ right) [/ latex].

Пример 5: Выполнение операций со строками в расширенной матрице 3 × 3 для получения формы Row-Echelon

Выполняет строковые операции с заданной матрицей для получения формы «строка-эшелон».

[латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill -3 & \ hfill 4 \\ \ hfill 2 & \ hfill -5 & \ hfill 6 \\ \ hfill -3 & \ hfill 3 & \ hfill 4 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 3 \\ \ hfill 6 \\ \ hfill 6 \ end {array} \ right] [/ latex]

Решение

В первой строке уже есть 1 в строке 1, столбце 1. Следующим шагом будет умножение строки 1 на [latex] -2 [/ latex] и прибавление ее к строке 2. Затем замените строку 2 результатом.

[латекс] -2 {R} _ {1} + {R} _ {2} = {R} _ {2} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill -3 & \ hfill & \ hfill 4 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -2 & \ hfill \\ \ hfill -3 & \ hfill & \ hfill 3 & \ hfill & \ hfill 4 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 3 \\ \ hfill & \ hfill 0 \\ \ hfill & \ hfill 6 \ end {array} \ right] [/ latex]

Затем получите ноль в строке 3, столбце 1.

[латекс] 3 {R} _ {1} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill — 3 & \ hfill & \ hfill 4 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -2 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill -6 & \ hfill & \ hfill 16 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 3 \\ \ hfill & \ hfill 0 \\ \ hfill & \ hfill 15 \ end {array} \ right] [/ latex]

Затем получите ноль в строке 3, столбце 2.

[латекс] 6 {R} _ {2} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill — 3 & \ hfill & \ hfill 4 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -2 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0 & \ hfill & \ hfill 4 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 3 \\ \ hfill & \ hfill 0 \\ \ hfill & \ hfill 15 \ end {array} \ right] [/ latex]

Последний шаг — получить 1 в строке 3, столбце 3.

[латекс] \ frac {1} {2} {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill -3 & \ hfill 4 \\ \ hfill 0 & \ hfill 1 & \ hfill -2 \\ \ hfill 0 & \ hfill 0 & \ hfill 1 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 3 \\ \ hfill -6 \\ \ hfill \ frac {21} {2} \ end {array} \ right] [/ latex]

Попробуй 4

Запишите систему уравнений в виде ряда.

[латекс] \ begin {array} {l} \ text {} x — 2y + 3z = 9 \ hfill \\ \ text {} -x + 3y = -4 \ hfill \\ 2x — 5y + 5z = 17 \ hfill \ end {array} [/ latex]

Решение системы линейных уравнений с использованием матриц

Мы видели, как написать систему уравнений с расширенной матрицей , а затем как использовать строковые операции и обратную подстановку для получения эшелонированной формы .Теперь мы перейдем на шаг дальше от строковой формы, чтобы решить систему линейных уравнений 3 на 3. Общая идея состоит в том, чтобы исключить все переменные, кроме одной, с помощью операций со строками, а затем выполнить обратную замену для поиска других переменных.

Пример 6: Решение системы линейных уравнений с использованием матриц

Решите систему линейных уравнений с помощью матриц.

[латекс] \ begin {массив} {c} \ begin {array} {l} \ hfill \\ \ hfill \\ x-y + z = 8 \ hfill \ end {array} \\ 2x + 3y-z = -2 \\ 3x — 2y — 9z = 9 \ end {array} [/ latex]

Решение

Сначала мы пишем расширенную матрицу.

[латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill -1 & \ hfill 1 \\ \ hfill 2 & \ hfill 3 & \ hfill -1 \\ \ hfill 3 & \ hfill -2 & \ hfill -9 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 8 \\ \ hfill -2 \\ \ hfill 9 \ end {array} \ right] [/ latex]

Затем мы выполняем строковые операции, чтобы получить форму «строка-эшелон».

[латекс] \ begin {array} {rrrrr} \ hfill -2 {R} _ {1} + {R} _ {2} = {R} _ {2} \ to \ left [\ begin {array} { rrrrrr} \ hfill 1 & \ hfill & \ hfill -1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 5 & \ hfill & \ hfill -3 & \ hfill \\ \ hfill 3 & \ hfill & \ hfill -2 & \ hfill & \ hfill -9 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 8 \\ \ hfill & \ hfill -18 \\ \ hfill & \ hfill 9 \ end {массив} \ right] & \ hfill & \ hfill & \ hfill & \ hfill -3 {R} _ {1} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill -1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 5 & \ hfill & \ hfill -3 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -12 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 8 \\ \ hfill & \ hfill -18 \\ \ hfill & \ hfill -15 \ end {array} \ right] \ end {array} [/ latex]

Самый простой способ получить 1 в строке 2 столбца 1 — это поменять местами [латекс] {R} _ {2} [/ latex] и [latex] {R} _ {3} [/ latex].

[латекс] \ text {Interchange} {R} _ {2} \ text {и} {R} _ {3} \ to \ left [\ begin {array} {rrrrrrr} \ hfill 1 & \ hfill & \ hfill — 1 & \ hfill & \ hfill 1 & \ hfill & \ hfill 8 \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -12 & \ hfill & \ hfill -15 \\ \ hfill 0 & \ hfill & \ hfill 5 & \ hfill & \ hfill -3 & \ hfill & \ hfill -18 \ end {array} \ right] [/ latex]

Затем

[латекс] \ begin {array} {l} \\ \ begin {array} {rrrrr} \ hfill -5 {R} _ {2} + {R} _ {3} = {R} _ {3} \ в \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill -1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -12 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0 & \ hfill & \ hfill 57 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 8 \\ \ hfill & \ hfill -15 \\ \ hfill & \ hfill 57 \ end {array} \ right] & \ hfill & \ hfill & \ hfill & \ hfill — \ frac {1} {57} {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill -1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -12 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0 & \ hfill & \ hfill 1 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 8 \\ \ hfill & \ hfill -15 \ \ \ hfill & \ hfill 1 \ end {array} \ right] \ end {array} \ end {array} [/ latex]

Последняя матрица представляет собой эквивалентную систему.

[латекс] \ begin {массив} {l} \ text {} x-y + z = 8 \ hfill \\ \ text {} y — 12z = -15 \ hfill \\ \ text {} z = 1 \ hfill \ end {array} [/ latex]

Используя обратную подстановку, мы получаем решение как [latex] \ left (4, -3,1 \ right) [/ latex].

Пример 7: Решение зависимой системы линейных уравнений с использованием матриц

Решите следующую систему линейных уравнений, используя матрицы.

[латекс] \ begin {array} {r} \ hfill -x — 2y + z = -1 \\ \ hfill 2x + 3y = 2 \\ \ hfill y — 2z = 0 \ end {array} [/ latex]

Решение

Запишите расширенную матрицу.

[латекс] \ left [\ begin {array} {rrr} \ hfill -1 & \ hfill -2 & \ hfill 1 \\ \ hfill 2 & \ hfill 3 & \ hfill 0 \\ \ hfill 0 & \ hfill 1 & \ hfill -2 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill -1 \\ \ hfill 2 \\ \ hfill 0 \ end {array} \ right] [/ latex]

Сначала умножьте строку 1 на [latex] -1 [/ latex], чтобы получить 1 в строке 1, столбце 1. Затем выполните операции со строками , чтобы получить форму «строка-эшелон».

[латекс] — {R} _ {1} \ to \ left [\ begin {array} {rrrrrrr} \ hfill 1 & \ hfill & \ hfill 2 & \ hfill & \ hfill -1 & \ hfill & \ hfill 1 \\ \ hfill 2 & \ hfill & \ hfill 3 & \ hfill & \ hfill 0 & \ hfill & \ hfill 2 \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -2 & \ hfill & \ hfill 0 \ end {array} \ справа] [/ латекс]

[латекс] {R} _ {2} \ leftrightarrow {R} _ {3} \ to \ left [\ begin {array} {rrrrr} \ hfill 1 & \ hfill & \ hfill 2 & \ hfill & \ hfill -1 \ \ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -2 \\ \ hfill 2 & \ hfill & \ hfill 3 & \ hfill & \ hfill 0 \ end {array} \ text {} | \ begin {array} { rr} \ hfill & \ hfill 1 \\ \ hfill & \ hfill 0 \\ \ hfill & \ hfill 2 \ end {array} \ right] [/ latex]

[латекс] -2 {R} _ {1} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 2 & \ hfill & \ hfill -1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -2 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill -1 & \ hfill & \ hfill 2 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 1 \\ \ hfill & \ hfill 0 \\ \ hfill & \ hfill 0 \ end {array} \ right] [/ latex]

[латекс] {R} _ {2} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 2 & \ hfill & \ hfill -1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -2 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0 & \ hfill & \ hfill 0 & \ hfill \ end { array} | \ begin {array} {rr} \ hfill & \ hfill 2 \\ \ hfill & \ hfill 1 \\ \ hfill & \ hfill 0 \ end {array} \ right] [/ latex]

Последняя матрица представляет следующую систему.

[латекс] \ begin {array} {l} \ text {} x + 2y-z = 1 \ hfill \\ \ text {} y — 2z = 0 \ hfill \\ \ text {} 0 = 0 \ hfill \ конец {array} [/ latex]

По тождеству [latex] 0 = 0 [/ latex] мы видим, что это зависимая система с бесконечным числом решений. Затем мы находим общее решение. Решив второе уравнение для [latex] y [/ latex] и подставив его в первое уравнение, мы можем решить для [latex] z [/ latex] через [latex] x [/ latex].

[латекс] \ begin {array} {l} \ text {} x + 2y-z = 1 \ hfill \\ \ text {} y = 2z \ hfill \\ \ hfill \\ x + 2 \ left (2z \ справа) -z = 1 \ hfill \\ \ text {} x + 3z = 1 \ hfill \\ \ text {} z = \ frac {1-x} {3} \ hfill \ end {array} [/ latex]

Теперь мы подставляем выражение для [latex] z [/ latex] во второе уравнение, чтобы решить для [latex] y [/ latex] через [latex] x [/ latex].

[латекс] \ begin {массив} {l} \ text {} y — 2z = 0 \ hfill \\ \ text {} z = \ frac {1-x} {3} \ hfill \\ \ hfill \\ y — 2 \ left (\ frac {1-x} {3} \ right) = 0 \ hfill \\ \ text {} y = \ frac {2 — 2x} {3} \ hfill \ end {array} [/ latex ]

Общее решение — [latex] \ left (x, \ frac {2 — 2x} {3}, \ frac {1-x} {3} \ right) [/ latex].

Попробуй 5

Решите систему, используя матрицы.

[латекс] \ begin {array} {c} x + 4y-z = 4 \\ 2x + 5y + 8z = 15 \ x + 3y — 3z = 1 \ end {array} [/ latex]

Вопросы и ответы

Можно ли решить любую систему линейных уравнений методом исключения Гаусса?

Да, система линейных уравнений любого размера может быть решена методом исключения Гаусса.

Практическое руководство. Для данной системы уравнений решите с помощью матриц с помощью калькулятора.

  1. Сохраните расширенную матрицу как матричную переменную [latex] \ left [A \ right], \ left [B \ right], \ left [C \ right] \ text {,} \ dots [/ latex].
  2. Используйте в калькуляторе функцию ref (, вызывая каждую матричную переменную по мере необходимости.

Пример 8: Решение систем уравнений с матрицами с помощью калькулятора

Решите систему уравнений.

[латекс] \ begin {array} {r} \ hfill 5x + 3y + 9z = -1 \\ \ hfill -2x + 3y-z = -2 \\ \ hfill -x — 4y + 5z = 1 \ end { array} [/ latex]

Решение

Напишите расширенную матрицу для системы уравнений.

[латекс] \ left [\ begin {array} {rrr} \ hfill 5 & \ hfill 3 & \ hfill 9 \\ \ hfill -2 & \ hfill 3 & \ hfill -1 \\ \ hfill -1 & \ hfill -4 & \ hfill 5 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 5 \\ \ hfill -2 \\ \ hfill -1 \ end {array} \ right] [/ latex]

На странице матриц калькулятора введите расширенную матрицу выше как матричную переменную [latex] \ left [A \ right] [/ latex].

[латекс] \ left [A \ right] = \ left [\ begin {array} {rrrrrrr} \ hfill 5 & \ hfill & \ hfill 3 & \ hfill & \ hfill 9 & \ hfill & \ hfill -1 \\ \ hfill — 2 & \ hfill & \ hfill 3 & \ hfill & \ hfill -1 & \ hfill & \ hfill -2 \\ \ hfill -1 & \ hfill & \ hfill -4 & \ hfill & \ hfill 5 & \ hfill & \ hfill 1 \ end {массив } \ right] [/ latex]

Используйте функцию ref ( в калькуляторе, вызывая матричную переменную [latex] \ left [A \ right] [/ latex].

[латекс] \ text {ref} \ left (\ left [A \ right] \ right) [/ латекс]

Оценить.

[латекс] \ begin {array} {l} \ hfill \\ \ left [\ begin {array} {rrrr} \ hfill 1 & \ hfill \ frac {3} {5} & \ hfill \ frac {9} {5 } & \ hfill \ frac {1} {5} \\ \ hfill 0 & \ hfill 1 & \ hfill \ frac {13} {21} & \ hfill — \ frac {4} {7} \\ \ hfill 0 & \ hfill 0 & \ hfill 1 & \ hfill — \ frac {24} {187} \ end {array} \ right] \ to \ begin {array} {l} x + \ frac {3} {5} y + \ frac {9} {5} z = — \ frac {1} {5} \ hfill \\ \ text {} y + \ frac {13} {21} z = — \ frac {4} {7} \ hfill \\ \ text {} z = — \ frac {24} {187} \ hfill \ end {array} \ hfill \ end {array} [/ latex]

При использовании обратной подстановки решение: [latex] \ left (\ frac {61} {187}, — \ frac {92} {187}, — \ frac {24} {187} \ right) [/ latex] .

Пример 9: Применение матриц 2 × 2 к финансам

Кэролайн инвестирует в общей сложности 12 000 долларов в две муниципальные облигации, одна из которых выплачивает 10,5% годовых, а другая — 12%. Годовой процент, полученный по двум инвестициям в прошлом году, составил 1335 долларов. Сколько было вложено по каждой ставке?

Решение

У нас есть система двух уравнений с двумя переменными. Пусть [latex] x = [/ latex] сумма, инвестированная под 10,5% годовых, а [latex] y = [/ latex] сумма, инвестированная под 12% годовых.

[латекс] \ begin {массив} {l} \ text {} x + y = 12 000 \ hfill \\ 0,105x + 0,12y = 1,335 \ hfill \ end {array} [/ latex]

В качестве матрицы имеем

[латекс] \ left [\ begin {array} {rr} \ hfill 1 & \ hfill 1 \\ \ hfill 0.105 & \ hfill 0.12 \ end {array} \ text {} | \ text {} \ begin {array} { r} \ hfill 12,000 \\ \ hfill 1,335 \ end {array} \ right] [/ latex]

Умножьте строку 1 на [latex] -0.105 [/ latex] и добавьте результат к строке 2.

[латекс] \ left [\ begin {array} {rr} \ hfill 1 & \ hfill 1 \\ \ hfill 0 & \ hfill 0.015 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 12,000 \\ \ hfill 75 \ end {array} \ right] [/ latex]

Затем,

[латекс] \ begin {array} {l} 0,015y = 75 \ hfill \\ \ text {} y = 5,000 \ hfill \ end {array} [/ latex]

Итак [латекс] 12 000 — 5 000 = 7 000 [/ латекс].

Таким образом, 5000 долларов были инвестированы под 12% годовых, а 7000 долларов — под 10,5%.

Пример 10: Применение матриц 3 × 3 к финансам

Ava инвестирует в общей сложности 10 000 долларов в три счета, один из которых платит 5% годовых, другой — 8%, а третий — 9%.Годовой процент, полученный по трем инвестициям в прошлом году, составил 770 долларов. Сумма, вложенная под 9%, была вдвое больше, чем сумма, вложенная под 5%. Сколько было вложено по каждой ставке?

Решение

У нас есть система трех уравнений с тремя переменными. Пусть [latex] x [/ latex] будет сумма, инвестированная под 5% годовых, пусть [latex] y [/ latex] будет суммой, инвестированной под 8%, и пусть [latex] z [/ latex] будет инвестированной суммой. под 9% годовых. Таким образом,

[латекс] \ begin {array} {l} \ text {} x + y + z = 10 000 \ hfill \\ 0.05x + 0,08y + 0,09z = 770 \ hfill \\ \ text {} 2x-z = 0 \ hfill \ end {array} [/ latex]

В качестве матрицы имеем

[латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill 1 & \ hfill 1 \\ \ hfill 0,05 & \ hfill 0,08 & \ hfill 0,09 \\ \ hfill 2 & \ hfill 0 & \ hfill -1 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 10,000 \\ \ hfill 770 \\ \ hfill 0 \ end {array} \ right] [/ latex]

Теперь мы выполняем исключение Гаусса, чтобы получить форму строки-эшелон.

[латекс] \ begin {массив} {l} \ begin {array} {l} \ hfill \\ -0.05 {R} _ {1} + {R} _ {2} = {R} _ {2} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0.03 & \ hfill & \ hfill 0.04 & \ hfill \\ \ hfill 2 & \ hfill & \ hfill 0 & \ hfill & \ hfill -1 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 270 \\ \ hfill & \ hfill 0 \ end {array} \ right] \ hfill \ end {array} \ hfill \\ -2 {R} _ {1} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0.03 & \ hfill & \ hfill 0.04 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill -2 & \ hfill & \ hfill -3 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 270 \\ \ hfill & \ hfill -20,000 \ end {array} \ right] \ hfill \\ \ frac {1} {0.03} {R} _ {2} = {R} _ {2} \ to \ left [\ begin {array} {rrrrrr} \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill \ frac {4} {3} & \ hfill \\ \ hfill 0 & \ hfill & \ hfill -2 & \ hfill & \ hfill -3 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 9,000 \\ \ hfill & \ hfill -20,000 \ end {array} \ right] \ hfill \\ 2 {R} _ {2} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill \ frac {4} {3} & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0 & \ hfill & \ hfill — \ frac {1} {3} & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 9,000 \\ \ hfill & \ hfill -2,000 \ end {array} \ right] \ hfill \ end {array} [/ latex]

Третья строка сообщает нам [латекс] — \ frac {1} {3} z = -2,000 [/ latex]; таким образом [латекс] z = 6,000 [/ латекс].

Вторая строка сообщает нам [латекс] y + \ frac {4} {3} z = 9000 [/ latex]. Подставляя [латекс] z = 6,000 [/ latex], получаем

[латекс] \ begin {array} {r} \ hfill y + \ frac {4} {3} \ left (6000 \ right) = 9000 \\ \ hfill y + 8000 = 9000 \\ \ hfill y = 1000 \ end {array} [/ latex]

Первая строка сообщает нам [латекс] x + y + z = 10,000 [/ latex]. Подставляя [латекс] y = 1000 [/ latex] и [latex] z = 6000 [/ latex], получаем

[латекс] \ begin {array} {l} x + 1 000 + 6 000 = 10 000 \ hfill \\ \ text {} x = 3 000 \ text {} \ hfill \ end {array} [/ latex]

Ответ: 3000 долларов вложены под 5%, 1000 долларов вложены под 8% и 6000 долларов вложены под 9%.

Попробуй 6

Небольшая обувная компания взяла ссуду в размере 1 500 000 долларов на расширение своего ассортимента. Часть денег была взята под 7%, часть — под 8%, часть — под 10%. Сумма займа под 10% в четыре раза превышала сумму займа под 7%, а годовая процентная ставка по всем трем займам составляла 130 500 долларов. Используйте матрицы, чтобы найти сумму займа по каждой ставке.

Решение

Ключевые понятия

  • Расширенная матрица — это матрица, которая содержит коэффициенты и константы системы уравнений.
  • Матрица, дополненная постоянным столбцом, может быть представлена ​​как исходная система уравнений.
  • Операции со строками включают в себя умножение строки на константу, добавление одной строки к другой строке и замену строк местами.
  • Мы можем использовать метод исключения Гаусса для решения системы уравнений.
  • Операции со строками выполняются над матрицами для получения формы «строка-эшелон».
  • Чтобы решить систему уравнений, запишите ее в форме расширенной матрицы. Выполните операции со строками, чтобы получить форму эшелона строк.Обратно-заменитель, чтобы найти решения.
  • Калькулятор можно использовать для решения систем уравнений с использованием матриц.
  • Многие реальные проблемы можно решить с помощью расширенных матриц.

Глоссарий

расширенная матрица
матрица коэффициентов, примыкающая к столбцу констант, разделенному вертикальной линией в скобках матрицы
матрица коэффициентов
матрица, содержащая только коэффициенты из системы уравнений
Гауссово исключение
с использованием элементарных операций со строками для получения матрицы в виде эшелона строки
главная диагональ
записей из левого верхнего угла по диагонали в правый нижний угол квадратной матрицы
рядная форма
после выполнения строковых операций матричная форма, содержащая единицы по главной диагонали и нули в каждом пробеле ниже диагонали
эквивалент ряда
две матрицы [latex] A [/ latex] и [latex] B [/ latex] эквивалентны строкам, если одна может быть получена из другой путем выполнения основных операций со строками
строковые операции
: добавление одной строки к другой, умножение строки на константу, перестановка строк и т. Д. С целью получения формы «строка-эшелон»

Упражнения по разделу

1.Можно ли записать любую систему линейных уравнений в виде расширенной матрицы? Объясните, почему да или почему нет. Объясните, как написать эту расширенную матрицу.

2. Можно ли записать любую матрицу в виде системы линейных уравнений? Объясните, почему да или почему нет. Объясните, как написать эту систему уравнений.

3. Существует ли только один правильный метод использования операций со строками в матрице? Попытайтесь объяснить две различные операции со строками, которые возможны для решения расширенной матрицы [latex] \ left [\ begin {array} {rr} \ hfill 9 & \ hfill 3 \\ \ hfill 1 & \ hfill -2 \ end {array} \ text { } | \ text {} \ begin {array} {r} \ hfill 0 \\ \ hfill 6 \ end {array} \ right] [/ latex].

4. Можно ли решить матрицу с нулевым элементом на диагонали? Объясните, почему да или почему нет. Что бы вы сделали, чтобы исправить ситуацию?

5. Может ли матрица с 0 элементами для всей строки иметь одно решение? Объясните, почему да или почему нет.

Для следующих упражнений напишите расширенную матрицу линейной системы.

6. [латекс] \ begin {array} {l} 8x — 37y = 8 \\ 2x + 12y = 3 \ end {array} [/ latex]

7. [латекс] \ begin {массив} {l} \ text {} 16y = 4 \ hfill \\ 9x-y = 2 \ hfill \ end {array} [/ latex]

8.[латекс] \ begin {array} {l} \ text {} 3x + 2y + 10z = 3 \ hfill \\ -6x + 2y + 5z = 13 \ hfill \\ \ text {} 4x + z = 18 \ hfill \ конец {array} [/ latex]

9. [латекс] \ begin {array} {l} \ hfill \\ \ text {} x + 5y + 8z = 19 \ hfill \\ \ text {} 12x + 3y = 4 \ hfill \\ 3x + 4y + 9z = -7 \ hfill \ end {array} [/ latex]

10. [латекс] \ begin {array} {l} 6x + 12y + 16z = 4 \ hfill \\ \ text {} 19x — 5y + 3z = -9 \ hfill \\ \ text {} x + 2y = — 8 \ hfill \ end {array} [/ latex]

Для следующих упражнений запишите линейную систему из расширенной матрицы.

11.[латекс] \ left [\ begin {array} {rr} \ hfill -2 & \ hfill 5 \\ \ hfill 6 & \ hfill -18 \ end {array} \ text {} | \ text {} \ begin {array} { r} \ hfill 5 \\ \ hfill 26 \ end {array} \ right] [/ latex]

12. [латекс] \ left [\ begin {array} {rr} \ hfill 3 & \ hfill 4 \\ \ hfill 10 & \ hfill 17 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 10 \\ \ hfill 439 \ end {array} \ right] [/ latex]

13. [латекс] \ left [\ begin {array} {rrr} \ hfill 3 & \ hfill 2 & \ hfill 0 \\ \ hfill -1 & \ hfill -9 & \ hfill 4 \\ \ hfill 8 & \ hfill 5 & \ hfill 7 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 3 \\ \ hfill -1 \\ \ hfill 8 \ end {array} \ right] [/ latex]

14.[латекс] \ left [\ begin {array} {rrr} \ hfill 8 & \ hfill 29 & \ hfill 1 \\ \ hfill -1 & \ hfill 7 & \ hfill 5 \\ \ hfill 0 & \ hfill 0 & \ hfill 3 \ end {массив } \ text {} | \ text {} \ begin {array} {r} \ hfill 43 \\ \ hfill 38 \\ \ hfill 10 \ end {array} \ right] [/ latex]

15. [латекс] \ left [\ begin {array} {rrr} \ hfill 4 & \ hfill 5 & \ hfill -2 \\ \ hfill 0 & \ hfill 1 & \ hfill 58 \\ \ hfill 8 & \ hfill 7 & \ hfill -3 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 12 \\ \ hfill 2 \\ \ hfill -5 \ end {array} \ right] [/ latex]

Для следующих упражнений решите систему методом исключения Гаусса.

16. [латекс] \ left [\ begin {array} {rr} \ hfill 1 & \ hfill 0 \\ \ hfill 0 & \ hfill 0 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 3 \\ \ hfill 0 \ end {array} \ right] [/ latex]

17. [латекс] \ left [\ begin {array} {rr} \ hfill 1 & \ hfill 0 \\ \ hfill 1 & \ hfill 0 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 1 \\ \ hfill 2 \ end {array} \ right] [/ latex]

18. [латекс] \ left [\ begin {array} {rr} \ hfill 1 & \ hfill 2 \\ \ hfill 4 & \ hfill 5 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 3 \\ \ hfill 6 \ end {array} \ right] [/ latex]

19.[латекс] \ left [\ begin {array} {rr} \ hfill -1 & \ hfill 2 \\ \ hfill 4 & \ hfill -5 \ end {array} \ text {} | \ text {} \ begin {array} { r} \ hfill -3 \\ \ hfill 6 \ end {array} \ right] [/ latex]

20. [латекс] \ left [\ begin {array} {rr} \ hfill -2 & \ hfill 0 \\ \ hfill 0 & \ hfill 2 \ end {array} \ text {} | \ text {} \ begin {array } {r} \ hfill 1 \\ \ hfill -1 \ end {array} \ right] [/ latex]

21. [латекс] \ begin {array} {l} \ text {} 2x — 3y = -9 \ hfill \\ 5x + 4y = 58 \ hfill \ end {array} [/ latex]

22. [латекс] \ begin {array} {l} 6x + 2y = -4 \\ 3x + 4y = -17 \ end {array} [/ latex]

23.[латекс] \ begin {array} {l} 2x + 3y = 12 \ hfill \\ \ text {} 4x + y = 14 \ hfill \ end {array} [/ latex]

24. [латекс] \ begin {array} {l} -4x — 3y = -2 \ hfill \\ \ text {} 3x — 5y = -13 \ hfill \ end {array} [/ latex]

25. [латекс] \ begin {array} {l} -5x + 8y = 3 \ hfill \\ 10x + 6y = 5 \ hfill \ end {array} [/ latex]

26. [латекс] \ begin {array} {l} \ text {} 3x + 4y = 12 \ hfill \\ -6x — 8y = -24 \ hfill \ end {array} [/ latex]

27. [латекс] \ begin {array} {l} -60x + 45y = 12 \ hfill \\ \ text {} 20x — 15y = -4 \ hfill \ end {array} [/ latex]

28.[латекс] \ begin {array} {l} 11x + 10y = 43 \\ 15x + 20y = 65 \ end {array} [/ latex]

29. [латекс] \ begin {array} {l} \ text {} 2x-y = 2 \ hfill \\ 3x + 2y = 17 \ hfill \ end {array} [/ latex]

30. [латекс] \ begin {array} {l} \ begin {array} {l} \\ -1.06x — 2.25y = 5.51 \ end {array} \ hfill \\ -5.03x — 1.08y = 5.40 \ hfill \ end {array} [/ latex]

31. [латекс] \ begin {array} {l} \ frac {3} {4} x- \ frac {3} {5} y = 4 \\ \ frac {1} {4} x + \ frac {2 } {3} y = 1 \ end {array} [/ latex]

32. [латекс] \ begin {array} {l} \ frac {1} {4} x- \ frac {2} {3} y = -1 \\ \ frac {1} {2} x + \ frac { 1} {3} y = 3 \ end {array} [/ latex]

33.[латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill 0 & \ hfill 0 \\ \ hfill 0 & \ hfill 1 & \ hfill 1 \\ \ hfill 0 & \ hfill 0 & \ hfill 1 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 31 \\ \ hfill 45 \\ \ hfill 87 \ end {array} \ right] [/ latex]

34. [латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill 0 & \ hfill 1 \\ \ hfill 1 & \ hfill 1 & \ hfill 0 \\ \ hfill 0 & \ hfill 1 & \ hfill 1 \ end {массив} \ text {} | \ text {} \ begin {array} {r} \ hfill 50 \\ \ hfill 20 \\ \ hfill -90 \ end {array} \ right] [/ latex]

35.[латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill 2 & \ hfill 3 \\ \ hfill 0 & \ hfill 5 & \ hfill 6 \\ \ hfill 0 & \ hfill 0 & \ hfill 8 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 4 \\ \ hfill 7 \\ \ hfill 9 \ end {array} \ right] [/ latex]

36. [латекс] \ left [\ begin {array} {rrr} \ hfill -0.1 & \ hfill 0.3 & \ hfill -0.1 \\ \ hfill -0.4 & \ hfill 0.2 & \ hfill 0.1 \\ \ hfill 0.6 & \ hfill 0.1 & \ hfill 0.7 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 0.2 \\ \ hfill 0.8 \\ \ hfill -0.8 \ end {array} \ right] [/ latex]

37. [латекс] \ begin {array} {l} \ text {} -2x + 3y — 2z = 3 \ hfill \\ \ text {} 4x + 2y-z = 9 \ hfill \\ \ text {} 4x — 8y + 2z = -6 \ hfill \ end {array} [/ latex]

38. [латекс] \ begin {array} {l} \ text {} x + y — 4z = -4 \ hfill \\ \ text {} 5x — 3y — 2z = 0 \ hfill \\ \ text {} 2x + 6y + 7z = 30 \ hfill \ end {array} [/ latex]

39. [латекс] \ begin {array} {l} \ text {} 2x + 3y + 2z = 1 \ hfill \\ \ text {} -4x — 6y — 4z = -2 \ hfill \\ \ text {} 10x + 15y + 10z = 5 \ hfill \ end {array} [/ latex]

40. [латекс] \ begin {array} {l} \ text {} x + 2y-z = 1 \ hfill \\ -x — 2y + 2z = -2 \ hfill \\ 3x + 6y — 3z = 5 \ hfill \ end {array} [/ latex]

41.[латекс] \ begin {array} {l} \ text {} x + 2y-z = 1 \ hfill \\ -x — 2y + 2z = -2 \ hfill \\ \ text {} 3x + 6y — 3z = 3 \ hfill \ end {array} [/ latex]

42. [латекс] \ begin {array} {l} \ text {} \ text {} x + y = 2 \ hfill \\ \ text {} x + z = 1 \ hfill \\ -yz = -3 \ hfill \ end {array} [/ latex]

43. [латекс] \ begin {array} {l} x + y + z = 100 \ hfill \\ \ text {} x + 2z = 125 \ hfill \\ -y + 2z = 25 \ hfill \ end {массив } [/ латекс]

44. [латекс] \ begin {array} {l} \ frac {1} {4} x- \ frac {2} {3} z = — \ frac {1} {2} \\ \ frac {1} {5} x + \ frac {1} {3} y = \ frac {4} {7} \\ \ frac {1} {5} y- \ frac {1} {3} z = \ frac {2} { 9} \ end {array} [/ latex]

45.[латекс] \ begin {array} {l} — \ frac {1} {2} x + \ frac {1} {2} y + \ frac {1} {7} z = — \ frac {53} {14} \ hfill \\ \ text {} \ frac {1} {2} x- \ frac {1} {2} y + \ frac {1} {4} z = 3 \ hfill \\ \ text {} \ frac {1} {4} x + \ frac {1} {5} y + \ frac {1} {3} z = \ frac {23} {15} \ hfill \ end {array} [/ latex]

46. [латекс] \ begin {array} {l} — \ frac {1} {2} x- \ frac {1} {3} y + \ frac {1} {4} z = — \ frac {29} {6} \ hfill \\ \ text {} \ frac {1} {5} x + \ frac {1} {6} y- \ frac {1} {7} z = \ frac {431} {210} \ hfill \\ — \ frac {1} {8} x + \ frac {1} {9} y + \ frac {1} {10} z = — \ frac {49} {45} \ hfill \ end {array} [/ latex ]

Для следующих упражнений используйте метод исключения Гаусса для решения системы.

47. [латекс] \ begin {array} {l} \ frac {x — 1} {7} + \ frac {y — 2} {8} + \ frac {z — 3} {4} = 0 \ hfill \\ \ text {} x + y + z = 6 \ hfill \\ \ text {} \ frac {x + 2} {3} + 2y + \ frac {z — 3} {3} = 5 \ hfill \ end { array} [/ latex]

48. [латекс] \ begin {array} {l} \ frac {x — 1} {4} — \ frac {y + 1} {4} + 3z = -1 \ hfill \\ \ text {} \ frac {x + 5} {2} + \ frac {y + 7} {4} -z = 4 \ hfill \\ \ text {} x + y- \ frac {z — 2} {2} = 1 \ hfill \ конец {array} [/ latex]

49. [латекс] \ begin {array} {l} \ text {} \ frac {x — 3} {4} — \ frac {y — 1} {3} + 2z = -1 \ hfill \\ \ frac {x + 5} {2} + \ frac {y + 5} {2} + \ frac {z + 5} {2} = 8 \ hfill \\ \ text {} x + y + z = 1 \ hfill \ конец {array} [/ latex]

50.[латекс] \ begin {array} {l} \ frac {x — 3} {10} + \ frac {y + 3} {2} -2z = 3 \ hfill \\ \ text {} \ frac {x + 5 } {4} — \ frac {y — 1} {8} + z = \ frac {3} {2} \ hfill \\ \ frac {x — 1} {4} + \ frac {y + 4} {2 } + 3z = \ frac {3} {2} \ hfill \ end {array} [/ latex]

51. [латекс] \ begin {array} {l} \ text {} \ frac {x — 3} {4} — \ frac {y — 1} {3} + 2z = -1 \ hfill \\ \ frac {x + 5} {2} + \ frac {y + 5} {2} + \ frac {z + 5} {2} = 7 \ hfill \\ \ text {} x + y + z = 1 \ hfill \ конец {array} [/ latex]

Для следующих упражнений настройте расширенную матрицу, описывающую ситуацию, и найдите желаемое решение.

52. Каждый день в магазине кексов продается 5 000 кексов с шоколадным и ванильным вкусом. Если вкус шоколада в 3 раза популярнее, чем аромат ванили, сколько кексов продается в день?

53. В конкурирующем магазине кексов ежедневно продаются кексы на сумму 4 520 долларов. Шоколадные кексы стоят 2,25 доллара, а кексы из красного бархата — 1,75 доллара. Если общее количество кексов, проданных в день, составляет 2200, сколько штук каждого вкуса продается каждый день?

54. Вы вложили 10 000 долларов в два счета: один с простой процентной ставкой 3%, другой — с 2.5% годовых. Если ваша общая выплата процентов по истечении одного года составила 283,50 доллара, какая сумма была на каждом счете по истечении года?

55. Вы инвестировали 2300 долларов на счет 1 и 2700 долларов на счет 2. Если общая сумма процентов по истечении одного года составляет 254 доллара, а на счете 2 процентная ставка в 1,5 раза выше, чем на счете 1, каковы процентные ставки? Предположим простые процентные ставки.

56. Bikes’R’Us производит велосипеды, которые продаются по 250 долларов. Он стоит производителю 180 долларов за велосипед плюс стартовый взнос в размере 3500 долларов.Через сколько проданных велосипедов производитель выйдет на уровень безубыточности?

57. Крупный магазин бытовой техники рассматривает возможность приобретения пылесосов у небольшого производителя. Магазин сможет приобрести пылесосы по 86 долларов каждый, со стоимостью доставки 9 200 долларов, независимо от того, сколько пылесосов будет продано. Если магазин должен начать получать прибыль после продажи 230 единиц, сколько они должны взимать плату за пылесосы?

58. Три самых популярных вкуса мороженого — это шоколад, клубника и ваниль, составляющие 83% вкусов, продаваемых в магазине мороженого.Если ваниль продается на 1% больше, чем в два раза больше клубники, а шоколад продается на 11% больше, чем ваниль, сколько в общем потреблении мороженого приходится на ароматы ванили, шоколада и клубники?

59. В магазине мороженого растет спрос на три вкуса. В прошлом году банановое, тыквенное и мороженое с каменистой дорогой составили 12% от общего объема продаж мороженого. В этом году на те же три вида мороженого пришлось 16,9% продаж мороженого. Продажи по каменистой дороге увеличились вдвое, продажи бананов увеличились на 50%, а продажи тыквы — на 20%.Если у мороженого по каменистой дороге было на один процент меньше продаж, чем у бананового мороженого, узнайте, какой процент продаж мороженого было произведено на каждое отдельное мороженое в прошлом году.

60. В пакете ореховой смеси кешью, фисташки и миндаль. Всего в сумке 1000 орехов, а миндаля на 100 меньше, чем фисташек. Кешью весит 3 г, фисташки — 4 г, миндаль — 5 г. Если мешок весит 3,7 кг, узнайте, сколько орехов каждого вида в нем.

61.Пакет с ореховой смесью содержит кешью, фисташки и миндаль. Изначально в сумке было 900 орехов. Было съедено 30% миндаля, 20% кешью и 10% фисташек, и теперь в сумке осталось 770 орехов. Изначально кешью было на 100 штук больше, чем миндаля. Для начала выясните, сколько орехов каждого типа было в пакете.

Обращение матрицы с использованием исключения Гаусса-Джордана

М. Борна

В этом разделе мы увидим, как работает метод исключения Гаусса-Жордана, на примерах.

Вы можете повторно загружать эту страницу сколько угодно раз и каждый раз получать новый набор чисел. Вы также можете выбрать матрицу другого размера (внизу страницы).

(Если вам сначала нужна дополнительная информация, вернитесь к «Введение в матрицы»).

Выберите размер матрицы, который вас интересует, и нажмите кнопку.

Матрица A:

Пример, сгенерированный случайным образом, показан ниже.

Пользователи телефона

ПРИМЕЧАНИЕ: Если вы разговариваете по телефону, вы можете прокрутить любую матрицу шириной на этой странице вправо или влево, чтобы увидеть все выражение.

Пример (3 × 3)

Найдите матрицу, обратную матрице A , используя метод исключения Гаусса-Жордана.

A = 11 7 12
5 8 4
9 6 10

Наша процедура

Запишем матрицу A слева и матрицу идентичности I справа, разделенные пунктирной линией, как показано ниже.Результат называется расширенной матрицей .

Мы включили номера строк, чтобы было понятнее.

1 0 0 Ряд [1]
0 1 0 Ряд [2]
0 0 1 ряд [3]

Затем мы выполняем несколько операций со строками над двумя матрицами, и наша цель — получить единичную матрицу на левом , например:

??? Ряд [1]
??? Ряд [2]
??? ряд [3]

(Технически мы сокращаем матрицу A до сокращенной формы эшелона строк , также называемой канонической формой строки ).

Результирующая матрица справа будет обратной матрицей для A .

Наша процедура операций со строками выглядит следующим образом:

  1. Получим «1» в верхнем левом углу, разделив первую строку
  2. Тогда мы получим «0» в оставшейся части первого столбца
  3. Тогда нам нужно получить «1» во второй строке, втором столбце
  4. Затем мы делаем все остальные записи во втором столбце «0».

Продолжаем так до тех пор, пока слева не останется единичная матрица.

Давайте теперь продолжим и найдем обратное.

Решение

Начнем с:

1 0 0 Ряд [1]
0 1 0 Ряд [2]
0 0 1 ряд [3]

Новый ряд [1]

Разделите строку [1] на 11 (чтобы получить «1» в нужной позиции):

Это дает нам:

1 0.6364 1.0909
5 8 4
9 6 10
0,0909 0 0 Ряд [1]
0 1 0 Ряд [2]
0 0 1 ряд [3]

Новый ряд [2]

Ряд [2] — 5 × Ряд [1] (чтобы дать нам 0 в желаемой позиции):

5 — 5 × 1 = 0
8 — 5 × 0.6364 = 4,8182
4 — 5 × 1,0909 = -1,4545
0 — 5 × 0,0909 = -0,4545
1 — 5 × 0 = 1
0 — 5 × 0 = 0

Это дает нам новую строку [2]:

1 0,6364 1.0909
0 4,8 182 -1,4545
9 6 10
0,0909 0 0 Ряд [1]
-0.4545 1 0 Ряд [2]
0 0 1 ряд [3]

Новый ряд [3]

Ряд [3] — 9 × Ряд [1] (чтобы дать нам 0 в желаемой позиции):

9 — 9 × 1 = 0
6 — 9 × 0,6364 = 0,2727
10 — 9 × 1,0909 = 0,1818
0 — 9 × 0,0909 = -0,8182
0 — 9 × 0 = 0
1 — 9 × 0 = 1

Это дает нам новую строку [3]:

1 0.6364 1.0909
0 4,8 182 -1,4545
0 0,2727 0,1818
0,0909 0 0 Ряд [1]
-0,4545 1 0 Ряд [2]
-0,8182 0 1 ряд [3]

Новый ряд [2]

Разделите строку [2] на 4.8182 (чтобы получить «1» в желаемой позиции):

Это дает нам:

1 0,6364 1.0909
0 1 -0,3019
0 0,2727 0,1818
0,0909 0 0 Ряд [1]
-0,0943 0.2075 0 Ряд [2]
-0,8182 0 1 ряд [3]

Новый ряд [1]

Ряд [1] — 0,6364 × Ряд [2] (чтобы дать нам 0 в желаемой позиции):

1 — 0,6364 × 0 = 1
0,6364 — 0,6364 × 1 = 0
1,0909 — 0,6364 × -0,3019 = 1,283
0,0909 — 0,6364 × -0,0943 = 0,1509
0 — 0,6364 × 0,2075 = -0,1321
0 — 0,6364 × 0 = 0

Это дает нам новую строку [1]:

1 0 1.283
0 1 -0,3019
0 0,2727 0,1818
0,1509 -0,1321 0 Ряд [1]
-0,0943 0,2075 0 Ряд [2]
-0,8182 0 1 ряд [3]

Новый ряд [3]

Ряд [3] — 0.2727 × Ряд [2] (чтобы дать нам 0 в желаемой позиции):

0 — 0,2727 × 0 = 0
0,2727 — 0,2727 × 1 = 0
0,1818 — 0,2727 × -0,3019 = 0,2642
-0,8182 — 0,2727 × -0,0943 = -0,7925
0 — 0,2727 × 0,2075 = -0,0566
1 — 0,2727 × 0 = 1

Это дает нам новую строку [3]:

1 0 1,283
0 1 -0,3019
0 0 0.2642
0,1509 -0,1321 0 Ряд [1]
-0,0943 0,2075 0 Ряд [2]
-0,7925 -0,0566 1 ряд [3]

Новый ряд [3]

Разделите строку [3] на 0,2642 (чтобы получить «1» в нужной позиции):

Это дает нам:

1 0 1.283
0 1 -0,3019
0 0 1
0,1509 -0,1321 0 Ряд [1]
-0,0943 0,2075 0 Ряд [2]
-3 -0,2143 3,7857 ряд [3]

Новый ряд [1]

Ряд [1] — 1.283 × Ряд [3] (чтобы дать нам 0 в желаемой позиции):

1 — 1,283 × 0 = 1
0 — 1,283 × 0 = 0
1,283 — 1,283 × 1 = 0
0,1509 — 1,283 × -3 = 4
-0,1321 — 1,283 × -0,2143 = 0,1429
0 — 1,283 × 3,7857 = -4,8571

Это дает нам новую строку [1]:

1 0 0
0 1 -0,3019
0 0 1
4 0.1429 -4,8571 Ряд [1]
-0,0943 0,2075 0 Ряд [2]
-3 -0,2143 3,7857 ряд [3]

Новый ряд [2]

Ряд [2] — -0,3019 × Ряд [3] (чтобы получить 0 в желаемой позиции):

0 — -0,3019 × 0 = 0
1 — -0,3019 × 0 = 1
-0,3019 — -0,3019 × 1 = 0
-0.0943 — -0,3019 × -3 = -1
0,2075 — -0,3019 × -0,2143 = 0,1429
0 — -0,3019 × 3,7857 = 1,1429

Это дает нам новую строку [2]:

4 0,1429 -4,8571 Ряд [1]
-1 0,1429 1,1429 Ряд [2]
-3 -0,2143 3,7857 ряд [3]

Мы достигли нашей цели по созданию матрицы идентичности слева.Таким образом, мы можем заключить, что инверсия матрицы A является правой частью расширенной матрицы:

A -1 = 4 0,1429 -4,8571
-1 0,1429 1,1429
-3 -0,2143 3,7857

Примечания

  1. В приведенном выше объяснении показаны все шаги.Человек обычно может пойти несколькими путями. Кроме того, иногда в правильной позиции уже есть «1» или «0», и в этих случаях нам не нужно ничего делать для этого шага.
  2. Всегда записывайте, что вы делаете на каждом этапе — очень легко заблудиться!
  3. Я показал результаты с точностью до 4 знаков после запятой, но с максимальной точностью использовалась повсюду. Имейте в виду, что небольшие ошибки округления будут накапливаться во всей задаче. Всегда используйте полную точность калькулятора! (Полностью используйте память вашего калькулятора.)
  4. Очень иногда возникают странные результаты из-за внутреннего представления чисел компьютером. То есть он может хранить «1» как 0,999999999872.

Смотрите еще?

Вы можете вернуться к началу страницы и выбрать другой пример.

Алгебра — расширенные матрицы

Решите каждую из следующих систем уравнений.

a \ (\ begin {align *} 3x + y — 2z & = 2 \\ x — 2y + z & = 3 \\ 2x — y — 3z & = 3 \ end {align *} \) Показать решение

Давайте сначала запишем расширенную матрицу для этой системы.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} {\ color {Red} 3} & 1 & {- 2} & 2 \\ 1 & {- 2} & 1 & 3 \\ 2 & {- 1} & {- 3} & 3 \ end {array}} \ right] \]

Как и в предыдущих примерах, мы помечаем красным цветом числа, которые мы хотим изменить на данном шаге. Первый шаг здесь — получить 1 в верхнем левом углу, и, опять же, у нас есть много способов сделать это. В этом случае мы заметим, что если мы поменяем местами первую и вторую строки, мы сможем получить 1 в этом месте с относительно небольшой работой.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} {\ color {Red} 3} & 1 & {- 2} & 2 \\ 1 & {- 2} & 1 & 3 \\ 2 & {- 1} & {- 3} & 3 \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_1} \ leftrightarrow {R_2}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 2} & 1 & 3 \\ {\ color {Red} 3} & 1 & {- 2} & 2 \\ {\ color {Red} 2} & {- 1} & {- 3} & 3 \ end {array}} \ right] \]

Следующий шаг — получить два числа под этой единицей равными нулю.Также обратите внимание, что это почти всегда требует выполнения операции третьей строки. Кроме того, мы можем сделать и то, и другое за один шаг следующим образом.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 2} & 1 & 3 \\ {\ color {Red} 3} & 1 & {- 2} & 2 \\ {\ color {Red } 2} & {- 1} & {- 3} & 3 \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_2} — 3 {R_1} \ to {R_2 }} \\ {{R_3} — 2 {R_1} \ to {R_3}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 2} & 1 & 3 \\ 0 & {\ color {Red} 7} & {- 5} & {- 7} \\ 0 & 3 & {- 5} & {- 3} \ end {array}} \ right] \]

Далее мы хотим превратить 7 в 1.Мы можем сделать это, разделив вторую строку на 7.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 2} & 1 & 3 \\ 0 & {\ color {Red} 7} & {- 5} & {- 7} \\ 0 & 3 & {- 5} & {- 3} \ end {array}} \ right] \ begin {array} {* {20} {c}} {\ frac {1} {7} {R_2}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 2} & 1 & 3 \\ 0 & 1 & {- \ frac {5} {7}} & {- 1} \\ 0 & {\ color {Красный} 3} & {- 5} & {- 3} \ end {array}} \ right] \]

Итак, здесь фигурирует дробь.Такое случается время от времени, так что не стоит сильно волноваться по этому поводу. Следующий шаг — заменить 3 под этой новой единицей на 0. Обратите внимание, что мы пока не будем беспокоиться о -2 над ней. Иногда так же легко превратить это в 0 на том же этапе. Однако в этом случае это, вероятно, так же легко сделать позже, как мы увидим.

Итак, используя операцию третьей строки, получаем

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 2} & 1 & 3 \\ 0 & 1 & {- \ frac {5} {7}} & {- 1} \\ 0 & { \ color {Red} 3} & {- 5} & {- 3} \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_3} — 3 {R_2} \ в {R_3}} \\ \ в \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 2} & 1 & 3 \\ 0 & 1 & {- \ frac {5} {7}} & { — 1} \\ 0 & 0 & {\ color {Red} — \ frac {{20}} {7}} & 0 \ end {array}} \ right] \]

Далее нам нужно преобразовать число в правом нижнем углу в 1.Мы можем сделать это с помощью операции второй строки.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 2} & 1 & 3 \\ 0 & 1 & {- \ frac {5} {7}} & {- 1} \\ 0 & 0 & { \ color {Red} — \ frac {{20}} {7}} & 0 \ end {array}} \ right] \ begin {array} {* {20} {c}} {- \ frac {7} {{ 20}} {R_3}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 2} & {\ color {Red} 1} & 3 \\ 0 & 1 & {\ цвет {Красный} — \ frac {5} {7}} & {- 1} \\ 0 & 0 & 1 & 0 \ end {array}} \ right] \]

Теперь нам нужны нули над этой новой единицей.Итак, использование операции третьей строки дважды, как показано ниже, сделает то, что нам нужно.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 2} & {\ color {Red} 1} & 3 \\ 0 & 1 & {\ color {Red} — \ frac {5] } {7}} & {- 1} \\ 0 & 0 & 1 & 0 \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_2} + \ frac {5} {7} { R_3} \ to {R_2}} \\ {{R_1} — {R_3} \ to {R_1}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {\ цвет {Красный} — 2} & 0 & 3 \\ 0 & 1 & 0 & {- 1} \\ 0 & 0 & 1 & 0 \ end {array}} \ right] \]

Обратите внимание, что в этом случае последний столбец не изменился на этом этапе.Это произошло только потому, что последняя запись в этом столбце была равна нулю. В общем, этого не произойдет.

Последний шаг — преобразовать -2 над 1 во втором столбце в ноль. Это легко сделать с помощью операции третьего ряда.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {\ color {Red} — 2} & 0 & 3 \\ 0 & 1 & 0 & {- 1} \\ 0 & 0 & 1 & 0 \ end {array}} \ right ] \ begin {array} {* {20} {c}} {{R_1} + 2 {R_2} \ to {R_1}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & {- 1} \\ 0 & 0 & 1 & 0 \ end {array}} \ right] \]

Итак, у нас есть расширенная матрица в окончательном виде и решение будет

\ [x = 1, \, \, \, y = — 1, \, \, \, z = 0 \]

Это можно проверить, подставив их во все три уравнения и убедившись, что все они удовлетворяются.


b \ (\ begin {align *} 3x + y — 2z & = — 7 \\ 2x + 2y + z & = 9 \\ — x — y + 3z & = 6 \ end {align *} \) Показать решение

Опять же, первый шаг — записать расширенную матрицу.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} {\ color {Red} 3} & 1 & {- 2} & {- 7} \\ 2 & 2 & 1 & 9 \\ {- 1} & { — 1} & 3 и 6 \ end {array}} \ right] \]

На этот раз мы не можем получить 1 в верхнем левом углу, просто поменяв строки местами.Мы могли бы поменять местами первую и последнюю строку, но это также потребовало бы другой операции, чтобы превратить -1 в 1. Хотя это несложно, это две операции. Обратите внимание, что мы можем использовать операцию третьей строки, чтобы получить 1 в этом месте следующим образом.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} {\ color {Red} 3} & 1 & {- 2} & {- 7} \\ 2 & 2 & 1 & 9 \\ {- 1} & { — 1} & 3 и 6 \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_1} — {R_2} \ to {R_1}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 3} & {- 16} \\ {\ color {Red} 2} & 2 & 1 & 9 \\ {\ color {Red} — 1 } & {- 1} & 3 & 6 \ end {array}} \ right] \]

Теперь мы можем использовать операцию третьей строки, чтобы превратить два красных числа в нули.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 3} & {- 16} \\ {\ color {Red} 2} & 2 & 1 & 9 \\ { \ color {Red} — 1} & {- 1} & 3 & 6 \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_2} — 2 {R_1} \ to {R_2 }} \\ {{R_3} + {R_1} \ to {R_3}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 3 } & {- 16} \\ 0 & {\ color {Red} 4} & 7 & {41} \\ 0 & {- 2} & 0 & {- 10} \ end {array}} \ right] \]

Следующий шаг — получить 1 на месте, занимаемом красной 4.Мы могли бы сделать это, разделив всю строку на 4, но это добавило бы пару несколько неприятных дробей. Итак, вместо этого мы собираемся поменять местами вторую и третью строки. Причина этого станет очевидной достаточно скоро.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 3} & {- 16} \\ 0 & {\ color {Red} 4} & 7 & {41 } \\ 0 & {- 2} & 0 & {- 10} \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_2} \ leftrightarrow {R_3}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 3} & {- 16} \\ 0 & {\ color {Red} — 2} & 0 & {- 10 } \\ 0 и 4 и 7 и {41} \ end {array}} \ right] \]

Теперь, если мы разделим вторую строку на -2, мы получим 1 в том месте, которое нам нужно.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 3} & {- 16} \\ 0 & {\ color {Red} — 2} & 0 & { — 10} \\ 0 & 4 & 7 & {41} \ end {array}} \ right] \ begin {array} {* {20} {c}} {- \ frac {1} {2} {R_2}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 3} & {- 16} \\ 0 & 1 & 0 & 5 \\ 0 & {\ color {Red} 4} & 7 & { 41} \ end {array}} \ right] \]

Прежде чем перейти к следующему шагу, давайте заметим здесь пару вещей.Во-первых, нам удалось избежать дробей, что всегда хорошо, а во-вторых, эта строка готова. В конечном итоге нам понадобился бы ноль в этом третьем месте, и мы получили его бесплатно. Более того, это не изменится ни в одной из последующих операций. Это происходит не всегда, но если это произойдет, наша жизнь станет легче.

Теперь давайте воспользуемся операцией третьей строки, чтобы заменить красную 4 на ноль.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 3} & {- 16} \\ 0 & 1 & 0 & 5 \\ 0 & {\ color {Red} 4} & 7 & {41} \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_3} — 4 {R_2} \ to {R_3}} \\ \ to \ end {массив } \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 3} & {- 16} \\ 0 & 1 & 0 & 5 \\ 0 & 0 & {\ color {Red} 7} & {21} \ end {массив}} \ справа] \]

Теперь мы можем разделить третью строку на 7, чтобы получить число в правом нижнем углу в единицу.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 3} & {- 16} \\ 0 & 1 & 0 & 5 \\ 0 & 0 & {\ color {Red} 7} & {21} \ end {array}} \ right] \ begin {array} {* {20} {c}} {\ frac {1} {7} {R_3}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {\ color {Red} — 3} & {- 16} \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \ end {array}} \ right] \]

Затем мы можем использовать операцию третьей строки, чтобы заменить -3 на ноль.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {\ color {Red} — 3} & {- 16} \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \ end { array}} \ right] \ begin {array} {* {20} {c}} {{R_1} + 3 {R_3} \ to {R _ {\ kern 1pt}}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {\ color {Red} — 1} & 0 & {- 7} \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \ end {array}} \ right] \]

Последний шаг — затем снова превратить -1 в 0, используя операцию третьей строки.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {\ color {Red} — 1} & 0 & {- 7} \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \ end {array}} \ right ] \ begin {array} {* {20} {c}} {{R_1} + {R_2} \ to {R _ {\ kern 1pt}}} \\ \ to \ end {array} \ left [{\ begin { array} {rrr | r} 1 & 0 & 0 & {- 2} \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \ end {array}} \ right] \]

Тогда решение этой системы:

\ [x = — 2, \, \, \, y = 5, \, \, \, z = 3 \]

Квадратура Гаусса (Выберите метод) Калькулятор

[1] 2021/04/15 11:39 Мужской / 20-летний уровень / Высшая школа / Университет / Аспирант / Полезно /

Цель использования
Рука двойной проверки расчеты за класс.

[2] 2020/03/16 13:25 Мужской / 20-летний уровень / Средняя школа / Университет / аспирант / Немного /

Комментарий / запрос
Пожалуйста, включите рассчитанные веса и узлы.

[3] 2018/07/16 04:04 Мужчина / До 20 лет / Старшая школа / Университет / аспирант / Не совсем /

Цель использования
resolução
Комментарий / Запрос
faltou as resoluções

[4] 2017/01/21 01:19 Мужчина / Уровень 40 лет / Старшая школа / Университет / Аспирант / Очень /

Цель использования
Интегрировать тетраэдр
Комментарий / Запрос
Интересно, есть ли различия в результатах для квадратуры G-Якоби в функции (1 + x) ^ alpha и просто x ^ alpha с точки зрения получения узлов и весов.

[5] 2015/04/17 07:29 Мужской / 20-летний уровень / Средняя школа / Университет / аспирант / Очень /

Цель использования
Изучение численного анализа ….
Комментарий / запрос
Этот сайт очень полезен

[6] 2015/04/17 07:29 Мужской / 20-летний уровень / Средняя школа / Университет / аспирант / Очень /

Цель использования
Изучение численного анализа ….

[7] 2015/03/06 18:36 Мужчина / 60 лет и старше / Высшая школа / Университет / Аспирант / Очень /

Цель использования
Курс численного анализа, применение для упражнений

[8] 2014/10/16 23:41 Женский / 20-летний уровень / Высшая школа / Университет / Аспирант / Очень /

Цель использования
исследование
Комментарий / запрос
очень хорошо

[9] 28.05.2013 21:56 Мужской / 20-летний уровень / Высшая школа / ВУЗ / Аспирант / Очень /

Назначение
Для учебы.
Комментарий / запрос
Это будет полезно, если в интегральные калькуляторы добавить двухмерные (2-D) и 3-мерные вычисления.
Best Ragards

Системы линейных уравнений: исключение Гаусса

Решение линейной системы с матрицами с использованием исключения Гаусса

После нескольких уроков, в которых мы неоднократно упоминали, что мы охватываем основы, необходимые для последующего изучения того, как решать системы линейных уравнений, пришло время для нашего урока сосредоточиться на полной методологии, которой нужно следовать, чтобы найти решения. для таких систем.

Что такое гауссовское исключение

Исключение Гаусса — это название метода, который мы используем для выполнения трех типов операций со строками матрицы над расширенной матрицей, полученной из линейной системы уравнений, чтобы найти решения для такой системы. Этот метод также называется сокращением строк и состоит из двух этапов: прямого исключения и обратной замены.

Эти два шага метода исключения Гаусса различаются не операциями, которые вы можете использовать с их помощью, а результатом, который они производят.Шаг прямого исключения относится к сокращению строки, необходимому для упрощения рассматриваемой матрицы до ее эшелонированной формы. Такой этап имеет целью продемонстрировать, имеет ли система уравнений, изображенная в матрице, единственное возможное решение, бесконечное множество решений или просто отсутствие решения. Если обнаружено, что система не имеет решения, то нет причин продолжать сокращение строки матрицы на следующем этапе.

Если возможно получить решения для переменных, входящих в линейную систему, то выполняется этап исключения Гаусса с обратной подстановкой.На этом последнем шаге будет получена упрощенная форма матрицы, которая, в свою очередь, обеспечивает общее решение системы линейных уравнений.

Правила исключения Гаусса такие же, как правила для трех элементарных операций со строками, другими словами, вы можете алгебраически оперировать строками матрицы следующими тремя способами (или комбинацией):

  1. Перестановка двух рядов
  2. Умножение строки на константу (любую константу, отличную от нуля)
  3. Добавление строки к другой строке

Итак, решение линейной системы с матрицами с использованием исключения Гаусса оказывается структурированным, организованным и довольно эффективным методом.

Как выполнить исключение по Гауссу

На самом деле это не установленный набор шагов исключения Гаусса, которым нужно следовать для решения системы линейных уравнений, это все о матрице, которую вы имеете в руках, и необходимых операциях со строками для ее упрощения. Для этого давайте поработаем над нашим первым примером исключения Гаусса, чтобы вы могли начать изучать весь процесс и интуицию, которая необходима при работе с ними:

Пример 1

Обратите внимание, что в этот момент мы можем заметить, что эта система линейных уравнений разрешима с единственным решением для каждой из ее переменных.То, что мы выполнили до сих пор, — это первый этап сокращения строк: прямое исключение. Мы можем продолжить упрощение этой матрицы еще больше (что приведет нас ко второму этапу обратной подстановки), но нам это действительно не нужно, поскольку на этом этапе система легко разрешима. Таким образом, мы смотрим на получившуюся систему, чтобы решить ее напрямую:

  • Уравнение 5: Полученная линейная система уравнений для решения

Из этого набора мы можем автоматически заметить, что значение переменной z равно: z = -2.Мы используем это знание, чтобы подставить его во вторые уравнения для решения относительно y, и подставить значения y и z в первые уравнения для решения относительно x:

В последний раздел этого урока добавлено больше задач исключения Гаусса. Обязательно проработайте их, чтобы практиковаться.

Разница между устранением гаусса и устранением гаусса иордана

Разница между методом исключения Гаусса и исключения Гаусса Жордана состоит в том, что один создает матрицу в форме эшелона строк, а другой — матрицу в форме уменьшенного ряда.Матрица формы эшелона строк имеет верхнюю треугольную композицию, где любые нулевые строки находятся внизу, а ведущие члены находятся справа от ведущего члена из строки выше. Уменьшенная форма эшелона выходит за рамки еще большего упрощения (иногда даже достигая формы единичной матрицы).

Уравнение 8: Разница между формой эшелона и формой ряда эшелонов

История исключения Гаусса и его названия весьма интересны, вы будете удивлены, узнав, что название «Гауссовский» было присвоено этой методологии по ошибке в прошлом веке.В действительности было обнаружено, что алгоритм одновременного решения системы линейных уравнений с использованием матриц и редукции строк записан в той или иной форме в древних китайских текстах, которые датируются еще до нашей эры. Затем в конце 1600-х годов Исаак Ньютон провел по этому уроку, чтобы заполнить то, что он считал пробелом в книгах по алгебре. После того, как название «Гауссиан» было уже установлено в 1950-х годах, термин Гаусса-Иордана был принят, когда геодезист У. Джордан усовершенствовал технику, чтобы он мог использовать такие вычисления для обработки своих наблюдаемых данных топографической съемки.Если вы хотите продолжить чтение увлекательной истории математиков исключения Гаусса, не бойтесь щелкнуть ссылку и прочитать.

На самом деле нет никакой физической разницы между исключением Гаусса и исключением Гаусса Джордана, оба процесса следуют одному и тому же типу операций со строками и их комбинациям, их различие зависит от результатов, которые они производят. Многие математики и учителя во всем мире будут относиться к исключению Гаусса и исключению Гаусса Джордана как к методам создания матрицы эшелонированной формы по сравнению с методом создания матрицы уменьшенной эшелонированной формы, но на самом деле они говорят о двух стадиях сокращения строк. мы объяснили это в самом первом разделе этого урока (прямое исключение и обратная подстановка), и поэтому вы просто применяете операции со строками, пока не упростите рассматриваемую матрицу.Если вы придете к форме эшелона, вы обычно можете решить с ней систему линейных уравнений (до сих пор это то, что называлось бы исключением Гаусса). Если вам нужно продолжить упрощение такой матрицы, чтобы напрямую получить общее решение для системы уравнений, над которой вы работаете, в этом случае вы просто продолжаете работать с матрицей по строкам, пока не упростите ее до сокращенной формы (это будет то, что мы называем частью Гаусса-Жордана, и которую можно также рассматривать как поворотное исключение Гаусса).

Мы оставим подробное объяснение форм сокращения строк и эшелонирования для следующего урока, поскольку сейчас вам нужно знать это, если у вас нет единичной матрицы в левой части расширенной матрицы, которую вы решаете (в этом случае вы не используете не нужно ничего делать для решения системы уравнений, относящейся к матрице), метод исключения Гаусса (регулярное сокращение строк) всегда будет использоваться для решения линейной системы уравнений, которая была записана в виде матрицы.

Примеры исключения Гаусса

В качестве последнего раздела давайте поработаем еще несколько упражнений по исключению Гаусса (сокращение строк), чтобы вы могли больше попрактиковаться в этой методологии.На протяжении многих будущих уроков этого курса линейной алгебры вы обнаружите, что сокращение строк является одним из самых важных инструментов при работе с матричными уравнениями. Поэтому убедитесь, что вы понимаете все этапы решения следующих проблем.

Пример 2

Пример 3

Мы знаем, что для этой системы мы получим расширенную матрицу с тремя строками (поскольку система содержит три уравнения) и тремя столбцами слева от вертикальной линии (поскольку есть три разных переменных).В этом случае мы перейдем непосредственно к сокращению строк, и поэтому первая матрица, которую вы увидите в этом процессе, — это та, которую вы получите, преобразовав систему линейных уравнений в расширенную матрицу.

  • Уравнение 15: Строка, уменьшающая расширенную матрицу

Обратите внимание, как мы можем сразу сказать, что переменная z равна нулю для этой системы, поскольку третья строка результирующей матрицы показывает уравнение -9z = 0 . Мы используем это знание и проверяем вторую строку матрицы, которая предоставит уравнение 2y — 6z = 0 , подставив в это уравнение значение z = 0 \, в результате получится y \, также равное нулю.Таким образом, мы наконец подставляем оба значения y и z \ в уравнение, которое получается из первой строки матрицы: x + 4y + 3z = 1 , поскольку и y , и z \ , равны нулю, то это дает нам x = 1 . Итак, окончательное решение этой системы уравнений выглядит следующим образом:

  • Уравнение 16: Окончательное решение системы уравнений

Пример 4

Из чего видно, что последняя строка дает уравнение: 6z = 3 и, следовательно, z = 1/2.Мы подставляем это в уравнения, полученные из второй и первой строк (в указанном порядке), чтобы вычислить значения переменных x и y:

Пример 5

  • Решите следующую линейную систему, используя метод исключения Гаусса: Уравнение 21: Система линейных уравнений с двумя переменными
  • Транскрипция линейной системы в виде расширенной матрицы и редукции строк: Уравнение 22: Строка, уменьшающая расширенную матрицу
  • Что автоматически говорит нам y = 8 .Итак, подставляя это значение в уравнение из первой строки, получаем: 4x — 5y = 4x — 5 (8) = 4x — 40 = -6 4x = 34 \, и поэтому значение x равно: x = 172 \ frac {\ small17} {\ small2} 217 . И окончательное решение этой системы уравнений:

    Уравнение 23: Окончательное решение системы уравнений

Пример 6

Чтобы завершить наш урок на сегодня, у нас есть рекомендация по ссылке для дополнения ваших исследований: Исключение Гаусса — статья, которая содержит некоторую дополнительную информацию о сокращении строк, включая введение в тему и еще несколько примеров.Как мы упоминали ранее, будьте готовы продолжать использовать сокращение строк почти на всем протяжении этого курса линейной алгебры, так что до встречи на следующем уроке!

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследовать
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

Калькулятор системы уравнений

Добро пожаловать в калькулятор системы уравнений , где мы узнаем, как решить систему линейных уравнений .Наш удобный калькулятор быстро найдет решение любой проблемы, которую вы ему зададите, а если существует бесконечное количество решений, он даже скажет вам, как они выглядят ! Решатель системы уравнений использует так называемый метод исключения Гаусса , но это не единственный метод, поэтому ниже мы представляем пять различных ответов на вопрос «Как решить систему уравнений?»

Давайте не будем терять ни секунды и займемся этим, не так ли?

Что такое система линейных уравнений?

Запомните все те загадки на Facebook или Instagram , знаете, те, где три яблока равны 30, яблоко и два банана равны 18, а банан минус кокос равен двум, и вам нужно было вычислить сколько стоят яблоко, банан и кокос? Это то, что математики называют системой линейных уравнений Но как? Математики не используют яблоки и бананы, не так ли? » Ну, им тоже нравится держать доктора подальше и время от времени кусать яблоко, но вы правы, они не делают рассчитать в яблоках . Однако нет никакой разницы, если вы правы: « Три яблока равны 30 » или 3x = 30 .

Появившееся выше x — это то, что мы называем переменной . Он обозначает число или элемент, значение которого мы не знаем, но знаем о и .В нашем случае мы знаем, что три яблока равно 30 , но яблоко — это просто переменная, например x , поскольку мы не знаем ее значения. По сути, «, что является решением системы уравнений … » — это то же самое, что « дать мне значение яблока (или x ) , которое удовлетворяет …» Если честно , мы знаем, что большинство ученых хотели бы использовать бананы вместо x , но они просто не уверены в своих навыках рисования .

« Но что, черт возьми, означает linear ? » Мы говорим, что уравнение является линейным, если его переменные (будь то x или кокосы) находятся в первой степени. Это означает, что, например, они не возведены в квадрат , как в квадратных уравнениях, или знаменатель дроби, или квадратный корень. Однако их можно умножить на любое число, как мы имели 3 в нашем уравнении 3x = 30 . Это относится к всем переменным в уравнении .Например, уравнение -2x + 14y - 0,3z = 0 является линейным, а 10x - 7y + z² = 1 — нет.

Наконец, если у нас есть несколько уравнений, которые нужно решить вместе, мы называем их системой уравнений . Обозначим это, нарисовав фигурную скобку (или повернутый набор усов, как вам больше нравится) слева от них. Это означает, что нас интересуют только решения всех уравнений в системе . Если мы найдем значения, которые работают для первого уравнения, но не для второго, мы не будем называть это решением.

Как решить систему уравнений?

Существует множество различных способов решения системы линейных уравнений. Кратко опишем несколько наиболее распространенных методов.

  1. Замена

Первый метод, которому обучают студентов, и наиболее универсальный метод , работает путем выбора одного из уравнений, выбора одной из переменных в нем, и делает эту переменную объектом этого уравнения .Затем мы используем это преобразованное уравнение и подставляем его каждый раз, когда эта переменная появляется в других уравнениях. Таким образом, в других уравнениях теперь на одну переменную меньше , что упрощает их решение.

Например, если у нас есть уравнение 2x + 3y = 6 и мы хотим получить из него x , то мы начинаем с , избавляясь от всего, что не содержит x с левой стороны . Для этого мы должны вычесть 3y из обеих частей (потому что это выражение находится слева).Это означает, что левая сторона будет 2x + 3y - 3y , что просто 2x , а правая сторона будет 6 - 3y . Другими словами, мы преобразовали наше уравнение в 2x = 6 - 3y .

Поскольку мы хотим получить x , а не 2x , нам все равно нужно избавиться от 2 . Для этого мы делим обе стороны на 2. Таким образом, слева мы получаем (2x) / 2 , что составляет всего x , а справа имеем (6 - 3y) / 2 , что составляет 3 - 1.5лет . В целом, мы получили x = 3 - 1,5y , и мы можем использовать эту новую формулу для замены 3 - 1,5y in на каждые x в других уравнениях.

  1. Исключение переменных

Решение систем уравнений методом исключения означает, что мы пытаемся уменьшить количество переменных в некоторых уравнениях, чтобы упростить их решение . Для этого мы начнем с преобразования двух уравнений так, чтобы они выглядели одинаково.Чтобы быть точным, мы хотим сделать коэффициент (число рядом с переменной) одной из переменных уравнения противоположным коэффициенту той же переменной в другом уравнении . Затем мы складываем два уравнения, чтобы получить новое, в котором нет этой переменной, поэтому его легче вычислить.

Например, если у нас есть система уравнений,

2x + 3y = 6 и

4x - y = 3 ,

, то мы можем попытаться сделать коэффициент x в первом уравнении противоположным коэффициенту во втором уравнении.В нашем случае это означает, что мы хотим преобразовать 2 в противоположность 4 , то есть -4 . Для этого нам нужно умножить обе части первого уравнения на -2 , так как 2 * (-2) = -4 . Это изменяет первое уравнение на

2x * (-2) + 3y * (-2) = 6 * (-2) ,

, что равно

-4x - 6y = -12 .

Теперь мы можем добавить это уравнение ко второму ( 4x - y = 3 ), добавив левую часть к левой и правую к правой.Это дает

4x - y + (-4x - 6y) = 3 + (-12) ,

, что равно

-7y = -9 .

Мы получили новое уравнение только с одной переменной, что означает, что мы можем легко решить y . Затем мы можем подставить это число в любое из исходных уравнений, чтобы получить x .

  1. Метод исключения Гаусса

Это метод, используемый нашим калькулятором системы уравнений. Названный в честь немецкого математика Иоганна Гаусса, он представляет собой алгоритмическое расширение метода исключения, представленного выше. В случае всего двух уравнений это одно и то же. Однако решение систем уравнений путем регулярного исключения становится все сложнее и сложнее с появлением все большего количества уравнений и переменных. Вот где приходит на помощь метод исключения Гаусса.

Допустим, у нас есть четыре уравнения с четырьмя переменными . Чтобы найти решение нашей системы, мы хотим попытаться получить значения наших переменных одно за другим, последовательно удаляя все остальные.Для этого мы, , берем первое уравнение и первую из переменных . Мы используем его коэффициент, чтобы исключить все вхождения этой конкретной переменной в трех других уравнениях , точно так же, как мы это сделали при обычном исключении. Таким образом, у нас остается первое уравнение, как и было, и три уравнения, теперь каждое с только тремя переменными .

Теперь посмотрим на первое уравнение, отметим его, и оставим его как есть до самого конца. .Мы повторяем процесс для остальных трех уравнений. Другими словами, мы, , берем вторую переменную и ее коэффициент из второго уравнения , чтобы исключить все вхождения этой переменной в последних двух уравнениях. Это оставляет нам первое уравнение с четырьмя переменными, второе — с тремя, а последние два — с только с двумя переменными .

Затем мы объявляем второе уравнение красивым и красивым и оставляем его в покое. Мы переходим к двум оставшимся уравнениям и берем третью переменную и ее коэффициент в третьем уравнении, чтобы исключить эту переменную из четвертого равенства.

В итоге мы получаем систему из четырех уравнений, в которой первая имеет четыре переменных, вторая — три, третья — две, а последняя — только одну . Это означает, что мы можем легко получить значение четвертой переменной из четвертого уравнения (поскольку в нем нет других переменных). Затем мы подставляем это значение в третье уравнение и получаем значение третьей переменной (поскольку теперь у нее нет других переменных) и так далее.

  1. Графическое представление

Возможно, наименее используемый метод, но тем не менее метод.Он берет каждое из уравнений в нашей системе, и переводит их в функцию . Точки на графике такой функции соответствуют координатам, которые удовлетворяют этому уравнению. Следовательно, если мы хотим решить систему линейных уравнений, то достаточно найти все точки пересечения линии на графике , то есть координаты, которые удовлетворяют всем уравнениям.

Однако это может быть непросто. Если у нас есть только два уравнения и две переменные, то функции представляют собой линии на двумерной плоскости.Следовательно, нам просто нужно найти точку, где эти две линии пересекают .

Для трех переменных функции теперь находятся в трехмерном пространстве, а больше не линии, а плоскости . Это означает, что нам нужно будет нарисовать три плоскости (что само по себе сложно), а затем также найти, где эти плоскости пересекаются. И, если вы думаете, что это сложно, попробуйте представить , четыре переменных и четыре измерения . Если вам это дается естественным путем, свяжитесь с нами, и мы направим вас к ближайшему объекту, удостоенному Нобелевской премии, или к неврологу для тщательной проверки состояния головы.

  1. Правило Крамера

Достаточно простой и очень простой способ решить систему линейных уравнений. Однако для этого требуется хорошее понимание матриц и их определителей . В качестве поощрения отметим, что он не нуждается в замене, не играет с уравнениями, это просто старая добрая базовая арифметика . Например, для системы трех уравнений с тремя переменными мы подставляем коэффициенты из этих уравнений, чтобы сформировать четыре матрицы размером три на три и вычислить их детерминанты.Мы заканчиваем делением соответствующих значений, которые мы только что получили, чтобы получить окончательное решение.

Пример: Использование решателя системы уравнений

Давайте посмотрим на одну из загадок с картинками и попробуем решить ее с помощью нашего калькулятора системы уравнений .

Первое, что нам нужно сделать, это записать все вкусные сладости в виде буквенных переменных. Мы знаем, что выражение, которое мы получим, будет далеко от , сладкого для глаз , но математики не имеют большого вкуса .Ладно, приступим к работе, а оставим каламбуры на десерт .

В нашей загадке три символа — пончик, печенье и конфета. Мы не знаем значения ни одного из них, поэтому нам понадобятся три переменные — по одной для каждого изображения. Обычно используются такие буквы, как x , y и z , но вы можете свободно использовать другие буквы. Обозначим пончик x , печенье y , и конфету z .Это позволяет нам написать загадку выше в виде:

х + х + х = у

y + y - z = 25

z + z - x = 16 .

Итак, каково решение системы уравнений? Теперь держите лошадей. Прежде всего, мы попытаемся упростить каждое из трех выражений , прежде чем мы даже подумаем о том, как решить эту систему уравнений. Обратите внимание, что наш решатель системы уравнений не использует формулы в том виде, в котором мы сейчас имеем .В частности, у него нет переменных справа от знака = , как в первом выражении. Итак, нам действительно нужно сначала поработать.

Мы берем каждое из уравнений и, , перемещаем все переменные в левую часть . Затем мы складываем вместе все слагаемые с той же переменной ( x , y или z ) в этом уравнении. Наконец, мы запишем полученные слагаемые в алфавитном порядке в терминах переменных.Это означает, что мы сначала записываем выражение с x , затем выражение с y , а затем выражение с z .

В нашем случае это означает, что мы должны сначала переместить на в первом уравнении справа налево. Для этого вычтем и из обеих частей равенства. Это дает

х + х + х - у = у - у ,

, что равно

х + х + х - у = 0 .

Теперь вся система выглядит так:

х + х + х - у = 0

y + y - z = 25

г + г - х = 16

Теперь мы складываем все слагаемые, содержащие одну и ту же переменную .Это означает, что в первом уравнении мы складываем три x , во втором — две y , а в третьем — две z . Получаем

3x - y = 0

2y - z = 25

2z - x = 16 .

Помните, что когда мы пишем 3x , , мы имеем в виду 3 * x , или «три копии x » . Теперь мы записываем переменные в алфавитном порядке .Первые два уравнения уже имеют желаемую форму, но в последнем нам нужно переместить выражение с x перед выражением с z . Это дает

3x - y = 0

2y - z = 25

-x + 2z = 16

Обратите внимание, что, на первый взгляд, это не похоже на выражение, которое есть в калькуляторе системы уравнений . Однако это так. Например, в первом уравнении нет z .Но помните, что «no z ‘s» означает «ноль копий z ». Следовательно, мы можем записать пропущенные переменные с коэффициентами 0. Таким образом, мы получаем

3x - y + 0z = 0

0x + 2y - z = 25

-x + 0y + 2z = 16

Теперь это больше похоже на — это просто форма решателя системы уравнений! Чтобы быть уверенным, помните, что когда у нас нет числа перед переменной, тогда принято говорить, что число равно 1.Например, -y в первом уравнении на самом деле -1y .

Наконец, нам нужно определить, какие данные нам нужно взять из системы, которую мы получили, и куда поместить их в калькуляторе системы уравнений . Что ж, давайте посмотрим на первое равенство, которое у нас есть, и на верхнее равенство решателя и сравним их:

3x - y + 0z = 0

a₁x + b₁y + c₁z = d₁

Соответствие выглядит так, как выглядит: a₁ — это число рядом с x в уравнении, b₁ — это число рядом с y , c₁ это число рядом с z и d₁ — это номер справа.В нашем случае это означает, что мы должны положить a₁ = 3 , b₁ = -1 , c₁ = 0 и d₁ = 0 . Повторим это со вторым и третьим уравнениями: a₂ = 0 , b₂ = 2 , c₂ = -1 , d₂ = 25 , a₃ = -1 , b₃ = 0 , c₃ = 2 , d₃ = 16 . Как только мы дадим все эти числа, , решатель системы уравнений даст нам решение . В следующем разделе мы опишем , как он это делает, шаг за шагом .

Пример: решение систем уравнений методом исключения Гаусса

Работа с печеньем и пончиками — это развлечение и игра, но давайте теперь попробуем сжечь некоторые из этих сладких калорий, описав , как решить систему уравнений , которую мы получили в предыдущем разделе:

3x - y + 0z = 0

0x + 2y - z = 25

-x + 0y + 2z = 16

Мы хотим, чтобы значение оставило первое уравнение равным , поскольку оно имеет ненулевой коэффициент рядом с переменной x .Однако мы будем использовать этот коэффициент для , чтобы избавиться от x в других уравнениях . Обратите внимание, что нам не нужно беспокоиться о втором, потому что его коэффициент x равен нулю. Чтобы справиться с третьим, мы удалим из него -x , сначала преобразовав его в противоположность 3x из первого уравнения. Фактически, достаточно умножить обе части третьего уравнения на 3 .

3x - y + 0z = 0

0x + 2y - z = 25

-3x + 0y + 6z = 48

Теперь у нас есть противоположные числа рядом с x в первом и последнем равенстве, мы складываем два выражения вместе

(3x - y + 0z) + (-3x + 0y + 6z) = 0 + 48 ,

, что равно

0x -y + 6z = 48 .

Теперь мы можем заменить третье уравнение на то, что мы только что получили , чтобы получить

3x - y + 0z = 0

0x + 2y - z = 25

0x - y + 6z = 48

В результате мы получили то, что в двух последних выражениях нет x , и всегда проще решить систему линейных уравнений с двумя переменными вместо трех.

Следующим шагом в методе исключения Гаусса является повторение того же процесса для последних двух уравнений .По сути, мы будем использовать ненулевой коэффициент y во втором равенстве, чтобы избавиться от y из последнего. Как мы уже делали выше, мы начинаем с преобразования -y в противоположность 2y , то есть в -2y . Для этого достаточно обе части последнего уравнения умножить на 2.

3x - y + 0z = 0

0x + 2y - z = 25

0x - 2y + 12z = 96

Теперь мы можем сложить два последних уравнения , чтобы получить

(0x + 2y - z) + (0x - 2y + 12z) = 25 + 96 ,

, что равно

0x + 0y + 11z = 121 .

Пора заменить третье уравнение

3x - y + 0z = 0

0x + 2y - z = 25

0x + 0y + 11z = 121 .

Это конечная форма системы уравнений, которую мы получаем из метода исключения Гаусса . Теперь решить систему линейных уравнений стало намного проще. Как так? Что ж, начнем с последнего равенства. В нем есть только одна переменная с ненулевым коэффициентом, а именно z .Мы можем забыть о нулевых членах, что дает нам

11z = 121 ,

, а это значит, что у нас должно быть z = 11 . Теперь, когда мы знаем, какова первая часть решения системы уравнений, мы можем использовать это знание, чтобы заменить это число на z в двух других уравнениях :

3х - у + 0 = 0

0x + 2y - 11 = 25 ,

, что равно

3x - y = 0

0x + 2y = 36 .

Теперь у нас есть второе уравнение только с одной переменной с ненулевым коэффициентом. Если забыть о нулевых членах, получим

2y = 36 ,

и, следовательно, должно получиться y = 18 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *