Слабые и сильные соли – Сильные и слабые электролиты, соли (химия, 9 класс)

. Гидролиз солей слабых оснований и сильных кислот.

Пример 4.2.1 Гидролиз NH4I (соль образована нейтрализацией слабого основания NH4OH сильной кислотой HI).

Развёрнутое ионно-молекулярное уравнение гидролиза:

NH4+ +I +HOH=NH4OH+I +H+.

Сокращённое ионно-молекулярное уравнение:

NH4+ +HOH=NH4OH+H+.

Как видно из уравнения, в результате гидролиза ионы ОН воды связываются в молекулы слабого основания NH4OH, тогда как ионы Н

+ в свободном состоянии накапливаются в растворе, придавая ему кислый характер (рН<7).

Молекулярное уравнение в данном случае очевидно:

NH4I+HOH=NH4OH+HI.

Пример 4.2.2. Гидролиз СоSO4 (соль образована слабым основанием- гидроксидом кобальта (II) Co(OH)2 и сильной серной кислотой H2SO4).

Развёрнутое ионно-молекулярное уравнение гидролиза:

Со2+ +SO42- +HOH=CoOH+ +SO42- +H+.

Сокращённое ионно-молекулярное уравнение:

Co2+ +HOH=CoOH+ +H+

.

Опять же, как и в примере 4.2.1, ионы ОН воды связываются катионами слабого основания, а ионы Н+ накапливаются в растворе в свободном виде, придавая раствору кислый характер (рН<7). Из уравнения видно, что в результате связывания ионов ОН образуется не нейтральное основание Со(ОН)2, а заряженный гидроксокатион СоОН+, то есть гидролиз протекает по первой ступени.

Некоторую сложность в рассматриваемом примере представляет составление молекулярного уравнения по развёрнутому ионно- молекулярному. Т.к. в правой части уравнения фигурируют катионы 2-х типов, а анион один, для составления нейтральных комбинаций с каждым из 2-х катионов необходимо иметь также 2 аниона Поэтому, чтобы составить молекулярное уравнение, развёрнутое ионно-молекулярное уравнение необходимо удвоить:

2Со2+

+2SO42- +2HOH=2CoOH+ +2SO42- +2H+.

Соответственно преобразованному ионно-молекулярному уравнению молекулярное уравнение гидролиза записывается:

2CoSO4+2HOH=(CoOH)2SO4+H2SO4.

Как видно из молекулярного уравнения, при гидролизе соли CoSO4 по первой ступени образуется не гидроксид кобальта (II) Co(OH)2, а основная соль-гидроксосульфат кобальта (II). Это общее правило: при гидролизе солей слабых оснований многозарядных катионов и сильных кислот образуются основные соли.

Общим для солей слабых оснований и сильных кислот является то, что вследствие гидролиза их растворы приобретают кислый характер (рН<7),

то есть растворы солей данного типа являются фактически кислотами.

    1. . Гидролиз солей сильных оснований и сильных кислот.

Пример 4.3.1. Взаимодействие КСl с водой (соль образована сильным основанием КОН и сильной кислотой HСl).

Развёрнутое ионно-молекулярное уравнение:

К+ +Cl +HOH=K+ +OH +Cl +H+.

Уравнение показывает, что ионы соли не участвуют в реакции: не происходит связывания ни ионовН+, ни ионов ОН.

Сокращённое ионно-молекулярное уравнение:

НОН=ОН+.

Из сокращённого уравнения видно, что в водном растворе KСl процесс сводится к диссоциации самой воды, вследствие которой образуются ионы Н

+ и ОН в равных количествах. Поэтому раствор рассматриваемой соли нейтрален (рН=7). Равным образом из-за отсутствия гидролиза нейтральными являются растворы всех солей сильных оснований и сильных кислот.

Несмотря на отсутствие гидролиза, оформление рассматриваемого процесса закончим записью молекулярного уравнения:

KCl+HOH=KOH+HCl.

Записанное молекулярное уравнение лишний раз свидетельствует в пользу того, что при рассмотрении любой реакции ионного обмена не следует ограничиваться молекулярным уравнением, а обязательно необходимо записывать ионно-молекулярное уравнение, т.к. только оно даёт истинную информацию о реакции. На самом деле, молекулярное уравнение взаимодействия КСl с водой указывает на наличие реакции, тогда как ионно-молекулярное уравнение приводит к однозначному выводу: KСl гидролизу не подвергается.

Итак, соли сильных кислот и сильных оснований гидролизу не подвергаются; рН растворов этих солей равен 7.

1Эквивалентом вещества называется его реальная или условная частица, которая в химических реакциях эквивалентна 1 атому или 1 иону водорода. Например, КОН эквивалентен 1 иону Н+, что хорошо видно из реакции КОН+НCl=KCl+H2O; в реакцииFe+2HCl=FeCl2+H2атомFeэквивалентен двум ионам Н+, т.е. эквивалентом железа является условная частица – половина его атома.

2Множитель 10-3в знаменателе – коэффициент перевода объёма раствора из миллилитров в литры.

3Множитель 10-3в знаменателе – коэффициент перевода объёма раствора из см3в литры.

4Множитель 10-3– коэффициент для перевода объёма из миллилитров в литры.

5Множитель 103– коэффициент для перевода объёма из литров в см3.

6Численные значения констант диссоциации слабых электролитов – табличные данные.

7Амфотерные гидроксиды в контрольной работе не рассматриваются.

8О комплексных соединениях см. также методические указания к контрольной работе №1.

9Гидролиз солей слабых кислот и слабых оснований в контрольной работе не рассматривается.

10Оформление реакций гидролиза целесообразно начинать с записи развёрнутого ионно-молекулярного уравнения. При этом, как обычно, сильные электролиты записываются в виде свободных ионов, слабые — в молекулярном виде. Очевидно, что вода в ионно-молекулярных уравнениях гидролиза должна всегда записываться в виде молекул Н2О.

Т.к. гидролиз солей заключается во взаимодействии ионов соли с ионами Н+и ОНводы, целесообразно в уравнениях гидролиза молекулярную форму воды представлять как связанную совокупность этих ионов: НОН.

studfile.net

Соли слабые — Справочник химика 21

    Рассмотрим гидролиз соли, образованной одноосновной кисло-» той и одновалентным металлом. В качестве примера возьмем ацетат натрия — соль слабой кислоты и сильного основания. Уравнение гидролиза этой соли имеет вид [c.258]

    Степень гидролиза солей слабых кислот и сильных оснований [c.482]


    Буферные растворы представляют собой смеси слабых кислот солями этих же слабых кислот и.ли смеси слабых оснований с солями слабых оснований. Причина буферного действия таких смесей понятна. Если в раствор, содержащий СНзСООН и СНзСООМа (уксусноацетатный буферный раствор) ввести некоторое количество сильной кислоты НС1, то она будет реагировать с ацетат-ионами, образуя эквивалентное количество СНзСООН  [c.280]

    Соли слабых кислот и сильных оснований. Гидролиз. как константа гидролиза. 

[c.206]

    Соли сурьмы(])]), как соли слабого основания, в водном рас-зре подвергаются гидролизу с образованием основных солей  [c.429]

    Осаждение малорастворимых солей слабых кислот. Очень большое влияние величина pH оказывает на осаждение солей слабых кислот, например карбонатов, оксалатов, фосфатов, сульфидов и т. д. Действительно, осаждающими ионами в этом случае являются анионы соответствующих слабых кислот Oj , С>0Г, РО4, и т. д. Но эти анионы, встречаясь в растворе с Н - [c.86]

    Поэтому при вычислении pH здесь исходят из уравнения константы ионизации соответствующей слабой кислоты. Для расчета кривой титрования необходимо вывести три формулы а) расчет [Н+] (pH) до титрования, т. е. в растворе слабой кислоты б) расчет [Н+] (pH) в процессе титрования, когда в растворе присутствует слабая кислота и ее соль и, наконец, в) расчет [Н+] (pH) в точке эквивалентности, когда в растворе находится только соль слабой кислоты и сильного основания. Прежде всего рассчитаем [Н+] и pH в растворе слабой кислоты НАп. Кислота ионизирует в растворе  

[c.261]

    Причина тождества кривых титрования заключается в следующем. Как известно, щелочная реакция растворов солей слабых кислот (НАп) н сильных оснований является следствием гидролиза соли, который заходит тем дальше, чем [c.284]

    Согласно этому равенству, которое получено па основании приближенных уравнений, степень гидролиза соли слабой кислоты и слабого основания не зависит от концентрации этой соли в растворе. [c.484]


    Величину pH в третьей точке эквивалентности можно вычислить по формуле для pH солей слабых кислот и сильных оснований  [c.276]

    Таким образом, раствор соли слабой кислоты и сильного основания в результате гидролиза оказывается щелочным. Отношение концентрации образовавшегося гидроксила к начальной концентрации соли называется степенью гидролиза и обозначается буквой р  

[c.480]

    Следует обратить внимание на то обстоятельство, что эта формула отличается от выведенной ранее для pH растворов солей слабых кислот и сильных оснований только тем, что в формуле (8) [c.268]

    От каких факторов зависит величина pH, требуемая для достижения практически полного осаждения малорастворимых солей слабых кислот Приведите примеры. [c.158]

    В каких случаях можно достаточно точно оттитровать соль слабой кислоты Соль слабого основания  [c.293]

    Обобщая этот пример, можно сделать вывод, что гидролизу по катиону подвержены соли слабого основания и сильной кислоты. [c.211]

    Характер среды в этом случае определяется относительной силой образовавшихся кислоты и основания. Этот случай гидролиза имеет место для солей слабых оснований и слабых кислот. [c.211]

    Гидролизом называется взаимодействие соли слабой кислоты (или слабого основания) с водой, в результате которого образуются недиссоцииро-ванная кислота (или основание) и ионы ОН (или Н «). Константа гидролиза представляет собой не что иное, как константу диссоциации вещества, сопряженного слабой кислоте или основанию. Константы диссоциации основания К(, и сопряженной ему кислоты связаны между собой соотношением = Кн,о- [c.258]

    Аналогично для соли слабого основания МОН и сильной кислоты  [c.149]

    Феноляты в отлич[1е от алкоголятов водой не разлагаются, но все же и они з водных растворах, подобно солям слабых кислот и сильных оснований, частично гидролизованы и их растворы имеют щелочную реакцию. Фенол вытесняется нз фенолята даже угольной кислотой. [c.480]

    Соли слабых кислот и сильных оснований. Гидролиз 242 [c.647]

    Я ограничиваю количество соли, слабо солю пищу [c.436]

    Альдегиды в присутствии органических солей и солей слабых кислот и сильных оснований легко окисляются в карбоновые кислоты. [c.98]

    Растворение соли слабой кислоты в растворах кислот должно проходить тем быстрее, чем больше концентрации ионов водорода. Однако растворение карбоната кальция в растворе уксусной кислоты проходит быстрее, чем в растворе серной. Почему  [c.121]

    Неорганические осадители. Большинство малорастворимых неорганических соединений, применяемых при гравиметрических определениях и разделении ионов, являются либо солями слабых кислот, либо гидроокисями металлов. Нз первых наиболее широкое применение как в качественном, так и в количествеииом анализе имеют сульфиды, т. е. солн сероводородной кислоты НгЗ. Несмотря на общеизвестные неудобства, связанные с применением сероводорода, свойства сульфидов настолько ценны для анализа, что обычно с этими неудобствами не считаются. [c.120]

    Объясните, почему труднорастворимая соль слабой кислоты легко растворяется в более сильной кислоте. Приведите примеры. [c.101]

    Как и в случае гидроокисей, величина pH, требуемая для до-с-тижения практически полного осаждения какой-либо малорас-«воримой соли слабой кислоты, зависит прежде всего от величины ее произведения растворимости. При малой величине произведения растворимости для осаждения требуется и малая концентрация осаждающего иона. В соответствии с этим полное осаждение соли с

www.chem21.info

Соль, образованная сильным основанием и слабой кислотой

Такое соединение в растворе образует слабополяризующие катионы и среднеполяризующие анионы. Гидролиз протекает по аниону, и в его результате создается щелочная среда, pH > 7:

NaCN ↔ Na+ + CN

CN + HOH ↔ HCN + OH

Na+ + HOH ↔ реакция практически не идет

NaCN + HOH ↔ HCN + NaOH

Константа гидролиза и константа диссоциации кислоты связаны зависимостью:

Kг = Kh3O/Kк-ты

Т.е. гидролиз соли протекает тем полнее, чем слабее образующая эту соль, кислота.

Возможен гидролиз соли, образованной слабой многоосновной кислотой и сильным основанием. В этом случае гидролиз протекает по ступеням:

Na2SO3 ↔ 2Na+ + SO32-

I ступень

SO32- + HOH ↔ HSO3 + OHNa2SO3 + HOH ↔ NaHSO3 + NaOH

II ступень

HSO3 + HOH ↔ H2SO3 + OHNaHSO3 + HOH ↔ H2SO3 + NaOH

В этом случае, константа гидролиза по первой и второй ступеням определяется соотношениями:

Kг1 = Kh3O/Kк-ты2

Kг2 = Kh3O/Kк-ты1

Следует помнить, что гидролиз по второй ступени протекает в ничтожно малой степени.

Сравнивая величины Kг и Kк-ты, можно качественно определить pH среды. Так, если Kг намного больше Kк-ты, то средасильнощелочная, при Kг намного меньшей Kк-ты — среда слабощелочная, а если Kг и Kосн сопоставимы, то —среднещелочная.

  1. Соли, образованные слабым основанием и слабой кислотой

Такие соли, при ионизации образуют среднеполяризующие катионы и анионы, поэтому гидролиз возможен как по катиону, так и по аниону. При этом относительная сила образовавшихся кислоты и основания, будут влиять на характер среды (слабокислая или слабощелочная, pH ≈ 7). Такого типа гидролиз протекает особо полно, обычно с образованием малорастворимого вещества:

Al2S3 + 6HOH ↔ 2Al(OH)3↓+ 3H2S↑

Константу гидролиза можно рассчитать, зная константы диссоциации кислоты и основания с помощью следующего соотношения:

Kг = Kh3O/(Kк-ты·Kосн)

Влияние различных факторов на протекание гидролиза

  • Природа соли. Это видно из выражения для константы гидролиза.

  • Концентрация соли и продуктов реакции. В соответствии с принципом Ле-Шателье, равновесие должно смещаться вправо, при этом увеличивается концентрация ионов водорода (или гидроксид-ионов), что приводит к уменьшению степени гидролиза.

  • Температура. Известно, что гидролиз притекает с поглощением теплоты (эндотермическая реакция), поэтому согласно принципу Ле Шателье, при увеличении температуры равновесие сдвигается вправо, что ведет к ростустепени гидролиза.

2.Тема овр.

2.1 Какие реакции относят к ОВР, в чем их отличие от реакций обменного разложения. Как называются реагенты участвующие в ОВР. По каким признакам они определяются

Реакции без и с изменением степени окисления

 

Существует два типа химических реакций:

 A       Реакции, в которых не изменяется степень окисления элементов:

 

Реакции присоединения

SO2 + Na2O  Na2SO3

Реакции разложения

Cu(OH)2  –t CuO + H2O

Реакции обмена

AgNO3 + KCl  AgCl + KNO3

NaOH + HNO3  NaNO3 + H2O

 B      Реакции, в которых происходит изменение степеней окисления атомов элементов, входящих в состав реагирующих соединений:

 2Mg0 + O20  2Mg+2O-2

2KCl+5O3-2  –t 2KCl-1 + 3O20­

2KI-1 + Cl20  2KCl-1 + I20

Mn+4O2 + 4HCl-1  Mn+2Cl2 + Cl20­ + 2H2O

 

Такие реакции называются окислительно — восстановительными.

окислительно-восстановительные-это те реакции, в ходе которых изменяется степень окисления атомов, входящих в состав реагирующих веществ. расставляете степень окисления каждого элемента в исходных продуктах реакции и в конечных. Если степени окисления в ходе реакции изменяются, то рекция является окислительно-восстановительной.

studfile.net

Соли сильные — Справочник химика 21

    Катионы сильных оснований N3+, a +, Ва + и анионы сильных кислот С1, 505 не принимают участия в этих реакциях, поскольку не могут образовать с ионами воды и ОН малодиссоциированных соединений. Таким образом, водные растворы уксуснокислых солей (ацетатов), образованных сильными основаниями, имеют щелочную реакцию, а растворы аммониевых солей сильных кис лот — кислую реакцию. В случае ацетата аммония и катион, и анион принимают участие в реакции гидролиза, однако раствор сохраняет нейтральную реакцию, так как образующиеся уксусная кислота и гидроксид аммония — электролиты равной силы (с. 127), В других случаях, например при гидролизе Nh5 N, для определе ния характера раствора необходимо сопоставить константы диссоциации слабого основания и слабой кислоты, образующихся при гидролизе соли. [c.130]
    А если в молекуле уксусной кислоты один из водородных атомов заменить атомом фтора, то получится молекула фторуксусной кислоты. Ее натриевая соль — сильный крысиный яд. К сожалению, эта соль даже в ничтожных количествах ядовита и для всех прочих живых существ, и поэтому пользоваться ею приходится с большой осторожностью. [c.157]

    В этом случае обобщенно можно сказать, что гидролиз по аниону происходит у солей сильных оснований и слабых кислот. [c.211]

    Если катионы и анионы имеют небольшие заряды и значительные размеры, то их поляризующее влияние на молекулы воды невелико, т. с. взаимодействия соли с НаО практически не происходит. Это относится к таким катионам, как К+ и Са +, и к таким анионам, как С1 и N0 . Следовательно, соли сильного основания и сильной кислоты гидролизу не подвергаются. В этом случае равновесие диссоциации воды в присутствии ионов соли почти не нарушается. Поэтому растворы таких солей практически нейтральны (рН 7). [c.266]

    В одном из патентов указывается, что при окислении бутана в растворе уксусной кислоты в присутствии солей кобальта применение замедлителей, например соли сильного основания и слабой кислоты (ацетат натрия и др.), увеличивает выход альдегидов и кетонов [223]. [c.97]

    Раствор хлорида натрия нейтрален и имеет pH = 7,0. Это понятно, поскольку хлорид натрия-соль сильного основания (гидроксида натрия) и сильной (хлористоводородной) кислоты, а когда такие вещества взяты в равных количествах, они должны полностью нейтрализовать друг друга. В отличие от этого ацетат натрия представляет собой соль сильного основания и слабой кислоты. Интуитивно можно ожидать, что раствор ацетата натрия окажется несколько основным, и это действительно так. Часть ацетатных ионов, образованных этой солью, соединяется с водой, образуя недиссоциированную уксусную кислоту и гидроксидные ионы [c.242]


    Осаждение малорастворимых солей сильных кислот. Малорастворимые соли сильиых одноосновных кислот, например Ag I, AgBr, Agi и т. п., осаждаются в результате реакции Ag+ с анио- [c.92]

    Чем сильнее анион удерживает ион Н+ тем трудаее осуществим прямой процесс и легче — обратный. Поэтому, чем меньше константа диссоциации кислоты, тем менее устойчива ее аммонийная соль. Так, соль сильной кислоты НС1 — хлорид аммония Nh5 I вполне стабилен при комнатной температуре, соль слабой угольной кислоты (/ l = 4,2-10 ) в этих условиях заметно разлагается, а Nh5OH, который можно рассматривать как соль Н2О (Л = 1,8-10 ) не может быть выделен в виде индивидуального вещества. [c.399]

    Наиболее детально изучено влияние природы растворенных неорганических солей (сильных электролитов) на селективность их задержания ацетатцеллюлозными мембранами (подробнее см. стр. 201). Говоря о селективности при разделении бинарных растворов солей, следует отметить, что в настоящей книге используются значения селективности в целом по соли, а не по отдельным ионам. Это объясняется тем, что ионы электролита, как было показано [163], переходят через мембрану в соотношениях, близких к эквимолекулярным, в то время как ЛС. 1У-19. [c.192]

    Например, если имеем кислоту с р/СнАп = 5, то

www.chem21.info

1.3 Гидролиз солей, образованных слабым основанием и слабой кислотой.

Подобные соли легче других подвергаются гидролизу, так как ионы этих солей одновременно связываются обоими ионами воды с образованием двух слабых электролитов.

Реакция среды в растворах таких солей зависит от относительной силы кислоты и основания, т.е. водные растворы таких солей могут иметь нейтральную, кислую, или щелочную реакцию в зависимости от констант диссоциации образующихся кислот и оснований.

Гидролиз ацетата аммония CH3COONH4

Соль CH3COONH4 образованна слабым основанием NH4OH и слабой кислотой CH3COOH одинаковой силы. (Кдис.NH4OH =1.8∙10-5; Кдис.CH3COOH =1.8∙10-5).

Реакция гидролиза в молекулярной форме:

CH3COONH4 +H2O NH4OH + CH3COOH

в ионно-молекулярной форме:

NH4+ + CH3COO + H2O NH4OH + CH3COOH.

Поскольку концентрация ацетат-ионов и ионов аммония в растворе одинаковы, а константы диссоциации кислоты и основания равны, то реакция среды будет нейтральной (рН=7).

В результате реакции гидролиза цианида аммония NH4CN (Кдис.HCN =7.2∙10-10; Кдис.NH4OH =1.8∙10-5)

NH4CN +H2O NH4OH + HCN

среда будет слабощелочной (рН>7).

Гидролиз соли, образованной слабым многокислотным

основанием и слабой многоосновной кислотой, например, Al2S3.

Уравнение реакции гидролиза этой соли:

Al2S3 + 6H2O 2Al(OH)3↓+ 3H2S↑

Ион алюминия связывает ион гидроксила

Al3+ + H2O AlOH2++ H+,

а сульфид-ион связывает ионы водорода:

S2– + H2O HS + OH

В результате в растворе нет накопления ни ионов H+, ни ионов OH, гидролиз протекает до полного разложения соли с образованием продуктов Al(OH)3 и H2S.

1.4 Степень гидролиза.

Количественно процесс гидролиза можно характеризовать степенью гидролиза h (%).

h (%) = число гидролизованных молекул соли ∙ 100

общее число растворенных молекул соли

Степень гидролиза зависит от химической природы образующейся при гидролизе кислоты (основания) при прочих равных условиях.

Например, одномолярные растворы ацетата натрия и цианида натрия при 22°С гидролизованы соответственно следующим образом:

CH3COONa ~ на 0,003% (Кдис.CH3COOH =1.8∙10-5)

NaCN ~ на 5% (Кдис.HCN =7.9∙10-10)

1.5 Факторы, влияющие на степень гидролиза соли.

Основные факторы, влияющие на степень гидролиза соли: природа соли, концентрация соли, температура, добавление кислоты, щелочи или других солей.

Влияние природы соли на степень ее гидролиза определяется тем, что чем более слабым электролитом (основанием или кислотой) образована данная соль, тем в большей степени она подвержена гидролизу.

По мере уменьшения концентрации соли ее гидролиз усиливается, так как гидролиз соли лимитирован ничтожным количеством H+ и OH-ионов, образующихся при диссоциации воды. Чем больше ионов воды приходится на долю ионов соли, тем полнее идет гидролиз.

С увеличением температуры диссоциация воды несколько возрастает, что благоприятствует протеканию гидролиза.

Влияние добавления в раствор соли кислоты, основания или другой соли можно определить исходя из принципа Ле-Шателье. В том случае, когда добавляемые электролиты связывают продукты гидролиза соли, гидролиз соли усиливается. Если же добавляемый электролит увеличивает концентрацию продуктов гидролиза или связывает исходные вещества, то гидролиз соли уменьшается.

Например:

CH3COONa +H2O CH3COOH + NaOH

CH3COO + H2O CH3COOH +OH

Прибавление к этому раствору щелочи, т.е. ионов OH, или другой соли, образованной слабой кислотой и сильным основанием смещает равновесие гидролиза в сторону реагирующих веществ, а добавление кислоты, т.е. ионов H+, или соли, образованной сильной кислотой и слабым основанием смещает равновесие гидролиза в сторону продуктов реакции.

Пример взаимодействия растворов двух солей, взаимно усиливающих гидролиз друг друга.

В растворах карбоната натрия Na2CO3 и сульфата алюминия Al2(SO4)3, взятых порознь устанавливаются равновесия:

CO32– + H2O HCO3 + OH

Al3+ + H2O AlOH2++ H+

и гидролиз этих солей ограничивается практически первой ступенью. Если смещать растворы этих солей, то ионы H+ и OH уходят из сферы реакции в виде малодиссоциирующей воды, что смещает оба равновесия вправо и активизирует последующие ступени гидролиза, что приводит к образованию осадка Al(OH)3 и газа CO2.

Al2(SO4)3+ 3Na2CO3 + 3H2O → 2Al(OH)3↓ + 3CO2↑ + 3Na2SO4

2Al3+ + 3CO32– + 3H2O → 2Al(OH)3↓ + 3CO2↑.

  1. Практическая часть.

studfile.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *