Сложение дробей | Формулы с примерами
Сложение дробей
С одинаковыми знаменателями
Определение
Что бы найти сумму дробей с одинаковыми знаменателями, нужно просто сложить их числители. Знаменатель останется прежним.
Найдем, во сколько раз каждый знаменатель меньше общего
и умножим каждую дробь на это число.
Пример 27 + 47 = 2 + 47 = 67;
46 + 96 =
72 + 122 = 7 + 122 = 192 = 912.
С разными знаменателями
Определение
Необходимо привести к общему знаменателю и сложить полученные дроби.

1. Преобразуем смешанную дробь в неправильную;
2. Находим общий знаменатель;
3. Приводим дроби к общему знаменателю;
5. Приводим получившуюся неправильную дробь к смешанной. Пример
12 + 34 = 48 + 68 = 108 = 128 = 114;
34 + 57 = 2128 + 2028 = 4128 = 11 13;
23 + 74 = 8 12 + 2112 = 2912 = 25 12.
formula-xyz.ru
Сложение дробей
Чтобы сложить смешанные числа, надо записать их в виде неправильных дробей, а затем сложить как обыкновенные дроби. Часто удобней вначале сложить целые части, а затем дробные части, избегаю преобразования в неправильную дробь.
Пример Сложить смешанные числа
Сократим дробь с помощью нахождения наибольшего общего делителя числителя и знаменателя и деления полученного числа на числитель и знаменатель, НОД(27,60)=3, получим .
Пример Найти сумму смешанных чисел
.
В результате сложения также получим смешанное число.
Сложение нескольких дробей
Пример Сложить 3 дроби
.
Сложение обыкновенных и десятичных дробей
Пример Найти сумму
Для сложения десятичных и обыкновенных дробей нужно преобразовать их к одному формату. В данном примере преобразуем десятичную дробь 0.75 в обыкновенную дробь .
.
Математика для блондинок: Сложение и вычитание дробей
Какие действия над дробями можно выполнять? Сложение дробей, вычитание дробей, умножение дробей, деление дробей. Да и вообще, с дробями можно делать всё, что вы делаете с другими числами. Сравнивать дроби мы уже научились. Лично мне кажется, что математические действия не признают нашего числового расизма, для них все числа одинаковы.Действия над дробями |
Сложение дробей
Обычно я тупо перемножаю знаменатели и получаю общий знаменатель, не заморачиваясь со всякими там наименьшими общими кратными (НОК). После сложения всё лишнее сократится. Выглядит это приблизительно так.
Сложение дробей неправильно |
Сложение дробей правильно |
Это ещё не всё про сложение дробей. Теперь возьмем любимые цацки математиков — буковки — и посмотрим, как сложение дробей выглядит в буквах. Сами математики почему-то стесняются нам показывать этот фокус. Сперва складываем две дроби с одинаковыми знаменателями.
Сложение дробей с одинаковыми знаменателями |
Сложение дробей с разными знаменателями |
Ради математической справедливости нужно рассмотреть сложение дробей в древневавилонском отображении, то есть, заменить дробь умножением числа на обратное число.
Сложение дробей в древнем Вавилоне |
Формулы сложения дробей |
В формулы сложения дробей вместо буковок a, b, c, d
можно подставлять всё, что угодно — целые числа, дробные, квадратные корни, математические выражения… Эти формулы будут работать всегда. Это настоящая математика, которая не зависит ни от научной моды, ни от маразма научных правителей. С буковками p и q более печальная история. Маразм современных математиков разрешает подставлять вместо них только целые числа с целью получения рационального числа. Но это только в теории чисел. В других разделах математики в числителе и знаменателе дроби можно встретить всё, что угодно.Вычитание дробей
Вычитание дробей выполняется точно так же, как и сложение, только знак плюс заменяется на знак минус. Я не стану полоскать вам мозги диссертацией про вычитание дробей с целью начитывания учебных часов. Если вы поняли принципы сложения дробей, то с вычитанием у вас проблем не будет. Формулы вычитания дробей могу показать, с тем же рациональным маразмом в конце, который нам напоминает о необходимости сокращения дроби в конце. Математиков тошнит от не сокращенных дробей.
Формула вычитания дробей |
И это ещё не конец. Теперь мы запишем формулы сложения и вычитания дробей в чистом виде, без всякого рационального маразма.
Сложение и вычитание дробей |
А в заключение мы возьмем формулу сложения и вычитания дробей с разными знаменателями и посмотрим, как она превращается в сложение и вычитание целых чисел. То простое сложение, которому учат ещё в детском садике.
Дроби и целые числа |
После сложения и вычитания дробей мы рассмотрим умножение дробей.
www.webstaratel.ru
Тема сложение дробей. Сложение и вычитание дробей с разными знаменателями.
Сложение – это арифметическое действие, в результате которого получают новое число, содержащее столько единиц, сколько было во всех заданных числах вместе взятых.
Дробь обозначает тип деления, который рассматривается как часть целого и указывает на разделение целого на равные доли или части, где знаменатель показывает, на сколько частей мы разделили, а числитель — сколько взяли частей от этого целого.
Сложение или вычитание дробей могут быть двух видов:
- знаменатели одинаковые;
- знаменатели разные;
Правила сложения дробей:
- Одинаковые знаменатели. Складываем числители этих дробей.
- Разные знаменатели. Находим общий знаменатель с помощью наименьшего общего кратного чисел, и складываем их числители.
Чтобы вычислить НОК, необходимо разбить числа на простые множители и найти разложение большего числа, добавив к нему простые недостающие множители другого разложения. Полученные числа перемножить. Алгоритм решения для двух, трех и более чисел одинаков, если числа простые, то надо перемножить их.
Примеры решения задач: сложение дробей с одинаковым знаменателем.
Задача 1. Сложить две дроби с одинаковыми знаменателями \(\frac{7}{8}\) и \(\frac{1}{8}\).
Решение:
\(\frac{7}{8}+\frac{1}{8}=\)\(\frac{(7+1)}{8}\)\(=\frac{8}{8}=\frac{1}{1}\)
Ответ:\(1\).
Задача 2. Сложить две дроби с одинаковыми знаменателями \(\frac{6}{5}\)и \(\frac{3}{5}\).
Решение:
\(\frac{6}{5} +\frac{3}{5}\)\(=\frac{(6+3)}{5}\)\(=\frac{9}{5}=1\frac{4}{5}\)
Ответ:\(1\frac{4}{5}\).
3адача 3. Сложить две дроби \(\frac{11}{3}\) и \(\frac{5}{3}\).
Решение:
\(\frac{11}{3}\) + \(\frac{5}{3}\)\(=\)\(\frac{(11+5)}{3}=\frac{16}{3}=5\frac{1}{3}\)
16/3
Ответ:\(5\frac{1}{3}\).
3адача 4. Сложить две дроби с разными знаменателями \(\frac{11}{3}\) и \(\frac{5}{8}\).
Решение:
НОК\((3;8)\) \(=24\)
\(\frac{11*8}{3*8}+\frac{5*3}{8*3}\)\(=\)\(\frac{88}{24}+\frac{15}{24}=\)\(\frac{88+15}{24}\)\(=\frac{103}{24}=4\frac{7}{24}\)
Ответ: \(4\frac{7}{24}\)
Задача 5. Сложить две дроби с разными знаменателями \(\frac{27}{3}\) и \(\frac{55}{13}\).
Решение.
\(НОК(3;13) =39\)
\(\frac{(27*13)}{3*13} +\frac{(55*3)}{13*3}=\)\(\frac{351}{39}+\frac{165}{39}\)\(=\frac{351+165}{39}=\)
\(=\frac{516}{39}-\) сокращаем обе части дроби на 3
\(\frac{175}{13}=13\frac{6}{13}\)
Ответ: \(13\frac{6}{13}\).
Выводы:
для того чтобы сложить или вычесть два и более дробных числа нам необходимо привести их к общему знаменателю;
основное свойство дробей: значение дробного числа не изменится, если числитель и знаменатель умножить или разделить на одно и то же число.
`
Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы «Альфа». Запишитесь на пробное занятие уже сейчас!
Запишитесь на бесплатное тестирование знаний!
myalfaschool.ru
Сложение и вычитание алгебраических дробей
Сложение и вычитание с одинаковыми знаменателями
Чтобы выполнить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, надо найти сумму или разность числителей, а знаменатель оставить без изменений.
Пример 1. Выполните сложение алгебраических дробей:
а) | a + 3 | + | a — 3 | б) | 2b — 1 | + | b + 4 |
b | b | 2 | 2 |
Решение: складываем числители дробей и выполняем приведение подобных членов (если они есть):
а) | a + 3 | + | a — 3 | = | (a + 3) + (a — 3) | = | a + 3 + a — 3 | = | 2a |
b | b | b | b | b |
б) | 2b — 1 | + | b + 4 | = | (2b — 1) + (b + 4) | = | 2b — 1 + b + 4 | = | 3b + 3 |
2 | 2 | 2 | 2 | 2 |
Пример 2. Выполните вычитание алгебраических дробей:
а) | x + 5 | — | 5x | б) | a + b | — | a + 4 |
3 | 3 | a — 5 | a — 5 |
Решение: вычитаем из числителя первой дроби числитель второй дроби и выполняем приведение подобных членов (если они есть):
а) | x + 5 | — | 5x | = | x + 5 — 5x | = | 5 — 4x |
3 | 3 | 3 | 3 |
б) | a + b | — | a + 4 | = | (a + b) — (a + 4) | = | a + b — a — 4 | = | b — 4 |
a — 5 | a — 5 | a — 5 | a — 5 | a — 5 |
Сложение и вычитание алгебраических дробей с одинаковыми знаменателями в виде общих формул:
a | + | b | = | a + b | и | a | — | b | = | a — b | (c≠0) |
c | c | c | c | c | c |
Если дроби имеют знаменатели, состоящие из противоположных выражений, то есть выражений, отличающихся только знаком, надо тождественно преобразовать одну из дробей, чтобы привести их к общему знаменателю. Преобразование выполняется в соответствии с правилами знаков:
Данное преобразование можно рассматривать как умножение числителя и знаменателя дроби на -1. Следовательно, если числитель и знаменатель алгебраической дроби заменить на противоположные выражения, то получится дробь, равная данной. Полученную дробь можно переписать, поставив один из минусов перед дробью:
a | = | —a | = — | a | = — | —a |
b | —b | —b | b |
Также, любую отрицательную дробь можно сделать положительной, перенеся минус, стоящий перед дробью, в числитель или знаменатель:
Пример 1. Найдите сумму дробей:
Решение: чтобы выполнить сложение, поменяем знаки перед второй дробью и в её знаменателе на противоположные:
5a | + | 3a | = | 5a | — | 3a | = | 5a | — | 3a | = | 2a |
b — c | c — b | b — c | -(c — b) | b — c | b — c | b — c |
Пример 2. Найдите разность дробей:
Решение: чтобы выполнить вычитание, перенесём знак минус, стоящий перед второй дробью, в её знаменатель:
n + 5 | — | 2n | = | n + 5 | + | 2n | = | n + 5 | + | 2n | = | 3n + 5 |
n2 — m | m — n2 | n2 — m | -(m — n2) | n2 — m | n2 — m | n2 — m |
Сложение и вычитание с разными знаменателями
Чтобы найти сумму или разность алгебраических дробей с разными знаменателями, надо:
- найти общий знаменатель,
- привести алгебраические дроби к общему знаменателю,
- выполнить сложение или вычитание,
- сократить полученную дробь, если это возможно.
Пример 1. Выполните сложение дробей:
Решение: находим общий знаменатель. Он будет равен произведению знаменателей данных дробей:
(a + b)(a — b)
Как находить общий знаменатель, Вы можете узнать на странице Приведение алгебраических дробей к общему знаменателю
. Далее умножаем числитель каждой дроби на дополнительный множитель:
2a(a — b) = 2a2 — 2ab
b(a + b) = ab + b2
Общий знаменатель можно свернуть в разность квадратов. В итоге у нас получится:
2a | + | b | = | 2a2 — 2ab | + | ab + b2 | = |
a + b | a — b | a2 — b2 | a2 — b2 |
= | 2a2 — 2ab + ab + b2 | = | 2a2 — ab + b2 |
a2 — b2 | a2 — b2 |
Пример 2. Выполните вычитание дробей:
Решение: разложим знаменатель первой дроби на множители:
a2 — ab = a(a — b)
Так как данное выражение делится на знаменатель второй дроби, то возьмём его в качестве общего знаменателя. Значит, теперь нам надо умножить числитель второй дроби на дополнительный множитель a:
2 · a = 2a
Получаем:
b | — | 2 | = | b | — | 2a | = | b — 2a |
a2 — ab | a — b | a(a — b) | a(a — b) | a(a — b) |
Пример 3. Выполните сложение:
Решение: запишем первое слагаемое в виде дроби и приведём её к знаменателю 1 — x:
x + | x2 | = | x | + | x2 | = | x(1 — x) | + | x2 | = | x — x2 | + | x2 |
1 — x | 1 | 1 — x | 1 — x | 1 — x | 1 — x | 1 — x |
Теперь можно выполнить сложение дробей с одинаковыми знаменателями:
x — x2 | + | x2 | = | x — x2 + x2 | = | x |
1 — x | 1 — x | 1 — x | 1 — x |
Точно также можно выполнять сложение и вычитание алгебраических дробей с любыми многочленами.
naobumium.info
Сложение и вычитание алгебраических дробей с разными знаменателями (основные правила, простейшие случаи)
На данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с разными знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с разными знаменателями. Для этого дроби необходимо привести к общему знаменателю. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. При этом мы уже умеем приводить алгебраические дроби к общему знаменателю. Сложение и вычитание дробей с разными знаменателями – одна из наиболее важных и сложных тем в курсе 8 класса. При этом данная тема будет встречаться во многих темах курса алгебры, которые вы будете изучать в дальнейшем. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с разными знаменателями, а также разберём целый ряд типовых примеров.
Чтобы складывать и вычитать алгебраические дроби с разными знаменателями, проведём аналогию с обыкновенными дробями и перенесём её на алгебраические дроби.
Рассмотрим простейший пример для обыкновенных дробей.
Пример 1. Сложить дроби: .
Решение:
Вспомним правило сложения дробей. Для начала дроби необходимо привести к общему знаменателю. В роли общего знаменателя для обыкновенных дробей выступает наименьшее общее кратное (НОК) исходных знаменателей.
Определение
– наименьшее натуральное число, которое делится одновременно на числа
и
.
Для нахождения НОК необходимо разложить знаменатели на простые множители, а затем выбрать все простые множители, которые входят в разложение обоих знаменателей.
;
. Тогда в НОК чисел
должны входить две двойки и две тройки:
.
После нахождения общего знаменателя, необходимо для каждой из дробей найти дополнительный множитель (фактически, поделить общий знаменатель на знаменатель соответствующей дроби).
.
Затем каждая дробь умножается на полученный дополнительный множитель. Получаются дроби с одинаковыми знаменателями, складывать и вычитать ко
interneturok.ru
Сложение дробей | tutomath
Разные действия с дробями можно выполнять, например, сложение дробей. Сложение дробей можно разделить на несколько видов. В каждом виде сложения дробей свои правила и алгоритм действий. Рассмотрим подробно каждый вид сложения.
Сложение дробей с одинаковыми знаменателями.
На примере посмотрим, как складывать дроби с общим знаменателем.
Туристы пошли в поход из точки A в точку E. В первый день они прошли от точки A до B или \(\frac{1}{5}\) от всего пути. Во второй день они прошли от точки B до D или \(\frac{2}{5}\) от всего пути. Какое расстояние они прошли от начала пути до точки D?
Решение:
Чтобы найти расстояние от точки A до точки D нужно сложить дроби \(\frac{1}{5} + \frac{2}{5}\).
Сложение дробей с одинаковыми знаменателями заключается в том, что нужно числители этих дробей сложить, а знаменатель останется прежний.
\(\frac{1}{5} + \frac{2}{5} = \frac{1 + 2}{5} = \frac{3}{5}\)В буквенном виде сумма дробей с одинаковыми знаменателями будет выглядеть так:
\(\bf \frac{a}{c} + \frac{b}{c} = \frac{a + b}{c}\)Ответ: туристы прошли \(\frac{3}{5}\) всего пути.
Сложение дробей с разными знаменателями.
Рассмотрим пример:
Нужно сложить две дроби \(\frac{3}{4}\) и \(\frac{2}{7}\).
Чтобы сложить дроби с разными знаменателями нужно сначала найти общий знаменатель, а потом воспользоваться правилом сложения дробей с одинаковыми знаменателями.
Как найти общий знаменатель можно посмотреть здесь, нажав на ссылку>>
Для знаменателей 4 и 7 общим знаменателем будет число 28. Первую дробь \(\frac{3}{4}\) нужно умножить на 7. Вторую дробь \(\frac{2}{7}\) нужно умножить на 4.
\(\frac{3}{4} + \frac{2}{7} = \frac{3 \times \color{red} {7} + 2 \times \color{red} {4}}{4 \times \color{red} {7}} = \frac{21 + 8}{28} = \frac{29}{28} = 1\frac{1}{28}\)В буквенном виде получаем такую формулу:
\(\bf \frac{a}{b} + \frac{c}{d} = \frac{a \times d + c \times b}{b \times d}\)Сложение смешанных чисел или смешанных дробей.
Сложение смешанных дробей происходит по закону сложения.
У смешанных дробей складываем целые части с целыми и дробные части с дробными.
Если дробные части смешанных чисел имеют одинаковые знаменатели, то числители складываем, а знаменатель остается тот же.
Сложим смешанные числа \(3\frac{6}{11}\) и \(1\frac{3}{11}\).
\(3\frac{6}{11} + 1\frac{3}{11} = (\color{red} {3} + \color{blue} {\frac{6}{11}}) + (\color{red} {1} + \color{blue} {\frac{3}{11}}) = (\color{red} {3} + \color{red} {1}) + (\color{blue} {\frac{6}{11}} + \color{blue} {\frac{3}{11}}) = \color{red}{4} + (\color{blue} {\frac{6 + 3}{11}}) = \color{red}{4} + \color{blue} {\frac{9}{11}} = \color{red}{4} \color{blue} {\frac{9}{11}}\)Если дробные части смешанных чисел имею разные знаменатели, то находим общий знаменатель.
Выполним сложение смешанных чисел \(7\frac{1}{8}\) и \(2\frac{1}{6}\).
Знаменатель разный, поэтому нужно найти общий знаменатель, он равен 24. Умножим первую дробь \(7\frac{1}{8}\) на дополнительный множитель 3, а вторую дробь \(2\frac{1}{6}\) на 4.
\(7\frac{1}{8} + 2\frac{1}{6} = 7\frac{1 \times \color{red} {3}}{8 \times \color{red} {3}} = 2\frac{1 \times \color{red} {4}}{6 \times \color{red} {4}} =7\frac{3}{24} + 2\frac{4}{24} = 9\frac{7}{24}\)Вопросы по теме:
Как складывать дроби?
Ответ: сначала надо определиться к какому типу относиться выражение: у дробей одинаковые знаменатели, разные знаменатели или смешанные дроби. В зависимости от типа выражения переходим к алгоритму решения.
Как решать дроби с разными знаменателями?
Ответ: необходимо найти общий знаменатель, а дальше по правилу сложения дробей с одинаковыми знаменателями.
Как решать смешанные дроби?
Ответ: складываем целые части с целыми и дробные части с дробными.
Пример №1:
Может ли сумма двух правильных дробей в результате получить правильную дробь? Неправильную дробь? Приведите примеры.
Решение:
\(\frac{2}{7} + \frac{3}{7} = \frac{2 + 3}{7} = \frac{5}{7}\)Дробь \(\frac{5}{7}\) это правильная дробь, она является результатом суммы двух правильных дробей \(\frac{2}{7}\) и \(\frac{3}{7}\).
\(\frac{2}{5} + \frac{8}{9} = \frac{2 \times 9 + 8 \times 5}{5 \times 9} =\frac{18 + 40}{45} = \frac{58}{45}\)Дробь \(\frac{58}{45}\) является неправильной дроби, она получилась в результате суммы правильных дробей \(\frac{2}{5}\) и \(\frac{8}{9}\).
Ответ: на оба вопроса ответ да.
Пример №2:
Сложите дроби: а) \(\frac{3}{11} + \frac{5}{11}\) б) \(\frac{1}{3} + \frac{2}{9}\).
а) \(\frac{3}{11} + \frac{5}{11} = \frac{3 + 5}{11} = \frac{8}{11}\)
б) \(\frac{1}{3} + \frac{2}{9} = \frac{1 \times \color{red} {3}}{3 \times \color{red} {3}} + \frac{2}{9} = \frac{3}{9} + \frac{2}{9} = \frac{5}{9}\)
Пример №3:
Запишите смешанную дробь в виде суммы натурального числа и правильной дроби: а) \(1\frac{9}{47}\) б) \(5\frac{1}{3}\)
а) \(1\frac{9}{47} = 1 + \frac{9}{47}\)
б) \(5\frac{1}{3} = 5 + \frac{1}{3}\)
Пример №4:
Вычислите сумму: а) \(8\frac{5}{7} + 2\frac{1}{7}\) б) \(2\frac{9}{13} + \frac{2}{13}\) в) \(7\frac{2}{5} + 3\frac{4}{15}\)
Решение:
а) \(8\frac{5}{7} + 2\frac{1}{7} = (8 + 2) + (\frac{5}{7} + \frac{1}{7}) = 10 + \frac{6}{7} = 10\frac{6}{7}\)
б) \(2\frac{9}{13} + \frac{2}{13} = 2 + (\frac{9}{13} + \frac{2}{13}) = 2\frac{11}{13} \)
в) \(7\frac{2}{5} + 3\frac{4}{15} = 7\frac{2 \times 3}{5 \times 3} + 3\frac{4}{15} = 7\frac{6}{15} + 3\frac{4}{15} = (7 + 3)+(\frac{6}{15} + \frac{4}{15}) = 10 + \frac{10}{15} = 10\frac{10}{15} = 10\frac{2}{3}\)
Задача №1:
За обедам съели \(\frac{8}{11}\) от торта, а вечером за ужином съели \(\frac{3}{11}\). Как вы думаете торт полностью съели или нет?
Решение:
Знаменатель дроби равен 11, он указывает на сколько частей разделили торт. В обед съели 8 кусочков торта из 11. За ужином съели 3 кусочка торта из 11. Сложим 8 + 3 = 11, съели кусочков торта из 11, то есть весь торт.
Ответ: весь торт съели.
tutomath.ru