Современная формулировка периодического закона: Периодический закон Д. И. Менделеева — урок. Химия, 8–9 класс.

Содержание

История периодического закона

Периодический закон и периодическая таблица химических элементов – величайшее достижение науки. Они положили начало современной химии, сделали её единой, целостной наукой.

Можно смело сказать, что в 1869 г. закончилась предыстория химии и началась её подлинная история. Химия перестала быть описательной наукой. Элементы стали рассматриваться в единстве, во взаимосвязи, в зависимости от того, какое место они занимают в ПС.

Первым объединять элементы в триады предложил немецкий химик И. Дёберейнер в 1829 г. Разбить все известные элементы на триады Дёберейнеру не удалось, тем не менее, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений.


Всего было предпринято около 50 попыток систематизации элементов, однако ни один из предложенных вариантов не охватывал всю совокупность известных химических элементов.

Несколько попыток систематизации элементов предпринял в 60-е годы XIX века немецкий химик Юлиус Лотар Мейер.

В 1864 г. он опубликовал в своей книге таблицу, в которую были включены 28 элементов, размещённые в шесть столбцов согласно их валентностям. Мейер намеренно ограничил число элементов в этой таблице, чтобы подчеркнуть закономерное изменение атомной массы в рядах подобных элементов (соотношения атомных масс и валентностей ещё 22 элементов рассматривались в другой таблице).


Свои заключения о взаимосвязи между атомной массы и свойствами элементом Менделеев изложил в статье «Естественная система элементов и применение её к указанию свойств неоткрытых элементов», опубликованной в «Журнале Русского химического общества» в начале  1871 г. В этой работе Менделеев впервые употребил термин «закон периодичности (в апреле замененный на «периодический закон»),  а также предсказал и  подробно описал атомные веса  и свойства трех не открытых элементов – «экаалюминия», «экабора» и «экасилиция.

В августе 1871 г. вышла  статья Менделеева «Периодическая законнность химических элементов», в которой периодическая таблица приняла вполне современный вид. Статья была переведена на немецкий язык и оттиски ее были разосланы многим известным европейским химикам. В этой публикации Менделеев приводит формулировку периодического закона, которая затем оставалась в силе на протяжении более сорока лет: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».


Принципиальная новизна Периодического закона

Принципиальная новизна Периодического закона, открытого Д.И. Менделеевым, заключалась в следующем:

1.      Устанавливалась связь не только между сходными, но и между несходными по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения периодически повторяются.

2.      В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались пробелы, которые надо было заполнить еще не открытыми элементами. Мало того, Периодический закон позволял предсказывать свойства этих элементов.

В декабре 1871 г. Менделеев прекращает свою работу  по периодическому закону и обращается к исследованию газов. Ученый отчётливо понимал, что явление периодичности не имеет физического обоснования и не видел прямых путей, ведущих к его отысканию. Экспериментальные же исследования газов имели вполне конкретный характер. Это были чисто физические исследования. Физическая «составляющая» творчества Менделеева отчетливо проявляется в 1870–1880-х гг. 

 

Урок №57. Периодический закон Д. И. Менделеева

Еще алхимики пытались найти закон природы, на основе которого можно было бы систематизировать химические элементы. Но им недоставало надежных и подробных сведений об элементах. К середине XIX в. знаний о химических элементах стало достаточно, а число элементов возросло настолько, что в науке возникла естественная потребность в их классификации. Первые попытки классификации элементов на металлы и неметаллы оказались несостоятельными. Предшественники Д.И.Менделеева (И. В. Деберейнер, Дж. А. Ньюлендс, Л. Ю. Мейер) многое сделали для подготовки открытия периодического закона, но не смогли постичь истину. Дмитрий Иванович установил связь между массой элементов и их свойствами.

Дмитрий Иванович родился в г. Тобольске. Он был семнадцатым ребенком в семье. Закончив в родном городе гимназию, Дмитрий Иванович поступил в Санкт-Петербурге в Главный педагогический институт, после окончания которого с золотой медалью уехал на два года в научную командировку за границу. После возвращения его пригласили в Петербургский университет. Приступая к чтению лекций по химии, Менделеев не нашел ничего, что можно было бы рекомендовать студентам в качестве учебного пособия. И он решил написать новую книгу – «Основы химии».

Открытию периодического закона предшествовало 15 лет напряженной работы. 1 марта 1869 г. Дмитрий Иванович предполагал выехать из Петербурга в губернии по делам.

Периодический закон был открыт на основе характеристики атома – относительной атомной массы.

Менделеев расположил химические элементы в порядке возрастания их атомных масс и заметил, что свойства элементов повторяются через определенный промежуток – период, Дмитрий Иванович расположил периоды друг под другом, так, чтобы сходные элементы располагались друг под другом – на одной вертикали, так была построена периодическая система элементов.

1 марта 1869 г. Формулировка периодического закона Д.И. Менделеева.

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

К сожалению, сторонников периодического закона сначала было очень мало, даже среди русских ученых. Противников – много, особенно в Германии и Англии.
Открытие периодического закона – это блестящий образец научного предвидения: в 1870 г. Дмитрий Иванович предсказал существование трех еще неизвестных тогда элементов, которые назвал экасилицием, экаалюминием и экабором. Он сумел правильно предсказать и важнейшие свойства новых элементов.

И вот через 5 лет, в 1875 г., французский ученый П.Э. Лекок де Буабодран, ничего не знавший о работах Дмитрия Ивановича, открыл новый металл, назвав его галлием. По ряду свойств и способу открытия галлий совпадал с экаалюминием, предсказанным Менделеевым. Но его вес оказался меньше предсказанного. Несмотря на это, Дмитрий Иванович послал во Францию письмо, настаивая на своем предсказании.
Ученый мир был ошеломлен тем, что предсказание Менделеевым свойств экаалюминия оказалось таким точным. С этого момента периодический закон начинает утверждаться в химии.

В 1879 г. Л. Нильсон в Швеции открыл скандий, в котором воплотился предсказанный Дмитрием Ивановичем экабор.

В 1886 г. К. Винклер в Германии открыл германий, который оказался экасилицием.

Но гениальность Дмитрия Ивановича Менделеева и его открытия — не только эти предсказания!

В четырёх местах периодической системы Д. И. Менделеев расположил элементы не в порядке возрастания атомных масс:

Ar – K,   Со – Ni,    Te – I,    Th — Pa

Ещё в конце 19 века Д. И. Менделеев писал, что, по-видимому, атом состоит из других более мелких частиц. После его смерти в 1907 г. было доказано, что атом состоит из элементарных частиц.  Теория строения атома подтвердила правоту Менделеева, перестановки данных элементов не в соответствии с ростом атомных масс полностью оправданы.

Современная формулировка периодического закона:

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.

И вот спустя более 130 лет после открытия периодического закона мы можем вернуться к словам Дмитрия Ивановича, взятым в качестве девиза нашего урока: «Периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещаются». Сколько химических элементов открыто на данный момент? И это далеко не предел.

Графическим изображением периодического закона является периодическая система химических элементов. Это краткий конспект всей химии элементов и их соединений.

Изменения свойств в периодической системе с ростом величины атомных весов в периоде (слева направо):

1. Металлические свойства уменьшаются

2. Неметаллические свойства возрастают

3. Свойства высших оксидов и гидроксидов изменяются от основных через амфотерные к кислотным.

4. Валентность элементов в формулах высших оксидов возрастает от I до VII, а в формулах летучих водородных соединений уменьшается от IV до I.

Основные принципы построения периодической системы

Признак сравнения

Д. И. Менделеев

1.     Как устанавливается последовательность элементов по номерам?

(Что положено в основу ПСХЭ?)

Элементы расставлены в порядке увеличения их относительных атомных масс. При этом есть исключения.

Ar – K,    Co – Ni,    Te – I,    Th — Pa

2.     Принцип объединения элементов в группы.

Качественный признак. Сходство свойств простых веществ и однотипных сложных.

3.     Принцип объединения элементов в периоды.

Совокупность элементов по мере роста относительной атомной массы от одного щелочного металла до другого.

Д.И Менделеев (видеофильм)

Периодический закон Д. И. Менделеева

Тренажёр №1 «Периодический закон и Периодическая система элементов Д. И. Менделеева»

Тренажёр №2. «Закономерности изменения свойств атомов элементов в периодах и группах Периодической системы элементов Д. И. Менделеева»

Тренажёр №3. «Периодический закон Д.И.Менделеева»

Рассказ в стихах об открытии периодического закона

Смотрите так же статью

Смотрите фильм Периодический закон Менделеева

Периодическая система элементов Д.И.Менделеева: Новые подходы


  Периодическая система
элементов Д.И.Менделеева:
Новые подходы

(БИБЛИОГРАФИЯ)
   

Периодическая система Менделеева приобрела установившуюся, почти канонизированную форму. Тем неожиданнее оказываются возможности ее дальнейшего развития и детальной разработки, вытекающие непосредственно из идей Д.И.Менделеева и основанные на достижениях физики и современной химии.

 
А-М | Н-Я    (указаны шифры)
Обновление: 11. 05.2021   |   Всего: 567 назв.
  • Насиров Р. О связывающих d-элементах I-VIII групп 4-го периода Периодической системы Д.И. Менделеева // Докл. НАН Республики Казахстан. — 2017. — N 1. — С.107-111. — Библиогр.: 11 назв.
  • Нестеров А.А., Баян Е.М. Вещество как предмет химии: учебник. — Ростов-на-Дону, Таганрог: Изд-во Южн. фед. ун-та, 2018. — 164 с. — Библиогр.: 6 назв.
    3. Периодический закон и Периодическая система химических элементов. — С.64-91. 3.1. История открытия Периодической системы химических элементов. 3.2. Современная формулировка закона Менделеева. Структура Периодической системы. 3.3. Изменение атомных свойств элементов по подгруппам и периодам ПСХЭ.
    Г2019-32412 ч/з1 (Г51-Н.561)
  • Нефедов В.И., Тржасковская М.Б., Яржемский В.Г. Электронные конфигурации и Периодическая таблица Д.И. Менделеева для сверхтяжелых элементов // Докл. АН. — 2006. — Т.408, N 4. — С.488-490. — Библиогр.: 14 назв.
    С1033 кх
  • Нечаев С. Таблица Менделеева // Чудеса и приключения. — 2014. — N 11. — С.24-29.
    Мнение Лотара Кольдица, известного немецкого химика, издателя учебников по химии и профессора Берлинского университета: «Никто из ученых, занимавшихся до Менделеева или одновременно с ним исследованиями соотношений между атомными весами и свойствами элементов, не смог сформулировать эту закономерность так ясно, как это сделал он. В частности, это относится к Ньюлендсу и Мейеру. Предсказание еще неизвестных элементов, их свойств и свойств их соединений является исключительно заслугой Д.И. Менделеева».
    Тем не менее в большинстве химических сообществ западного мира периодическая таблица не носит имени первооткрывателя, а словосочетание «таблица Менделеева» существует только в России.
  • Никольский Б.П., Шульц М.М., Белюстин А.А. Структура и электродные свойства стекла в свете периодической системы элементов // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.318-335. — Библиогр.: 87 назв.
    Е69-1593 кх
  • Ноддак-Такке И. Периодическая система и поиски экамарганца // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.99-102. — Библиогр.: 2 назв.
    Е69-1593 кх
  • Образцов П. Унуноктий стал оганесоном // Наука и жизнь. — 2017. — N 1. — С.22-25.
  • Овсянников Вик. А. Классификация кинематических пар механизмов и химических элементов. — М.: б.и., 2012. — 25 с. — Библиогр.: 19 назв.
    Автор высказывает гипотезу о единстве периодических систем кинематических пар механизмов и химических элементов.
    Вр2013 ч/з2 (К412-О.345)
  • Овсянников Вик. А. Классификация кинематических пар механизмов и химических элементов. — 2-е изд. — М.: б.и., 2017. — 25 с. — Библиогр.: 20 назв.
    Автор высказывает гипотезу о единстве периодических систем кинематических пар механизмов и химических элементов.
  • Овсянников Вик. А. Систематизация кинематических пар механизмов и химических элементов. — 3-е изд., испр. — М., 2010. — 39 с. — Библиогр.: 17 назв.
    Вр2011 ч/з2 (К412-О.345)
  • Оганесон уже не сон // Берг-коллегия. — 2018. — N 2(173). — С.30-31.
  • Оганесян Ю.Ц. Синтез и изучение свойств новых сверхтяжелых элементов Периодической таблицы элементов Д.И. Менделеева // Вестник РФФИ. — 2019. — N 1(101). — С.87-104. — Библиогр.: 28 назв.
  • Одинокин А.С. Структура атомов в табличной теории // Физика сознания и жизни, космология и астрофизика. — 2009. — Т.9, N 4(36). — С.47-53.
    Z4044 НО
  • Олдерси-Уильямс Хью. Научные сказки периодической таблицы: Занимательная история химических элементов от мышьяка до цинка: (пер. с англ. С. Минкина). — М.: АСТ, 2019. — 444 с. — (Бестселлер «The New York Times»)(Удивительная Вселенная).
    Г2019-8871 ч/з1 (Г115-О.531)
  • Омельяненко Т. Г. Деятельностный подход в изучении закономерностей Периодической системы химических элементов Д.И. Менделеева // Лидеры образования. — 2015. — N 1.
  • От систем химических элементов к нанотехнологии материалов и изделий / Хорошавин Л.Б., Щербатский В.Б., Якушина Е.В., Никитина Н.Ю. // Объедин. науч. журн. — 2005. — N 32(160). — С.67-76. — Библиогр.: 21 назв.
    Приведена шестнадцатигрупповая система химических элементов.
    Т2795 кх
  • Откуда в уравнении дроби? / Сырейщиков Ю., Яценко Ю., Сырейщиков А., Зыкин А. // Химия и жизнь. — 1972. — №11. — С.51.
    Авторам удалось обнаружить связь между атомным весом А природного элемента (представляющего собой смесь изотопов) и его положением в таблице — по современным понятиям, с атомным номером Z, то есть числом положительных зарядов ядра.
    С1430 кх
  • Очинский В.В. Проблема золотой пропорции в изотопах химических элементов // Исследования по истории физики и механики. 2004: сб. — М.: Наука, 2005. — С.399-404. — Библиогр.: 3 назв.
    Г85-11129/2004 кх
  • Паевский А. НАНОэлементы. — М.: Изд-во «Новалис», 2019. — 136 с.
    Книга приурочена к 150-летнему юбилею Периодической системы Д.И. Менделеева и рассказывает о химических элементах: о том, как их использовали в древности, о стараниях алхимиков Средневековья, поиски «философского камня» хотя и не увенчались успехом, но зато обогатили науку ценнейшими знаниями о «кирпичиках материи», и о нанотехнологиях.
    Д2019-3701 ч/з1
  • Пак П.А. Периодическая система химических элементов Д.И. Менделеева (в некотором изменении П.А. Пак). — Отрадная: Отрадненский гуманит. ин-т, 2012. — 39 с. — Библиогр.: 11 назв.
    Г2012-21595 ч/з1 (Г114-П.130)
  • Палюх Б.В., Миронов В.А., Зюзин Б.Ф. Закон Менделеева в общей теории предельных состояний // Вестн. Твер. ГТУ. — 2009. — Вып.14. — С.68-73. — Библиогр.: 8 назв.
    Периодический закон охватывает все эмпирическое множество атомов и однозначно доказывает, что в природе осуществляется естественный семеричный ряд периодов их физико-химических свойств.
  • Панченко Л.С. Развитие периодического закона Д. И. Менделеева: учеб. пособие для иностранцев: (довузовский этап). — Волгоград: ВолгГТУ, 2019. — 126 с. — Библиогр.: с.114.
    Г2020-14985упр ч/з1 (Г114-П.168)
  • Парфенова С.Н., Гаркушин И.К., Медовщикова И.А. Графоаналитическое описание и прогнозирование свойств нейтральных атомов простых веществ элементов на группы периодической системы. — Самара: СГТУ, 1999. — 95 с.
    Г2000-3458 кх
  • Периодическая таблица, 1969 год … // Химия и жизнь. — 1969. — №3. — С.41-42.
    Таблица составлена И.П. Селиновым по данным на январь 1969 года. В ней отражены современные представления о строении атома.
    С1430 кх
  • Периодические зависимости распределения химических элементов в биологических объектах / Отмахов В.И., Саркисов Ю.С., Павлова А.Н. и др. // Вестник ТГУ. Химия. — 2019. — N 14. — С.6-25. — Библиогр.: 31 назв.
    С5433 кх
  • Перминов А. А. Мироздание. Единая фундаментальная физика 21-го века: теории познания материального мира: философия, жизнь и судьба земного человечества. — Изд. 12-е, испр. и доп. — М.: Буки Веди, 2014, — 240 с. — Библиогр.: 31 назв.
    Приложение 6. Возвращенная система элементов Д.И. Менделеева. — С.219-220, 220а.
    Г2014-5040 ч/з1 (В31-П.275)
  • Петров Л.П. Прогнозирование и размещение инертных элементов в периодической системе // Учение о периодичности. История и современность. — М.: Наука, 1981. — С.37-77. — Библиогр.: 66 назв.
    Г81-3693 кх
  • Петрова И.А. Историко-научный анализ вариантов графического изображения периодической системы элементов (1869-1976 гг.): автореф. дис. … канд. хим. наук / Ин-т истории естествознания и техники АН СССР. — М., 1983. — 26 с.
    А83-1521 кх
  • Петрова И.А. Эволюция форм графического изображения периодической системы элементов: автореф. дис. … канд. хим. наук / Ин-т истории естествознания и техники АН СССР. — М., 1985. — 24 с.
    А85-21040 кх
  • Петрова И.А., Трифонов Д.Н. Об эволюции форм графического изображения периодической системы элементов // Вопросы истории естествознания и техники. — 1982. — N 4. — С.102-107. — Библиогр.: 16 назв.
    С3981 кх
  • Петросян В.С. Суперквантовая атомная физика // Гравитоника: единая физика. — 2017. — Т.10, N 2. — С.3-55. — Библиогр.: 11 назв.
    Рассматриваются особенности ядерных структур как гелий-гелиевой подсистемы (подсистема Менделеева), так и бор-гелиевой подсистемы (подсистема Петросяна).
  • Петрянов-Соколов И.В. Закону Менделеева 100 лет // Химия и жизнь. — 1969. — №3. — С.2-6.
    С1430 кх
  • Пещевицкий Б.И. Д.И. Менделеев и теоретическое мышление в естествознании // Классическое естествознание и современная наука / Под ред. С.С. Митрофановой. — Новосибирск: Изд-во Новосиб. ун-та, 1991. — С.120-125.
    Г92-7596 кх
  • По заветам Менделеева // Юный техник. — 2019. — N 7. — С.10-15.
  • Поляк Э.А. Периодический закон Д.И. Менделеева и естественная систематизация хронологических данных в связи с изменениями солнечной активности // XVIII Менделеевский съезд по общей и прикладной химии, Москва, 23-28 сент. 2007: тез. докл. В 5 т. Т.4. — М.: Граница, 2007. — С.325. — Библиогр.: 2 назв.
    Г2007-4511/4 кх
  • Поляков Е.В. Соотношение периодичности и монотонности в системе химических элементов. — Екатеринбург: УрО РАН, 1997. — 235 с. — Библиогр.: с.229-233.
    Г98-1680 кх
  • Полякофф М. Периодическая таблица: икона и источник вдохновения // Вестник РФФИ. — 2019. — N 1(101). — С.25-38. — Библиогр.: 31 назв.
  • Пономарев А.А. ОГНЕРОД, или Химия в двоичном коде русов. — М.: Книга-Мемуар, 2016. — 248 с. — Библиогр.: 20 назв.
    В доступной форме объясняется и показывается периодичность химических элементов в природе, как в двоичном коде закодировано вещество и как легко, имея ключ, можно раскодировать периодичность химических элементов и понять их строение.
    Е2017-943 ч/з1 (Г.в-П.653)
  • Пономарев Л.И. Под знаком кванта. — 3-е изд., испр. и доп. — М.: ФИЗМАТЛИТ, 2007. — 416 с.
    Современная система химических элементов. — С.316-321.
    Е2008-87 НО (В31-П.653)
  • Попков И.И. Молекулы элементов. Краткое описание. — Смоленск: Изд-во «Смоленск. гор. типография», 2010. — 244 с.
    Издание является результатом интеллектуальной деятельности Попкова И.И. (свидетельство N 13858) и посвящено описанию предлагаемой автором новой таблицы химических элементов, основанной на очередности заполнения молекул атомами.
  • Попов И.Ю. Периодические системы и периодический закон в биологии. — СПб.; М.: Товарищество научных изданий КМК, 2008. — 223 с. — Библиогр.: с.205-217.
    Гл.4. Создание периодической системы химических элементов и аналогичные труды в биологии: сходства и различия. Представление биологов о хаосе в изменчивости. — С.61-78.
    Гл.5. Отображение поисков Менделеева на биологический материал. Периодический закон в биологии. — С.79-118.
    Г2009-125 кх4
    Е-П.58 НО
  • Портнягина М. Табличный вклад // Огонек. — 2019. — N 9(5553). — С.4-5.
    Этот год проходит под знаком Дмитрия Менделеева: родился 185 лет назад, 150 лет назад опубликовал Периодическую систему химических элементов. Мировое признание не отменяет парад претендентов: авторство знаменитой Таблицы — до сих пор предмет споров. «Огонек» вступился за великого соотечественника и заодно присмотрелся к белым пятнам в его Таблице и жизни.
  • Потапов А.А. Естественно-научная классификация и эмпирический закон периодичности элементов // Инновации в науке: материалы IX междунар. заочн. науч.-практ. конф., 22 мая 2012. — Новосибирск: Сиб. ассоциация консультантов, 2012. — С.5-18. — Библиогр.: 12 назв.
    Предложена таблица периодической системы элементов, основанная на присущей атомам связи их электронного строения с наблюдаемыми свойствами; в качестве меры свойств атомов выступает энергия связи валентных электронов с ядром (остовом атома). Таблица является естественной классификацией химических элементов. Обсуждается эмпирический закон периодичности химических элементов.
    Г2012-17315 ч/з3 (Я43-И.666)
  • Потапов А.А. Оболочечная модель атомов и Периодическая система элементов // Бутлеровские сообщения. — 2006. — Т.10, N 7. — С.1-23.
  • Потапов А.А. Оболочечная модель электронного строения атомов // Вестник Иркутского ГТУ. — 2006. — N 3. — С.109-115.
    Т3047 кх
  • Потапов А.А. Ренессанс классического атома: монография / Ин-т динамики систем и теории управления СО РАН. — М.: Наука, 2011. — 443 с. — Библиогр.: в конце глав (288 назв.).
    Монография посвящена возрождению классической физики атома на новой эмпирической основе. Дан анализ состояния исследований в области атомной физики; показаны истоки заблуждений квантово-волновых представлений о сущности атома. На основе экспериментальных данных получило дальнейшее развитие диполь-оболочечная модель атома. По сути, расшифрована электронная структура атома. Определены основные атомные константы большинства элементов таблицы Д.И. Менделеева. Предложена естественная классификация атомов по признаку их электронного строения. Показана основополагающая роль атома в понимании электронного строения вещества и процессов структурообразования и химической эволюции. Заложены теоретические основы науки и вещества.
    Г2012-16819 ч/з1 (В318-П.640)
  • Потапов К.И. Спиральные модели периодической системы. — СПб.: Копи-Р Групп, 2011. — 79 с. — Библиогр.: 40 назв.
    Г2011-18674 ч/з1 (Г114-П.640)
  • Потеряхин В.А. Система химических элементов: (История и современные проблемы). — Уфа: Реактив, 1999. — 215 с. — Библиогр.: с.197-213.
    Г99-8645 кх
    НО (Г1-П.641)
  • Похмельных Л.А. Аналитическое выражение для расчета ионизационных потенциалов элементов периодической системы // Прикл. физика. — 2002. — N 1. — С. 5-23. — Библиогр.: 6 назв.
    С4425 кх
  • Преображенский Б.В. Метафизика и метаморфозы естествознания: монография. В 2 ч. Ч.1. — Владивосток: ТГЭУ, 2009. — 272 с.
    Системы атомов. — С.201-209.
    Е2010-715/1 ч/з1 (Б.в-П.721/1)
  • Прогнозирование в учении о периодичности. — М.: Наука, 1976. — 359 с.
    Сборник содержит статьи, в которых дается историко-научный анализ и освещается современное состояние метода прогнозирования в учении о периодичности. Структура сборника соответствует концепции трех уровней представлений о периодичности — элементного, электронного и нуклонного.
    Г76-14466 кх
  • Просандеева Н.В., Сергиенко С.И. Магия знаменитой таблицы: размышления по философии науки: монография. — М.: Моск. пограничный ин-т ФСБ России, 2008. — 122 с. — Библиогр.: 48 назв.
    Работа посвящена попытке нетрадиционно взглянуть на классическую таблицу Д.И. Менделеева, что позволило авторам подвергнуть сомнению некоторые постулаты ядерной физики, а также иначе взглянуть на строение атомного ядра и процесс становления Вселенной. Одновременно авторы рискнули высказать ряд гипотез об истоках органического вещества и происхождения жизни.
    Г2010-89 ч/з1 (Б.в-П.820)
  • Прочанкина О.А. К вопросу о периодизации энергии, отраженной в Периодической таблице Д.И. Менделеева, как факторе-индикаторе возможных землетрясений // Естеств. и техн. науки. — 2019. — N 7(133). — С.81-84. — Библиогр.: 8 назв.
  • Прочанкина О.А. К вопросу о периодизации энергии, отраженной в таблице химических элементов Д.И. Менделеева // Естеств. и техн. науки. — 2019. — N 6(132). — С.30-36. — Библиогр.: 15 назв.
  • Прочанкина О.А. К вопросу о периодизации энергии в периодической таблице Д.И. Менделеева как факторе трансформации элементов, обуславливающем жизнедеятельность организмов, в частности, появление новых белков при обучении Homo Sapiens, поведенческих реакций перед землетрясением // Естеств. и техн. науки. — 2020. — N 2(140). — С.33-39. — Библиогр.: 20 назв.
  • Прочанкина О. А. Менделеев (Максвелл, Мендель, Мендельсон) и периодизация энергии // Естеств. и техн. науки. — 2019. — №1(127). — С.12-16. — Библиогр.: 12 назв.
  • Пущаровский Д. Дмитрий Иванович Менделеев и его открытие // Наука и жизнь. — 2019. — N 2. — С.18-25.
  • Рабкин Я.М. Периодическая таблица как инструмент поиска в прикладной химии (из истории химии углеводородов в США) // Научное наследие Д.И. Менделеева и современная химия (материалы 2 совещания, посвящ. изучению научного наследия Д.И. Менделеева). — Л.: ЛГУ, 1972. — С.52-57.
    Г72-6127 кх
  • Расчет числа элементов в длиннопериодном варианте Периодической системы Д.И. Менделеева / Молодцова М.Ю., Соломатина Ю.А., Демина Ю.Б., Добрыднев С.В. // Математические методы в технике и технологиях — ММТТ-26: сб. тр. ХХVI междунар. науч. конф. В 10 т. Т.9. Секция 11. — Н.Новгород: НГТУ, 2013. — С.197-199. — Библиогр.: 3 назв.
    Г2013-12507/9 ч/з1 (Ж-М.340/9)
  • Регель А. Р., Глазов В.М. Периодический закон и физические свойства электронных расплавов. — М.: Наука, 1978. — 307 с. — Библиогр.: 647 назв.
    Г78-13548 кх
  • Родионов В.Г. Место и роль мирового эфира в истинной таблице Д.И. Менделеева // ЖРФМ. — 2001. — N 1-12. — С.37-51.
    Р12706 кх
  • Родионов В.Г. Эфирная революция двадцать первого века. Психологический этюд // ЖРФХО. — 2018. — Т.90, вып.1. — С.69-76.
  • Романов В.П. Ядерные взаимодействия и периодическая система элементов. — СП.: Недра, 1998. — 76 с. — Библиогр.: с.75.
    Г2000-325 кх4
  • Романовская Т.Б. История квантовомеханической интерпретации периодичности. — М.: Наука, 1986. — 134 с. — Библиогр.: с.122-130.
    Г86-14280 кх
  • Романовская Т.Б. История теоретической интерпретации периодической системы: автореф. дис. … канд. физ.-мат. наук / Ин-т истории естествознания и техники АН СССР. — М., 1984. — 22 с.
    А84-20090 кх
  • Ромм В.В. Возвращаясь к проблеме эфирных образований // Культура и научный поиск в новом мире: парадигмы, концепции, стратегия, практика: сб. науч. тр. Междунар. науч.-практ. конф. — Новосибирск: ЗСО МСА, 2012. — С.196-205. — (Казначеевские чтения; N 3).
    Приведена подлинная таблица Менделеева (1906 г.).
    Г2013-640 ч/з2 (С-К.906)
  • Рулев А. Путешествие по таблице элементов: от водорода до оганесона // Наука и жизнь. — 2019. — N 6. — С.29-33.
  • Румер Ю.Б., Фет А.И. Группа Spin (4) и таблица Менделеева // Теорет. и мат. физика. — 1971. — Т.9, N 2. — С.203-210. — Библиогр.: 5 назв.
    С2935 кх
  • Руни Э. Периодическая система. От философского камня к 118 элементам / пер. с англ. — М.: Аванта: АСТ, 2020. — 204 с. — (Наука для всех).
    Г2020-14722 ч/з1 (Г114-Р.866)
  • Русанов А.И. 150 лет Журналу общей химии и Периодической системе элементов // Журнал общей химии. — 2019. — Т.89, N 4. — С.495-496.
  • Рыбников Ю.С. Основы электричества, электровещества, электроатомов, электрического поля и изобретательство в РФ. — Владимир: Транзит-ИКС, 2019. — 208 с. — Библиогр.: 26 назв.
    Автор утверждает, что нас обучают по искаженной Периодической системе, а не по Периодической системе Д.И. Менделеева. И предлагает свою систему: Русская православная элементарная система единства периодичности электроатомов Вселенной.
    Г2019-29618 ч/з7 (К413-Р.937)
  • Рябухин Б. Развитие идей Менделеева в современной науке? // Знак вопроса. — 2009. — N 3. — С.41-51.
  • Рязанцев Г.Б. Монадные и диадные Периодические системы. Две парадигмы Периодической системы химических элементов: Боровская (монадная) и диадная модели электронного строения атома // Система «Планета Земля»: 200 лет Священному союзу. — М.: ЛЕНАНД, 2015. — С.554-566.
    Г2015-11339 ч/з1 (Д-С.409)
  • Рязанцев Г.Б. Нейтронное вещество и его место в Периодической системе химических элементов Д. И. Менделеева // Система «Планета Земля»: 200 лет Священному союзу. — М.: ЛЕНАНД, 2015. — С.546-554.
    Г2015-11339 ч/з1 (Д-С.409)
  • Рязанцев Г.Б., Лавренченко Г.К. Современный взгляд на «нулевые» в Периодической системе элементов Д.И. Менделеева // Технические газы. — 2014. — N 1. — С.3-10.
  • Рязанцев Г.Б., Хасков М.А. Нейтронное вещество и его место в Периодической системе элементов // Система «Планета Земля»: 175 лет со дня кончины Александра Семеновича Шишкова (1841-2016). — М.: ЛЕНАНД, 2016. — С.204-205. — Библиогр.: 2 назв.
    Г2016-4547 ч/з1 (Д-С.409)
  • Сабо З.Г. Периодическая система и периодические функции // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.244-255. — Библиогр.: 26 назв.
    Е69-1593 кх
  • Сабо З.Г. Периодическая система и периодические функции // Эволюция Периодического закона химических элементов. материалы всерос. науч.-практ. конф. молодых ученых, посвященной 150-летию открытия Периодического закона химических элементов Д. И. Менделеевым, г. Грозный, 29 апр. 2019. — Грозный: Изд-во Чеченского гос. ун-та, 2019. — С.147-152. — Библиогр.: 15 назв.
    Е2019-2093 ч/з2 (Я43-Н.340)
  • Сайфуллин Р., Сайфуллин А. Современная форма таблицы Менделеева // Наука и жизнь. — 2004. — N 7. — С.2-7. — Библиогр.: 13 назв.
    С1366 кх
  • Сайфуллин Р.С., Сайфуллин А.Р. Новая таблица Менделеева // Химия и жизнь — XXI век. — 2003. — N 12. — С.14-17.
    С4768 кх
  • Сайфуллин Р.С., Сайфуллин А.Р. Современная периодическая система элементов Д.И. Менделеева // Георесурсы. — 2008. — N 3(26). — С.24-26.
    Представлен современный вариант периодической системы Д.И. Менделеева, составленный на основе решений ИЮПАК 1989, 1995 и 2005 гг., и официально состоящий из 18 групп, вместо ранее распространенной, но методически и научно необоснованной архаичной формы системы из VIII групп. Новая форма системы с 1989 г. принята мировым научным сообществом, однако российское образование и наука в значительной мере и сегодня находятся на отживших представлениях в публикации и использовании системы.
    С4862 кх
  • Сайфуллин Р.С., Сайфуллин А.Р. Современную периодическую систему элементов — в школьное образование // Рос. хим. журн. — 2003. — Т.47, N 6. — С.95-101. — Библиогр.: 13 назв.
    Т519 кх
  • Сайфуллин Р.С., Сайфуллин А.Р. Современный вариант периодической системы элементов Д.И. Менделеева — в науку и химическое образование // Науч. Татарстан. — 2003. — N 2. — С.62-67. — Библиогр.: 11 назв.
    С4709 кх
  • Саркисов Ю.С. Гипотетическая структура будущей таблицы Д.И. Менделеева // Техника и технология силикатов. — 2019. — Т.26, N 1. — С.2-5. — Библиогр.: 4 назв.
  • Саркисов Ю.С. К определению предельного числа химических элементов // Вестник Томск. гос. ун-та. Химия. — 2017. — N 9. — С.84-89. — Библиогр.: 31 назв.
  • Саркисов Ю.С. Новые закономерности распределения химических элементов (эноидов) с Z более 118 // Техника и технология силикатов. — 2019. — Т.26, N 4. — С.124-125. — Библиогр.: 1 назв.
  • Саркисов Ю.С., Горленко Н.П. Зависимость прочности твердения оксидных систем от порядкового номера элемента в таблице Д.И. Менделеева // Вестник Томск. гос. ун-та. Химия. — 2019. — N 13. — С.20-27. — Библиогр.: 31 назв.
  • Саркисов Ю.С., Горленко Н.П. Развитие представлений о структуре таблицы химических элементов Д.И. Менделеева // Вестник Томск. гос. ун-та. Химия. — 2020. — N 17. — С.69-73. — Библиогр.: 3 назв.
  • Сватовская Л.Б. Классификация вяжущих, наполнителей и контактных фаз с учетом положения катиона в таблице Д.И. Менделеева // Периодический закон Д.И. Менделеева в современных трудах ученых транспортных вузов: сб. науч. тр. — СПб.: ПГУПС, 2009. — С.4-8. — Библиогр.: 2 назв.
    Г2009-6153 кх
  • Сватовская Л. Б. О взаимосвязи токсичности и особенностей электронной природы элементов в таблице Д.И. Менделеева // Периодический закон Д.И. Менделеева в современных трудах ученых транспортных вузов: сб. науч. тр. — СПб.: ПГУПС, 2009. — С.12-15. — Библиогр.: 1 назв.
    Г2009-6153 кх
  • Сватовская Л.Б. Получение хромнеорганических полимеров с учетом положения элементов в таблице Д.И. Менделеева // Периодический закон Д.И. Менделеева в современных трудах ученых транспортных вузов: сб. науч. тр. — СПб.: ПГУПС, 2009. — С.8-12. — Библиогр.: 1 назв.
    Г2009-6153 кх
  • Свойства элементов V и VI групп Периодической системы Д.И. Менделеева / Жохова О.К., Перевалова Е.А., Бутов Г.М., Синьков А.В.: учеб. пособие. — Волгоград: ИУНЛ ВолгГТУ, 2016. — 120 с. — Библиогр.: 8 назв.
  • Связывающие d-элементы i-Viii группы 4-го периода периодической системы Д.И. Менделеева / Буканова А.С., Кайрлиева Ф.Б., Савипова Л.Б. и др. // Изв. НАН Республики Казахстан. Сер. химии и технологии. — 2018. — N 4(430). — С.150-154. — Библиогр.: 9 назв.
  • Селинов И.П. Периодическая система атомных ядер // О систематике частиц. Атомы, ядра, элементарные частицы: сб. ст. — М.: Атомиздат, 1970. — С.43-71. — Библиогр.: 17 назв.
    Г70-4086 кх
  • Селинов И.П. Строение и систематика атомных ядер. — М.: Наука, 1990. — 112 с. — Библиогр.: 140 назв.
    Е91-673 кх
  • Семенькова Н.И. Изучение периодического закона Д. И. Менделеева в школе: книга для учителя. Из опыта работы. — М.: Просвещение, 1992. — 97 с. — Библиогр.: 33 назв.
    Г92-8956 кх
  • Семишин В.И. Литература по периодическому закону Д.И. Менделеева (1869-1969). — М.: Высш. школа, 1969. — 240 с.
    Г69-9219 кх
  • Семишин В.И. О принципах построения и формах периодической системы // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.71-98. — Библиогр.: 30 назв.
    Е69-1593 кх
  • Семишин В.И. Периодическая система химических элементов Д.И. Менделеева. — М.: Химия, 1972. — 187 с.
    Г72-9584 кх
  • Семишин В.И. Периодический закон и периодическая система химических элементов Д.И. Менделеева в работах русских ученых. Опыт систематизированной библиографии трудов, опубликованных в отечественной литературе с 1869 г. по 1957 г. — М., 1959. — 98 с.
    016:541-С.306 кх
  • Семишин В.И., Семишина З.Ф. Литература по периодическому закону Д.И. Менделеева (1967-1972). Справочник в 2-х частях. — М.: Высш. школа, 1975. — Ч.2. 95 с. — Авт. указ.: с.81-90.
    Г76-4940/2 кх
  • Сергина М.Н., Зимняков А.М. Проблемы верхней границы Периодической системы Д.И. Менделеева // Изв. Пензенск. гос. пед. ун-та им. В.Г. Белинского. — 2006. — N 1(5). — С.231-234. — Библиогр.: 6 назв.
  • Серков А. Т. Количественное выражение Периодического закона Д.И. Менделеева // Хим. волокна. — 2005. — N 3. — С.57-60. — Библиогр.: 6 назв.
    Т340 кх
  • Сиборг Г.Т. От Менделеева до менделевия — и далее // Химия и жизнь. — 1969. — №3. — С.12-16.
    С1430 кх
  • Сиборг Г.Т. Расширение пределов периодической системы // 100 лет периодического закона химических элементов (1869-1969): сб. докл. на пленарных заседаниях Х юбил. Менделеевского съезда. — М.: Наука, 1971. — С.21-39.
    Е71-1117 кх
  • Сиборг Г. Эволюция периодической системы элементов со времен Д.И. Менделеева до наших дней // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.136-157.
    Е69-1593 кх
  • Сиборг Г.Т. Эволюция периодической системы элементов со времен Д.И. Менделеева до наших дней // Эволюция Периодического закона химических элементов. (Переводной сборник). Вып.1. — М.: Знание, 1970. — С.11-36. — (На обл.: Новое в жизни, науке, технике. Серия: Химия.4).
    Г70-9250/1 кх
  • Система. Симметрия. Гармония / Под ред. В.С. Тюхтина, Ю.А. Урманцева. — М.: Мысль, 1988. — 315 с. — Библиогр.: с.299-316.
    Гл. 10. Дидык Ю.К. Периодические системы элементов, законы сохранения и соответствующие группы подобия. — С.244-260.
    Г88-2736 кх
  • Ситкарев Г.Т. Новый вариант таблицы Менделеева // Естеств. и техн. науки. — 2005. — N 1(15). — С.68-69. — Библиогр.: 8 назв.
    Т2875 кх
  • Скерри Э. Таблица Менделеева: век недолог? // В мире науки. — 2014. — N 7/8. — С.76-81. — Библиогр.: 4 назв.
    С открытием атома под номером 117 в периодической системе химических элементов больше не осталось вакантных мест.
  • Скляров Л.В. Эволюция атомов химических элементов. Содержание, схема течения, основные характеризующие черты. Периодический закон и периодическая таблица Д. И. Менделеева в свете течения эволюции у атомов химических элементов. — Таганрог: изд-во «Нюанс» (ИП Кучма Ю.Д.), 2012. — 32 с.
  • Смолеговский А.М. Д.И. Менделеев и современная теория силикатов // Прикл. физика и математика. — 2019. — N 5. — С.16-23. — Библиогр.: 33 назв.
  • Смолеговский А.М. К истории открытия и физической химии тяжелых элементов // Прикл. физика и математика. — 2017. — N 4. — С.27-37. — Библиогр.: 31 назв.
  • Соболев А.Е. Международный год периодической таблицы: официальная церемония открытия (29 января 2019 г., Париж, Франция) // Химия в школе. — 2019. — N 5. — С.17-21.
    Из выступления президента Королевского химического общества д-ра Роберта Паркера (Великобритания): «Очень важно, чтобы Международный год периодической таблицы не закончился 31 декабря. От него должно остаться такое интеллектуальное, организационное, методическое наследство, которое будет использоваться в химии, химической промышленности и химическом образовании ещё долгие годы».
  • Соботович Э.В., Лысенко О.Б. Особенности фракционирования четных и нечетных изотопов химических элементов // Фундаментальные проблемы естествознания и техники: тр. Конгресса-2014. Ч.2. — СПб., 2014. — С.259-266. — Библиогр.: 14 назв. — (Проблемы исследования Вселенной; вып.36).
    Г75-9610/36-2 кх
  • Соколов И.П. Пределы химической периодичности: монография. — М.: МГВМИ, 2010. — 71 с. — Библиогр.: 19 назв.
    Г2010-5376 ч/з1 (Г114-С.594)
  • Соколов Ю.Н. Единство мировых констант. Циклическая структура периодической системы химических элементов Д.И. Менделеева. — Ставрополь: Сев.-Кавк. ГТУ, 2004. — 61 с. — Библиогр.: 47 назв.
    Вр2005 (Д1-С.594) ч/з1
  • Соловьев Ю.И. Прогноз и открытие инертных газов // Прогнозирование в учении о периодичности. — М.: Наука, 1976. — С.71-78. — Библиогр.: 10 назв.
    Г76-14466 кх
  • Соломин В.А. Периодический закон в свете квантовой механики. (К 50-летию со дня смерти Д.И. Менделеева). — Куйбышев: Куйбышев. гос. мед. ин-т, 1958. — 16 с.
    541-С.605 кх
  • Сорокин Н. К истории периодического закона // Инженер. — 1999. — N 8. — С.34-35.
    С1370 кх
  • Спектор А.А. Химия. — М.: АСТ, 2018. — 208 с. — (100 гениальных идей, о которых должен знать каждый образованный человек).
    Физический смысл таблицы Менделеева. — С.40-41.
    Новые элементы и разнообразие изотопов: в поисках острова стабильности. — С.42-43.
    Д2018-2906 ч/з1 (Г-Х.465)
  • Спирин Э.К. Периодические системы химических элементов. Модифицирование пирамидальных периодических таблиц химических элементов // В мире научных открытий. — 2012. — N 2.3(26). — С.84-94. — Библиогр.: 7 назв.
    Т3645 кх
  • Спирин Э.К. Периодический закон Д.И. Менделеева и проблема прогноза в естествознании. Теоретические основы // В мире научных открытий. — 2010. — N 6. 3(12). — С.27-33. — Библиогр.: 12 назв.
    www.nkras.ru/vmno/issues/articles/2010/6-3.pdf
    Т3645 кх
  • Спирин Э.К. Периодический закон Д.И. Менделеева и проблема прогноза в естествознании. Экспериментальные результаты // В мире научных открытий. — 2010. — N 6.3(12). — С.33-38. — Библиогр.: 6 назв.
    www.nkras.ru/vmno/issues/articles/2010/6-3.pdf
  • Спирин Э.К. Периодический закон и природа отрицательного тяготения. — Новосибирск: Изд-во НИПКиПРО, 2006. — 88 с. — Библиогр.: 58 назв.
    Г2006-3889 кх
  • Спирин Э.К., Мальчик А.Г. Прогностическая функция Периодического закона // Междунар. журн. прикл. и фундамент. исслед. — 2015. — N 7, ч.1. — С.40-44. — (URL:http://www.applied-research.ru/ru/article/view?id=6956 (дата обращения: 04.11.2017)
  • Спирин Э.К., Спирин К.Э. Новые возможности Периодического закона Д.И. Менделеева. — Томск: ТПУ, 2009. — 162 с.
  • Спирин Э.К., Спирин К. Э. Периодический закон и проблема прогноза свойств новых элементов. — Новосибирск: НГПУ, 2003. — 123 с. — Библиогр.: 68 назв.
    Г2003-4911 кх
  • Спирин Э.К., Сытников А.М. Периодический закон и проблемы прогнозирования свойств веществ в физике и химии // Природные ресурсы Забайкалья: сб. науч. тр. / Читинский ин-т природных ресурсов СО АН СССР. — Новосибирск: ОИГГМ СО АН, 1991. — С.128-154. — Библиогр.: 4 назв.
    Г91-16337 кх
  • Спирин Э.К., Сытников А.М. Секториально-слоевая длиннопериодная система со смещениями химических элементов-аналогов / Читинск. ин-т природ. ресурсов СО АН СССР. — Чита, 1991. — 81 с.
  • Спирин Э.К., Сытников А.М. Секториально-слоевая длиннопериодная система со смещениями химических элементов-аналогов (синтетический таблично-графический вариант изображения Периодического закона химических элементов Д.И. Менделеева) / Читинск. ин-т природ. ресурсов СО АН СССР. — Чита, 1990. — 29 с. — Библиогр. : 13 назв. — Деп. в ВИНИТИ 02.07.90. — N 3716-В90.
  • Спирин Э.К., Торосян Е.С. Периодические системы химических элементов. Некоторые следствия секториально-слоевой модели // В мире научных открытий. — 2012. — N 2.3(26). — С.105-114. — Библиогр.: 2 назв.
    Т3645 кх
  • Спирин Э.К., Торосян Е.С. Периодические системы химических элементов. Секториально-слоевая форма модели Бора- Томсена // В мире научных открытий. — 2012. — N 2.3(26). — С.95-104. — Библиогр.: 7 назв.
    Т3645 кх
  • Спицын В.И. Семивалентное состояние нептуния и плутония и проблема валентности актиноидов // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.225-243. — Библиогр.: 17 назв.
    Е69-1593 кх
  • Спицын В.И. Современное состояние периодического закона Д.И. Менделеева: докл. на VIII Менделеевском съезде по общей и прикладной химии. — М.: АН СССР, 1959. — 24 с.
    541-С.727 кх
  • Ставицкиц В.М., Ставицкая С.В. Критические заметки к истории физики: XIX — XX века. — М.: ЛЕНАНД, 2019. — 100 с. — Библиогр.: 42 назв.
    В приложениях даны сравнительные таблицы и графики расчетных и экспериментальных данных по энергии ионизации всех атомов и их ионов химических элементов из таблицы Д.И. Менделеева, по полной энергии связи нуклонов в атомных ядрах.
    Гл. 9. Изгнание эфира из таблицы. — С.47-49.
    Г2019-139 ч/з1 (В31-С.761)
  • Становление химии как науки / Дмитриев И.С., Шептунова З.И., Погодин С.А. и др. — М.: Наука, 1983. — 463 с. — (Всеобщая история химии).
    Гл.8. Периодический закон. — С.334-388. — Библиогр.: с.413-415 (63 назв.).
    Г83-5573 кх
  • Станцо В.В. Менделевий // Химия и жизнь. — 1969. — №3. — С.17-23.
    С1430 кх
  • Станюкович К.П., Лапчинский В.Г. Систематика элементарных частиц // О систематике частиц. Атомы, ядра, элементарные частицы: сб. ст. — М.: Атомиздат, 1970. — С.72-158. — Библиогр.: 13 назв.
    Г70-4086 кх
  • Стариков В.С. Периодическая таблица элементов не только для XXI века. — Режим доступа: (http://www.rusnauka.com/27_NNM_2011/Chimia/2_93522.doc.htm)
  • Стародубец Е.Е., Кузнецов А.М. Строение атома и периодическая система химических элементов Д.И. Менделеева: учеб. пособие. — Казань: Изд-во КГТУ, 2007. — 84 с. — Библиогр.: 12 назв.
    Структура периодической таблицы Д.И. Менделеева. Современная формулировка периодического закона. — С.34-40.
  • Сто лет периодического закона химических элементов (1869-1969. Доклады съезда). — М.: Наука, 1969. — 378 с. — (Х юбилейный Менделеевский съезд).
    Е69-1593 кх
  • Стоник В.А., Макарьева Т.Н. Таблица Менделеева и морские биомолекулы // Вестник РФФИ. — 2019. — N 1(101). — С.105-119. — Библиогр.: 29 назв.
  • Стрекалов С.Д. Нанопринципы волновой техники. — М.: Б.и., 2007. — 14 с.
    Представлены 2 варианта симметричной системы химических элементов, адекватной двухполюсному состоянию атомов.
    Г2008-2778 кх
  • Стрекалов С.Д. Физическая химия: полюсные модели элементов и систем: монография. — 2-е изд., перераб. и доп. — Волгоград: ВолГУ, 2011. — 136 с. — Библиогр.: 37 назв.
    Гл.5. Полюсная система химических элементов. — С.111-119.
    Г2011-19646 ч/з1 (Г114-С.841)
  • Стрельникова Л. Элементарно // Химия и жизнь — XXI век. — 2019. — N 1. — С.2-3.
    2019 год, год 150-летия Периодической таблицы, ООН объявила Международным годом Периодической таблицы химических элементов (International Year of Periodic Table — IYPT).
  • Сунден О. Пространственно-временной осциллятор как скрытый механизм в основании физики. — СПб.: СПбГУ, 1999. — 155 с.
    VII. Разрастание пар пространственно-временных осцилляторов в нуклиды. Периодическая таблица химических элементов Менделеева. — С.89-106.
    Г2008-1030 кх
  • Супранюк С.Б. Системная алгебра Периодического закона (САПЗ) / РАЕН, МАФО. — СПб.: Изд-во «Радуга», 2018. — 76 с. — Библиогр.: с.71-73.
    Рассматривается проблема математизации Периодического закона. Сущность проблемы заключается в укоренившемся утверждении, что Периодический закон в отличие от остальных фундаментальных законов природы в принципе не может иметь алгебраического выражения. Автор считает это утверждение несостоятельным, так как с позиции философии оно лишает Периодический закон принципа достаточного основания, без которого было бы столь же безосновательно считать его фундаментальным законом природы. Из этого следует, что проблема математизации Периодического закона не утратила своей актуальности, его мировоззренческое значение до сих пор не понято, и как «инструмент мысли», коим его считал Д.И. Менделеев, он не используется.
    Автор полагает, что если ранее для алгебраического описания Периодического закона не доставало точных количественных характеристик химических элементов, то на современном этапе все необходимые характеристики уточнены, что и позволило вывести ключевую формулу феномена периодичности и формулы расчета протонов и нейтронов по периодам. Эти формулы, сгруппированные автором на единой логико-математической основе, и представлены в виде Системной алгебры Периодического закона (САПЗ), которая позволила вернуть Периодическому закону необоснованно отнятый принцип достаточного основания.
    1. Философские аспекты Периодического закона. — С.11-20.
    2. Возникновение и развитие учения о периодичности. — С.21-23.
    3. О попытках математизации Периодического закона. — С.24-26.
    4. О нижнем и верхнем пределах Периодической системы. — С.27-30.
    5. Системная алгебра Периодического закона. — С.31-56.
    6. К вопросу о самоорганизации материи. — С.57-63.
    Г2019-29719 ч/з1
  • Сухоруков Г.И. Теоретические основы некоторых методов экспериментальной физики // Современные технологии. Системный анализ. Моделирование / ИрГУПС. — 2006. — N 1(9). — С.40-51. — Библиогр.: 8 назв.
    В т.ч. приведен 13-й период Периодической системы для элементов, которые, возможно, существуют во Вселенной в условиях, отличных от условий Солнечной системы.
    Т3177 кх
  • Сухорукова Н. Закон научного предвидения // Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. — 2019. — Т.9, N 2. — С.232-235.
  • Сыркин Я.К. Периодическая система и проблема валентности // 100 лет периодического закона химических элементов (1869-1969): сб. докл. на пленардных заседаниях Х юбил. Менделеевского съезда. — М.: Наука, 1971. — С.85-102.
    Е71-1117 кх
  • Таланов В.М. От классических трудов Д.И. Менделеева к современной теории проектирования и расчетного конструирования веществ с аномальными физико-химическими свойствами // Периодический закон Д.И. Менделеева в современных трудах ученых транспортных вузов: сб. науч. тр. — СПб.: ПГУПС, 2009. — С.63-74. — Библиогр.: 43 назв.
    Г2009-6153 кх
  • Таланов В.М. Принципы ритмической структуры системы химических элементов // Проблемы ритмов в естествознании: матер. 2 междунар. симп., Москва, 1-3 марта 2004 г. — М.: РУДН, 2004. — С.425-428.
    Г2004-138 кх
  • Таланов В.М. Ритмокаскады в Периодической системе (опыт преподавания теории Периодического закона) // Изв. вузов. Химия и хим. технология. — 2012. — Т.55, вып.11. — С.127-129. — Библиогр.: 5 назв.
    С1159 кх
  • Тарасова Н.П. Международный год Периодической таблицы химических элементов // Вестник РФФИ. — 2019. — N 1(101). — С.39-42. — Библиогр.: 9 назв.
  • Татенов А.М., Савельева В.В., Калиев А.С. Механизм соединения химических элементов таблицы Д.И. Менделеева и виртуальная интерактивизация в программной среде Flash-CC, Java script // Изв. НАН Республики Казахстан. Сер. химии и технологии. — 2018. — N 3(429). — С.79-85. — Библиогр.: 18 назв.
  • Тахман С.И., Битунов А.И. О единстве температурных зависимостей механических свойств металлов в группах периодической системы // Физика металлов и металловедение. — 2006. — Т.102, N 3. — С.363-368. — Библиогр. : 5 назв.
    С1537 кх
  • Теплоемкость и плотность неводных растворов галогенидов щелочных металлов в связи с Периодическим законом Д.И. Менделеева / Новиков А.Н., Василев В.А., Николаева Д.С. и др. // Проблемы науки: материалы Всерос. науч.-техн. конф., посвящ. 150-летию Периодической системы хим. элементов Д.И. Менделеева и 60-летию Новомосковского института РХТУ им. Д.И. Менделеева. Часть 1. Химия и хим. технология. — Новомосковск: Новомосковский ин-т (филиал), 2019. — С.185-187. — Библиогр.: 1 назв.
    Г2019-37379/1 ч/з2 (Я43-П.781/1)
  • Тимченко Г. Основной закон мира атомов. К 135-летию со дня открытия // Наука. Технологии. Инновации. — 2004. — N 1(4). — С.72-77.
  • Тиссен П.А. Коллоидная химия и периодическая система элементов Д.И. Менделеева // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.314-317. — Библиогр.: 9 назв.
    Е69-1593 кх
  • Транковский С. Остров Стабильности за пределами таблицы Менделеева // Наука и жизнь. — 2012. — N 7. — С.10-11.
    С1366 кх
  • Трифонов Д.Н. Границы и эволюция периодической системы. — М.: Госатомиздат, 1963. — 167 с. — Библиогр.: в конце глав.
    541-Т.691 кх
  • Трифонов Д.Н. О количественной интерпретации периодичности. — М.: Наука, 1971. — 159 с. — Библиогр.: 140 назв.
    Г71-18903 кх
  • Трифонов Д.Н. Периодическая система атомов // О систематике частиц. Атомы, ядра, элементарные частицы: сб. ст. — М.: Атомиздат, 1970. — С.9-42. — Библиогр.: 12 назв.
    Г70-4086 кх
  • Трифонов Д.Н. Проблема редких земель. — М.: Госатомиздат, 1962. — 221 с.
    546-Т.691 кх
  • Трифонов Д.Н. Развитие представлений о месте редкоземельных элементов в таблице Менделеева: автореф. дис. … канд. хим. наук / Ин-т истории естествознания и техники АН СССР. — М., 1963. — 23 с. — Библиогр. : 9 назв.
    А-64366 кх
  • Трифонов Д.Н. Редкоземельные элементы и их место в периодической системе. — М.: Наука, 1966. — 192 с. — Библиогр.: в конце глав.
    Г1966-9554 кх
  • Трифонов Д.Н. Структура и границы периодической системы. — М.: Атомиздат, 1969. — 271 с. — Библиогр.: в конце глав.
    Г69-11763 кх
  • Трифонов Д.Н. Тяжелые элементы и периодическая система // Периодический закон и строение атома: сб. ст. — М.: Атомиздат, 1971. — С.204-238. — Библиогр.: 54 назв.
    Г71-12016 кх
  • Трифонов Д.Н. Эволюция представлений о структуре периодической системы элементов: автореф. дис. … д-ра хим. наук / Ин-т истории естествознания и техники АН СССР. — М., 1972. — 50 с. — Библиогр.: 17 назв.
    А72-2265 кх
  • Трифонов Д.Н. Эволюция проблемы прогнозирования новых элементов // Прогнозирование в учении о периодичности. — М.: Наука, 1976. — С.20-52. — Библиогр. : 22 назв.
    Г76-14466 кх
  • Трифонов Д.Н. Элемент 61, его прошлое, настоящее и будущее. — М.: Атомиздат, 1960. — 56 с. — (Науч.-попул. б-ка).
    546-Т.691 кх
  • Трифоноф Д.Н. Элементы с необычной судьбой. Технеций, астатин, франций. — М.: Госатомиздат, 1961. — 96 с. — (Науч.-попул. б-ка).
    546-Т.691 кх
  • Трифонов Д.Н., Дмитриев И.С. О количественной интерпретации периодической системы // Учение о периодичности. История и современность. — М.: Наука, 1981. — С.221-253. — Библиогр.: 23 назв.
    Г81-3693 кх
  • Трифонов Д.Н., Кривомазов А.Н., Лисневский Ю.И. Учение о периодичности и учение о радиоактивности. Комментированная хронология важнейших событий. — М.: Атомиздат, 1974. — 248 с. — Библиогр.: с.245-248.
    Г75-433 кх
  • Трифонов Д.Н., Кривомазов А.Н., Лисневский Ю.И. Химические элементы и нуклиды: специфика открытий. — М.: Атомиздат, 1980. — 156 с. — Библиогр.: 45 назв.
    Г80-1564 кх
  • Трофименко Н.Н. Закономерность формирования свойства атома его маршрутным номером в полиноминальной последовательности атомных номеров // Всерос. журн. науч. публикаций. — 2011. — Нояб.-дек. — С.5-12. — Библиогр.: 3 назв.
    Т3732 кх
  • Урманцев Ю.А. Что может дать биологу представление объекта как системы в системе объектов того же рода? // Журн. общей биологии. — 1978. — Т.39, N 5. — С.699-718. — Библиогр.: с.716-718.
    С1755 кх
  • Ученые ЮУрГУ решили усовершенствовать таблицу Менделеева // Конструктор. Машиностроитель. — 2007. — N 1(8). — С.3.
    Автору гипотезы, к.т.н. Сергею Ершову, новая таблица представляется не плоской, а трехмерной и имеющей форму куба. Грани квадратов, из которых он составлен, будут вмещать по пять элементов; таким образом, в таблице окажется 125 клеток. Сумма порядковых номеров элементов в так называемых «Магических отрезках» должна быть одинаковой. Такая фигура в науке называется магическим кубом пятого порядка. Количество отрезков, сумма чисел в которых дает константу, может достигать 325. Поэтому проблема заключается в том, чтобы найти такой куб, при подстановке в который химических элементов они образовали бы группы с одинаковыми свойствами. Это сложная математическая задача. Однако, если ученым ЮУрГУ удастся ее решить, мы узнаем точное число химических элементов во Вселенной и получим возможность предсказывать физические и химические свойства еще не обнаруженных опытным путем элементов.
  • Ушаков С.И. 150 лет Периодического закона химических элементов (к 185-летию со дня рождения Д.И. Менделееева) // Актуальные проблемы соврем. науки. — 2019. — N 3(106). — С.25-30. — Библиогр.: 15 назв.
  • Ушакова Г.Г. Современная периодическая система химических элементов Д.И. Менделеева: учеб.-справ. пособие. — Казань: б.и., 2006. — 146 с. — Библиогр.: 20 назв.
    Вр2008 Г114-У.932 ч/з1
  • Фадеев Г. Н., Горбунов А.И., Филиппов Г.Г. Рецензия на книгу Т.П. Кораблевой и Д.В. Королькова «Теория периодической системы» // Вестн. МГТУ им. Н.Э. Баумана. Сер. Естеств. науки. — 2007. — N 3(26). — С.124-125.
    С4839 кх
  • Файнерман И.Д. Новые представления о структуре Периодической системы // Журнал общей химии. — 1980. — Т.L(CXII), вып.4. — С.962-965. — Библиогр.: 8 назв.
    С1793 кх
  • Фаустов А.П. Новый способ изображения системы элементов Д.И. Менделеева // Журн. общей химии. — 1949. — Т.19, N 3. — С.396-398.
    С1793 кх
  • Фаустов А.П. Периодический закон и различные формы периодической системы Д.И. Менделеева. (К 100-летию со дня открытия периодического закона). — Л.: Ленингр. воен. инж. акад. им. А.Ф. Можайского, 1970. — 48 с. — Библиогр.: с.47.
    Г70-12861 кх
  • Федоров А.Ф. Электронная структура атомов и свойства химических элементов // Вестн. Чуваш. ун-та. — 2009. — N 2. — С.51-57. — Библиогр.: 4 назв.
  • Фет А.И. Группа симметрии химических элементов. — Новосибирск: Наука, 2010. — 238 с. — Библиогр.: 40 назв.
    Предлагается групповая классификация химических элементов, рассматриваемых как состояния единой квантовой системы.
    Г2010-14791 ч/з1 (Г51-Ф.450)
  • Фет А.И. Группа симметрии химических элементов // Математическое моделирование в биологии и химии. Новые подходы: сб. науч. тр. — Новосибирск: Наука, Сиб. отд-ние, 1992. — С.118-203. — Библиогр.: 34 назв.
    Д92-53 кх
  • Фиалков Ю.Я. В клетке №… — М.: Наука, 2019. — 222 с. — (Науч.-поп. лит-ра).
    Г2019-9799 ч/з1 (Г114-Ф.481)
  • Фигуровский И.А. Систематизация химических элементов до открытия периодического закона Д.И. Менделеевым // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.15-41. — Библиогр.: 60 назв.
    Е69-1593 кх
  • Филиппов Г. Г., Горбунов А.И. О формулировке Периодического закона Д.И. Менделеева // Журн. физ. химии. — 1998. — Т.72, N 7. — C.1334-1336. — Библиогр.: 6 назв.
    С1992 кх
  • Филиппов Г.Г., Горбунов А.И. Четыре «правильные» формы периодической системы химических элементов // Журн. физ. химии. — 1993. — Т.67, N 9. — C.1809-1812. — Библиогр.: 10 назв.
    С1992 кх
  • Флеров Г.Н., Звара И. Периодическая система и синтез новых элементов // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.115-135. — Библиогр.: 112 назв.
    Е69-1593 кх
  • Фок В.А. Вмещаются ли химические свойства атомов в рамки чисто пространственных представлений? // Периодический закон и строение атома: сб. ст. — М.: Атомиздат, 1971. — С.107-117.
    Г71-12016 кх
  • Хагенмюллер П. Фтор — краеугольный камень периодической таблицы Менделеева // 100 лет периодического закона химических элементов (1869-1969): сб. докл. на пленарных заседаниях Х юбил. Менделеевского съезда. — М.: Наука, 1971. — С.75-84. — Библиогр.: 16 назв.
    Е71-1117 кх
  • Хакимбаева Г.А. История предсказания четвертого радиоактивного семейства // Прогнозирование в учении о периодичности. — М.: Наука, 1976. — С.248-261. — Библиогр.: 34 назв.
    Г76-14466 кх
  • Хакимов Х.Х., Татарская А.З. Периодическая система и биологическая роль элементов. — Ташкент: Медицина, 1985. — 187 с. — Библиогр.: с.182-185.
    Г85-12173 кх
  • Хентов В.Я., Перхина А.Б. Корреляционный анализ и периодический закон // Компьютерные технологии в науке, производстве, социальных и экономических процессах: материалы VII междунар. науч.-практ. конф., Новочеркасск, 17 нояб. 2006. В 3 ч. Ч.2 / ЮРГТУ. — Новочеркасск: ООО НПО «Темп», 2006. — С.18.
    Рассматривается использование корреляционного анализа для изучения периодического закона Д.И. Менделеева.
    Г2007-84/2 кх
  • Химики о Периодической таблице: профессиональный инструмент, научная икона, открытая книга? // Природа. — 2019. — N 2. — С.17-33. — Библиогр.: 19 назв.
    В ХХ в., когда значимость периодического закона, казалось бы, уже не вызывала сомнений, изредка слышались голоса скептиков. Так, например, в 1992 г. известный американский химик, профессор Принстонского университета Лилэнд Аллен написал, что «главная икона химии» — Периодическая таблица Д.И. Менделеева — постепенно утрачивает свою роль научного инструмента и «дает все меньше указаний в решении дискуссионных вопросов теоретической неорганической химии». Спустя четверть века эта реплика американского коллеги стала точкой отсчета в разговоре с исследователями МГУ, которые согласились ответить на вопрос редакции «Природы», в какой мере Периодическая таблица помогает им в работе.
    Антипов Е.В. Периодическую таблицу изучаешь всю жизнь. — С.18-21.
    Зломанов В.П. Реликвия, предназначенная не для поклонения, а для управления природными процессами. — С.21-22.
    Шевельков А.В. Периодическая таблица — очень полезный инструмент. — С.22-25.
    Карякин А. А. Создание уникальных биосенсоров и Периодическая таблица. — С.25-26.
    Яценко А.В. Research tool и инструмент для систематизации знаний. — С.26-28.
    Иванов А.В. Периодическая таблица — динамично развивающаяся система. — С.28-29.
    Бабаев Е.В. Идея периодичности естественных систем. — С.30-32.
  • Химия и периодическая таблица / Сайто К., Хаякава С., Такеи Ф., Ямадера Х.: пер. с японск. М.: Мир, 1982. — 320 с. — Библиогр.: с.309-313.
    Г82-15261 кх
  • Хорошавин Л. Исследование Периодической системы химических элементов Д.И. Менделеева // Инженер. — 2016. — N 3. — С.31. — Библиогр.: 4 назв.
  • Хорошавин Л.Б. Кластерная система химических элементов // Объедин. науч. журн. — 2009. — N 9(227). — С.52-61. — Библиогр.: 20 назв.
    Т2795 кх
  • Хорошавин Л.Б. Оптимальная область огнеупоров в периодической системе химических элементов Д.И. Менделеева // Объедин. науч. журн. — 2005. — N 5(133). — С.64-70. — Библиогр.: 6 назв.
    Т2795 кх
  • Хорошавин Л.Б., Щербатский В.Б. Исследование взаимосвязи между свойствами химических элементов на основе периодического закона // Объедин. науч. журн. — 2005. — N 5(133). — С.71-81. — Библиогр.: 16 назв.
    Т2795 кх
  • Хорошавин Л.Б., Щербатский В.Б. Исследование зависимости свойств химических элементов от их электронного строения на основе Периодического закона // Объедин. науч. журн. — 2005. — N 11(139). — С.62-76. — Библиогр.: 11 назв.
    Т2795 кх
  • Хорошавин Л.Б., Щербатский В.Б. Управление электронами — основа изменения свойств химических элементов, соединений и веществ // Объедин. науч. журн. — 2005. — N 20(148). — С.71-81. — Библиогр.: 11 назв.
    Т2795 кх
  • Хорошавин Л.Б., Щербатский В.Б. Электронная технология огнеупоров на основе периодического закона // Новые огнеупоры. — 2005. — N 10. — С.75-83. — Библиогр.: 23 назв.
    Т2922 кх
  • Хорошавин Л.Б., Щербатский В.Б. Электронные ячейки и кластеры химических элементов // Объедин. науч. журн. — 2008. — N 3(209). — С.55-63. — Библиогр.: 13 назв.
    Приведена восемнадцатигрупповая система химических элементов. Установлены и определены в ней свойства электронных ячеек и кластеров химических элементов до атомного номера 220.
    Т2795 кх
  • Хорошавин Л.Б., Щербатский В.Б. Элементы, стоящие до Периодической системы химических элементов Д.И. Менделеева // Объедин. науч. журн. — 2005. — N 12(140). — С.77-85. — Библиогр.: 20 назв.
    Т2795 кх
  • Хорошавин Л.Б., Щербатский В.Б., Якушина Е.В. Компьютерная гибридная модель расчета свойств химических элементов // Объедин. науч. журн. — 2005. — N 20(148). — С.81-86. — Библиогр.: 7 назв.
    Т2795 кх
  • Хорошавин Л.Б., Щербатский В.Б., Якушина Е.В. Октайдная и десятичная системы химических элементов // Объедин. науч. журн. — 2005. — N 30(158). — С.60-67. — Библиогр.: 16 назв.
    Т2795 кх
  • Хорошавин Л.Б., Щербатский В.Б., Якушина Е.В. Сопоставление различных систем химических элементов // Объедин. науч. журн. — 2006. — N 3(163). — С.88-100. — Библиогр.: 10 назв.
    Т2795 кх
  • Хорошавин Л.Б., Щербатский В.Б., Якушина Е.В. Ячеистая структура десятичной системы химических элементов // Объедин. науч. журн. — 2006. — N 9(169). — С.64-72. — Библиогр.: 7 назв.
    Т2795 кх
  • Цивадзе А.Ю. Периодический закон, Менделеевское общество и Менделеевские съезды // Вестник РФФИ. — 2019. — N 1(101). — С.17-24. — Библиогр.: 8 назв.
  • Цивадзе А.Ю., Ионова Г.В. Развитие Периодического закона Д.И. Менделеева в области изучения необычных степеней окисления металлов // Современные проблемы физической химии: науч. изд. / Ин-т физ. химии РАН. — М.: ИД «Граница», 2005. — С.17-39. — Библиогр.: 128 назв.
    Г5-С. 568 НО
  • Цивадзе Н.А. Ведущая роль ЮНЕСКО в проведении Международного года Периодической таблицы химических элементов // Вестник РФФИ. — 2019. — N 1(101). — С.43-53. — Библиогр.: 9 назв.
  • Чекмарев А.М. Беречь национальное богатство // Хим. технология. — 2014. — Т.15, N 8. — С.505-512. — Библиогр.: 18 назв.
    Рассмотрены ошибки и искажения, встречающиеся в различных изданиях Таблицы элементов Д.И. Менделеева.
  • Челябинский ученый совершенствует таблицу Менделеева // КИП и автоматика: обслуживание и ремонт. — 2007. — N 9. — С.72.
    Сергей Ершов выдвинул гипотезу, по которой эта система должна быть трехмерной и иметь форму куба.
  • Черкесов А.И. Теоретические аспекты естественной системы химических элементов. — Саратов: Изд-во Сарат. ун-та, 1974. — 78 с. — Библиогр.: в конце глав.
    Г74-6914 кх
  • Черкинский ЮС. Элемент № … последний // Химия и жизнь.. — 1973. — N 9. — С.3-5.
    С1430 кх
  • Чернышев С.Л. О возможности дедуктивного вывода Периодической системы элементов // Измерит. техника. — 2002. — N 6. — С.72. — Библиогр.: 6 назв.
    С1164 кх
  • Чернышев С.Л. Четыре измерения Периодической системы элементов. — М.: ЛЕНАНД, 2019. — 336 с. — Библиогр.: 313 назв.
    Исследуется гипотеза о том, что результаты самоорганизации сложных объектов, характеризуемых порядковыми номерами, обусловлены размерностью пространства, в котором происходит взаимодействие элементов. Учет размерности пространства при классификации элементов позволяет получить новую информацию о физических, химических и биологических свойствах вещества. Выявлены новые свойства элементов, проявляющиеся в одномерном и двумерном пространствах. Показана неоднозначность строения атомов и сложные взаимосвязи моделей и процессов их преобразований. Определены относительные размеры моделей атомов и прогнозируемых ионов в пространствах различных размерностей. Проанализированы свойства сверхтяжелых химических элементов, а также свойства элементов в гипотетическом четырехмерном пространстве.
    Выделена роль обобщенных золотых пропорций, обобщенных чисел Фибоначчи и фигурных чисел в структуре Периодической системы элементов.
    Г2019-6652 ч/з1 (Г114-Ч.497)
  • Чернышев С.Л., Исаев Л.К., Козлов А.Д. Периодическая система элементов Д.И. Менделеева : между прошлым и будущим // Измерит. техника. — 2020. — N 8. — С.13-19. — Библиогр.: 24 назв.
  • Чистяков В.М. Полная периодическая система химических элементов как отображение частных форм периодического закона Д.И. Менделеева. — Минск: Вышэйш. шк., 1969. — 141 с. — Библиогр.: 35 назв.
    Г69-23817 кх
  • Чуев А.С. Система физических величин и закономерных размерностных взаимосвязей между ними // Законодат. и прикл. метрология. — 2007. — N 3(91). — С.30-32. — Библиогр.: 5 назв.
    Ставится и обсуждается проблема создания системы физических величин, подобной системе химических элементов Д. И. Менделеева. Рассматривается авторский вариант многоуровневой системы физических величин с размерностными взаимосвязями между ними.
  • Чукин Г.Д., Сериков П.Ю. Магнитная природа формирования химических элементов, воды и нефти. — М.: Грифон, 2020. — 278 с. — Библиогр.: 53 назв.
    Объяснена причина формирования закономерности, получившей отражение в Периодическом законе Д.И. Менделеева.
    Г2020-28627 ч/з1 (Г11-Ч.882)
  • Чумаков В. Сверхтяжелые элементы // В мире науки. — 2016. — N 5/6. — С.12-22.
    30 декабря 2015 года Международный союз чистой и прикладной химии (IUPAC) окончательно утвердил факт открытия четырех новых химических элементов с атомными номерами 113, 115, 117 и 118. Теперь седьмой период таблицы Менделеева из шести элементов полностью укомплектован в соответствии с Периодическим законом.
  • Шангин Ю.А. Третья группа Периодической таблицы химических элементов // Неделя науки — 2019 (с международным участием), 1-3 апр. 2019: сб. тез. IX науч.-техн. конф. студентов, аспирантов и молодых ученых в рамках мероприятий, посвященных 150-летию открытия Периодического закона химических элементов Д. И. Менделеевым. — СПб.: СПбГТИТУ, 2019. — С.6. — Библиогр.: 2 назв.
    Г2019-13589 ч/з1 (Л10-Н.421)
  • Шах Джаеш. Погружаясь в Периодическую таблицу. Второй ряд / Пер. с англ. — М.: «Любовь Лурье», 2007. — 224 с.
    Доктор Джаеш Шах — знаменитый гомеопат «Бомбейской школы» классической гомеопатии. Он считает, что семь рядов Периодической таблицы химических элементов соотносятся с семью этапами развития человека, а именно: Зачатие, Внутриутробный период и рождение, Младенчество, Детство, Подростковый период, Средний возраст, Старость и смерть. Первый и второй периоды Таблицы отвечают за внутриутробное развитие и процесс родов.
    Д2007-1786 кх2
  • Шелкопляс Т.К. Периодическая система как основа вспомогательных таблиц для раздельного изучения физических свойств веществ (по плотностям простых веществ и галогенидов одновалентных элементов): автореф. дис. … канд. хим. наук / Киевск. технол. ин-т легкой пром-сти. — Киев, 1969. — 21 с.
    А69-10641 кх
  • Шило Н.А., Дринков А.В. Фенотипическая система атомов в развитие идей Д.И. Менделеева // Вестн. СВНЦ ДВО РАН. — 2007. — N 1(9). — С.89-98. — Библиогр.: 20 назв.
    Т3270 кх
  • Ширмер В., Таппе Э. Значение периодической системы элементов для современной химии // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.368-375. — Библиогр.: 10 назв.
    Е69-1593 кх
  • Ширмер В., Таппе Э. Значение периодической системы элементов для современной химии // Эволюция Периодического закона химических элементов. (Переводной сборник). Вып.2. — М.: Знание, 1970. — С.22-32. — (На обл.: Новое в жизни, науке, технике. Серия: Химия.5).
    Г70-9250/2 кх
  • Шишокин В.П. К вопросу о соотношении между теплотой образования химических соединений и положением элементов в таблице Д.И. Менделеева // Журн. общей химии. — 1954. — Т.24, вып.5. — С.745-751. — Библиогр.: 14 назв.
    С1793 кх
  • Шишокин В.П. Основная и дополнительная периодичности в системе элементов Д.И. Менделеева // Периодический закон и строение атома: сб. ст. — М.: Атомиздат, 1971. — С.118-127. — Библиогр.: 21 назв.
    Г71-12016 кх
  • Шубейкина Т.Д. Новое представление и осмысление периодического закона Д.И. Менделеева через синтез науки, религии и философии // Сознание и физ. реальность. — 2011. — Т.16, N 4. — C.2-21. — Библиогр.: 15 назв.
    Изложена новая мировоззренческая парадигма, раскрывающая триединую суть формирования современной картины мира на основе нового представления и осмысления периодического закона Д.И. Менделеева, представленного в виде двух спиралей развития: спирали погружения Духа Творца через атом водорода в материю хаоса и материализованной спирали творения химических элементов.
    С4759 кх
  • Шубейкина Т.Д. Новое спиралевидное представление периодической таблицы химических элементов — Развитие главной идеи книги «Библейский цикл творения одухотворенной материи». [Электронный ресурс].- Режим доступа: http://newchemitable.pp.net.ua/
  • Шубейкина Т.Д. Нулевой элемент Периодической системы Д.И. Менделеева // Науч. обозрение. Биологич. науки. — 2016. — N 1. — С.96-112. — Библиогр.: 24 назв.
  • Шубейкина Т.Д., Шевердин К.Н. Раскрытие тайн древнеславянского календаря через единую спираль эволюции, вписанную в Периодический закон Д.И. Менделеева // Сознание и физ. реальность. — 2012. — Т.17, N 8. — C.35-49. — Библиогр.: 13 назв.
    С4759 кх
  • Шуваев Г. Четыре периодические системы химических элементов // Инженер. — 2013. — N 8. — С.27. — Библиогр.: 2 назв.
    С1370 кх
  • Шульман Г.А. К теории периодической системы элементов при высоких давлениях: автореф. дис. … канд. физ.-мат. наук / ЛГПИ. — Л., 1965. — 11 с.
    А-94878 кх
  • Щарев Л.С. Кто тебя закручивает, материя?: Гипотезы и размышления. Вып.3. — М.: ЧИП «Нуклеус», 2005. — 60 с.
    7. Как формировалась (когда-то) таблица Д.И. Менделеева?
    Г2005-85/3 кх
  • Щарев Л.С., Щарев Л.Л. От познания огня — к управлению плазмой: гипотезы и размышления. Вып.5. — М.: ЧИП «Нуклеус», 2007. — 64 с. — Библиогр.: 22 назв.
    Попытка построить вариант таблицы Д.И. Менделеева несколько отличным путем: увеличить количество рядов, а между рядами, начиная с пятого и далее, сохранить увеличение количества электронов ровно на 8, как и в первых трех рядах таблицы.
    Г2005-85/5 кх
  • Щеголев В.А. За краем таблицы Менделеева // Природа. — 2003. — N 1(1049). — С.36-45. — Библиогр.: 10 назв.
    С1450 кх
  • Щеголев В.А. Ритмы материи и Периодический закон Д.И. Менделеева // Д.И. Менделеев. Диалог с эпохой: сб. ст. / Составитель Н.В. Успенская. — М.: Октопус, 2010. — С.79-103. — Библиогр.: 9 назв.
    Г2010-929 ч/з1 (Г.д-М.501)
  • Щукарев С.А. Длиннопериодическая таблица химических элементов и понятие о кайносимметрии // Научное наследие Д.И. Менделеева и современная химия (материалы 2 совещания, посвящ. изучению научного наследия Д.И. Менделеева). — Л.: ЛГУ, 1972. — С.3-7.
    Г72-6127 кх
  • Щукарев С.А. Некоторые перспективы прогнозирования свойств не открытых еще сверхтяжелых элементов // Прогнозирование в учении о периодичности. — М.: Наука, 1976. — С.116-160. — Библиогр.: 11 назв.
    Г76-14466 кх
  • Щукарев С.А. О так называемых аномалиях и о вырожденных аномалиях элементных (атомных) весов // Журн. общей химии. — 1949. — Т.19, N 3. — С.373-379.
    С1793 кх
  • Щукарев С.А. Периодическая система Д.И. Менделеева и современная химия // Периодический закон и строение атома: сб. ст. — М.: Атомиздат, 1971. — С.128-203. — Библиогр.: 8 назв.
    Г71-12016 кх
  • Щукарев С.А. Правила изонуклон и распределение устойчивых субэлементов между артиадами и периссадами // Журн. общей химии. — 1949. — Т.19, N 3. — С.380-390. — Библиогр.: 2 назв.
    С1793 кх
  • Щукарев С.А. Пропавшие периссады и артиады, лишенные устойчивых нечетных субэлементов // Журн. общей химии. — 1949. — Т.19, N 3. — С.391-395.
    С1793 кх
  • Щукарев С.А. Система Д.И. Менделеева и проблема элементных масс в свете учения об изотопии // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.178-198. — Библиогр.: 20 назв.
    Е69-1593 кх
  • Щукарев С.А. Современное значение периодического закона Д.И. Менделеева и перспективы развития // 100 лет периодического закона химических элементов (1869-1969): сб. докл. на пленарных заседаниях Х юбил. Менделеевского съезда. — М.: Наука, 1971. — С.40-53. — Библиогр.: 5 назв.
    Е71-1117 кх
  • Щукарев С.А. Элементный (атомный ) вес как периодическая функция и учение об элементах-двойниках // Журн. общей химии. — 1949. — Т.19, N 1. — С.3-16. — Библиогр.: 5 назв.
    С1793 кх
  • Щукарев С.А., Василькова И.В. Явление вторичной периодичности на примере соединений магния с элементами главной подгруппы IV группы системы Д.И. Менделеева // Вестн. ЛГУ. — 1953. — N 2. — С.115-120. — Библиогр.: 19 назв.
  • Щукарев С.А., Макареня А.А. Развитие представлений о вторичной периодичности // Вопросы истории естествознания и техники. — 1962. — Вып.13. — С.76-79. — Библиогр.: 38 назв.
    5-В.748 кх
  • Электродвижущая сила горения в Периодической таблице / Кузнецов М.В., Белоусова О.В., Морозов Ю.Г., Щипакин С.Ю. // Альтернат. энерг. и экол. — 2014. — N 20(160). — С.38-46. — Библиогр.: 32 назв.
  • Эткин В.А. Энергодинамика (синтез теорий переноса и преобразования энергии) / Тольяттинский гос. ун-т. — СПб.: Наука, 2008. — 409 с. — Библиогр.: с.393-404.
    16.2. Связь момента распределения валентных электронов с периодической системой элементов. — С.250-254.
    В31 — Э.909 НО
  • Якушко С.И. «Фибоначчиевая» закономерность в Периодической системе элементов Д.И. Менделеева // ЖРФМ. — 2012. — N 1-12. — С.10-36. — Библиогр.: 12 назв.
    Р12706 кх
  • Яцимирский К.Б. Комплексообразование и периодическая система элементов // Сто лет периодического закона химических элементов (1869-1969): докл. Х юбил. Менделеевского съезда. — М.: Наука, 1969. — С.277-283. — Библиогр.: 11 назв.
    Е69-1593 кх
  • Сафонов П.Е., Левакова Н.М. Разработка ткани для защиты от электрических полей промышленной частоты и электромагнитного излучения радиодиапазона // Будущее машиностроения России: сб. докл. 12 Всерос. конф. мол. ученых и специалистов (с междунар. участием), Москва, 24-27 сент. 2019. — М.: Изд-во МГТУ им. Н.Э. Баумана, 2019. — С.650-653. — Библиогр.: 6 назв.
    Д2019-4637 ч/з1 (К5-Б.903)
  • Некрасова Л.П., Михайлова Р.Н., Рыжова И.Н. Влияние электрохимической обработки на физико-химические свойства воды // Гигиена и санитария. — 2020. — Т.99, N 9. — С.904-910.
  • Яргин С.В. О биологическом действии электромагнитного излучения радиочастотного диапазона // Сиб. науч. мед. журн. — 2019. — Т.39, N 5. — С.52-61.

    РЖ 20.02-86.123

  • Модернизация газоотводящих трактов ТЭС / Салов Ю.В., Варнашов В.В., Горшенин С.Д. и др. // Повышение надежности и эффективности эксплуатации электрических станций и энергетических систем: ЭНЕРГО-2010: тр. Всерос. науч.-практ. конф., Москва, 1-3 июня 2010. — В 2 т. Т.1. — М.: МЭИ, 2010. — С.140-142. — Библиогр.: 11 назв.
    Е2010-956/1 кх
  • Пинаев А.В. Волны горения и детонации в смесях метана с взвесями угля // Всероссийская конференция с элементами научной школы для молодых ученых «XXXV Сибирский теплофизический семинар», посвященный 75-летию д.т.н., профессора В. И. Терехова, Новосибирск, 27-29 авг. 2019: тез. докл. — Новосибирск: Институт теплофизики, 2019. — С.140. — Библиогр.: 4 назв.
    Е2019-2675 ч/з1 (З31-С.341)
  • Установление ассоциации уровней хлороформа в крови детского населения с концентрациями хлороформа и его производных в питьевой воде систем централизованного водоснабжения / Уланова Т.С., Нурисламова Т.В., Мальцева О.А., Попова Н.А. // Здоровье населения и среда обитания. — 2020. — 8(329). — С.58-63.
  • О радиоволновом контроле дымовых газов ТЭС / Иванова Е.П., Смольский С.М., Ханамиров А.Е., Хрюнов А.В. // Повышение надежности и эффективности эксплуатации электрических станций и энергетических систем: ЭНЕРГО-2010: тр. всерос. науч.-практ. конф., Москва, 1-3 июня 2010. В 2 т. Т.2, секции 5-9. — М.: МЭИ, 2010. — С.217-218. — Библиогр.: 5 назв.
    Е2010-956/2 кх
  • Наилучшие доступные технологии — современный инструмент повышения энергоэффективности и снижения негативного воздействия энергопредприятий на окружающую среду / Сапаров М.И., Нечаев В.В., Путилов В.Я. и др. // Повышение надежности и эффективности эксплуатации электрических станций и энергетических систем: ЭНЕРГО-2010: тр. всерос. науч.-практ. конф., Москва, 1-3 июня 2010. В 2 т. Т.2, секции 5-9. — М.: МЭИ, 2010. — С.235-238. — Библиогр.: 4 назв.
    Е2010-956/2 кх
  • Двойрин Г.Б. Энергополевая информационная голографичность природы Мира и Вселенной // Парапсихология и психофизика. — 1994. — N 3(15). — С.43-46. — Библиогр.: 3 назв.
    Р12717 кх
  • Мажуга В.И. Возможный механизм телекинеза и пирокинеза // Парапсихология и психофизика. — 1994. — N 3(15). — С.46-49. — Библиогр.: 7 назв.
    Р12717 кх
  • Дождиков В.Г., Муромцев В.И. Телекинетическое перемещение предметов и управляемый сознанием ядерный бэта-распад // Парапсихология и психофизика. — 1994. — N 3(15). — С.49-53. — Библиогр.: 8 назв.
    Р12717 кх
  • Адаменко А.А. Физическая природа биогенного поля // Парапсихология и психофизика. — 1994. — N 3(15). — С.54-58. — Библиогр.: 6 назв.
    Р12717 кх
  • Губайдуллин А.А., Мусакаев Н.Г., Болдырева О.Ю. Моделирование физических процессов в пористых системах с газовыми гидратами // Теплофизика и физическая гидродинамика: 4 всерос. науч. конф. с элементами школы молодых ученых, Ялта, 15-22 сент. 2019: тез. докл. — Новосибирск: Ин-т теплофизики, 2019. — С.8. — Библиогр.: 11 назв.
    Е2019-2813 ч/з1 (З31-Т.343)
  • Исаев С.А. Теплогидродинамическое проектирование энергоэффективных поверхностей с наклоненными овально-траншейными вихрегенераторами // Теплофизика и физическая гидродинамика: 4 всерос. науч. конф. с элементами школы молодых ученых, Ялта, 15-22 сент. 2019: тез. докл. — Новосибирск: Ин-т теплофизики, 2019. — С.5. — Библиогр.: 7 назв.
    Е2019-2813 ч/з1 (З31-Т.343)
  • Аньшаков А.С., Домаров П.В., Фалеев В.А. Электроплазменная установка для газификации органических отходов с получением топливного газа // Изв. вузов. Физ. — 2019. — Т.63, N 11. — С.132-136.

    РЖ 20.05-22Р.2

  • Оценка технико-экономических показателей систем газоочистки при работе на различных марках угля / Батраков П.А., Яковлева Е.В., Мракин А.Н. и др. // Динамика систем, механизмов и машин. — 2019. — Т.7, N 3. — С.3-9.

    РЖ 20.05-22Р.62

  • Рудыка В.И., Соловьев М.А., Малина В.П. Технологии производства топлив газификацией биоматериалов и отходов: по материалам саммита «Газификация 2019», Брюссель // Энерготехнологии и ресурсосбережение. — 2019. — N 4. — С.63-71. — Рус.

    РЖ 20.05-22Т.39

  • Лахменев А.С., Саушев А.В. Автоматизация системы отопления посредством электропривода в концепции «умный дом» // Приборостроение и автоматизированный электропривод в топливно-энергетическом комплексе и жилищно-коммунальном хозяйстве: материалы 4 Нац. науч.-практ. конф., Казань, 6-7 дек. 2018. В 2 т. Т.2. — Казань: КГЭУ, 2019. — С.212-219. — Библиогр.: 16 назв.
    Г2019-2579/2 ч/з1 (Ж-П.750/2)

    РЖ 20.05-22С.150

  • Рак А.Н., Шлепнев С.В. Когенерационная энергетика Донбасса: современность и перспективы утилизации шахтного метана // С.О.К.: Сантехн., отопление, кондиционир. — 2019. — N 9. — С.90-93.

    РЖ 20.04-22Т.40

  • Торопов Е.В., Лымбина Л.Е. Особенности процессов сжигания жидкого топлива // Вестн. ЮУрГУ, Сер. Энерг. — 2019. — Т.19, N 4. — С.5-13.

    РЖ 20.04-22Ш.34

  • Соловьев А.К., Шевченко А.А. Энергетическое использование древесных отходов // Металлургия: технологии, инновации, качество (Металлургия-2019): тр. 21 Междунар. науч.-практ. конф., Новокузнецк, 23-24 окт. 2019. Ч.1. — Новокузнецк, 2019. — С.364-369.

    РЖ 20.04-22Т.46

  • Коэффициент полезного действия неэкранированных топок многотоннажных газовых сушильных установок углеобогатительных фабрик / Хашина Н.В., Мурко В.И., Лудзиш В.С., Пестерева Д.В. // Безопас. труда в пром-сти. — 2019. — N 10. — С.14-19. — Библиогр.: 12 назв.

    РЖ 20.04-22Р.30

  • Оценка стохастических свойств эквивалентных возмущающих воздействий в системе регулирования мощности прямоточного котла блочной ТЭС / Пигасова Н.И., Шумихин А.Г., Стафейчук Б.Г., Смирнов О.А. // Вестн. ПНИПУ. Электротехн., инф. технол., системы упр. — 2019. — N 31. — С.106-120. — Библиогр.: 5 назв.

    РЖ 20.04-22Р.33

  • Войтулевич Дм., Гридчина Дарья. CLEVER L — разумное решение для организации крышных и уличных котельных // С.О.К.: Сантехн., отопление, кондиционир. — 2019. — N 9. — С.36-37.

    РЖ 20.04-22Р.45

  • Кузнецов Г.В., Янковский С.А., Сыродой С.В. Математическое моделирование процессов секвестирования антропогенных продуктов сгорания углей на тепловых электростанциях // Проблемы управления и моделирования в сложных системах: тр. 21 междунар. конф., Самара, 3-6 сент. 2019. В 2 т. Т.1. — Самара: Офорт, 2019. — С.338-342. — Библиогр.: 5 назв.
    Д2019-3589/1 ч/з1 (З817-П.781/1)

    РЖ 20.04-22Р.13

  • Жуков Е.Б., Меняев К.В., Таймасов Д.Р. Проблемы совместного сжигания альтернативных топлив в промышленнойтеплоэнергетике // Всероссийская конференция с элементами научной школы для молодых ученых «XXXV Сибирский теплофизический семинар», посвященный 75-летию д.т.н., профессора В. И. Терехова, Новосибирск, 27-29 авг. 2019: тез. докл. — Новосибирск: Институт теплофизики, 2019. — С.209. — Библиогр.: 1 назв.
    Е2019-2675 ч/з1 (З31-С.341)

    РЖ 20.04-22Р.15

  • Скиба С.С., Манаков А.Ю. Изучение самоконсервации газовых гидратов в суспензиях в нефтях // Теплофизика и физическая гидродинамика: 4 всерос. науч. конф. с элементами школы молодых ученых, Ялта, 15-22 сент. 2019: тез. докл. — Новосибирск: Ин-т теплофизики, 2019. — С.84. — Библиогр.: 6 назв.
    Е2019-2813 ч/з1 (З31-Т.343)
  • Разложение газогидрата метана при инжекции жидкого диоксида углерода в газогидратный пласт / Хасанов М.К., Столповский М.А., Кильдибаева С.Р., Мусакаев Н.Г. // Теплофизика и физическая гидродинамика: 4 всерос. науч. конф. с элементами школы молодых ученых, Ялта, 15-22 сент. 2019: тез. докл. — Новосибирск: Ин-т теплофизики, 2019. — С.90. — Библиогр.: 3 назв.
    Е2019-2813 ч/з1 (З31-Т.343)
  • Гиль А.В., Саломатов В.В., Пузырев Е.М. // Теплофизика и физическая гидродинамика: 4 всерос. науч. конф. с элементами школы молодых ученых, Ялта, 15-22 сент. 2019: тез. докл. — Новосибирск: Ин-т теплофизики, 2019. — С.147. — Библиогр.: 5 назв.
    Е2019-2813 ч/з1 (З31-Т.343)
  • Опыт масштабирования конструкции МЭКС для применения в ГТУ разной мощности / Булысова Л.А., Тумановский А.Г., Гутник М.Н., Васильев В.Д. // Электр. ст. — 2020. — N 4. — С.2-7.
  • Результаты испытаний МЭКС ГТ-16 в одногорелочном отсеке на стенде полных параметров / Булысова Л.А., Гутник М.Н., Васильев В.Д. и др. // Электр. ст. — 2020. — N 87 — С.2-5.
  • Проблемы актуализации информационно-технического справочника ИТС 38-2017 «Сжигание топлива на крупных установках с целью производства энергии» / Росляков П.В., Кондратьева О.Е., Киселева О.А., Иванова А.А. // Электр. ст. — 2020. — N 7. — С.14-20. — Библиогр.: 27 назв.
  • Воинов А.П., Воинова С.А. Возможность управления внешней эрозией в котлах с кипящим слоем // Теплоэнергетика. — 2008. — N 9. — С.29-33. — Библиогр.: 8 назв.
  • Мишина К.И., Леонов А.Н. Особенности и преимущества технологии сжигания углей в высокотемпературном кипящем слое // Теплоэнергетика. — 2008. — N 9. — С.19-23.

Документ изменен: Mon May 24 09:53:26 2021. Размер: 142,227 bytes.
Посещение N 10335 с 03.03.2008 

Периодический закон А. И. Менделеева Современная формулировка периодического закона

    ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА — естественная система химических элементов, созданная гениальным русским химиком Д. И. Менделеевым. Расположив элементы в последовательности возрастания атомных масс и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, закономерности которой теоретически вытекают из сформулированного им периодического закона Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, находятся в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая система элементов Д. И. Менделеева позволяют установить свя ь между всеми химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. Как впоследствии стало известно, периодичность в изменении свойств элементов обусловлена числом электронов в атоме, электронной структурой атома, периодически изменяющейся по мере возрастания числа электронов. Число электронов равно положительному заряду атомного ядра это число равно порядковому (атомному) номеру элемента в периодической системе элементов Д. И. Менделеева. Отсюда современная формулировка периодического закона Свойства элементов, а также свойства образованных ими простых и сложных соединений находятся в периодической зависимости от величины зарядов их атомных ядер (2) . Поскольку атомные массы элементов, как правило, возрастают в той же последовательности, что и заряды атомных ядер, современная форма таблицы периодической системы элементов полностью совпадает с менделеевской, где аргон, кобальт, теллур расположены не в порядке возрастания атомной массы, а на основе их химических свойств. Это несоответствие рассматривалось противниками Д. И. Менделеева как недостаток его системы, но, как позже было доказано, закономерность нарушается в связи с изотопным составом элементов, что также предвидел Д. И. Менделеев. Периодический закон и периодическая система элементов [c.188]
    Период полураспада (Т. д)- время, за которое количество нестабильных частиц уменьшается наполовину. П. п.— одна из основных характеристик радиоактивных изотопов, неустойчивых элементарных (фундаментальных) частиц. Периодическая система элементов Д. И. Менделеева — естественная система химических элементов. Расположив элементы в порядке возрастания атомных масс (весов) и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, выражающую открытый им периодический закон Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, стоят в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая таблица элементов Д. И. Менделеева позволяют установить взаимную связь между всеми известными химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. На основе закона и периодической системы Д. И. Менделеева найдены закономерности в свойствах химических соединений различных элементов, открыты новые элементы, получено много новых веществ. Периодичность в изменении свойств элементов обусловлена строением электронной оболочки атома, периодически изменяющейся по мере возрастания числа электронов, равного положительному заряду атомного ядра Z. Отсюда современная формулировка периодического закона свойства элементов, а также образованных ими простых и сложных соединений находятся в периодической зависимости от величин зарядов их атомных ядер (Z). Поэтому химические элементы в П. с. э. располагаются в порядке возрастания Z, что соответствует в целом их расположению по атомным массам, за исключением Аг—К, Со—N1, Те—I, Th—Ра, для которых эта закономерность нарушается, что связано с нх изотопным составом. В периодической системе все химические элементы подразделяются на группы и периоды. Каждая группа в свою очередь подразделяется на главную и побочную подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы главной и побочной подгрупп в каждой группе, как правило, обнаруживают между собой определенное химическое сходство главным образом в высших степенях окисления, которое, как правило, соответствует номеру группы. Периодом называют совокупность элементов, начинающуюся щелочным металлом и заканчивающуюся инертным газом (особый случай — первый период) каждый период содержит строго определенное число элементов. П. с. э. имеет 8 групп и 7 периодов (седьмой пока не завершен). [c.98]

    За основу классификации элементов Менделеев, как и Мейер, принял массу, но при этом Менделеев не рассматривал массу как единственную характеристику элемента. В современной формулировке Периодического закона отражается зависимость свойств элементов от порядкового номера элемента 2, т. е. от заряда ядра атомов, поскольку именно величина 2 однозначно характеризует химический элемент (см. 1.6). Не менее важным был учет Менделеевым химических свойств элементов именно эти свойства для некоторых элементов оказались решающими при выборе места данного элемента в таблице. В наши дни открытие Менделеева блестяще подтвердилось все новые элементы, как обнаруженные в природе, так и синтезированные искусственно, занимают свое естественное место в Периодической системе. [c.100]

    В большинстве случаев возрастание заряда ядра (увеличение в нем числа протонов) сопровождается также и увеличением среднего значения масс изотопов, образующих элемент, — атомного веса элемента. Благодаря этому обстоятельству Д. И. Менделееву удалось составить периодическую систему, расположив элементы в порядке возрастания атомных весов. Данное правило не выполняется для четырех пар элементов Аг и К, Со и N1, Те и I, ТЬ и Ра первый из элементов каждой- пары имеет немного больший атомный вес, чем второй, хотя заряд ядра атома у него меньше. Д. И. Менделеев расположил К, Аг, Со, N1, Те и I в таблице не в порядке возрастания атомных весов современная формулировка периодического закона устранила это кажущееся несоответствие .  [c.56]

    В 1867 году становится широко известной работа Менделеева О современном развитии некоторых химических производств в применении к России… Через два года появляется первая формулировка периодического закона, Менделеев приступает к созданию капитального труда Основы химии . [c.9]

    Формулировка периодического закона, которую дал Д. И. Менделеев, и современная формулировка не противоречат друг другу, потому что для большинства элементов при увеличении заряда ядра атомная масса тоже увеличивается. [c.62]

    Очевидно, что в главном и основном Менделеев оказался прав в своих прогнозах об элементоорганических соединениях с точки зрения периодического закона. Теперь же, на основе современных представлений о строении атомов и молекул, можно дать более точную формулировку лежащей в основе этих прогнозов закономерности, что и сделал А. Н. Несмеянов. [c.116]

    Химия есть учение о простых телах, о их свойствах и соединениях — такое определение химии дает Менделеев в этом курсе. Изложив свойства органогенов (С, Н, О, Ы), Менделеев дает описание системы элементов и периодического закона. Характерно, что вначале следует описание самой системы. Описывая сходство соответствующих элементов 2-го и 3-го (в современной таблице) периодов, Менделеев на первый план выдвигает количественные критерии сходства валентность элементов в их соединениях с водородом и кислородом. Лишь после этого он останавливает внимание слушателей на формулировке закона периодичности. Таким образом, на базе наглядной системы элементов он подводит к логическому заключению о периодичности свойств. Как известно, в дальнейшем непосредственному изложению этой темы предшествовало описание свойств щелочных металлов и галогенов (в их противопоставлении). [c.205]


    Периодическая система Д. И. Менделеева и электронная структура атомов. В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая свойство элементов, а также формы и свойства их соединений находятся в периодической зависимости от заряда ядра их атомов. Наглядным выражением закона служит периодическая система Д. И. Менделеева. К настоящему времени предложено большое число вариантов системы. Наиболее общепризнанными являются короткая и длинная системы, приведенные на первом и втором форзацах учебника. [c.27]

«Периодический закон и периодичноская таблица химических элементов Д.И. Менделеева»

Тип урока: урок изучения нового материала.

Цель: раскрыть сущность периодического закона и строение периодической таблицы химических элементов Д.И. Менделеева.

Задачи:

  • Образовательные: познакомить с историей открытия периодического закона Д.И. Менделеева; закрепить знания о взаимосвязи между положением элемента в периодической системе и строением атома; дать понятие периодичности; раскрыть сущность, структуру, значение периодического закона и периодической таблицы химических элементов.
  • Развивающие :стимулировать познавательную активность учащихся; способствовать формированию научного мировоззрения; развивать логическое мышление, умение выделить главное, сравнивать, обобщать.
  • Воспитательные: интерес к предмету, к истории развития науки, патриотизм, умение работать в группе, чувство сопричастности к общему делу.

Методы: словесный; словесно-наглядный; поисково-исследовательский; метод проектов.

Форма организации познавательной деятельности: групповая.

Оборудование: периодическая система химических элементов Д.И. Менделеева; творческие проекты учеников; проектор, магнитофон.

Подготовка урока: За 2 недели до урока формируются группы, в которую входят 5-6 учеников. Каждый группе сообщаются темы, по которым должны подготовить презентации. Необходимо не позже за два дня до проведения урока проверить презентации, чтобы материал не выходил за рамки программы и был сформулирован корректно.

Эпиграф: «Периодическому закону будущее не грозит разрушением, а лишь надстройки и развитие обещает».

Ход урока

Учитель: Хочу раскрыть вам один секрет: экзамен по химии очень сложный, но его сдать легко и просто, так как учитель сам раздает шпаргалки…периодическую таблицу химических элементов Д.И. Менделеева. Ведь из периодической таблицы мы можем почерпнуть всю интересующую нас информацию. А для этого нам необходимо изучить и раскрыть сущность периодического закона и периодической таблицы химических элементов Менделеева.

Начать нашу работу я бы хотела с музыки. Послушайте….

Д.И. Менделеев очень любил музыку, особенно произведения композитора Л. Бетховена…

Нам с вами предстоит пройти тернистый путь исследований, чтобы доказать правоту нашего великого соотечественника. Надеюсь эта музыка вдохновит и вас на плодотворную работу.

«Другого ничего в природе нет,
Ни здесь, ни там, в космических глубинах:
Все – от песчанок малых до планет
– Из элементов состоит единых…»
Степан Щипачев

Еще алхимики пытались найти закон природы, на основе которого можно было бы систематизировать химические элементы. Но им недоставало надежных и подробных сведений об элементах. К середине 19 века знаний о химических элементах стало достаточно, а число элементов возросло настолько, что в науке возникла естественная потребность в их классификации.

Презентация 1. Первые попытки классификации химических элементов.

(выступление группы 1, см. Приложение 1)

Вопросы к классу:

  • сколько химических элементов было известно к моменту открытия периодического закона?
  • почему другие учёные (Ньюлендс, Мейер) много сделали для подготовки открытия периодического закона, но не могли постичь истину?

Учитель: Работая в Петербургском университете Д.И. Менделеев не нашел ничего, что можно было бы рекомендовать студентам в качестве учебного пособия. И решил написать новую книгу «Основы химии». Работа над учебником привело к открытию периодического закона.

Мир сложен. Он полон событий, сомнений,
И тайн бесконечных, и смелых догадок.
Как чудо природы
Является гений,
И в хаосе этом
Находит порядок…
Весь мир большой:
Жара и стужа,
Планет круженье, свет зари –
Все то, что видим мы снаружи,
Законом связано внутри.
Найдется ль правило простое,
Что целый мир объединит?
Таблицу Менделеев строит,
Природы ищет алфавит.

Презентация 2. Сущность открытия периодического закона.

(выступление группы 2, см. Приложение 2)  

Вопросы к классу:

  • На что обратил внимание Д.И. Менделеев при расположении элементов в таблице?
  • Что такое периодичность?

Учитель: К сожалению, сторонников периодического закона сначала было очень мало, даже среди русских ученых. Противников – иного, особенно в Германии и Англии. Возникало много вопросов. О решении вопросов следующая презентация.

Презентация 3. Современная формулировка периодического закона.

(выступление группы 3)

Вопросы к классу:

  • В чем различия современной формулировки периодического закона от формулировки данной Д.И. Менделеевым?
  • От чего зависит свойства элементов?

Учитель: Графическим изображением периодического закона является периодическая таблица химических элементов.

Презентация 4. Структура периодической системы химических элементов Д.И. Менделеева.

(выступление группы 4, см. Приложение 3)  

Вопросы к классу:

  • Какую информацию в себе несет порядковый номер элемента?
  • Какую информацию в себе несет порядковый номер группы?
  • Какую информацию в себе несет порядковый номер периоды ?
  • Какие именно электроны отвечают за свойства атомов?
  • Почему свойства элементов периодически повторяются?
  • В чем же физический смысл периодического закона?

Презентация 5. Значение периодического закона.

(выступление группы 5)

Учитель: Закон, открытый Д.И. Менделеевым объективно и верно отражает явления и процессы, протекающие в природе, а графическое изображение таблицы помогает решать самые разные технические задачи, связанные с выбором наилучших материалов и правильным их использованием. Она определяет основные направления научно-технического прогресса.

Д.И.Менделеев работал над созданием таблицы 15 лет. Он был великим ученным.

Презентация 6. Д.И. Менделеев. Жизнь и деятельность.

(выступление группы 6, см. Приложение 4)  

Итак, мы познакомились с историей открытия периодического закона и еще раз убедились, что по периодической системе можно очень много узнать о каждом химическом элементе, что, бесспорно, доказывает гениальность этого открытия.

В 1905 году Менделеев писал: « По видимой, периодическому закону будущие не грозит разрушением, а только надстройки и развития обещает».

И это будущее наступило.

Тесты.

  1. Ко времени открытия периодического закона было известно:
    а) 27 химических элементов;
    б) 63 химических элемента;
    в) 52 химических элемента;
    г) 109 химических элементов.

  2. Д.И. Менделеев в своём открытии опирался на:
    а) количество молекул;
    б) названия элементов;
    в) атомную массу;
    г) спираль Шанкуртуа.

  3. Свойства элементов в группах и периодах повторяются:
    а) периодически;
    б) линейно;
    в) волнообразно;
    г) прерывисто.

  4. Периодическая система одержала триумф после открытия:
    а) галлия;
    б) скандия;
    в) таллия;
    г) германия.

  5. В периодической системе:
    а) пять периодов;
    б) семь периодов;
    в) десять периодов;
    г) восемь периодов.

  6. Номер группы соответствует:
    а)высшей валентности;
    б) низшей валентности;
    в) числу электронов;
    г) числу протонов.

Спасибо всем, кто принял активное участие в подготовке и проведении этого урока.

От истории химии до величайших вымыслов: вся правда о Менделееве

Как известно, в 2019 году мир отмечал 185-летие со дня рождения Д.И. Менделеева и 150-летие Периодической системы химических элементов. В честь памятных дат ведущие ученые проводили в «Сириусе» научно-популярные лекции по химии и ее истории. Подводя итоги года, мы вспоминаем самые интересные факты и вымыслы, связанные с великими открытиями. 

Открытие Менделеевым таблицы химических элементов стало настоящей революцией в науке. Но история этого открытия до сих пор окутана легендами, мифами и легендами. Правда ли, что великому ученому приснился сон о том, как систематизировать знания о химических элементах? А верить ли слухам, что он торговал чемоданами в Гостином дворе в Санкт-Петербурге и придумал формулу спирта?

Развенчивает стереотипы и подтверждает догадки, а также рассказывает об истории химии – старший преподаватель кафедры радиохимии СПбГУ Евгений Калинин.

С чего начинается химия

Основа всей современной химии – наши представления об атоме. Именно на уровне атома (носителя свойств вещества) человечество может объяснить фундаментальные свойства химических элементов – электронное строение атома, масса и заряд ядра, валентность, степени окисления и многое другое.

Из школьной программы мы, конечно, помним, что:

  • атом – мельчайшая частица, в состав которой входят отрицательно заряженные электроны» и «положительно заряженное» ядро. А ядро – это центр атома, который играет в его строении самую существенную роль и вокруг которого вращаются все электроны.

Но изучена ли природа мельчайшей структурной единицы досконально? Если подумать, мы в точности не знаем, как устроен атом и можем рассуждать о его строении лишь опосредованно, утверждает Евгений Калинин.

Тем не менее, история химии изучает и описывает долгий процесс накопления научных знаний, начиная с древних времен. Например, еще греческие философы были рассуждали о важных вопросах о делимости материи. Первым стал рассуждать на эту тему Левкипп, учитель Демокрита.

Атомизм Левкиппа-Демокрита

Философа интересовало: можно ли каждую часть материи, которая обладает определенными свойствами, бесконечно делить на еще более мелкие части?

Например, камень, расколотый пополам или растолченный в порошок, все равно останется тем же камнем. А что, если взять каждую его крупинку и раздробить на еще меньшие частички – до какого предела можно проводить такое деление и существует ли вообще такой предел?

Левкипп пришел к выводу:

  • в конечном счете это приведет к исчезновению прежних свойств и появлению новых.

Эту мысль за своим наставником стал развивать и Демокрит. Он придумал мельчайшим частицам название: «атомос», то есть «неделимые». Термин, который ввел философ, унаследовала и современная химия. Учение о том, что деление материи допустимо только до определенного предела, стало называться атомистикой, или атомистической теорией.

Таким образом, Левкипп и Демокрит обрисовали важную мысль о том, что все состоит из атомов – невидимых и неделимых сфер материи бесконечного типа и числа.

Попытка точных измерений

Тщательным экспериментальным исследованиям физических и химических явлений дал жизнь ирландский химик XVII века Роберт Бойль – автор многих фундаментальных открытий. Вы о них точно слышали:

— Бойль предпринял первые попытки точных измерений при описании изменения вещества в экспериментах по сжатию и расширению газов;

— Именно Бойль установил, что воздух под давлением ртути умеет сжиматься, правда, не бесконечно (такое свойство воздуха в 1651 году было названо упругостью). Открытая ученым обратная зависимость объема от давления получила название закона Бойля. Занимаясь изучением химических процессов, он ввел в науку понятие анализа состава тел и прославился своими взглядами на строение вещества.

Как-то охарактеризовать невидимые атомы предложил английский естествоиспытатель Джон Дальтон. Изучая составы химических соединений, он установил:

  • Два элемента могут соединяться друг с другом в строго определенных соотношениях (соотношение малых целых чисел) и обобщил результаты своих исследований, сформулировав закон кратных отношений – важнейшее открытие в химии.

Дальтон исследовал многие распространенные бинарные соединения (гидриды и оксиды) и сгруппировал первую таблицу относительных атомных весов.

Тропинка к Менделееву

В истории развития химии важными являются и труды Йенса Якоба Берцелиуса. В попытке точно определить элементный состав различных соединений ученый провел не менее 2000 анализов и в итоге получил новую таблицу относительных атомных весов. К слову, во времена Берцелиуса было открыто уже 54 элемента.

  • Метод, как их упорядочить и систематизировать, обнаружил Иоганн Деберейнер, объединивший элементы в группы. Он наблюдал за изменением их химических свойств и поведением атомного веса.
  • Но впервые расположил их в порядке возрастания Джон Ньюлендс. Он придумал вертикальные столбцы и вставил по семь элементов в каждый. Также ученый определил, что похожие элементы часто попадают в одни и те же горизонтальные ряды.
  • Позже немец Лотар Майер опубликовал научный труд, в котором рассматривал объемы, занимаемые весовыми количествами элемента, численно равными их атомным весам. Он первым предложил термин «периодичность».

И наконец, фундаментальный вклад в развитие науки – создание периодической системы химических элементов и формулировка Периодического закона Менделеева. К этой задаче российский ученый подошел вплотную: в 1867-1868 годах он подготовил первое издание учебника «Основы химии», где обобщал все химические свойства всех известных тогда элементов.

Спустя три года Менделеев предложил новый вариант Периодической системы, уже в известном нам виде. Особенностью этого исследования было то, что в этой системе ученый предугадал открытие новых элементов.

  • По мнению Менделеева, в одном столбце должны находиться элементы с одинаковой валентностью, поэтому он решил в своей таблице оставить пустые клетки, при этом тщательно изучая динамику возрастания атомных весов. Потом он соотносил это с валентностями в типических соединениях и химическими свойствами элементов.

Интересный факт: сперва коллеги Менделеева с недоверием отнеслись к его теории о недостающих элементах, но в течение 15 лет новые элементы – галлий, скандий и германий – были открыты, их свойства в точности отвечали признакам, описанным Менделеевым. После этого сомнений в значимости Периодической системы у скептиков не осталось.

Легенды и мифы о Менделееве

Миф 1. Таблица Менделеева ученому приснилась

Историю о том, что Периодическая система элементов привиделась химику во сне, слышал чуть ли не каждый изучающий химию школьник. Эта легенда появилась благодаря товарищу Менделеева Александру Иностранцеву, русскому геологу и профессору Петербургского университета. Сам Менделеев такого не подтверждал: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово».

Миф 2. Изобретение 40-градусной водки

Есть мнение, что Дмитрий Иванович Менделеев изобрел традиционную русскую водку. Слухи породила его революционная научная работа на тему «Рассуждение о соединении спирта с водою», и строго говоря, к алкогольному напитку эта работа имела весьма косвенное отношение – ученый в своей диссертации заложил основы гидратной теории растворов спирта с водой при различных температурах.

Миф 3. Чемоданных дел мастер

Еще один интересный миф говорит о том, что Менделеев изготавливал чемоданы и торговал ими в Гостином дворе в Санкт-Петербурге. Ученый действительно научился переплетному и картонажному делу еще в юности и, имея огромный архив личных и научных документов, самостоятельно переплетал их и клеил для них картонные ящики. Кроме того, он мастерски делал оригинальные рамки для фотографий. Материалы для любимого занятия Менделеев покупал в том самом петербуржском Гостином дворе.

А легенду породила одна история. Однажды, когда ученый зашел в хозяйственную лавку, он услышал за своей спиной следующий диалог:

– Кто этот почтенный господин? – спросили у лавочника.

– Неужели не знаете? – удивился тот. – Да это же известный чемоданных дел мастер Менделеев! – с уважением в голосе ответил продавец.

Так люди узнали, что Менделеев любил не только изобретать, но и заниматься «приземленными ремеслами».

ГРУППОВАЯ КЛАССИФИКАЦИЯ ЭЛЕМЕНТОВ И ПЕРИОДИЧЕСКИЙ ЗАКОН Д.И. МЕНДЕЛЕЕВА | Гурский

1. Бурбаки Н. Группы и алгебры Ли. М.,1972.

2. Gell-Mann M. The Eightfold Way: A Theory of Strong Interaction Symmetry. Report No. CTSL-20. California Institute of Technology. March 15, 1961.

3. Néeman Y. // Nucl. Phys. 1961. Vol. 26, № 2. P. 222-229.

4. Gell-Mann M. // Phys. Rev. 1962. Vol. 125, № 3. P. 1067-1084.

5. Румер Ю.Б., Фет А.И. // Теоретическая и мататематическая физика. 1971. Т. 9, № 2. С. 203-210.

6. Конопельченко Б.Г. Группа SO(2, 4) + R и таблица Менделеева. Новосибирск, 1972.

7. Novaro O.A., Barrondo M. // J. Phys., B. 1972. Vol. 5, № 6. P. 1104-1110.

8. Фет А.И. Группа симметрии химических элементов. — В кн. Математическое моделирование в биологии и химии: новые подходы. Новосибирск, 1992. С. 118-203.

9. Zhuvikin G.V., Hefferlin R. Symmetry principles for periodic systems of molecules. JR-PHYS-SC / SP-BU 1 (Joint Report №1 of the Physics Departaments Southern College, Collegedate, USA, St. Petersburg University, St. Peterburg, Russia). St. Peterburg, 1994.

10. Гурский Л.И., Комаров Л.И. // Докл. АН Беларуси. 1997. Т. 41, №4. С. 49-52.

11. Гурский Л.И., Комаров Л.И., Солодухин А.М. // Изв. НАН Беларуси. Сер. физ.-мат. наук. № 2. 1998. С. 58-65.

12. Gurskii L.I., Komarov L.I., Solodukhin A.M. // International Jornal of Quantum Chemistry. 1999. Vol. 72. P. 499-508.

13. Гурский Л.И. // Вестн. Фонда фундаментальных исследований. 2004. № 3 (29), С. 61-79.

14. Фет А.И. Группа симметрии химических элементов. Новосибирск, 2010.

15. Меншуткин Н.А. // Журнал Русcкого химического общества. 1969. Т. 1. С. 60-77.

16. Менделеев Д.И. Основы химии. Т. 2, изд. 13. М., 1947.

17. Bohr N. Atomic Theory and the Description of Nature. Cambridge, 1934.

18. Зоммерфельд А. Строение атомов и спектры. M., 1956.

19. Левитан Б.М. Почти периодические функции. М., 1953.

20. Петрашень М.И., Трифонов Е.Д. Применение теории групп в квантовой механике. М., 1967.

21. Фок В.А. Теория пространства, времени и тяготения. М., 1961.

22. Федоров Ф.И. Группа Лоренца. М., 1979.

23. Эллиот Дж., Добер П. Симметрия в физике. Т. 1, Т. 2. М., 1983.

24. Ельяшевич М.А. Атомная и молекулярная спектроскопия. М., 1962.

25. Джеммер М. Эволюция понятий квантовой механики. М., 1985.

26. Гейзенберг В. Избранные труды. М., 2001.

27. Паули В. Волновая механика. М., 1947.

28. Маделунг Э. Математический аппарат физики. М., 1960.

29. Клечковский В.М. Распределение атомных электронов и правило последовательного заполнения (n+l)-групп. М., 1968.

30. М. Борн, Атомная физика. М., 1967.

31. Малкин И.А., Манько В.И. Динамические симметрии и когерентные состояния квантовых систем. М., 1979.

32. Комаров Л.И., Романова Т.С. // Изв. АН БССР. Сер. физ.-мат.наук. 1982. № 2. С. 98-103.

33. Komarov L.I., Romanova T.S. // J. Phys. B: At. Mol. Phys. 1985. Vol. 18. P. 859-865.

Определение периодического закона в химии

Периодический закон гласит, что физические и химические свойства элементов повторяются систематическим и предсказуемым образом, когда элементы расположены в порядке увеличения атомного номера. Многие свойства периодически повторяются. Когда элементы расположены правильно, тенденции в свойствах элементов становятся очевидными и могут использоваться для прогнозирования неизвестных или незнакомых элементов, просто основываясь на их размещении в таблице.

Важность периодического закона

Периодический закон считается одним из важнейших понятий в химии. Каждый химик использует Периодический закон, сознательно или нет, когда имеет дело с химическими элементами, их свойствами и их химическими реакциями. Периодический закон привел к развитию современной таблицы Менделеева.

Открытие периодического закона

Периодический закон был сформулирован на основе наблюдений ученых XIX века.В частности, вклад Лотара Мейера и Дмитрия Менделеева выявил тенденции в свойствах элементов. Они независимо предложили Периодический закон в 1869 году. В периодической таблице элементы расположены так, чтобы отражать Периодический закон, хотя у ученых в то время не было объяснения, почему свойства следуют тенденции.

Как только электронная структура атомов была открыта и понята, стало очевидно, что причина, по которой характеристики возникают в интервалах, заключалась в поведении электронных оболочек.

Недвижимость, подпадающая под действие Периодического закона

Ключевые свойства, которые следуют тенденциям согласно Периодическому закону, — это атомный радиус, ионный радиус, энергия ионизации, электроотрицательность и сродство к электрону.

Атомный и ионный радиус являются мерой размера отдельного атома или иона. Хотя атомные и ионные радиусы отличаются друг от друга, они следуют одной и той же общей тенденции. Радиус увеличивается при перемещении вниз по группе элементов и обычно уменьшается при перемещении слева направо по периоду или строке.

Энергия ионизации — это мера того, насколько легко удалить электрон из атома или иона. Это значение уменьшается при перемещении вниз по группе и увеличивается при перемещении слева направо через период.

Сродство к электрону — это то, насколько легко атом принимает электрон. Используя периодический закон, становится очевидным, что щелочноземельные элементы имеют низкое сродство к электрону. Напротив, галогены легко принимают электроны, чтобы заполнить свои электронные подоболочки, и имеют высокое сродство к электрону. Элементы благородного газа имеют практически нулевое сродство к электрону, потому что они имеют подоболочки электронов с полной валентностью.

Электроотрицательность связана со сродством к электрону. Он отражает, насколько легко атом элемента притягивает электроны для образования химической связи. И сродство к электрону, и электроотрицательность имеют тенденцию уменьшаться при движении вниз по группе и увеличиваться при перемещении через период. Электропозитивность — еще одна тенденция, управляемая Периодическим законом. Электроположительные элементы имеют низкую электроотрицательность (например, цезий, франций).

В дополнение к этим свойствам, с Периодическим законом связаны другие характеристики, которые можно рассматривать как свойства групп элементов.Например, все элементы в группе I (щелочные металлы) блестящие, имеют степень окисления +1, реагируют с водой и встречаются в составе соединений, а не в виде свободных элементов.

Таблица Менделеева

| Определение, элементы, группы, сборы, тенденции и факты

Изучите периодический закон химии, чтобы понять свойства элементов и их взаимосвязь.

Объяснение таблицы Менделеева.

Encyclopædia Britannica, Inc. Посмотреть все видео к этой статье

Периодическая таблица , полностью периодическая таблица элементов , в химии организованный массив всех химических элементов в порядке возрастания атомного номера — i.е., полное число протонов в атомном ядре. Когда химические элементы расположены таким образом, в их свойствах возникает повторяющийся образец, называемый «периодическим законом», в котором элементы в одном столбце (группе) имеют схожие свойства. Первоначальное открытие, сделанное Дмитрием И. Менделеевым в середине XIX века, имело неоценимое значение для развития химии.

таблица Менделеева

Современная версия периодической таблицы элементов (для печати).

Encyclopædia Britannica, Inc.

Популярные вопросы

Что такое таблица Менделеева?

Что общего между группами периодической таблицы?

Группы периодической таблицы отображаются в виде вертикальных столбцов, пронумерованных от 1 до 18. Элементы в группе имеют очень похожие химические свойства, которые возникают из количества присутствующих валентных электронов, то есть количества электронов в крайних электронах. оболочка атома.

Откуда взялась периодическая таблица Менделеева?

Расположение элементов в таблице Менделеева связано с их электронной конфигурацией.Из-за принципа исключения Паули не более двух электронов могут заполнить одну и ту же орбиталь. Первый ряд периодической таблицы состоит всего из двух элементов: водорода и гелия. Поскольку у атомов больше электронов, у них появляется больше орбит, доступных для заполнения, и поэтому строки содержат больше элементов, расположенных ниже в таблице.

Почему периодическая таблица Менделеева разделяется?

У периодической таблицы есть две строки внизу, которые обычно отделяются от основной части таблицы. Эти ряды содержат элементы ряда лантаноидов и актиноидов, обычно от 57 до 71 (от лантана до лютеция) и от 89 до 103 (от актиния до лоуренсия), соответственно.Для этого нет никаких научных причин. Это сделано только для того, чтобы стол стал более компактным.

Фактически не было признано до второго десятилетия 20-го века, что порядок элементов в периодической системе соответствует порядку их атомных номеров, целые числа которых равны положительным электрическим зарядам атомных ядер, выраженным в электронных единицах. . В последующие годы был достигнут большой прогресс в объяснении периодического закона с точки зрения электронного строения атомов и молекул.Это разъяснение повысило ценность закона, который используется сегодня так же активно, как и в начале 20 века, когда он выражал единственную известную взаимосвязь между элементами.

История периодического закона

В первые годы XIX века произошло быстрое развитие аналитической химии — искусства различения различных химических веществ — и, как следствие, накопление обширных знаний о химических и физических свойствах как элементы, так и соединения.Столь быстрое расширение химических знаний вскоре потребовало классификации, поскольку на классификации химических знаний основана не только систематизированная химическая литература, но и лабораторные науки, посредством которых химия передается как живая наука от одного поколения химиков к другому. Связи между соединениями обнаруживались легче, чем между элементами; так получилось, что классификация элементов на много лет отстала от классификации соединений. Фактически, между химиками не было достигнуто общего согласия относительно классификации элементов в течение почти полувека после того, как системы классификации соединений стали общепринятыми.

интерактивная таблица Менделеева

Современная версия периодической таблицы элементов. Чтобы узнать название элемента, атомный номер, электронную конфигурацию, атомный вес и многое другое, выберите элемент из таблицы.

Encyclopædia Britannica, Inc.

J.W. Доберейнер в 1817 году показал, что объединяющий вес, означающий атомный вес, стронция находится посередине между весом кальция и бария, а несколько лет спустя он показал, что существуют другие такие «триады» (хлор, бром и йод [галогены] и литий, натрий и калий [щелочные металлы]).Ж.-Б.-А. Дюма, Л. Гмелин, Э. Ленссен, Макс фон Петтенкофер и Дж. П. Кук расширили предложения Доберейнера между 1827 и 1858 годами, показав, что аналогичные отношения простираются дальше, чем триады элементов: фтор добавляется к галогенам, а магний — к щелочноземельным элементам. металлы, тогда как кислород, сера, селен и теллур были отнесены к одному семейству, а азот, фосфор, мышьяк, сурьма и висмут — к другому семейству элементов.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

Позднее были предприняты попытки показать, что атомные веса элементов могут быть выражены арифметической функцией, и в 1862 году А.-Э.-Б. де Шанкуртуа предложил классификацию элементов, основанную на новых значениях атомных весов, данных системой Станислао Канниццаро ​​1858 года. Де Шанкуртуа нанес атомные веса на поверхность цилиндра с окружностью 16 единиц, что соответствует приблизительному атомному весу кислород. Получившаяся спиральная кривая привела тесно связанные элементы в соответствующие точки над или под друг друга на цилиндре, и он предположил, как следствие, что «свойства элементов являются свойствами чисел», что является замечательным предсказанием в свете современных знаний.

Классификация элементов

В 1864 году J.A.R. Ньюлендс предложил классифицировать элементы в порядке возрастания атомного веса, при этом элементам присваиваются порядковые номера от единицы и выше и разделены на семь групп, обладающих свойствами, тесно связанными с первыми семью из известных на тот момент элементов: водород, литий, бериллий, бор, углерод. , азот и кислород. Это соотношение было названо законом октав по аналогии с семью интервалами музыкальной гаммы.

Затем в 1869 году, в результате обширной корреляции свойств и атомных весов элементов, уделяя особое внимание валентности (то есть количеству одинарных связей, которые может образовывать элемент), Менделеев предложил периодический закон: согласно которому «элементы, расположенные в соответствии с величиной атомного веса, демонстрируют периодическое изменение свойств». Лотар Мейер независимо пришел к аналогичному выводу, опубликованному после появления статьи Менделеева.

Исследование будущих задач для таблицы Менделеева | MSUToday

За последнее десятилетие в Периодическую таблицу химических элементов было добавлено шесть новых сверхтяжелых элементов.Недавно Организация Объединенных Наций провозгласила 2019 год Международным годом Периодической таблицы Менделеева, поскольку он отмечает 150-летие формулировки таблицы, созданной Дмитрием Менделеевым. Обзор области и будущих задач был опубликован в недавнем коллоквиуме Reviews of Modern Physics.

Ядерная и атомная физика стремятся объяснить физический мир, от происхождения ядер до их структуры. Все элементы, содержащие более 103 протонов, помечены как «сверхтяжелые» и являются частью огромной, совершенно неизвестной территории этих ядер, которую ученые пытаются раскрыть.Вопросы, побуждающие к поиску этих систем, включают:

  • Какие атомные ядра являются самыми тяжелыми из возможных?
  • Как эти ядра удерживаются вместе?
  • Как долго они живут как сверхтяжелые ядра, прежде чем распадутся на более легкие?
  • Они образуются при взрывах звезд?

Изучение этой неизведанной территории открывает перспективы для открытий, соединяющих широкие области ядерной физики, атомной физики, химии и астрофизики.

В 2012 и 2016 годах в таблицу Менделеева вошли шесть новых синтетических элементов — нихоний, флеровий, московий, ливерморий, теннессин и оганессон. Их атомные номера — количество протонов в ядре, определяющее их химические свойства и место в периодической таблице, — 113, 114, 115, 116, 117 и 118 соответственно. Эти элементы определяют текущие верхние пределы массы и атомных номеров. Как таковые, они несут в себе потенциал изменить то, как мы в настоящее время понимаем ядерную и атомную физику и химию.Это, в свою очередь, существенно повлияет на то, как будут даны ответы на общие вопросы.

Самые тяжелые сверхтяжелые элементы демонстрируют странные особенности по сравнению с их более легкими собратьями. Известные в настоящее время сверхтяжелые элементы относятся к седьмому и последнему периоду таблицы Менделеева. Необычный элемент оганессон завершает этот седьмой период, и это единственный элемент этого периода, который не встречается естественным образом.

Святой Грааль для этой области — производство долгоживущих сверхтяжелых элементов с примерно 184 нейтронами.Теория и эксперимент предполагают, что на этом пределе сверхтяжелые ядра будут жить дольше, прежде чем распадутся на более легкие. Эта повышенная стабильность облегчила бы химические исследования. Однако получить 184 нейтрона в ядре будет непросто. Ученые все еще ищут оптимальный способ синтезировать такие системы. Другая цель — понять роль, которую сверхтяжелые элементы играют в звездных событиях, таких как слияние нейтронных звезд или сверхновые.

Как далеко может зайти таблица Менделеева? Это все еще загадка.По мере развития экспериментальных возможностей ученые смогут исследовать более тяжелые элементы. Следующие шаги включают поиск следующего элемента с атомным номером 119 в нескольких лабораториях по всему миру и дальнейшее понимание того, как массы и заряды приписываются этим сверхтяжелым элементам.

«Научная экспедиция продолжается в неизведанные области атомных номеров и ядерных масс», — сказал Витек Назаревич, заслуженный профессор физики МГУ и главный научный сотрудник Центра редких изотопных лучей, который в настоящее время строится в МГУ.Назаревич и несколько сотрудников написали статью, опубликованную в Reviews of Modern PhysicsColloquium. «Перспективы открытий в междисциплинарной области сверхтяжелых ядер и атомов на стыке ядерной физики, атомной физики, химии и астрофизики выдаются».

В будущем специальные новые ускорительные установки в Дубне (Россия) и RIKEN (Япония) смогут производить больше этих частиц, а исследования проводятся в Дубне, RIKEN, GSI Helmholtz Center for Heavy Ion Research / Facility for Antiproton. и Ion Research в Германии, Национальная лаборатория Ок-Ридж и Национальная лаборатория Лоуренса Беркли в Соединенных Штатах, Grand Accèlèrateur National d’Ions Lourds во Франции и ряд других организаций по всему миру возглавят эти усилия по мере изучения новых территорий, выходящих за рамки стандартной таблицы Менделеева.

FRIB при МГУ также будет играть важную роль. Ожидается, что ядерные реакции с использованием тяжелых радиоактивных пучков позволят ученым приблизиться к ожидаемой области повышенной стабильности. Предоставляя уникальные данные об этих богатых нейтронами ядрах, FRIB улучшит наше понимание космического происхождения сверхтяжелых элементов.

# # #

Университет штата Мичиган создает FRIB в качестве нового научного пользовательского центра для Управления ядерной физики в США.S. Министерство энергетики, Управление науки. Строящийся на территории кампуса и управляемый МГУ, FRIB позволит ученым делать открытия о свойствах редких изотопов, чтобы лучше понимать физику ядер, ядерную астрофизику, фундаментальные взаимодействия и приложения для общества, в том числе в медицине, национальной безопасности и промышленность.

Сборка современной периодической таблицы

Собираем все вместе

В феврале 1869 года, во время написания второго тома своего учебника химии «Основы химии», Менделеев разработал свою собственную форму периодической таблицы.Популярные источники рассказывают о том, как Менделеев тасовал и переставлял карты, помеченные элементами и их свойствами, как в пасьянсе. Хотя историки не нашли карт в архиве Менделеева, они обнаружили бесчисленное множество групп элементов, покрытых вычеркнутыми идеями и перестановками. Кульминацией этой работы стала таблица Менделеева, в которой он организовал элементы путем увеличения атомной массы и выровнял элементы с аналогичными свойствами в ряды. В 1869 году Менделеев напечатал 200 экземпляров своей таблицы и разослал их коллегам по России и Европе.

Однако Менделеев пошел дальше простого создания таблицы; он утверждал, что организация элементов отражает основной периодический закон. Например, в то время как Мейер поменял местами теллур и йод, Менделеев поменял их местами и утверждал, что атомная масса одного из них должна быть неправильной. (На самом деле, атомные массы не были неправильными, потому что периодичность оказывается основанной на атомном номере, а не на атомной массе.) Менделеев скорректировал массы нескольких элементов на основе своей таблицы, и эти поправки позже были экспериментально подтверждены.

В то время как Мейер оставил пробелы в своей таблице, Менделеев предсказал, что будут обнаружены элементы, которые восполнят эти пробелы. Он зашел так далеко, что предсказал их атомные массы и свойства, и назвал их: эка-бор, эка-алюминий, эка-марганец и эка-кремний («эка» на санскрите означает «единичный» или «один»). Это был смелый шаг; В то время ожидалось, что химики будут репортерами существующих фактов, а не спекулянтами о том, что еще может быть обнаружено. Хотя он не был прав относительно всех их свойств, когда были открыты германий, галлий и скандий, химики смогли увидеть, как они вписываются в пробелы в таблице Менделеева, обеспечивая дальнейшее подтверждение периодического закона Менделеева.

Положение Менделеева как отца таблицы Менделеева укрепилось в 1890-х годах с открытием благородных газов. В то время не только было немыслимо, чтобы элемент мог быть инертным, но для них не было места в периодической таблице. В 1894 году аргон был открыт британским ученым лордом Рэли и шотландским ученым Уильямом Рамзи. Когда единственным предлагаемым благородным газом был аргон, Менделеев и другие химики утверждали, что это не новый элемент, а трехатомный азот (N 3 ).Однако после открытия гелия, криптона, неона и ксенона эти инертные газы не могли быть объяснены. Лишь в 1900 году Рамзи предложил новым элементам выделить отдельную группу между галогенами и щелочными металлами. Менделеев ответил так: «Это было чрезвычайно важно для [Рамзи] как подтверждение позиции вновь открытых элементов и для меня как великолепное подтверждение общей применимости периодического закона».

Дорога к нашей современной таблице Менделеева была извилистой, полной тупиков и неправильных поворотов.Это потребовало многочисленных открытий, ученых и экспериментов, а также многочисленных неудач и побед. По сути, это было типично для науки. Хотя нам нравится думать о науке, развивающейся через гениев-одиночек, таких как Менделеев, устремляющих нас к прогрессу, реальность науки такова, что она беспорядочная, требует обширного сотрудничества, основывается на работе других и пересматривает гипотезы, когда появляется новая информация. Менделеев, Мейер и другие были действительно выдающимися учеными не потому, что они сами все выяснили, а потому, что они были полностью вовлечены в выдающееся предприятие, которое мы называем наукой.

История периодической таблицы

В 1669 Немецкий торговец и алхимик-любитель Хенниг Бранд попытался создать Философский камень ; объект, который якобы мог превращать металлы в чистое золото. Он нагрел остатки кипяченой мочи, и жидкость вылилась и загорелась. Это было первое открытие фосфора.

В 1680 Роберт Бойль также открыл фосфор, и это стало достоянием общественности.

В 1809 было открыто по крайней мере 47 элементов, и ученые начали видеть закономерности в характеристиках.

В 1863 английский химик Джон Ньюлендс разделил тогда открытые 56 элементов на 11 групп, основываясь на характеристиках.

В 1869 Русский химик Дмитрий Менделеев начал разработку таблицы Менделеева, упорядочивая химические элементы по атомной массе. Он предсказал открытие других элементов и оставил для них свободные места в своей периодической таблице.

В 1886 французский физик Антуан Бекерель впервые обнаружил радиоактивность.Студент Томсона из Новой Зеландии Эрнест Резерфорд назвал три типа излучения; альфа-, бета- и гамма-лучи. Мари и Пьер Кюри начали работать над излучением урана и тория, а затем открыли радий и полоний. Они обнаружили, что бета-частицы заряжены отрицательно.

В 1894 сэр Уильям Рамзи и лорд Рэлей открыли благородные газы, которые были добавлены в таблицу Менделеева как группу 0.

В 1897 Английский физик Дж.Дж. Томсон первым открыл электроны; маленькие отрицательно заряженные частицы в атоме. Джон Таунсенд и Роберт Милликен определили их точный заряд и массу.

В 1900 Бекерель обнаружил, что электроны и бета-частицы, идентифицированные Кюри, — это одно и то же.

В 1903 Резерфорд объявил, что радиоактивность вызвана распадом атомов.

В 1911 Резерфорд и немецкий физик Ганс Гейгер обнаружили, что электроны вращаются вокруг ядра атома.

В 1913 Бор обнаружил, что электроны движутся вокруг ядра с дискретной энергией, называемой орбиталями. Излучение испускается при движении с одной орбиты на другую.

В 1914 Резерфорд впервые идентифицировал протоны в атомном ядре. Он также впервые трансмутировал атом азота в атом кислорода. Английский физик Генри Мозли предоставил атомные номера, основанные на количестве электронов в атоме, а не на атомной массе.

В 1932 Джеймс Чедвик впервые открыл нейтроны и идентифицировали изотопы.Это была полная основа периодической таблицы. В том же году англичанин Кокрофт и ирландец Уолтон впервые расщепили атом, бомбардируя литий в ускорителе частиц, превратив его в два ядра гелия.

В 1945 Гленн Сиборг идентифицировал лантаноиды и актиниды (атомный номер> 92), которые обычно помещаются под периодической таблицей.

Источники

Манхэттенский проект
Википедия

Разработка периодической таблицы Менделеева — Центр научного обучения

Хотя такие элементы, как золото, серебро, олово, медь, свинец и ртуть были известны с давних времен, первые научное открытие элемента произошло около 1669 года.Хенниг Бранд, немецкий алхимик, обработал мочу с помощью ряда процессов, в результате которых был получен элемент фосфор.

В течение следующих 200 лет было получено много знаний об элементах и ​​соединениях. К середине 19 века было открыто около 60 элементов.

Ученые начали распознавать закономерности в свойствах этих элементов и приступили к разработке схем классификации.

1862

Французский геолог Александр-Эмиль Бегуайе де Шанкуртуа нанес атомный вес элементов на бумажную ленту и намотал их, как спираль, вокруг цилиндра.Дизайн поместил аналогичные элементы в соответствующие точки друг над другом. Он назвал свою модель теллурической спиралью или винтом.

1864

Английский химик Джон Ньюлендс заметил, что, если элементы расположены в порядке их атомного веса, периодическое сходство наблюдается через каждые 7 элементов. Он предложил свой «закон октав» — аналог октав в музыке. Благородные газы еще не были открыты, поэтому таблица Ньюленда имела периодичность 7, а не 8.

1868

Лотар Мейер составил периодическую таблицу из 56 элементов, основанную на регулярной повторяющейся схеме физических свойств, таких как молярный объем.И снова элементы были расположены в порядке возрастания атомного веса. (Работа Мейера не была опубликована до 1870 г.)

1869

Русский химик Дмитрий Менделеев создал периодическую таблицу, основанную на атомных весах, но организованную «периодически». Элементы с похожими свойствами оказались друг под другом. Были оставлены пробелы для еще не обнаруженных элементов.

Природа науки

Наука — это смесь логики и воображения. Менделеев продемонстрировал эти атрибуты при разработке периодической таблицы элементов.

1894

Уильям Рамзи открыл благородные газы и понял, что они представляют новую группу в периодической таблице. Благородные газы еще раз подтвердили точность таблицы Менделеева.

1913

Генри Мозли определил атомный номер каждого из известных элементов. Он понял, что, если элементы расположены в порядке возрастания атомного номера, а не атомного веса, они лучше вписываются в «периодическую таблицу».

1928

Французский ученый-любитель Шарль Жане использует математические модели для исследования электронной конфигурации элементов.Он группирует элементы в блоки, названные в честь их атомных орбиталей: s-блок (острый), p-блок (главный), d-блок (диффузный) и f-блок (основной).

1944

Гленн Сиборг предложил «гипотезу актинидов» и опубликовал свою версию таблицы в 1945 году. Ряды лантанидов и актинидов образуют две строки под периодической таблицей элементов.

Периодическая таблица Менделеева сегодня

В большинстве школьных научных лабораторий есть копия таблицы Менделеева, прикрепленная где-нибудь к стене.

При внимательном рассмотрении таблицы видно следующее распределение типов элементов.

Большинство элементов — металлы. Металлоиды — это элементы, которые обладают некоторыми физическими свойствами металлов, но некоторыми химическими свойствами неметаллов. Сурьма, например, проводит электричество, но по химическому составу напоминает неметаллический фосфор.

Ученые постоянно работают над открытием новых материалов и дальнейшим исследованием свойств существующих элементов.Периодическая таблица Менделеева может быть пересмотрена, и новые элементы могут быть добавлены, но только после тщательного научного исследования. Международный союз теоретической и прикладной химии (IUPAC) проверяет добавление новых элементов, и в конце 2015 года был завершен 7-й период Периодической таблицы элементов.

Сопутствующие материалы

Просмотр Te taka pūmotu — Периодическая таблица элементов. В нем перечислены атомный номер (tua iraho), атомная масса (tau karihi), символ элемента (tohu), английские имена (kupu ingarihi) и имена маори (kupu Māori) для первых 103 элементов.

Команда Научно-учебного центра подготовила коллекцию ресурсов, связанных с периодической таблицей элементов. Войдите, чтобы сделать эту коллекцию частью вашей частной коллекции, просто нажмите на значок копии. Затем вы можете добавить дополнительный контент, примечания и внести другие изменения. Зарегистрировать учетную запись в Science Learning Hubs легко и бесплатно — зарегистрируйтесь, используя свой адрес электронной почты или учетную запись Google. Найдите кнопку «Войти» вверху каждой страницы.

Полезные ссылки

Веб-сайт Международного союза теоретической и прикладной химии (IUPAC).

Официальное объявление об открытии и присвоении новых элементов с атомными номерами 113, 115, 117 и 118 в 2015 году.

Новостная статья BBC о 4 новых элементах, о которой было объявлено 30 декабря 2015 года.

Radio New Zealand отмечает 2019 Международный год периодической таблицы Менделеева с серией Elemental. Каждую пятницу в «Ночах с Брайаном Крампом» есть элемент недели.

Прославьте женщин за периодической таблицей — эта статья из Nature Research посвящена женщинам-исследователям, которые открыли элементы и их свойства.

Части Периодической таблицы

атомная масса элемента — это средняя масса атомов элемента, измеряемого в единицах атомной массы (а.е.м., также известная как дальтон , D). Атомная масса представляет собой средневзвешенное значение всех изотопы этого элемента, в которых масса каждого изотопа равна умноженное на содержание этого конкретного изотопа. (Атомный масса также обозначается как атомный вес , но термин «масса» более точным.)

Например, экспериментально можно определить, что неон состоит из трех изотопов: неон-20 (с 10 протонами и 10 нейтронами в его ядро) массой 19,992 а.е.м. и содержанием 90,48%, неон-21 (с 10 протонами и 11 нейтронами) с массой 20,994 а.е.м. и содержание 0,27%, и неон-22 (с 10 протонами и 12 нейтронами) с масса 21,991 а.е.м. и содержание 9,25%. Средняя атомная масса неона таким образом:

0.9048 19,992 аму = 18,09 аму
0,0027 20,994 аму = 0,057 а.е.м.
0,0925 21,991 аму = 2,03 а.е.м.
20.18 а.е.м.

Атомная масса полезна в химии, когда она соединена с концепция моля: атомная масса элемента, измеренная в а.е.м., равна то же, что масса в граммах одного моля элемента. Таким образом, поскольку атомная масса железа составляет 55,847 а.е.м., один моль атомов железа весил бы 55,847 грамма. Эту же концепцию можно распространить на ионные соединения и молекулы. Одна формульная единица хлорида натрия (NaCl) весит 58.44 а.е.м. (22,98977 а.е.м. для Na + 35,453 а.е.м. для Cl), таким образом, моль хлорида натрия будет весить 58,44 грамма.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *