Таблица степеней
Таблица степеней от 1 до 10
11=1 12=1 13=1 14=1 15=1 16=1 17=1 18=1 19=1 1 |
21=2 22=4 23=8 24=16 25=32 26=64 27=128 28=256 29=512 210=1024 |
31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561 39=19683 310=59049 |
41=4 42=16 43=64 44=256 45=1024 46=4096 47=16384 48=65536 49=262144 410=1048576 |
51=5 52=25 53=125 54=625 55=3125 56=15625 57=78125 58=390625 59=1953125 510=9765625 |
62=36 63=216 64=1296 65=7776 66=46656 67=279936 68=1679616 69=10077696 610=60466176 |
71=7
72=49 73=343 74=2401 75=16807 76=117649 77=823543 78=5764801 79=40353607 710=282475249 |
82=64 83=512 84=4096 85=32768 86=262144 87=2097152 88=16777216 89=134217728 810=1073741824 |
91=9
92=81 93=729 94=6561 95=59049 96=531441 97=4782969 98=43046721 99=387420489 910=3486784401 |
10 102=100 103=1000 104=10000 105=100000 106=1000000 107=10000000 108=100000000 109=1000000000 1010=10000000000 |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1n | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
2n | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
3n | 3 | 9 | 27 | 81 | 243 | 729 | 2187 | 6561 | 19683 | 59049 |
4n | 4 | 16 | 64 | 256 | 1024 | 4096 | 16384 | 65536 | 262144 | 1048576 |
5n | 5 | 25 | 125 | 625 | 3125 | 15625 | 78125 | 390625 | 1953125 | 9765625 |
6n | 6 | 36 | 216 | 1296 | 7776 | 46656 | 279936 | 1679616 | 10077696 | 60466176 |
7n | 7 | 49 | 343 | 2401 | 16807 | 117649 | 823543 | 5764801 | 40353607 | 282475249 |
8n | 8 | 64 | 512 | 4096 | 32768 | 262144 | 2097152 | 16777216 | 134217728 | 1073741824 |
9n | 9 | 81 | 729 | 6561 | 59049 | 531441 | 4782969 | 43046721 | 387420489 | 3486784401 |
10n | 10 | 100 | 1000 | 10000 | 100000 | 1000000 | 10000000 | 100000000 | 1000000000 | 10000000000 |
Таблица степеней
возвести число в степень
В таблице степеней содержатся значения натуральных положительных чисел от 1 до 10.
Запись 35 читают «три в пятой степени». В этой записи число 3 называют основанием степени, число 5 показателем степени, выражение 35 называют степенью.
Показатель степени указывает сколько множителей в произведение, 35=3×3×3×3×3=243
Чтобы скачать таблицу степеней нажмите на уменьшенное изображение.
calcs.su
Таблица степеней по алгебре
На этой странице размещена таблица степеней от 2 до 10 для натуральных чисел от 1 до 20. Пример использования: находим в таблице число 9 (слева), затем во втором столбике видим квадрат числа, который равен 81. В третьем столбце таблицы значения кубов. Смотрите также: таблица квадратов, таблица корней.
https://uchim.org/matematika/tablica-stepenej — uchim.org
Таблица степеней
Пример: 23=8
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Свойства степени — 2 части
Таблица основных степеней по алгебре в компактном виде (картинка, удобно, чтобы распечатать), сверху числа, сбоку степени:

(можно открыть в новом окне, нажав на картинку)
Полную математическую таблицу можно бесплатно скачать, просто сохранив картинку выше с помощью правой кнопки мыши.
Всё для учебы » Математика в школе » Таблица степеней по алгебре
Чтобы добавить страницу в закладки, нажмите Ctrl+D.
Если страница помогла, сохраните её и поделитесь ссылкой с друзьями:
Ссылка: https://uchim.org/matematika/tablica-stepenej
Группа с кучей полезной информации (подпишитесь, если предстоит ЕГЭ или ОГЭ):
uchim.org
Таблица степеней
Что такое степень числа?
Степенью числа «a» с натуральным показателем «n», бóльшим 1, называется произведение «n» одинаковых множителей, каждый из которых равен числу «a».
\[ \underbrace{a \cdot a \cdot a \cdot a \cdot \cdots \cdot a = a ^{n} }_{n — \text множителей} \]
Запись «an» читается так: «а в степени n» или «n-ая степень числа a».
где:
a — основание степени;
n — показатель степени.
Таблица степеней от 1 до 10
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1n | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2n | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1 024 |
3n | 3 | 9 | 27 | 81 | 243 | 729 | 2 187 | 6 561 | 19 683 | 59 049 |
4n | 4 | 16 | 64 | 256 | 1 024 | 4 096 | 16 384 | 65 536 | 262 144 | 1 048 576 |
5n | 5 | 25 | 125 | 625 | 3 125 | 15 625 | 78 125 | 390 625 | 1 953 125 | 9 765 625 |
6n | 6 | 36 | 216 | 1 296 | 7 776 | 46 656 | 279 936 | 1 679 616 | 10 077 696 | 60 466 176 |
7n | 7 | 49 | 343 | 2 401 | 16 807 | 117 649 | 823 543 | 5 764 801 | 40 353 607 | 282 475 249 |
8n | 8 | 64 | 512 | 4 096 | 32 768 | 262 144 | 2 097 152 | 16 777 216 | 134 217 728 | 1 073 741 824 |
9n | 9 | 81 | 729 | 6 561 | 59 049 | 531 441 | 4 782 969 | 43 046 721 | 387 420 489 | 3 486 784 401 |
10n | 10 | 100 | 1 000 | 10 000 | 100 000 | 1 000 000 | 10 000 000 | 100 000 000 | 1 000 000 000 | 10 000 000 000 |
Таблица степеней от 1 до 10
1 1 = 1 1 2 = 1 1 3 = 1 1 4 = 1 1 5 = 1 1 6 = 1 1 7 = 1 1 8 = 1 1 9 = 1 1 10 = 1 |
2 1 = 2 2 2 = 4 2 3 = 8 2 4 = 16 2 5 = 32 2 6 = 64 2 7 = 128 2 8 = 256 2 9 = 512 2 10 = 1024 |
3 1 = 3 3 2 = 9 3 3 = 27 3 4 = 81 3 5 = 243 3 6 = 729 3 7 = 2187 3 8 = 6561 3 9 = 19683 3 10 = 59049 |
4 1 = 4 4 2 = 16 4 3 = 64 4 4 = 256 4 5 = 1024 4 6 = 4096 4 7 = 16384 4 8 = 65536 4 9 = 262144 4 10 = 1048576 |
5 1 = 5 5 2 = 25 5 3 = 125 5 4 = 625 5 5 = 3125 5 6 = 15625 5 7 = 78125 5 8 = 390625 5 9 = 1953125 5 10 = 9765625 |
6 1 = 6 6 2 = 36 6 3 = 216 6 4 = 1296 6 5 = 7776 6 6 = 46656 6 7 = 279936 6 8 = 1679616 6 9 = 10077696 6 10 = 60466176 |
7 1 = 7 7 2 = 49 7 3 = 343 7 4 = 2401 7 5 = 16807 7 6 = 117649 7 7 = 823543 7 8 = 5764801 7 9 = 40353607 7 10 = 282475249 |
8 1 = 8 8 2 = 64 8 3 = 512 8 4 = 4096 8 5 = 32768 8 6 = 262144 8 7 = 2097152 8 8 = 16777216 8 9 = 134217728 8 10 = 1073741824 |
9 1 = 9 9 2 = 81 9 3 = 729 9 4 = 6561 9 5 = 59049 9 6 = 531441 9 7 = 4782969 9 8 = 43046721 9 9 = 387420489 9 10 = 3486784401 |
10 1 = 10 10 2 = 100 10 3 = 1000 10 4 = 10000 10 5 = 100000 10 6 = 1000000 10 7 = 10000000 10 8 = 100000000 10 9 = 1000000000 10 10 = 10000000000 |
Калькулятор степеней онлайн
Онлайн калькулятор расчета степеней
Входные данные
Число*
Степень*
Точность
1234567
* Обязательные поля для заполненияРезультат
В таблице степеней содержатся значения натуральных положительных чисел от 1 до 10.
Запись 35 читают «три в пятой степени». В этой записи число 3 называют основанием степени, число 5 показателем степени, выражение 35 называют степенью.
Показатель степени указывает сколько множителей в произведение, 35=3×3×3×3×3=243
В вашем браузере отключен Javascript.Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Не можешь написать работу сам?
Доверь её нашим специалистам
от 100 р.стоимость заказа
2 часамин. срок
Узнать стоимость
calcsbox.com
Таблица степеней натуральных чисел | Формулы с примерами
Калькулятор степени натурального числа
Таблица степеней натуральных чисел от 2 до 25
! Наведите на ячейку, для того, чтобы увеличить значение в таблице.
x | В степени: | ||||||||
---|---|---|---|---|---|---|---|---|---|
Число | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1 024 |
3 | 9 | 27 | 81 | 243 | 729 | 2 187 | 6 561 | 19 683 | 59 049 |
4 | 16 | 64 | 256 | 1 024 | 4 096 | 16 384 | 65 536 | 262 144 | 1 048 576 |
5 | 25 | 125 | 625 | 3 125 | 15 625 | 78 125 | 390 625 | 1 953 125 | 9 765 625 |
6 | 36 | 216 | 1 296 | 7 776 | 46 656 | 279 936 | 1 679 616 | 10 077 696 | 60 466 176 |
7 | 49 | 343 | 2 401 | 16 807 | 117 649 | 823 543 | 5 764 801 | 40 353 607 | 282 475 249 |
8 | 64 | 512 | 4 096 | 32 768 | 262 144 | 2 097 152 | 16 777 216 | 134 217 728 | 1 073 741 824 |
9 | 81 | 729 | 6 561 | 59 049 | 531 441 | 4 782 969 | 43 046 721 | 387 420 489 | 3 486 784 401 |
10 | 100 | 1 000 | 10 000 | 100 000 | 1 000 000 | 10 000 000 | 100 000 000 | 1 000 000 000 | 10 000 000 000 |
11 | 121 | 1 331 | 14 641 | 161 051 | 1 771 561 | 19 487 171 | 214 358 881 | 2 357 947 691 | 25 937 424 601 |
12 | 144 | 1 728 | 20 736 | 248 832 | 2 985 984 | 35 831 808 | 429 981 696 | 5 159 780 352 | 61 917 364 224 |
13 | 169 | 2 197 | 28 561 | 371 293 | 4 826 809 | 62 748 517 | 815 730 721 | 10 604 499 373 | 137 858 491 849 |
14 | 196 | 2 744 | 38 416 | 537 824 | 7 529 536 | 105 413 504 | 1 475 789 056 | 20 661 046 784 | 289 254 654 976 |
15 | 225 | 3 375 | 50 625 | 759 375 | 11 390 625 | 170 859 375 | 2 562 890 625 | 38 443 359 375 | 576 650 390 625 |
16 | 256 | 4 096 | 65 536 | 1 048 576 | 16 777 216 | 268 435 456 | 4 294 967 296 | 68 719 476 736 | 1 099 511 627 776 |
17 | 289 | 4 913 | 83 521 | 1 419 857 | 24 137 569 | 410 338 673 | 6 975 757 441 | 118 587 876 497 | 2 015 993 900 449 |
18 | 324 | 5 832 | 104 976 | 1 889 568 | 34 012 224 | 612 220 032 | 11 019 960 576 | 198 359 290 368 | 3 570 467 226 624 |
19 | 361 | 6 859 | 130 321 | 2 476 099 | 47 045 881 | 893 871 739 | 16 983 563 041 | 322 687 697 779 | 6 131 066 257 801 |
20 | 400 | 8 000 | 160 000 | 3 200 000 | 64 000 000 | 1 280 000 000 | 25 600 000 000 | 512 000 000 000 | 10 240 000 000 000 |
21 | 441 | 9 261 | 194 481 | 4 084 101 | 85 766 121 | 1 801 088 541 | 37 822 859 361 | 794 280 046 581 | 16 679 880 978 201 |
22 | 484 | 10 648 | 234 256 | 5 153 632 | 113 379 904 | 2 494 357 888 | 54 875 873 536 | 1 207 269 217 792 | 26 559 922 791 424 |
23 | 529 | 12 167 | 279 841 | 6 436 343 | 148 035 889 | 3 404 825 447 | 78 310 985 281 | 1 801 152 661 463 | 41 426 511 213 649 |
24 | 576 | 13 824 | 331 776 | 7 962 624 | 191 102 976 | 4 586 471 424 | 110 075 314 176 | 2 641 807 540 224 | 63 403 380 965 376 |
25 | 625 | 15 625 | 390 625 | 9 765 625 | 244 140 625 | 6 103 515 625 | 152 587 890 625 | 3 814 697 265 625 | 95 367 431 640 625 |
formula-xyz.ru
Таблица степеней
Существует множество таблиц значений степеней натуральных чисел. Привести их все не представляется возможным. Здесь мы приведем примеры некоторых таких таблиц и задачи на нахождение значений по таким таблицам.
Таблица степеней первых натуральных чисел
Приведем для начала таблицу для нахождения степеней натуральных чисел от $2$ до $12$ по степеням от $1$ до $10$ (таблица 1). Отметим, что мы не приводим степени числа $1$, потому что единица в любой степени будет равняться самой себе.
Находить по этой таблице значения надо следующим образом: В первом столбце находим число, степень которого нас интересует. Запоминаем номер этой строчки. Затем в первой сроке находим показатель степени и запоминаем найденный столбец. Пересечение найденной строки и столбца и даст нам ответ.
Пример 1
Найти $8^7$
Решение.
Находим в первом столбце число $8$: получаем 8-ю строчку.
Находим в первой строке число $7$: получаем 8-й столбец.
Видим, что на их пересечении находится число $2097152$. Следовательно
$8^7=2097152$
Таблицы степеней натуральных чисел от $1$ до $100$
Также довольно популярны таблицы степеней от $1$ до $100$. Все их привести невозможно, поэтому мы здесь приведем для примера такие таблицы для квадратов и кубов таких натуральных чисел (таблица 2 и таблица 3).
Эти таблицы напоминают всем известные таблицы умножения, поэтому, мы думаем, читателю не составит труда использование данных таблиц.
Пример 2
Найти
а) $76^2$.
б) $28^3$
Решение.
а) Данное значение находим в таблице $2$ в $8$ табличке:
$76^2=5776$
б) Данное значение находим в таблице $3$ в $3$ табличке:
$28^3=21952$
Таблица квадратов натуральных чисел от $10$ до $99$
Еще одной пользующейся популярностью таблицей является таблица квадратов чисел от $10$ до $99$ (таблица 4), то есть всех десятичных чисел.
Находить по этой таблице значения надо следующим образом: В первом столбце находим число десятков интересующего нас числа. Запоминаем номер этой строчки. Затем в первой сроке находим число единиц интересующего числа и запоминаем найденный столбец. Пересечение найденной строки и столбца и даст нам ответ.
Пример 3
Найти $37^2$
Решение.
Находим в первом столбце число $3$: получаем 4-ю строчку.
Находим в первой строке число $7$: получаем 8-й столбец.
Видим, что на их пересечении находится число $1369$. Следовательно
$37^2=1369$
spravochnick.ru
Таблица степеней
Возведение в степень — бинарная операция, происходящая из сокращения для множественного умножения числа на самого себя. Обозначение: ab называется степенью с основанием a и показателем b. Логарифм — обратная к возведению в степень функция.
Ниже представлена таблица степеней от 1 до 10.
1n | 2n | 3n | 4n | 5n | 6n | 7n | 8n | 9n | 10n | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 |
3 | 1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729 | 1000 |
4 | 1 | 16 | 81 | 256 | 625 | 1296 | 2401 | 4096 | 6561 | 10000 |
5 | 1 | 32 | 243 | 1024 | 3125 | 7776 | 16807 | 32768 | 59049 | 100000 |
6 | 1 | 64 | 729 | 4096 | 15625 | 46656 | 117649 | 262144 | 531441 | 1000000 |
7 | 1 | 128 | 2187 | 16384 | 78125 | 279936 | 823543 | 2097152 | 4782969 | 10000000 |
8 | 1 | 256 | 6561 | 65536 | 390625 | 1679616 | 5764801 | 16777216 | 43046721 | 100000000 |
9 | 1 | 512 | 19683 | 262144 | 1953125 | 10077696 | 40353607 | 134217728 | 387420489 | 1000000000 |
10 | 1 | 1024 | 59049 | 1048576 | 9765625 | 60466176 | 282475249 | 1073741824 | 3486784401 | 10000000000 |
Другие заметки по алгебре и геометрии
edu.glavsprav.ru
Таблица основных степеней — методическая рекомендация. Алгебра, 7 класс.
1. | Квадрат числа (целое число или десятичная дробь) | 1 вид — рецептивный | лёгкое | 2 Б. | Представление числа в виде квадрата. |
2. | Куб числа (отрицательное число) | 1 вид — рецептивный | лёгкое | 1 Б. | Представление числа в виде куба. |
3. | Степень обыкновенной дроби | 1 вид — рецептивный | лёгкое | 1 Б. | Представление числа в виде степени. |
4. | Степень числа 10 | 1 вид — рецептивный | лёгкое | 1 Б. | Запись числа в виде степени с основанием 10. |
5. | Степень единицы и десяти | 1 вид — рецептивный | лёгкое | 3 Б. | Вычисление степени единицы и десяти. |
6. | Произведение степеней | 2 вид — интерпретация | лёгкое | 2 Б. | Вычисление произведения степеней. |
7. | Сумма степеней (единица, нуль) | 2 вид — интерпретация | лёгкое | 4 Б. | Вычисление суммы степеней. |
8. | Сумма степеней (десятичные дроби) | 2 вид — интерпретация | среднее | 3 Б. | Вычисление суммы степеней. |
9. | Сумма степеней (обыкновенные дроби) | 2 вид — интерпретация | среднее | 3 Б. | Вычисление суммы степеней. |
10. | Сравнение степени с нулём (целые числа) | 2 вид — интерпретация | среднее | 2 Б. | Сравнение степени с нулём. |
11. | Сравнение степеней (обыкновенные дроби) | 2 вид — интерпретация | среднее | 2 Б. | Сравнение степеней. |
12. | Сравнение выражения с нулём | 2 вид — интерпретация | среднее | 2 Б. | Сравнение выражения с нулём. |
13. | Неизвестный показатель степени | 2 вид — интерпретация | среднее | 2 Б. | Нахождение неизвестного показателя степени. |
14. | Сумма разрядных слагаемых | 2 вид — интерпретация | среднее | 3 Б. | Запись числа, представленного суммой разрядных слагаемых. |
15. | Квадрат единицы, нуля и десяти | 2 вид — интерпретация | среднее | 3 Б. | Вычисление значения выражения. |
16. | Расположение чисел по возрастанию (убыванию) | 2 вид — интерпретация | среднее | 5 Б. | Расположение чисел по возрастанию (убыванию). |
17. | Сумма показателей степеней | 2 вид — интерпретация | среднее | 3 Б. | Вычисление суммы показателей степеней. |
18. | Неизвестный показатель степени, уравнение (произведение) | 2 вид — интерпретация | сложное | 4 Б. | Нахождение неизвестного показателя степени. |
19. | Неизвестный показатель степени, уравнение (частное) | 2 вид — интерпретация | сложное | 4 Б. | Нахождение неизвестного показателя степени. |
20. | Уравнение, сводимое к линейному | 2 вид — интерпретация | сложное | 5 Б. | Нахождение неизвестного показателя степени. |
www.yaklass.ru