Свойства na – №11 Натрий

Содержание

№11 Натрий

Таблица
  ^   =>>
v


Натрий в минеральном масле


и натрий в ампуле
(фото сайта periodictable.ru)

История открытия:

Натроном первоначально называли гидроксид натрия. В 1807 г. Дэви путем электролиза слегка увлажненных твердых щелочей получил свободные металлы — калий и натрий, назвав их потассий (Potassium) и содий (Sodium). Берцелиус, и затем Гесс в России предложили названия Natrium / Натрий, которое и закрепилось.

Нахождение в природе, получение:

В природе щелочные металлы в свободном виде не встречаются. Натрий входит в состав различных соединений. Наиболее важным является соединение натрия с хлором NaCl, которое образует залежи каменной соли (Донбасс, Соликамск, Соль-Илецк и др.). Хлорид натрия содержится также в морской воде и соляных источниках. Натрий относится к числу распространенных элементов. Содержание натрия в земной коре составляет 2,64%.
Получают электролизом расплавленного хлорида натрия или гидроксида натрия. Применяется также и восстановление его оксидов, хлоридов, карбонатов алюминием, кремнием, кальцием, магнием при нагревании в вакууме.

Физические свойства:

Натрий — серебристо-белый металл, его плотность — 0,97 г/см3, очень мягкий, легко режется ножом. Между атомами металлическая связь. Для вещества с такой связью характерны металлический блеск, пластичность, мягкость, хорошая электрическая проводимость и теплопроводность.

Химические свойства:

Атом натрия при химическом взаимодействии легко отдает валентные электроны, переходя в положительно заряженный ион. На воздухе быстро окисляется, поэтому его хранят под слоем керосина.
При сгорании в избытке кислорода образует пероксид натрия, Na2O2
С водородом при нагревании образует гидрид Na + H2 = 2NaH
Легко взаимодействует со многим неметаллами — галогенами, серой, фосфором и др.
Бурно реагирует с водой: 2Na + 2H2O = 2NaOH + H2

Важнейшие соединения:

Оксид натрия

, Na2O (бесцветный), реагирует с парами воды, углекислым газом, потому хранить лучше в безводном бензоле.
При непосредственной реакции натрия с кислородом получается смесь оксида и пероксида натрия. Для получения чистого оксида можно использовать реакцию: Na2O2 + 2Na = 2Na2O
Пероксид натрия, Na2O2 (желтый) кристаллическое вещество с ионной решеткой, взаимодействует с влажным углекислым газом воздуха, выделяя кислород: 2Na2O2 + 2CO2 = 2Na2CO3 + O2
Гидроксид натрия, NaOH — кристаллическое белое вещество, сравнительно легкоплавкое, термически очень устойчиво. При нагревании испаряется без потери воды. Хорошо растворяется в воде, в спиртах.
Галогениды натрия, бесцветные кристаллические вещества, хорошо растворимы в воде, за исключением NaF. Для них характерны восстановительные свойства.
Сульфид натрия, — Na
2
S. Бесцветное кристаллическое вещество с ионной решеткой. Хорошо растворимо в воде, является сильным восстановителем.
Соли, все соли хорошо растворимы, являются сильными электролитами.
Гидрид натрия, NaH — бесцветное кристаллическое вещество с кристаллической решеткой типа NaCl, анионом является H. Получают пропусканием водорода над расплавленными металлом. Подвергается термической диссоциации не плавясь, легко разлагаются водой:
2NaH = 2Na + H2
NaH + H2O = NaOH + H2

Применение:

Соединения натрия — важнейшие компоненты химических производств. Используются в мыловарении, производстве стекла, средств бытовой химии.
Натрий важен для большинства форм жизни, включая человека. В живых организмах ионы натрия вместе с ионами калия выполняют функцию передатчиков нервного импульса. Также его ионы играют важную роль в поддержании водного режима организма.

Бондарева Мария Александровна

ХФ ТюмГУ, 561 группа.


Источники: Г.П. Хомченко «Пособие по химии для поступающих в ВУЗы»
                    «Неорганическая химия в схемах и таблицах»

www.kontren.narod.ru

Натрий — Мегаэнциклопедия Кирилла и Мефодия — статья

На́трий (лат. Natrium, от арабского натрун, греческого nitron — природная сода), Na (читается «натрий»), химический элемент с атомным номером 11, атомной массой 22, 98977. В природе встречается один стабильный изотоп 23Na. Принадлежит к числу щелочных металлов. Расположен в третьем периоде в группе IА в периодической системе элементов. Конфигурация внешнего электронного слоя 3s1. Степень окисления +1 (валентность I).

Рaдиус атома 0, 192 нм, радиус иона Na+0, 116 нм (координационное число 6). Энергии последовательной ионизации 5, 139 и 47, 304 эВ. Электроотрицательность по Полингу 1, 00.

Поваренная соль (хлорид натрия NaCl), едкая щелочь (гидроксид натрия NaOH) и сода (карбонат натрия Na

2CO3) находили применение еще в Древней Греции.

Металлический Na впервые получил в 1807 Г. Дэви, используя электролиз расплава каустической соды.

В воде Мирового океана содержится 1, 5·1016т солей натрия.

Na получают электролизом расплава хлорида натрия NaCl, с добавлением NаСl2, КСl и NaF для снижения температуры плавления электролита до 600°C. Аноды изготовлены из графита, катоды — из меди или железа. Электролиз расплава проводят в стальном электролизере с диафрагмой. Параллельно с Na электролизом получают Cl2:

2NaCl=2Na+Cl2

Получаемый Na очищают вакуумной дистилляцией или обработкой титаном или сплавом титана и циркония.

Натрий — мягкий серебристо-белый металл, быстро тускнеющий на воздухе.

Na мягок, легко режется ножом, поддается прессованию и прокатке. Выше -222°C устойчива кубическая модификация, а = 0, 4291 нм. Ниже — гексагональная модификация. Плотность 0, 96842 кг/дм

3. Тaмпература плавления 97, 86°C, кипения 883, 15°C. Пары натрия состоят из Na и Na2.

Na химически очень активен. При комнатной температуре взаимодействует с O2 воздуха, парами воды и CO2 с образованием рыхлой корки. При сгорании Na в кислороде образуются пероксид Na2О2 и оксид Na2O:

4Na+O2=2Na2O и 2Na+O2=Na2O2

При нагревании на воздухе Na сгорает желтым пламенем, в желтый цвет окрашивают пламя и многие соли натрия. Натрий бурно реагирует с водой и разбавленными кислотами:

2Na+H2O=2NaOH+H2

При взаимодействии Na и спирта выделяется H2 и образуется алкоголят натрия. Например, взаимодействуя с этанолом С2Н5ОН, Na образует этанолят натрия С2Н5ОNa:

С2Н5

ОН+2Na=2С2Н5ОNa+H2

Кислородсодержащие кислоты, взаимодействуя с Na, восстанавливаются:

2Na+2Н2SO4=SO2+Na2SO4+2H2O

При нагревании до 200°C Na реагирует с H2 с образованием гидрида NaН:

2Na+H2=2NaH

Натрий самовоспламеняется в атмосфере фтора или хлора, с иодом реагирует при нагревании. При перетирании в ступке Na реагирует с S с образованием сульфидов переменного состава. С N2 реакция протекает в электрическом разряде, образуются нитрид натрия Nа3N или азид NaN3. Na реагирует с жидким аммиаком с образованием голубых растворов, где Na присутствует в виде ионов Na+.

Оксид натрия Na2O проявляет ярко выраженные основные свойства, легко реагирует с водой с образованием сильного основания — гидроксида натрия NaОН:

Na2O+H2O=2NaOH

Пероксид натрия Na2

O2 реагирует с водой с выделением кислорода:

2Na2O2+2H2O=4NaOH+O2

Гидроксид натрия — очень сильное основание, щелочь, хорошо растворим в воде (в 100 г воды при 20 °C растворяется 108 г NaOH). NaОН взаимодействует с кислотными и амфотерными оксидами:

CO2+2NaOH=Na2CO3+H2O,

Al2O3+2NaOH+3H2O=2Na[Al(OH)4] (в растворе),

Al2O3+2NaOH=2NaAlO2+H2O (при сплавлении)

В промышленности гидроксид натрия NaOH получают электролизом водных растворов NaCl или Na2CO3 c применением ионообменных мембран и диафрагм:

2NaCl+2H2O=2NaOH+Cl2+H2

Попадание твердого NaOH или капель его раствора на кожу вызывает тяжелые ожоги. Водные растворы NaOH при хранении разрушают стекло, расплавы — фарфор.

Карбонат натрия Na2CO

3 получают насыщением водного раствора NaCl аммиаком и CO2. Рaстворимость образующегося гидрокарбоната натрия NaHCO3 менее 10 г в 100 г воды при 20°C, основная часть NaHCO3 выпадает в осадок:

NaCl+NH3+CO2=NaHCO3,

который отделяют фильтрованием. При прокаливании NaHCO3 образуется кальцинированная сода:

2NaHCO3=Na2CO3+CO2+H2O

У большинства солей Na растворимость с ростом температуры возрастает не так сильно, у солей калия.

Na — сильный восстановитель:

TiCl4+4Na=4NaCl+Ti

Нaтрий применяется как восстановитель активных металлов, его расплав в смеси с калием является теплоносителем в ядерных реакторах, так как он плохо поглощает нейтроны. Пaры Na используются в лампах накаливания.

NaCl используется в пищевой промышленности, гидроксид натрия NaOH — в производстве бумаги, мыла, искусственных волокон, в качестве электролита. Кaрбонат натрия Na

2CO3 и гидрокарбонат NaНСO3 — применяется в пищевой промышленности, является компонентом огнетушащих средств, лекарством. Фосфат натрия Na3PO4 — компонент моющих средств, применяют в производстве стекол и красок, в пищевой промышленности, в фотографии. Силикаты mNa2nSiO2 — компоненты шихты в производстве стекла, для получения алюмосиликатных катализаторов, жаростойких, кислотоупорных бетонов.

Ионы натрия Na+ необходимы для нормального функционирования организма, они участвуют в процессах обмена веществ. В плазме крови человека содержание ионов Na+ 0, 32% по массе, в костях — 0, 6%, В мышечных тканях — 1, 5%. Для восполнения естественной убыли человек должен ежедневно употреблять с пищей 4-5 г Na.

Хранят натрий в герметично закрытых железных контейнерах под слоем обезвоженного керосина или минерального масла. Загоревшийся Na заливают минеральным маслом или засыпают смесью талька и NaCl. Образующиеся отходы металлического Na уничтожают в емкостях с этиловым или пропиловым спиртом.

  • Ситтинг М. Натрий, его производство, свойства и применение / Пер. с англ. М., 1961.

megabook.ru

Натрий (Na, Natrium) — влияние на организм, польза и вред, описание

История натрия

Натрий в чистом виде получил в 1807 году Хемфри Дэви – английский химик, который незадолго до натрия открыл калий. Дэви проводил процесс электролиза одного из соединений натрия – гидроксида, расплавив который и получил натрий. Соединениями натрия человечество пользовалось со времён глубокой древности, содой природного происхождения пользовались ещё в Древнем Египте (calorizator). Называли элемент содий (sodium), иногда именно это название можно встретить даже сейчас. Привычное название натрий (от латинского natrium – сода) было предложено шведом Йенсом Берцелиусом.

Общая характеристика натрия

Натрий является элементом I группы III третьего периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 11 и атомную массу 22,99. Принятое обозначение – Na (от латинского natrium).

Нахождение в природе

Соединения натрия содержатся в земной коре, морской воде, в виде примеси, имеющей свойство окрашивать каменную соль в синий цвет из-за действия радиации.

Физические и химические свойства

Натрий является мягким пластичным щелочным металлом, имеет серебристо-белый цвет и блеск на свежем срезе (натрий вполне возможно разрезать ножом). При применении давления превращается в прозрачное вещество красного цвета, при обычной температуре кристаллизуется. При взаимодействии с воздухом быстро окисляется, поэтому хранить натрий необходимо под слоем керосина.

Суточная потребность в натрии

Натрий – важный для организма человека микроэлемент, суточная потребность в нём для взрослых составляет 550 мг, для детей и подростков – 500-1300 мг. В период беременности норма натрия в сутки составляет 500 мг, а в некоторых случаях (обильное потоотделение, обезвоживание, приём мочегонных препаратов) должна быть увеличена.

Продукты питания богатые натрием

Натрий содержится практически во всех морепродуктах (раках, крабах, осьминогах, кальмарах, мидиях, морской капусте), рыбе (анчоусах, сардинах, камбале, корюшке и т.д.), куриных яйцах, крупах (гречневой, рисе, перловой, овсяной, пшённой), бобовых (горохе, фасоли), овощах (томатах, сельдерее, моркови, капусте, свёкле), молочных продуктах и мясных субпродуктах.

Полезные свойства натрия и его влияние на организм

Полезными для организма свойствами натрия являются:

  • Нормализация водно-солевого обмена;
  • Активизация ферментов слюнной и поджелудочной желез;
  • Участие в выработке желудочного сока;
  • Поддержание нормального кислотно-щелочного баланса;
  • Генерирование функций нервной и мышечной системы;
  • Сосудорасширяющее действие;
  • Поддержание осмотической концентрации крови.

Усвояемость натрия

Натрий содержится практически во всех продуктах, хотя большую его часть (около 80%) организм получает из поваренной соли. Усвоение в основном происходит в желудке и тонком кишечнике. Витамин D улучшает усвоение натрия, однако, чрезмерно соленая пища и пища богатая белками препятствуют нормальному всасыванию.

Взаимодействие с другими

Повышенное потребление натрия вызывает накопление жидкости в организме, отеки, повышает кровяное давление. Большой прием натрия (соли) приведет к истощению запасов калия, кальция и магния.

Применение натрия в жизни

Применение металлического натрия – химическая и металлургическая промышленность, где он выступает в роли сильнейшего восстановителя. Хлоридом натрия (поваренной солью) пользуются все без исключения жители нашей планеты, это самое известное вкусовое средство и древнейший консервант.

Признаки нехватки натрия

Нехватка натрия обычно случается при чрезмерном потоотделении – в жарком климате или при физических нагрузках. Недостаток натрия в организме характеризуется ухудшением памяти и потерей аппетита, головокружением, быстрой утомляемостью, обезвоживанием, мышечной слабостью, а иногда – судорогами, кожными высыпаниями, желудочными спазмами, тошнотой, рвотой.

Признаки избытка натрия

Излишнее количество натрия в организме даёт о себе знать постоянной жаждой, отёками и аллергическими реакциями.

Автор: Виктория Н. (специально для Calorizator.ru)
Копирование данной статьи целиком или частично запрещено.

www.calorizator.ru

Натрий — это… Что такое Натрий?

Внешний вид простого вещества
Свежесрезанный натрий Серебристо-белый мягкий металл
Свойства атома
Имя, символ, номер

Натрий/Natrium (Na), 11

Атомная масса
(молярная масса)

22,989768 а. е. м. (г/моль)

Электронная конфигурация

[Ne] 3s1

Радиус атома

190 пм

Химические свойства
Ковалентный радиус

154 пм

Радиус иона

97 (+1e) пм

Электроотрицательность

0,93 (шкала Полинга)

Электродный потенциал

-2,71 в

Степени окисления

1

Энергия ионизации
(первый электрон)

495,6(5,14) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

0,971 г/см³

Температура плавления

370,96 K (97,81°C)

Температура кипения

1156,1 K (882,95°C)

Теплота плавления

2,64 кДж/моль

Теплота испарения

97,9 кДж/моль

Молярная теплоёмкость

28,23[1] Дж/(K·моль)

Молярный объём

23,7 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая объемноцентрированая

Параметры решётки

4,2820 Å

Температура Дебая

150 K(-123.15°C)

Прочие характеристики
Теплопроводность

(300 K) 142,0 Вт/(м·К)

На́трий — элемент главной подгруппы первой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 11. Обозначается символом Na (лат. Natrium). Простое вещество натрий (CAS-номер: 7440-23-5) — мягкий щелочной металл серебристо-белого цвета.

История и происхождение названия

Натрий (а точнее, его соединения) использовался с давних времён. Например, сода (натрон), встречается в природе в водах натронных озёр в Египте. Природную соду древние египтяне использовали для бальзамирования, отбеливания холста, при варке пищи, изготовлении красок и глазурей. Плиний Старший пишет, что в дельте Нила соду (в ней была достаточная доля примесей) выделяли из речной воды. Она поступала в продажу в виде крупных кусков, из-за примеси угля окрашенных в серый или даже чёрный цвет.

Название «натрий» происходит от латинского слова natrium (ср. др.-греч. νίτρον), которое было заимствовано из среднеегипетского языка (nṯr), где оно означало среди прочего: «сода», «едкий натр»[2].

Аббревиатура «Na» и слово natrium были впервые использованы академиком, основателем шведского общества врачей Йенсом Якобсом Берцелиусом (Jöns Jakob Berzelius, 1779—1848) для обозначения природных минеральных солей, в состав которых входила сода[3]. Ранее элемент именовался содием (лат. sodium). Название sodium, возможно, восходит к арабскому слову suda, означающему «головная боль», так как сода применялась в то время в качестве лекарства от головной боли[4].

Натрий впервые был получен английским химиком Хемфри Дэви в 1807 году электролизом расплава гидроксида натрия.

Нахождение в природе

Кларк натрия в земной коре 25 кг/т. Содержание в морской воде в виде соединений — 10,5 г/л[5]. Металлический натрий встречается как примесь, окрашивающая каменную соль в синий цвет. Данную окраску соль приобретает под действием радиации.

Получение

Промышленное получение натрия по способу Девилля, распространённое в 19 веке. AC — железная трубка со смесью соды, угля и мела; B — холодильник Донни и Мареска; R — приёмник с нефтью.

Первым промышленным способом получения натрия стала карботермическая реакция восстановления карбоната натрия углем при нагревании тесной смеси этих веществ в железной ёмкости до 1000 °C (способ Девилля) [6]:

Аналогично, могут быть использованы карбид кальция, алюминий, кремний, ферросилиций, силикоалюминий. [7][8]

С появлением электроэнергетики стал более практичен другой способ получения натрия — электролиз расплава едкого натра или хлорида натрия. В настоящее время электролиз — основной способ получения натрия.

Натрий также можно получить циркониетермическим методом, а также термическим разложением азида натрия.

Физические свойства

Металлический натрий, сохраняемый в масле \mathsf{Na_2CO_3 + 2C \ \xrightarrow{1000^oC}\ 2Na + 3CO. } Качественное определение натрия с помощью пламени — ярко-жёлтый цвет эмиссионного спектра «D-линии натрия», дублет 588,9950 и 589,5924 нм.

Натрий — серебристо-белый металл[9], в тонких слоях с фиолетовым оттенком, пластичен, даже мягок (легко режется ножом), свежий срез натрия блестит. Величины электропроводности и теплопроводности натрия достаточно высоки, плотность равна 0,96842 г/см³ (при 19,7 °C), температура плавления 97,86 °C, температура кипения 883,15 °C.

Под давлением становится прозрачным и красным, как рубин[9].

При комнатной температуре натрий образует кристаллы в кубической сингонии, пространственная группа I m3m, параметры ячейки a = 0,42820 нм, Z = 2. При температуре -268°С (5 К) натрий переходит в гексагональную фазу, пространственная группа P 63/mmc, параметры ячейки a = 0,3767 нм, c = 0,6154 нм, Z = 2.

Химические свойства

Щелочной металл, на воздухе легко окисляется. Для защиты от кислорода воздуха металлический натрий хранят под слоем керосина.

При горении на воздухе или в кислороде образуется пероксид натрия:

С водой натрий реагирует очень бурно, реакция идёт с выделением водорода, который может самовоспламениться или взорваться, куски металла всплывают на поверхность и могут расплавиться:

Как и все щелочные металлы, натрий является сильным восстановителем и энергично взаимодействуют со многими неметаллами (за исключением азота, иода, углерода, благородных газов):

Натрий более активный чем литий. С азотом реагирует крайне плохо в тлеющем разряде, образуя очень неустойчивое вещество — нитрид натрия (в противоположность нитриду лития):

С разбавленными кислотами взаимодействует как обычный металл:

С концентрированными окисляющими кислотами выделяются продукты восстановления:

Растворяется в жидком аммиаке, образуя синий раствор:

С газообразным аммиаком взаимодействует при нагревании

С ртутью образует амальгаму натрия, которая используется как более мягкий восстановитель вместо чистого металла. При сплавлении с калием даёт жидкий сплав.

Алкилгалогениды с избытком металла могут давать натрийорганические соединения — высокоактивные соединения, которые обычно самовоспламеняются на воздухе и взрываются с водой.

Применение

Металлический натрий широко используется в препаративной химии и промышленности как сильный восстановитель, в том числе в металлургии. Используется для осушения органических растворителей, например, эфира. Натрий используется в производстве весьма энергоёмких натриево-серных аккумуляторов. Его также применяют в выпускных клапанах грузовиков как теплоотвод. Изредка металлический натрий применяется в качестве материала для электрических проводов, предназначенных для очень больших токов.

В сплаве с калием, а также с рубидием и цезием используется в качестве высокоэффективного теплоносителя. В частности, сплав состава натрий 12 %, калий 47 %, цезий 41 % имеет рекордно низкую температуру плавления −78 °C и был предложен в качестве рабочего тела ионных ракетных двигателей и теплоносителя для атомных энергоустановок.

Натрий также используется в газоразрядных лампах высокого и низкого давления (НЛВД и НЛНД). Лампы НЛВД типа ДНаТ (Дуговая Натриевая Трубчатая) очень широко применяются в уличном освещении. Они дают ярко-жёлтый свет. Срок службы ламп ДНаТ составляет 12-24 тысяч часов. Поэтому газоразрядные лампы типа ДНаТ незаменимы для городского, архитектурного и промышленного освещения. Также существуют лампы ДНаС, ДНаМТ (Дуговая Натриевая Матовая), ДНаЗ (Дуговая Натриевая Зеркальная) и ДНаТБР (Дуговая Натриевая Трубчатая Без Ртути).

Металлический натрий применяется в качественном анализе органического вещества. Сплав натрия и исследуемого вещества нейтрализуют этанолом, добавляют несколько миллилитров дистиллированной воды и делят на 3 части, проба Ж. Лассеня (1843), направлена на определение азота, серы и галогенов (проба Бейльштейна)

Хлорид натрия (поваренная соль) — древнейшее применяемое вкусовое и консервирующее средство.

Азид натрия (NaN3) применяется в качестве азотирующего средства в металлургии и при получении азида свинца.

Цианид натрия (NaCN) применяется при гидрометаллургическом способе выщелачивания золота из горных пород, а также при нитроцементации стали и в гальванотехнике (серебрение, золочение).

Хлорат натрия (NaClO3) применяется для уничтожения нежелательной растительности на железнодорожном полотне.

Изотопы натрия

В настоящее время (2012 г.) известно 20 изотопов с массовыми числами от 18 до 37 и 2 ядерных изомера натрия. Единственный стабильный изотоп 23Na. У большинства изотопов период полураспада меньше одной минуты. Существуют также 2 радиоактивных изотопа с большим периодом полураспада. Это претерпевающий позитронный распад 22Na с периодом полураспада 2,6027 года, его используют в качестве источника позитронов и в научных исследованиях. 24Na, с периодом полураспада электронного типа 15 часов, используется в медицине для диагностики и для лечения некоторых форм лейкемии.

Биологическая роль

В высших организмах натрий находится большей частью в межклеточной жидкости клеток (примерно в 15 раз больше чем в цитоплазме клетки). Разность концентраций поддерживает встроенный в мембраны клетки натрий-калиевый насос, откачивающий ионы натрия из цитоплазмы в межклеточную жидкость.

Совместно с калием натрий выполняет следующие функции:

  • Создание условий для возникновения мембранного потенциала и мышечных сокращений.
  • Поддержание осмотической концентрации крови.
  • Поддержание кислотно-щелочного баланса.
  • Нормализация водного баланса.
  • Обеспечение мембранного транспорта.
  • Активация многих энзимов.

Рекомендуемая доза натрия составляет для детей от 600 до 1700 миллиграммов, для взрослых от 1200 до 2300 миллиграммов в день. В виде поваренной соли это составляет от 3 до 6 граммов в день.

Натрий содержится практически во всех продуктах, хотя большую его часть организм получает из поваренной соли. Усвоение в основном происходит в желудке и тонкой кишке. Витамин Д улучшает усвоение натрия, однако, чрезмерно солёная пища и пища богатая белками препятствуют нормальному всасыванию. Количество поступившего с едой натрия показывает содержание натрия в моче. Для богатой натрием пищи характерна ускоренная экскреция.

Дефицит натрия у питающегося сбалансированной пищей человека не встречается, однако, некоторые проблемы могут возникнуть при вегетарианских диетах и голодании. Временный дефицит может быть вызван использованием мочегонных препаратов, поносом, обильным потением или избыточным употреблением воды. Симптомами нехватки натрия являются потеря веса, рвота, образование газов в желудочно-кишечном тракте, и нарушение усвоения аминокислот и моносахаридов. Продолжительный дефицит вызывает мышечные судороги и невралгию.

Переизбыток натрия вызывает отек ног и лица, а также повышенное выделение калия с мочой. Максимальное количество соли, которое может быть переработано почками составляет примерно 20-30 граммов, большее количество уже опасно для жизни.

Меры предосторожности

В лабораториях небольшие количества натрия (примерно до 1 кг) хранят в закрытых стеклянных банках под слоем керосина, так, чтобы керосин покрывал весь металл. Банка с натрием должна храниться в металлическом несгораемом шкафу (сейфе). Натрий берут пинцетом или щипцами, отрезают скальпелем (натрий пластичен и легко режется ножом) на сухой поверхности (не на столе, а в стеклянной чашке) необходимое количество и остаток тут же возвращают в банку под слой керосина, а отрезанный кусок либо помещают в сухой керосин, либо тут же вводят в реакцию. Прежде чем приступить к работе с натрием, необходимо пройти инструктаж по технике безопасности, лица, впервые приступающие к работе с натрием, должны производить эту работу под наблюдением сотрудников, имеющих опыт такой работы. Обычно в лабораторных условиях для реакций используют количества натрия, не превышающие нескольких десятков грамм. Для демонстративных опытов, например, в школе на уроках химии стоит брать не более одного грамма натрия. После работы с металлическим натрием всю посуду и остатки натрия заливают неразбавленным спиртом и полученный раствор нейтрализуют слабым раствором кислоты. Следует обратить особое внимание, чтобы все остатки и обрезки натрия были полностью нейтрализованы до их выбрасывания, так как натрий в мусорном ведре может вызвать пожар, а в канализационном сливе может вызвать разрушение трубы. Хранить натрий дома и производить с ним какие-либо опыты не рекомендуется.

Воспламенение и даже взрыв металлического натрия при соприкосновении с водой и многими органическими соединениями может нанести серьёзные травмы и ожоги. Попытка взять кусочек металлического натрия голыми руками может привести к его воспламенению (иногда взрыву) из-за влажности кожи и образованию тяжелейших ожогов натрием и образующейся щелочью. Горение натрия создает аэрозоль оксида, пероксида и гидроксида натрия, обладающего разъедающим действием. Некоторые реакции натрия протекают очень бурно (например, с серой, бромом).

Примечания

  1. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1992. — Т. 3. — С. 178. — 639 с. — 50 000 экз. — ISBN 5—85270—039—8
  2. Петровский Н. С., ЕГИПЕТСКИЙ ЯЗЫК. Введение в иероглифику, лексику и очерк грамматики среднеегипетского языка. Л., 1958. (стр. 83)
  3. Thomas Thomson, Annals of Philosophy
  4. Newton, David E.. Chemical Elements. ISBN 0-7876-2847-6.
  5. J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
  6. Д.Менделеев, Основы химии, 7 изд., СПб, 1903, С.386.
  7. А. Ф. Алабышев, К. Д Грачев, С. А. Зарецкий, М. Ф. Лантратов, Натрий и калий (получение, свойства, применение), Л: Гос. н-т. изд-во хим. лит., 1959, С.255.
  8. А. Г. Морачевский, И. А. Шестеркин, В. Б. Буссе-Мачукас и др., Натрий. Свойства, производство, применение (Под. ред. А. Г. Морачевского), СПб: Химия, 1992, С.186. ISBN 5-7245-0760-9
  9. 1 2 Газета. Ру: Элементы под давлением

Ссылки

 Просмотр этого шаблона Электрохимический ряд активности металлов

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2, W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Щелочные металлы
   

Литий
Li
Атомный номер: 3
Атомная масса: 6.941
Темп. плавления: 453.69 K
Темп. кипения: 1615 K
Плотность: 0.534 г/см³
Электроотрицательность: 0.98

Натрий
Na
Атомный номер: 11
Атомная масса: 22.990
Темп. плавления: 370.87 K
Темп. кипения: 1156 K
Плотность: 0.97 г/см³
Электроотрицательность: 0.96

Калий
K
Атомный номер: 19
Атомная масса: 39.098
Темп. плавления: 336.58 K
Темп. кипения: 1032 K
Плотность: 0.86 г/см³
Электроотрицательность: 0.82

Рубидий
Rb
Атомный номер: 37
Атомная масса: 85.468
Темп. плавления: 312.46 K
Темп. кипения: 961 K
Плотность: 1.53 г/см³
Электроотрицательность: 0.82

Цезий
Cs
Атомный номер: 55
Атомная масса: 132.905
Темп. плавления: 301.59 K
Темп. кипения: 944 K
Плотность: 1.93 г/см³
Электроотрицательность: 0.79

Франций
Fr
Атомный номер: 87
Атомная масса: (223)
Темп. плавления: 295 K
Темп. кипения: 950 K
Плотность: 1,87 г/см³
Электроотрицательность: 0.7

dic.academic.ru

НАТРИЙ | Энциклопедия Кругосвет

Содержание статьи

НАТРИЙ – (Natrium) Na, химический элемент 1-й (Ia) группы Периодической системы, относится к щелочным элементам. Атомный номер 11, относительная атомная масса 22,98977. В природе имеется один стабильный изотоп 23Na. Известны шесть радиоактивных изотопов этого элемента, причем два из них представляют интерес для науки и медицины. Натрий-22 с периодом полураспада 2,58 года используют в качестве источника позитронов. Натрий-24 (его период полураспада около 15 часов) применяют в медицине для диагностики и для лечения некоторых форм лейкемии.

Степень окисления +1.

Соединения натрия известны с древних времен. Хлорид натрия – необходимейший компонент человеческой пищи. Cчитается, что человек начал употреблять его в неолите, т.е. около 5–7 тыс. лет назад.

В Ветхом завете упоминается некое вещество «нетер». Это вещество использовалось как моющее средство. Скорее всего, нетер – это сода, карбонат натрия, который образовывался в соленых египетских озерах с известковыми берегами. Об этом же веществе, но под названием «нитрон» писали позже греческие авторы Аристотель и Диоскорид, а древнеримский историк Плиний Старший, упоминая это же вещество, называл его уже «нитрум».

В 18 в. химикам было известно уже очень много различных соединений натрия. Соли натрия широко применялись в медицине, при выделке кож, при крашении тканей.

Металлический натрий получил впервые английский химик и физик Гемфри Дэви электролизом расплавленного гидроксида натрия (с использованием вольтова столба из 250 пар медных и цинковых пластин). Название «sodium», выбранное Дэви для этого элемента, отражает его происхождение из соды Na2CO3. Латинское и русское названия элемента произведены от арабского «натрун» (природная сода).

Распространение натрия в природе и его промышленное извлечение.

Натрий – седьмой из наиболее распространенных элементов и пятый из наиболее распространенных металлов (после алюминия, железа, кальция и магния). Его содержание в земной коре составляет 2,27%. Большая часть натрия находится в составе различных алюмосиликатов.

Огромные отложения солей натрия в сравнительно чистом виде существуют на всех континентах. Они являются результатом испарения древних морей. Этот процесс по-прежнему продолжается в озере Солт-Лейк (штат Юта), Мертвом море и других местах. Натрий встречается в виде хлорида NaCl (галит, каменная соль), а также карбоната Na2CO3·NaHCO3·2H2O (трона), нитрата NaNO3 (селитра), сульфата Na2SO4·10H2O (мирабилит), тетрабората Na2B4O7·10 H2O (бура) и Na2B4O7·4H2O (кернит) и других солей.

Неиссякаемые запасы хлорида натрия есть в природных рассолах и океанических водах (около 30 кг м–3). Подсчитано, что каменная соль в количестве, эквивалентном содержанию хлорида натрия в Мировом океане, занимала бы объем 19 млн. куб. км (на 50% больше, чем общий объем Североамериканского континента выше уровня моря). Призма такого объема с площадью основания 1 кв. км может достичь Луны 47 раз.

Сейчас суммарное производство хлорида натрия из морской воды достигло 6–7 млн. т в год, что составляет около трети общей мировой добычи.

В живом веществе в среднем содержится 0,02% натрия; в животных его больше, чем в растениях.

Характеристика простого вещества и промышленное получение металлического натрия.

Натрий – серебристо-белый металл, в тонких слоях с фиолетовым оттенком, пластичен, даже мягок (легко режется ножом), свежий срез натрия блестит. Величины электропроводности и теплопроводности натрия достаточно высоки, плотность равна 0,96842 г/см3 (при 19,7° С), температура плавления 97,86° С, температура кипения 883,15° С.

У тройного сплава, содержащего 12% натрия, 47% калия и 41% цезия, – самая низкая температура плавления для металлических систем, равная –78° С.

Натрий и его соединения окрашивают пламя в ярко-желтый цвет. Двойная линия в спектре натрия отвечает переходу 3s1–3p1 в атомах элемента.

Химическая активность натрия высока. На воздухе он быстро покрывается пленкой из смеси пероксида, гидроксида и карбоната. В кислороде, фторе и хлоре натрий горит. При сжигании металла на воздухе образуется пероксид Na2O2 (с примесью оксида Na2O).

С серой натрий реагирует уже при растирании в ступке, серную кислоту восстанавливает до серы или даже до сульфида. Твердый диоксид углерода («сухой лед») при контакте с натрием взрывается (углекислотные огнетушители для тушения горящего натрия применять нельзя!). С азотом реакция идет только в электрическом разряде. Не взаимодействует натрий лишь с инертными газами.

Натрий активно реагирует с водой:

2Na + 2H2O = 2NaOH + H2

Тепла, которое выделяется при реакции, достаточно, чтобы расплавить металл. Поэтому, если маленький кусочек натрия бросить в воду, он за счет теплового эффекта реакции плавится и капелька металла, который легче воды, «бегает» по поверхности воды, подгоняемая реактивной силой выделяющегося водорода. Со спиртами натрий взаимодействует намного спокойнее, чем с водой:

2Na + 2C2H5OH = 2C2H5ONa + H2

Натрий легко растворяется в жидком аммиаке с образованием ярко-голубых метастабильных растворов с необычными свойствами. При –33,8° С в 1000 г аммиака растворяется до 246 г металлического натрия. Разбавленные растворы имеют синий цвет, концентрированные – цвет бронзы. Они могут храниться около недели. Установлено, что в среде жидкого аммиака натрий ионизуется:

Na Na+ + e

Константа равновесия этой реакции равна 9,9·10–3. Уходящий электрон сольватируется молекулами аммиака и образует комплекс [e(NH3)n]. Полученные растворы обладают металлической электропроводностью. При испарении аммиака остается исходный металл. При длительном хранении раствора он постепенно обесцвечивается за счет реакции металла с аммиаком с образованием амида NaNH2 или имида Na2NH и выделением водорода.

Хранят натрий под слоем обезвоженной жидкости (керосин, минеральное масло), перевозят только в запаянных металлических сосудах.

Электролитический способ промышленного получения натрия был разработан в 1890. Электролизу подвергали расплав едкого натра, как в опытах Дэви, но с использованием более совершенных источников энергии, чем вольтов столб. В этом процессе наряду с натрием выделяется кислород:

катод (железный): Na+ + e = Na

анод (никелевый): 4OH – 4e = O2 + 2H2O.

При электролизе чистого хлорида натрия возникают серьезные проблемы, связанные, во-первых, с близкими температурой плавления хлорида натрия и температурой кипения натрия и, во-вторых, с высокой растворимостью натрия в жидком хлориде натрия. Добавление к хлориду натрия хлорида калия, фторида натрия, хлорида кальция позволяет снизить температуру расплава до 600° С. Производство натрия электролизом расплавленной эвтектической смеси (сплав двух веществ с самой низкой температурой плавления) 40% NaCl и 60% CaCl2 при ~580° С в ячейке, разработанной американским инженером Г.Даунсом, было начато в 1921 Дюпоном вблизи электростанции у Ниагарского водопада.

На электродах протекают следующие процессы:

катод (железный): Na+ + e = Na

Ca2+ + 2e = Ca

анод (графитовый): 2Cl – 2e = Cl2.

Металлические натрий и кальций образуются на цилиндрическом стальном катоде и поднимаются с помощью охлаждаемой трубки, в которой кальций затвердевает и падает обратно в расплав. Хлор, образующийся на центральном графитовом аноде, собирается под никелевым сводом и затем очищается.

Сейчас объем производства металлического натрия составляет несколько тысяч тонн в год.

Промышленное использование металлического натрия связано с его сильными восстановительными свойствами. Долгое время большая часть производимого металла использовалась для получения тетраэтилсвинца PbEt4 и тетраметилсвинца PbMe4 (антидетонаторов для бензина) реакцией алкилхлоридов со сплавом натрия и свинца при высоком давлении. Сейчас это производство быстро сокращается из-за загрязнения окружающей среды.

Еще одна область применения – производство титана, циркония и других металлов восстановлением их хлоридов. Меньшие количества натрия используются для получения соединений, таких как гидрид, пероксид и алкоголяты.

Диспергированный натрий является ценным катализатором при производстве резины и эластомеров.

Растет применение расплавленного натрия в качестве теплообменной жидкости в ядерных реакторах на быстрых нейтронах. Низкая температура плавления натрия, низкая вязкость, малое сечение поглощения нейтронов в сочетании с чрезвычайно высокой теплоемкостью и теплопроводностью делает его (и его сплавы с калием) незаменимым материалом для этих целей.

Натрием надежно очищают трансформаторные масла, эфиры и другие органические вещества от следов воды, а с помощью амальгамы натрия можно быстро определить содержание влаги во многих соединениях.

Соединения натрия.

Натрий образует полный набор соединений со всеми обычными анионами. Считается, что в таких соединениях происходит практически полное разделение заряда между катионной и анионной частями кристаллической решетки.

Оксид натрия Na2O синтезируют реакцией Na2O2, NaOH, а предпочтительнее всего NaNO2, с металлическим натрием:

Na2O2 + 2Na = 2Na2O

2NaOH + 2Na = 2Na2O + H2

2NaNO2 + 6Na = 4Na2O + N2

В последней реакции натрий можно заменить азидом натрия NaN3:

5NaN3 + NaNO2 = 3Na2O + 8N2

Хранить оксид натрия лучше всего в безводном бензине. Он служит реактивом для различных синтезов.

Пероксид натрия Na2O2 в виде бледно-желтого порошка образуется при окислении натрия. При этом в условиях ограниченной подачи сухого кислорода (воздуха) сначала образуется оксид Na2O, который затем превращается в пероксид Na2O2. В отсутствие кислорода пероксид натрия термически устойчив до ~675° C.

Пероксид натрия широко используется в промышленности как отбеливатель для волокон, бумажной пульпы, шерсти и т.д. Он является сильным окислителем: взрывается в смеси с порошком алюминия или древесным углем, реагирует с серой (при этом раскаляется), воспламеняет многие органические жидкости. Пероксид натрия при взаимодействии с монооксидом углерода образует карбонат. В реакции пероксида натрия с диоксидом углерода выделяется кислород:

2Na2O2 + 2CO2 = 2Na2CO3 + O2

Эта реакция имеет важное практическое применение в дыхательных аппаратах для подводников и пожарных.

Надпероксид натрия NaO2 получают при медленном нагревании пероксида натрия при 200–450° С под давлением кислорода 10–15 МПа. Доказательства образования NaO2 были впервые получены в реакции кислорода с натрием, растворенным в жидком аммиаке.

Действие воды на надпероксид натрия приводит к выделению кислорода даже на холоду:

2NaO2 + H2O = NaOH + NaHO2 + O2

При повышении температуры количество выделяющегося кислорода увеличивается, так как происходит разложение образующегося гидропероксида натрия:

4NaO2 + 2H2O = 4NaOH + 3O2

Надпероксид натрия является компонентом систем для регенерации воздуха в замкнутых помещениях.

Озонид натрия NaО3 образуется при действии озона на безводный порошок гидроксида натрия при низкой температуре с последующей экстракцией красного NaО3 жидким аммиаком.

Гидроксид натрия NaOH нередко называют каустической содой или едким натром. Это сильное основание, его относят к типичным щелочам. Из водных растворов гидроксида натрия получены многочисленные гидраты NaOH·nH2O, где n = 1, 2, 2,5, 3,5, 4, 5,25 и 7.

Гидроксид натрия очень агрессивен. Он разрушает стекло и фарфор за счет взаимодействия с содержащимся в них диоксидом кремния:

2NaOH + SiO2 = Na2SiO3 + H2O

Название «едкий натр» отражает разъедающее действие гидроксида натрия на живые ткани. Особенно опасно попадание этого вещества в глаза.

Врач герцога Орлеанского Никола Леблан (Leblanc Nicolas) (1742–1806) в 1787 разработал удобный процесс получения гидроксида натрия из NaCl (патент 1791). Этот первый крупномасштабный промышленный химический процесс стал крупным технологическим достижением в Европе в 19 в. Позднее процесс Леблана был вытеснен электролитическим процессом. В 1874 мировое производство гидроксида натрия составило 525 тыс. т, из которых 495 тыс. т были получены по способу Леблана; к 1902 производство гидроксида натрия достигло 1800 тыс. т., ооднако по способу Леблана были получены только 150 тыс. т.

Сегодня гидроксид натрия – наиболее важная щелочь в промышленности. Ежегодное производство только в США превышает 10 млн. т. Ее получают в огромных количествах электролизом рассолов. При электролизе раствора хлорида натрия образуется гидроксид натрия и выделяется хлор:

катод (железный) 2H2O + 2e– = H2 + 2OH

анод (графитовый) 2Cl – 2e– = Cl2

Электролиз сопровождается концентрированием щелочи в огромных выпаривателях. Самый большой в мире (на заводе PPG Inductries’ Lake Charles) имеет высоту 41 м и диаметр 12 м. Около половины производимого гидроксида натрия используется непосредственно в химической промышленности для получения различных органических и неорганических веществ: фенола, резорцина, b-нафтола, солей натрия (гипохлорита, фосфата, сульфида, алюминатов). Кроме того, гидроксид натрия применяется в производстве бумаги и пульпы, мыла и моющих средств, масел, текстиля. Он необходим и при переработке бокситов. Важной областью применения гидроксида натрия является нейтрализация кислот.

Хлорид натрия NaCl известен под названиями поваренной соли, каменной соли. Он образует бесцветные мало гигроскопичные кристаллы кубической формы. Хлорид натрия плавится при 801° С, кипит при 1413° С. Его растворимость в воде мало зависит от температуры: в 100 г воды при 20° С растворяется 35,87 г NaCl, а при 80° С – 38,12 г.

Хлорид натрия – необходимая и незаменимая приправа к пище. В далеком прошлом соль приравнивалась по цене к золоту. В древнем Риме легионерам часто платили жалование не деньгами, а солью, отсюда и произошло слово солдат.

В Киевской Руси пользовались солью из Прикарпатья, из соляных озер и лиманов на Черном и Азовском морях. Она обходилась настолько дорого, что на торжественных пирах ее подавали на столы знатных гостей, прочие же расходились «несолоно хлебавши».

После присоединения Астраханского края к Московскому государству важными источниками соли стали озера Прикаспия, и все равно ее не хватало, она была дорога, поэтому возникало недовольство самых бедных слоев населения, которое переросло в восстание, известное под названием Соляного Бунта (1648)

В 1711 Петр I издал указ о введении соляной монополии. Торговля солью стала исключительным правом государства. Соляная монополия просуществовала более полутораста лет и была отменена в 1862.

Ныне хлорид натрия – дешевый продукт. Вместе с каменным углем, известняком и серой он входит в так называемую «большую четверку» минерального сырья, наиболее существенного для химической промышленности.

Большая часть хлорида натрия производится в Европе (39%), Северной Америке (34%) и Азии (20%), в то время как на Южную Америку и Океанию приходится лишь по 3%, а на Африку – 1%. Каменная соль образует обширные подземные месторождения (нередко в сотни метров толщиной), которые содержат более 90% NaCl. Типичное Чеширское соляное месторождение (главный источник хлорида натрия в Великобритании) занимает площадь 60 ґ 24 км и имеет толщину соляного пласта около 400 м. Одно это месторождение оценивается более чем в 1011 т.

Мировой объем добычи соли к началу 21 в. достиг 200 млн. т, 60% которой потребляет химическая промышленность (для производства хлора и гидроксида натрия, а также бумажной пульпы, текстиля, металлов, резин и масел), 30% – пищевая, 10% приходится на прочие сферы деятельности. Хлорид натрия используется, например, в качестве дешевого антигололедного реагента.

Карбонат натрия Na2CO3 часто называют кальцинированной содой или просто содой. Он встречается в природе в виде грунтовых рассолов, рапы в озерах и минералов натрона Na2CO3·10H2O, термонатрита Na2CO3·H2O, троны Na2CO3·NaHCO3·2H2O. Натрий образует и другие разнообразные гидратированные карбонаты, гидрокарбонаты, смешанные и двойные карбонаты, например Na2CO3·7H2O, Na2CO3·3NaHCO3, aKCO3·nH2O, K2CO3·NaHCO3·2H2O.

Среди солей щелочных элементов, получаемых в промышленности, карбонат натрия имеет наибольшее значение. Чаще всего для его производства используют метод, разработанный бельгийским химиком-технологом Эрнстом Сольве в 1863.

Концентрированный водный раствор хлорида натрия и аммиака насыщают диоксидом углерода под небольшим давлением. При этом образуется осадок сравнительно малорастворимого гидрокарбоната натрия (растворимость NaHCO3 составляет 9,6 г на 100 г воды при 20° С):

NaCl + NH3 + H2O + CO2 = NaHCO3Ї + NH4Cl

Для получения соды гидрокарбонат натрия прокаливают:

2NaHCO3 = Na2CO3 + CO2 + H2O

Выделяющийся диоксид углерода возвращают в первый процесс. Дополнительное количество диоксида углерода получают за счет прокаливания карбоната кальция (известняка):

CaCO3 = CaO + CO2

Второй продукт этой реакции – оксид кальция (известь) – используют для регенерации аммиака из хлорида аммония:

CaO + 2NH4Cl = CaCl2 + 2NH3 + H2O

Таким образом, единственным побочным продуктом производства соды по методу Сольве является хлорид кальция.

Суммарное уравнение процесса:

2NaCl + CaCO3 = Na2CO3 + CaCl2

Очевидно, в обычных условиях в водном растворе идет обратная реакция, поскольку равновесие в этой системе нацело смещено справа налево из-за нерастворимости карбоната кальция.

Кальцинированная сода, полученная из природного сырья (натуральная кальцинированная сода), имеет лучшее качество по сравнению с содой, полученной аммиачным способом (содержание хлоридов менее 0,2%). Кроме того, удельные капитальные вложения и себестоимость соды из природного сырья на 40–45% ниже, чем полученной синтетическим путем. Около трети мировой продукции соды приходится сейчас на природные месторождения.

Мировое производство Na2CO3 в 1999 распределилось следующим образом:

Всего

32800

Сев. Америка

10500

Азия/Океания

9840

Зап. Европа

6160

Вост. Европа

5000

Африка

950

Лат. Америка

350

Крупнейший в мире производитель натуральной кальцинированной соды – США, где сосредоточены и самые большие разведанные запасы троны и рапы содовых озер. Месторождение в Вайоминге образует слой толщиной 3 м и площадью 2300 км2. Его запасы превышают 1010 т. В США содовая промышленность ориентирована на природное сырье; последнее предприятие по синтезу соды было закрыто в 1985. Выработка кальцинированной соды в США в последние годы стабилизировалась на уровне 10,3–10,7 млн. т.

В отличие от США, большинство стран мира практически полностью зависят от производства синтетической кальцинированной соды. Второе место в мире по производству кальцинированной соды после США занимает Китай. Выработка этого химиката в КНР в 1999 достигла примерно 7,2 млн. т. Производство кальцинированной соды в России в том же году составило порядка 1,9 млн. т.

Во многих случаях карбонат натрия взаимозаменяем с гидроксидом натрия (например, при получении бумажной пульпы, мыла, чистящих средств). Около половины карбоната натрия используется в стекольной промышленности. Одна из развивающихся областей применения – удаление сернистых загрязнений в газовых выбросах предприятий энергетики и мощных печей. В топливо добавляют порошок карбоната натрия, который реагирует с диоксидом серы с образованием твердых продуктов, в частности сульфита натрия, которые могут быть отфильтрованы или осаждены.

Ранее карбонат натрия широко применялся в качестве «стиральной соды», но эта область применения теперь исчезла из-за использования в быту других моющих средств.

Гидрокарбонат натрия NaHCO3 (пищевая сода), применяется, главным образом, как источник диоксида углерода при выпечке хлеба, изготовлении кондитерских изделий, производстве газированных напитков и искусственных минеральных вод, как компонент огнетушащих составов и лекарственное средство. Это связано с легкостью его разложения при 50–100° С.

Сульфат натрия Na2SO4 встречается в природе в безводном виде (тенардит) и в виде декагидрата (мирабилит, глауберова соль). Он входит в состав астрахонита Na2Mg(SO4)2·4H2O, вантгоффита Na2Mg(SO4)2, глауберита Na2Ca(SO4)2. Наиболее крупные запасы сульфата натрия – в странах СНГ, а также в США, Чили, Испании. Мирабилит, выделенный из природных залежей или рапы соляных озер, обезвоживают при 100° С. Сульфат натрия является также побочным продукт производства хлороводорода с использованием серной кислоты, а также конечным продуктом сотен промышленных производств, в которых применяется нейтрализация серной кислоты с помощью гидроксида натрия.

Данные о добыче сульфата натрия не публикуются, но, по оценке, мировое производство природного сырья составляет около 4 млн. т в год. Извлечение сульфата натрия в качестве побочного продукта оценивается в мире в целом в 1,5–2,0 млн. т.

Долгое время сульфат натрия мало использовался. Теперь это вещество – основа бумажной промышленности, так как Na2SO4 является главным реагентом в сульфатной варке целлюлозы для приготовления коричневой оберточной бумаги и гофрированного картона. Древесные стружки или опилки переорабатывается в горячем щелочном растворе сульфата натрия. Он растворяет лигнин (компонент древесины, соединяющий волокна) и освобождает волокна целлюлозы, которые затем отправляют на машины для изготовления бумаги. Оставшийся раствор выпаривают, пока он не приобретет способность гореть, давая пар для завода и тепло для выпаривания. Расплавленные сульфат и гидроксид натрия устойчивы к действию пламени и могут быть использованы повторно.

Меньшая часть сульфата натрия применяется при производстве стекла и моющих средств. Гидратированная форма Na2SO4·10H2O (глауберова соль) является слабительным средством. Сейчас она используется меньше, чем раньше.

Нитрат натрия NaNO3 называют натриевой или чилийской селитрой. Большие залежи нитрата натрия, найденные в Чили, по-видимому, образовались за счет биохимического разложения органических остатков. Выделившийся вначале аммиак, вероятно, окислился до азотистой и азотной кислот, которые затем прореагировали с растворенным хлоридом натрия.

Получают нитрат натрия поглощением нитрозных газов (смесь оксидов азота) раствором карбоната или гидроксида натрия либо обменным взаимодействием нитрата кальция с сульфатом натрия.

Нитрат натрия применяют как удобрение. Он является компонентом жидких солевых хладагентов, закалочных ванн в металлообрабатывающей промышленности, теплоаккумулирующих составов. Тройная смесь из 40% NaNO2, 7% NaNO3 и 53% KNO3 может использоваться от температуры плавления (142° С) до ~600° С. Нитрат натрия используется как окислитель во взрывчатых веществах, ракетных топливах, пиротехнических составах. Он применяется в производстве стекла и солей натрия, в том числе нитрита, служащего консервантом пищевых продуктов.

Нитрит натрия NaNO2 может быть получен термическим разложением нитрата натрия или его восстановлением:

NaNO3 + Pb = NaNO2 + PbO

Для промышленного производства нитрита натрия абсорбируют оксиды азота водным раствором карбоната натрия.

Нитрит натрия NaNO2, кроме использования с нитратами в качестве теплопроводных расплавов, широко применяется в производстве азокрасителей, для ингибирования коррозии и консервации мяса.

Елена Савинкина

www.krugosvet.ru

Химические свойства натрия

День Ксеникал онлайн .; Мы выполним ремонт холодильника стинол на высоком уровне и предоставим гарантии на обслуживание .

  Na                  11
Натрий  22,989758(6)
              1s22s22p63s1
В начало Химические свойства:
Все щелочные металлы являются сильными восстановителями.
1. Энергично взаимодействуют со многими неметаллами:
2Nа + Cl2 = 2NaCl (хлорид натрия) 2Na+ S = Na2S (сульфид натрия) 2Na + Н2 = 2NаН (гидрид натрия)
2. С ртутью образует амальгаму натрия, которая используется как более мягкий восстановитель вместо чистого металла.
3. При взаимодействии с кислородом натрий, в отличие от других щелочных металлов, образует пероксид натрия: 2Na+О2 = Nа2О2
Пероксид натрия — сильный окислитель, при соприкосновении с которым многие органические вещества воспламеняются.
4. Бурно взаимодействует с водой:
2Nа + 2Н2О = 2NаОН + Н2
КаОН — едкий натр (техническое название — каустическая сода).
Реально процесс образования гидроксида натрия при растворении натрия в воде протекает более сложно.
Гидроксид натрия в основном получают электролизом водного раствора хлорида натрия NaCl.

Едкий натр NаОН — твердые белые гигроскопические кристаллы, разъедающие кожу, ткани, бумагу и другие органические вещества. При растворении в воде выделяют большое количество тепла.
Гидроксид натрия поглощает углекислый газ на воздухе и превращается в карбонат натрия:
2NаОН + СO2 = Na2СО3 + Н2О
Поэтому гидроксид натрия необходимо хранить в хорошо закупоренной посуде.
5. Натрий растворяется почти во всех кислотах с образованием большого количества солей:
2Nа + 2НСl = 2MаСl + Н2
2Nа + Н24 = Na24 + Н2

Продолжение

all-met.narod.ru

Натрий | Химия свойства элементов

Общие сведения и методы получения

Натрий ( Na ) —серебристо-белый щелочной металл, быстро тускнеющий на воздухе при обычных условиях. Содержание в земной коре 2,5 % (по массе). В водах мирового океана средняя его концентрация 1,035 %. В живых организмах содержится до 0,02 % (по массе) натрия, содер­жание его в растениях несколько ниже.

Известно более 220 минералов, в состав которых входит натрий. Наиболее распространены, хлорид натрия, или поваренная соль, NaCl , галит NaCl , или каменная соль, чилийская селитра NaN 03, тенардит Na 2 S 04, мираболит (глауберова соль) Na 2 SCv 10Н2О, трона Na , H ( C 03)2-2 H 2 0 и др.

Натрий присутствует также в ряде более сложных минералов, со­держащих алюминий, кремний, серу и другие элементы. Например, в иафелине Na [ A ] Si 04], лазурите (ультрамарин) Na 3 [ Al 3 Si 3 0|2] • Na 2 [ S 04], жадеите NaCl [ Si 2 06] и др.

Ряд соединений натрия, в первую очередь поваренная соль и сода Na 2 C 03 • 10Н2О, известны человеку с глубокой древности.

В древнем Египте было известно моющее вещество (сода), ко:орое называли neter . У Аристотеля оно носит название vixpovj , а у Плутарха (Древний Рим) — nitrum . В рукописях арабских алхимиков соде отве­чает термин natron , от которого постепенно в XVII—XVIII вв. образуется термин «натра», т. е. основание, из которого можно получить поваренную соль. От «натра» произошло современное название элемен­та. Надо отметить, что в ряде стран Западной Европы (Великобрита­ния, Франция, Италия), а также США натрий носит название sodium .

Металлический натрий впервые был получен в 1807 г. английским химиком Деви в результате электролиза (щелочной способ). Из-за большой энергоемкости щелочной способ получил промышленное рас­пространение лишь в конце XIX в. До этого металлический натрий по­лучали химическим восстановлением его соединений углеродом или рас­плавленным чугуном при высокой температуре. С первой четверти те­кущего века щелочной способ постепенно вытесняется солевым, т. е. электролизом непосредственно расплава хлористого натрия, минуя ста­дию получения щелочи. Электролиз расплавленной соли ведут при 850—860 К. Для снижения температуры плавления NaCl используют до­бавки ряда солей, в частности NaF , KCI , СаС1г и др. При электролизе хлористого натрия получают также еще один ценный продукт — газооб­разный хлор. Поэтому в настоящее время солевой способ получения натрия практически вытеснил щелочной, не говоря уже о химических способах.

Физические свойства

Атомные характеристики. Атомный номер 11, атомная масса 22,98977 а. е. м., атомный объем 23,08* 10-6 м3/моль. Атомный радиус (металлический) 0 ,192 нм, ионный радиус Na + 0,098 нм, ковалентный 0 ,157 нм. Конфигурация внешних электронных оболочек атома 2 p 6 3 s1. Натрий обладает единственным стабильным изотопом 23 Na ; известно пять радиоактивных изотопов с массовыми числами от 20 до 25; период полураспада изотопов изменяется от тысячных долей секунды (20 Na ) до 2,6 года у 22 Na . При комнатной температуре натрий имеет о. ц. к. решетку с периодом а =0,42905 нм; энергия кристаллической решетки 108,8 мкДж/кмоль. При низких температурах существует модификация натрия с г. п. у. структурой, периоды которой при 5К: а=0,3767 нм, с =0 ,6154 нм. Потенциалы ионизации атома натрия J (эВ) 5,138, 47,20, 71,8, электроотрицательность 0,9. Работа выхода электронов ф0= =2,35 эВ. Работа выхода электронов для различных граней монокри­сталла ф -2,75эВ для {100}, ф =3,10эВ для {110}, ф =2,65эВ для {111}.

Плотность. При комнатной температуре плотность натрия рентге­новская р=0,966 Мг/м3, пикнометрическая р=0,971 Мг/м3.

При плавлении удельное электрическое сопротивление натрия воз­растает в 1,451 раза. Температурный коэффициент электрического со­противления натрия при 273 К а=4,34-10-3 К-1.

В термопаре натрий — платина прн температуре горячего спая 173,16 К развивается т. э. д. с. £=0,29 мВ, а при температуре 373,16 К £=—0,25 мВ. Абсолютный коэффициент т. э. д. с. е=— 4,4 мкВ/К. По­стоянная Холла при комнатной температуре /? = 2,3- Ю-10 м3/Кл и /?=— 2,2-Ю-10 м3/Кл при 371—383 К.

Магнитная восприимчивость натрия х= +0,70- Ю-9при 293 К.

Тепловые и термодинамические. Температура плавления натрия /Пл = =98 °С, температура кипения ?кип =878°С, характеристическая темпе­ратура 6в = 160К, удельная теплота плавления ДЯПЛ = П7 кДж/кг. Удельная теплота сублимации при 298 К ДЯсубл = 4717 кДж/кг, удель­ная теплота испарения ДЯИсп = 3869 кДж/кг. Теплота испарения натрия при нормальном давлении ДЯи<-п = 3869 кДж/кг. При плавлении проис­ходит увеличение объема на ДУ— 27,82-Ю-6 м3/кг или AV / V 0 = 0,0265. При повышении давления возрастает температура плавления металла, достигая 515 К при 3 ГПа и 608 при 8 ГПа. Начальное значение уг­лового коэффициента dT / dP = 85 К/ГПа, при 7 ГПа 33 К/ГПа. Фазовых превращений в натрии до давления 8,5 ГПа не обнаружено.

Механические свойства

Твердость натрия по Бринеллю НВ = 0,7 МПа. Модуль нормальной уп­ругости при растяжении при комнатной температуре £=5,3 ГПа. Сжи­маемость натрия х= 15,99*10-11 Па-1.

Химические свойства

В химических соединениях, включая гидриды, проявляет степень окис­ления + 1.

Натрий относится к числу наиболее реакционноспособных металлов, поэтому в чистом виде в природе не встречается. Натрий — один из наиболее электроположительных металлов; интенсивно взаимодействует с кислородом воздуха, поэтому его обычно хранят под слоем керосина. В ряду напряжений натрий стоит далеко впереди водорода и вытесняет его из воды, образуя при этом гидрокснд NaOH .

При пропускании сухого водорода над слегка нагретым натрием об­разуется гидрид натрия NaH , представляющий собой нонное соединение, в которое натрнн входит в виде катиона, а водород — в виде аниона.

Оксид натрия образуется при горении натрия в недостаточном коли­честве кислорода, бурно реагирует с водой с образованием гидроксида, имеет кристаллическую решетку типа плавикового шпата.

Пероксид натрия образуется при сжигании натрия на воздухе или в кислороде, представляет собой бледно-желтый порошок, который пла­вится без разложения; очень сильный окислитель. Многие органические вещества при соприкосновении с ним воспламеняются. При взаимодей­ствии Na 2 02 с углекислым газом выделяется кислород. Эту реакцию используют в дыхательных аппаратах, применяемых пожарными и во­долазами, а также для регенерации воздуха в закрытых помещениях, например на подводных лодках.

Гидроксид натрня NaOH образуется в виде белых очень гигроско­пических кристаллов, плавящихся при 318,3 °С; плотность 2,13 Мг/м3.

Известно соединение натрия с углеродом Na 2 C 2 , которое можно рас­сматривать как соль ацетилена. Поэтому оно получило название аце-тнлида натрия. Нитрид натрия устойчив в сухом воздухе, но моментально разлага­ется водой илн спиртом с образованием аммиака.

Сульфид натрия Na 2 S получают путем восстановления сульфата нат­рия углеродом. В чистом виде Na 2 S бесцветен, обладает кристалличе­ской решеткой типа CaF 2 . Очень распространенное соединение натрия с серой и кислородом — так называемая глауберова соль Na 2 S 04— 10Н2О. Натрий наряду с обычными химическими соединениями, подчиняю­щимися правилу валентности, образует также металлические соеди­нения. В сплавах системы Na — К образуется фаза Лавеса состава KNa 2 , имеющая сложную о. ц. к. кристаллическую решетку типа MgCu 2 (С15). Аналогичное металлическое соединение наблюдается при взаимодействии натрия с цезием. Ряд металлических соединений обра­зуется при взаимодействии натрия с металлами I и VII В групп — се­ребром, золотом, цинком, кадмием, ртутью, галлием, оловом, свинцом и другими элементами. Имеются, конечно, и исключения. Так, алюми­ний, элемент ШВ подгруппы, не взаимодействует с натрием ни в жид­ком, нн в твердом состояниях. Элементы III — VIIIA подгрупп Перио­дической системы практически с натрием не взаимодействуют из-за большого различия как размерного фактора, так и температур плав­ления.

Области применения

Натрий достаточно широко применяется в различных областях техники. Высокая реакционная способность этого элемента предопределила его использование в металлургии в качестве восстановителя для получе­ния натрийтермическим способом таких металлов, как титан, цирконий, гафний, ниобий и др. При производстве некоторых сортов литейных алюминиевых сплавов натрий и его соли используют в качестве моди­фикаторов. В химической промышленности натрий применяют при про­изводстве цианистых солен, синтетического каучука и синтетических моющих средств (детергенидов), фармацевтических препаратов, а так­же тетраэтила свинца — антидетонатора прн получении высокооктано­вого топлива для двигателей. В последние годы расширяется использо­вание чистого натрия и его сплавов с калием в атомной энергетике в качестве теплоносителей.

Широко применяются в народном хозяйстве его химические соеди­нения. Это прежде всего гндроксид натрия NaOH (каустическая сода), который используют в мыловаренной промышленности, при производ­стве красок, в целлюлозно-бумажной и нефтяной промышленности, при производстве искусственного волокна и др. Сода — карбонат натрия Na 2 C 03 — применяется в стекольной, целлюлозно-бумажной, пищевой, текстильной, нефтяной и других отраслях промышленности. В сельском хозяйстве в качестве удобрения широко используется натриевая соль азотной кислоты NaN 03, известная под названием чилийской селитры.

ibrain.kz

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *