Температура что такое физика: Температура — Википедия – Температура — это… Что такое Температура?

Содержание

Температура. Тепловое равновесие. Абсолютная шкала температур. Молекулярная физика

Температура. Тепловое равновесие. Абсолютная шкала температур. Молекулярная физика

Температура — это просто!


Температура

Температура — это мера средней кинетической энергии молекул.
Температура характеризует степень нагретости тел.

Прибор для измерения температуры — термометр.
Принцип действия термометра:
При измерении температуры используется зависимость изменения какого-либо макроскопического параметра (объема, давления, электрического сопротивления и т.д.) вещества от температуры.
В жидкостных термометрах — это изменение объема жидкости.
При контакте двух сред происходит передача энергии от более нагретой среды менее нагретой.
В процессе измерения температура тела и термометра приходят в состояние теплового равновесия.

Жидкостные термометры

На практике часто используются жидкостные термометры: ртутные (в диапазоне от -35

oС до +750oС) и спиртовые (от -80oС до +70oС).
В них используется свойство жидкости изменять свой объем при изменении температуры.
Однако, у каждой жидкости существуют свои особенности изменения объема (расширения) при различных температурах.
В результате сравнения, например, показаний ртутного и спиртового термометров, точное совпадение будет только лишь в двух точках (при температурах 0oС и 100oС).
Этих недостатков лишены газовые термометры.


Газовые термометры

Первый газовый термометр был создан французским физиком Ж. Шарлем.

Преимущества газового термометра:
— используется линейная зависимость изменения объема или давления газа от температуры, которая справедлива для всех газов
— точность измерения от 0,003

oС до 0,02oС
— интервал температур от -271oС до +1027oС.


Тепловое равновесие

При соприкосновении двух тел различной температуры происходит передача внутренней энергии от более нагретого тела менее нагретому, и температуры обоих тел выравниваются.
Наступает состояние теплового равновесия, при котором все макропараметры (объем, давление, температура) обоих тел остаются в дальнейшем неизменными при неизменных внешних условиях.

Тепловым равновесием называется такое состояние, при котором все макроскопические параметры остаются неизменными сколь угодно долго.
Состояние теплового равновесия системы тел характеризуется температурой: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.
Установлено, что при тепловом равновесии средние кинетические энергии поступательного движения молекул всех газов одинаковы, т.е.

Для разреженных (идеальных) газов величина

и зависит только от температуры, тогда

где k — постоянная Больцмана

Эта зависимость дает возможность ввести новую температурную шкалу абсолютную шкалу температур, не зависящую от вещества, используемого для измерения температуры.


Абсолютная шкала температур

— введена английским физиком У. Кельвином
— нет отрицательных температур

Единица абсолютной температуры в СИ: [T] = 1K (Кельвин)
Нулевая температура абсолютной шкалы — это абсолютный ноль ( 0К = -273oС ), самая низкая температура в природе. В настоящее время достигнута самая низкая температура — 0,0001К.
По величине 1К равен 1oC.

Связь абсолютной шкалы со шкалой Цельсия

Запомни! В формулах абсолютная температура обозначается буквой «Т», а температура по шкале Цельсия буквой «t».

После введения абсолютной температуры получаем новые выражения для формул:

Средняя кинетическая энергия поступательного движения молекул

Давление газа — основное уравнение МКТ

Средняя квадратичная скорость молекул

И как следствие, закон Авогадро:

В равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

Заметьте, здесь концентрация молекул также одинакова!



Молекулярная физика. Термодинамика — Класс!ная физика

Основные положения МКТ. Масса и размер молекул. Количество вещества. — Взаимодействие молекул. Строение твердых тел, жидкостей и газов. — Идеальный газ. Основное уравнение МКТ. — Температура. Тепловое равновесие. Абсолютная шкала температур. — Уравнение состояния идеального газа. — Изопроцессы. Газовые законы. — Взаимные превращения жидкостей и газов. Влажность воздуха. — Твердые тела. Кристаллические тела. Аморфные тела.

Термодинамическая температура — Википедия

Термодинами́ческая температу́ра (англ. thermodynamic temperature, нем. thermodynamische Temperatur), или абсолю́тная температу́ра (англ. absolute temperature, нем. absolute Temperatur) является единственной функцией состояния термодинамической системы, которая характеризует направление самопроизвольного теплообмена между телами (системами)[1][2].

Термодинамическая температура обозначается буквой T{\displaystyle T}, измеряется в кельвинах (обозначается K) и отсчитывается по абсолютной термодинамической шкале (шкале Кельвина). Абсолютная термодинамическая шкала является основной шкалой в физике и в уравнениях термодинамики.

Молекулярно-кинетическая теория, со своей стороны, связывает абсолютную температуру со средней кинетической энергией поступательного движения молекул идеального газа в условиях термодинамического равновесия:

12mv¯2=32kT,{\displaystyle {\frac {1}{2}}m{\bar {v}}^{2}={\frac {3}{2}}kT,}

где m{\displaystyle m} ─ масса молекулы, v¯{\displaystyle {\bar {v}}} ─ средняя квадратичная скорость поступательного движения молекул, T{\displaystyle T} ─ абсолютная температура, k{\displaystyle k} ─ постоянная Больцмана.

Измерение температуры прошло долгий и трудный путь в своём развитии. Так как температура не может быть измерена непосредственно, то для её измерения использовали свойства термометрических тел, которые находились в функциональной зависимости от температуры. На этой основе были разработаны различные температурные шкалы, которые получили название эмпирических, а измеренная с их помощью температура называется эмпирической. Существенными недостатками эмпирических шкал являются отсутствие их непрерывности и несовпадение значений температур для разных термометрических тел: как между реперными точками, так и за их пределами. Отсутствие непрерывности эмпирических шкал связано с отсутствием в природе вещества, которое способно сохранять свои свойства во всём диапазоне возможных температур. В 1848 году Томсон (лорд Кельвин) предложил выбрать градус температурной шкалы таким образом, чтобы в её пределах эффективность идеальной тепловой машины была одинаковой. В дальнейшем, в 1854 году он предложил использовать обратную функцию Карно для построения термодинамической шкалы, не зависящей от свойств термометрических тел. Однако, практическая реализация этой идеи оказалась невозможной. В начале XIX века в поисках «абсолютного» прибора для измерения температуры снова вернулись к идее идеального газового термометра, основанного на законах идеальных газов Гей-Люссака и Шарля. Газовый термометр в течение долгого времени был единственным способом воспроизведения абсолютной температуры. Новые направления в воспроизведении абсолютной температурной шкалы основаны на использовании уравнения Стефана ─ Больцмана в бесконтактной термометрии и уравнения Гарри (Харри) Найквиста ─ в контактной.[3]

Физические основы построения термодинамической шкалы температур[править | править код]

1. Термодинамическая шкала температур принципиально может быть построена на основании теоремы Карно, которая утверждает, что коэффициент полезного действия идеального теплового двигателя не зависит от природы рабочего тела и конструкции двигателя, и зависит только от температур нагревателя и холодильника.

η=Q1−Q2Q1=T1−T2T1,{\displaystyle \eta ={\frac {Q_{1}-Q_{2}}{Q_{1}}}={\frac {T_{1}-T_{2}}{T_{1}}},}

где Q1{\displaystyle Q_{1}} — количество теплоты, полученной рабочим телом (идеальным газом) от нагревателя, Q2{\displaystyle Q_{2}} — количество теплоты, отданное рабочим телом холодильнику, T1,T2{\displaystyle T_{1},T_{2}} — температуры нагревателя и холодильника, соответственно.

Из приведённого выше уравнения следует соотношение:

Q1Q2=T1T2.{\displaystyle {\frac {Q_{1}}{Q_{2}}}={\frac {T_{1}}{T_{2}}}.}

Это соотношение может быть использовано для построения абсолютной термодинамической температуры. Если один из изотермических процессов цикла Карно Q3{\displaystyle Q_{3}} проводить при температуре тройной точки воды (реперная точка), установленной произвольно ─ T3=273,16K,{\displaystyle T_{3}=273{,}16\,K,} то любая другая температура будет определяться по формуле T=273,16QQ3{\displaystyle T=273{,}16{\frac {Q}{Q_{3}}}}.[4] Установленная таким образом температурная шкала называется термодинамической шкалой Кельвина. К сожалению, точность измерения количества теплоты невысока, что не позволяет реализовать вышеописанный способ на практике.

2. Абсолютная температурная шкала может быть построена, если использовать в качестве термометрического тела идеальный газ. В самом деле, из уравнения Клапейрона вытекает соотношение

T=pVR.{\displaystyle T={\frac {pV}{R}}.}

Если измерять давление газа, близкого по свойствам к идеальному, находящегося в герметичном сосуде постоянного объёма, то таким способом можно установить температурную шкалу, которая носит название идеально-газовой. Преимущество этой шкалы состоит в том, что давление идеального газа при V=const{\displaystyle V=const} изменяется линейно с температурой. Поскольку даже сильно разреженные газы по своим свойствам несколько отличаются от идеального газа, то реализация идеально-газовой шкалы связана с определёнными трудностями.

3. В различных учебниках по термодинамике приводятся доказательства того, что температура, измеренная по идеально-газовой шкале, совпадает с термодинамической температурой. Следует, однако, оговориться: несмотря на то, что численно термодинамическая и идеально-газовая шкалы абсолютно идентичны, с качественной точки зрения между ними есть принципиальная разница. Только термодинамическая шкала является абсолютно независимой от свойств термометрического вещества.

4. Как уже было указано, точное воспроизведение термодинамической шкалы, а также идеально-газовой, сопряжено с серьёзными трудностями. В первом случае необходимо тщательно измерять количество теплоты, которая подводится и отводится в изотермических процессах идеального теплового двигателя. Такого рода измерения неточны. Воспроизведение термодинамической (идеально-газовой) температурной шкалы в диапазоне от 10 до 1337 K возможно с помощью газового термометра. При более высоких температурах заметно проявляется диффузия реального газа сквозь стенки резервуара, а при температурах в несколько тысяч градусов многоатомные газы распадаются на атомы. При ещё больших температурах реальные газы ионизируются и превращаются в плазму, которая не подчиняется уравнению Клапейрона. Наиболее низкая температура, которая может быть измерена газовым термометром, заполненным гелием при низком давлении равна 1 K. Для измерения температур за пределами возможностей газовых термометров используют специальные методы измерения. Подробнее см. Термометрия.

  1. Белоконь Н. И. Основные принципы термодинамики, 1968, с. 10, 55.
  2. Кириллин В. А. Техническая термодинамика, 1983, с. 5.
  3. Різак В., Різак І., Рудавський Е. Кріогенна фізика і техніка, 2006, с. 174—175.
  4. Різак В., Різак І., Рудавський Е. Кріогенна фізика і техніка, 2006, с. 17—18.
  • Украинская советская энциклопедия: в 12 томах = Українська радянська енциклопедія (укр.) / За ред. М. Бажана. — 2-ге вид. — К.: Гол. редакція УРЕ, 1974—1985.
  • Малая горная энциклопедия. В 3 т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого. — Донецк: Донбасс, 2004. — ISBN 966-7804-14-3.
  • Белоконь Н. И. Термодинамика. — М.: Госэнергоиздат, 1954. — 417 с.
  • Белоконь Н. И. Основные принципы термодинамики. — М.: Недра, 1968. — 112 с.
  • Кириллин В. А. Техническая термодинамика. — М.: Энергоатомиздат, 1983. — 414 с.
  • Вукалович М. П., Новиков И. И. Техническая термодинамика. —
    М.
    : Энергия, 1968. — 497 с.
  • Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. — М.: Физматлит, 2005. — 544 с. — ISBN 5-9221-0601-5.
  • Базаров И. П. Термодинамика. — М.: Высшая школа, 1991. — 376 с. — ISBN 5-06-000626-3.
  • Різак В., Різак І., Рудавський Е. Кріогенна фізика і техніка. — К.: Наукова думка, 2006. — 512 с. — ISBN 966-00-480-X.

Температура (в физике) — это… Что такое Температура (в физике)?


Температура (в физике)

Wikimedia Foundation. 2010.

  • Температура (в астрофизике)
  • Температура Кюри

Смотреть что такое «Температура (в физике)» в других словарях:

  • Температура (в физике) — Температура (от лат. temperatura надлежащее смешение, соразмерность, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Т. одинакова для всех частей изолированной системы …   Большая советская энциклопедия

  • ТЕМПЕРАТУРА — • ТЕМПЕРАТУРА, в биологии интенсивность тепла. У теплокровных (ГОМОЙОТЕРМНЫХ) животных, таких, как птицы и млекопитающие, температура тела поддерживается в узких пределах независимо от температуры окружающей среды. Это обусловлено мышечной… …   Научно-технический энциклопедический словарь

  • Температура — Размерность Θ Единицы измерения СИ К …   Википедия

  • Температура кипения — Температура кипения, точка кипения  температура, при которой происходит кипение жидкости, находящейся под постоянным давлением. Температура кипения соответствует температуре насыщенного пара над плоской поверхностью кипящей жидкости, так как …   Википедия

  • Температура воздуха* — Главнейшим элементом, характеризующим погоду, является Т. газовой среды, окружающей земную поверхность, правильнее Т. того слоя воздуха, который подлежит нашему наблюдению. При метеорологических наблюдениях этому элементу и отводится первое место …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Температура воздуха — Главнейшим элементом, характеризующим погоду, является Т. газовой среды, окружающей земную поверхность, правильнее Т. того слоя воздуха, который подлежит нашему наблюдению. При метеорологических наблюдениях этому элементу и отводится первое место …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • температура —    1) Величина, характеризующая физ.тела в состоянии теплового равновесия, связана с интенсивностью теплового движения частей тела;    2) степень теплоты человеческого тела как показатель здоровья; разг. повышенная степень теплоты тела при… …   Историко-этимологический словарь латинских заимствований

  • Список обозначений в физике — Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь …   Википедия

  • Важнейшие открытия в физике — История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… …   Википедия

  • Отрицательная абсолютная температура — температура, характеризующая равновесные состояния термодинамической системы, в которых вероятность обнаружить систему в микросостоянии с более высокой энергией выше, чем в микросостоянии с более низкой. В квантовой статистике это значит, что… …   Википедия

Книги

  • Спектральная пирометрия, Магунов Александр Николаевич. Рассматривается новый экспериментальный метод измерения температуры нагретых объектов по непрерывному спектру теплового излучения, регистрируемому в широком интервале длин волн (например, от… Подробнее  Купить за 1896 грн (только Украина)
  • Механика и молекулярная физика. Учебное пособие, Ландау Лев Давидович, Ахиезер Александр Ильич, Лифшиц Евгений Михайлович. Трудно писать о книге Л. Д. Ландау, А. И. Ахиезера, Е. М. Лифшица, потому что это как раз тот случай, когда ни книга, ни, тем более, её авторы, как принято говорить,`в рекламене нуждаются`.… Подробнее  Купить за 1849 грн (только Украина)
  • Статистическая физика сложных систем. От фракталов до скейлинг-поведения. Выпуск 57, Абаимов С.Г.. Многообразие происходящих в природе явлений, на первый взгляд, не подчиняется каким-то унифицированным принципам, и каждое явление требует введения своих законовописания поведения. Однако… Подробнее  Купить за 1225 грн (только Украина)
Другие книги по запросу «Температура (в физике)» >>

Температура. Абсолютная температура — материалы для подготовки к ЕГЭ по Физике

 

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: тепловое равновесие, абсолютная температура.

Мы часто используем слово «температура» в повседневной речи. А что такое температура? В данной статье мы объясним физический смысл этого понятия.

В молекулярной физике и термодинамике рассматриваются макроскопические тела, т. е. тела, состоящие из огромного числа частиц. Например, в стакане воды содержится порядка молекул. Такое грандиозное число с трудом поддаётся осмыслению.

 

Термодинамическая система

 

Термодинамической системой называется макроскопическое тело или система тел, которые могут взаимодействовать друг с другом и с окружающими телами. Стакан с водой — пример термодинамической системы.

Термодинамическая система состоит из столь большого числа частиц, что совершенно невозможно описывать её поведение путём рассмотрения движения каждой молекулы в отдельности. Однако именно грандиозность числа молекул делает ненужным такое описание.

Оказывается, что состояние термодинамической системы можно характеризовать небольшим числом макроскопических параметров — величин, относящимся к системе в целом, а не к отдельным атомам или молекулам. Такими макроскопическими параметрами являются давление, объём, температура, плотность, теплоёмкость, удельное сопротивление и др.

Состояние термодинамической системы, при котором все макроскопические параметры остаются неизменными с течением времени, называется тепловым равновесием. В состоянии теплового равновесия прекращаются все макроскопические процессы: диффузия, теплопередача, фазовые переходы химические реакции и т. д.(Следует отметить, что тепловое равновесие является динамическим равновесием. Так, при тепловом равновесии жидкости и её насыщенного пара весьма интенсивно идут взаимные превращения жидкости и пара. Но это — процессы молекулярного масштаба, они происходят с одинаковыми скоростями и компенсируют друг друга. На макроскопическом уровне количество жидкости и пара со временем не меняется).

Термодинамическая система называется изолированной, если она не может обмениваться энергией с окружающими телами. Чай в термосе — типичный пример изолированной системы.

 

Тепловое равновесие

 

Фундаментальный постулат, вытекающий из многочисленных опытных данных, гласит: каково бы ни было начальное состояние тел изолированной системы, со временем в ней устанавливается тепловое равновесие. Таким образом, тепловое равновесие — это состояние, в которое любая система, изолированная от окружающей среды, самопроизвольно переходит через достаточно большой промежуток времени.

Температура как раз и является величиной, характеризующей состояние теплового равновесия термодинамической системы.

Температура — это макроскопический параметр, значения которого одинаковы для всех частей термодинамической системы, находящейся в состоянии теплового равновесия. Попросту говоря, температура — это то, что является одинаковым для любых двух тел, которые находятся в тепловом равновесии друг с другом. При тепловом контакте тел с одинаковыми температурами между ними не будет происходить обмен энергией (теплообмен).

В общем же случае при установлении между телами теплового контакта теплообмен начнётся. Говорят, что тело, которое отдаёт энергию, имеет более высокую температуру, а тело, которое получает энергию — более низкую температуру. Температура, таким образом, указывает направление теплообмена между телами. В процессе теплообмена температура первого тела начнёт уменьшаться, температура второго тела — увеличиваться; при выравнивании температур теплообмен прекратится — наступит тепловое равновесие.

Особенность температуры заключается в том, что она не аддитивна: температура тела не равна сумме температур его частей. Этим температура отличается от таких физических величин, как масса, длина или объём. И по этой причине температуру нельзя измерить путём сравнения с эталоном.

Измеряют температуру с помощью термометра.

Для создания термометра выбирают какое-либо вещество (термометрическое вещество), какую-либо характеристику этого вещества (термометрическую величину), и используют зависимость термометрической величины от температуры. При этом выбор термометрического вещества и термометрической величины может быть весьма произвольным.

Так, в бытовых жидкостных термометрах термометрическим веществом является ртуть (или спирт), а термометрической величиной — длина столбика жидкости. Здесь используется линейная зависимость объёма жидкости от температуры.

В идеально-газовых термометрах используется линейная зависимость давления разреженного газа (близкого по своим свойствам к идеальному) от температуры.

Действие электрических термометров (термометров сопротивления) основано на температурной зависимости сопротивления чистых металлов, сплавов и полупроводников.

В процессе измерения температуры термометр приводится в тепловой контакт(В области температур выше (раскалённые газы, расплавленные металлы) используются бесконтактные высокотемпературные термометры — пирометры. Их действие основано на измерении интенсивности теплового излучения в оптическом диапазоне.) с телом, температура которого определяется. Показания термометра после наступления теплового равновесия — это и есть температура тела. При этом термометр показывает свою температуру!

 

Температурная шкала. Абсолютная температура

 

При установлении единицы температуры чаще всего поступают следующим образом. Берут две температуры (так называемые реперные точки) — температуру таяния льда и температуру кипения воды при нормальном атмосферном давлении. Первой температуре приписывают значение , второй — значение , а интервал между ними делят на равных частей. Каждую из частей называют градусом (обозначают ), а полученную таким образом температурную шкалу — шкалой Цельсия.

При измерениях по шкале Цельсия с помощью жидкостных термометров возникает одна трудность: разные жидкости при изменении температуры изменяют свой объём по-разному. Поэтому два термометра с различными жидкостями, приведённые в тепловой контакт с одним и тем же телом, могут показать разные температуры. От данного недостатка свободны идеально-газовые термометры — зависимость давления разреженного газа от температуры не зависит от вещества самого газа.

Кроме того, для температурной шкалы идеально-газового термометра существует естественное начало отсчёта (исчезает произвол выбора реперной точки!): это та предельно низкая температура, при которой давление идеального газа постоянного объёма обращается в нуль. Эта температура называется абсолютным нулём температур.

Температурная шкала, началом отсчёта которой является абсолютный нуль, а единицей температуры — градус Цельсия, называется абсолютной температурной шкалой.

Температура, измеряемая по абсолютной шкале, называется абсолютной температурой и обозначается буквой . Единица абсолютной температуры называется кельвином ().

Абсолютному нулю () соответствует температура . Поэтому связь абсолютной температуры и температуры по шкале Цельсия даётся формулой:

В задачах достаточно использовать формулу

Температура тела — Википедия

Температура тела — комплексный показатель теплового состояния организма животных, включая человека. Является одним из основных и старейших биомаркеров.

Животные, способные сохранять свою температуру в узких пределах независимо от температуры внешней среды, называются теплокровными, или гомойотермными. К теплокровным животным относятся млекопитающие и птицы. Животные, лишённые такой способности, называются холоднокровными, или пойкилотермными. Поддержание температуры тела организмом называется терморегуляцией.

У холоднокровных животных температура тела мало отличается от температуры окружающей среды, и только при интенсивной мышечной деятельности у некоторых видов она может значительно превышать окружающую температуру.

Температуру тела измеряют максимальным термометром обычно в аксиллярной (подмышечной) области, в прямой кишке, во рту или в наружном слуховом проходе, определяя интенсивность ИК-излучения от барабанной перепонки. Для этого исходное показание максимального термометра должно быть заведомо ниже измеряемой температуры.

Температура тела каждого человека в течение дня колеблется в небольших пределах, оставаясь в диапазоне от 35,5 до 37,2 °C[1] для здорового человека. Уровень температуры ниже 35 °C указывает на наличие серьёзного заболевания. Жертвы переохлаждения впадают в ступор, если температура их тела снижается до отметки 32,2 °C, большинство теряют сознание при 29,5 °C и погибают при температуре ниже 26,5 °C. Рекорд выживания в условиях переохлаждения составляет 16 °C[1], а при экспериментальных исследованиях — 8,8 °C. На температуру влияют пол и возраст. У девочек температура тела стабилизируется в 13—14 лет, а у мальчиков — примерно в 18 лет. Средняя температура тела мужчин примерно на 0,5—0,7 °C ниже, чем у женщин[1].

Температурные различия между внутренними органами достигают нескольких десятых градуса. Разница между температурой внутренних органов, мышц и кожи может составлять до 5—10 °C, что затрудняет определение средней температуры тела, необходимой для определения термического состояния организма в целом.

Зависимость температуры от места измерения[править | править код]

Норма температуры зависит от места её измерения. Типичные результаты измерения температуры здорового человека следующие:

  • температура в анусе (ректально), влагалище или ухе: 37,5 °C;
  • температура во рту (орально): 37,0 °C;
  • температура в подмышечной впадине (аксиллярно): 36,6 °C.

Физиологические колебания температуры[править | править код]

Изменение температуры тела в течение суток

Известны физиологические колебания температуры тела в течение суток — суточный ритм: разница между ранне-утренней и вечерней температурой достигает 0,5—1,0 °C. Следуя суточному ритму, наиболее низкая температура тела отмечается утром, около 5 часов, а максимальное значение достигается вечером. Как и многие другие биоритмы, температура следует суточному циклу Солнца, а не уровню нашей активности. Люди, работающие ночью и спящие днём, демонстрируют тот же цикл изменения температуры, что и остальные.

Температура тела контролируется гормонами щитовидной железы и гипоталамусом. Нервные клетки гипоталамуса имеют рецепторы, которые напрямую реагируют на температуру тела увеличением или уменьшением секреции ТТГ, который, в свою очередь, регулирует активность щитовидной железы, гормоны которой (Т3 и Т4) отвечают за интенсивность метаболизма. В меньшей степени в регуляции температуры участвует гормон эстрадиол (основную роль играет в терморегуляции у женщин во время менструального цикла), повышение его уровня ведёт к снижению базальной температуры.

Многие заболевания эндокринной системы и опухоли головного мозга, затрагивающие область гипоталамуса, вызывают выраженные и, часто, устойчивые нарушения терморегуляции. Например, тиреотоксический криз (сопровождающийся резким выбросом гормонов Т3 и Т4 в кровь) приводит к резкому подъёму температуры тела, нередко превышающей критическую отметку и вызывающей смерть пациента.

Понижение (гипотермия) или повышение (гипертермия) температуры тела на несколько градусов нарушает процессы жизнедеятельности и может привести к охлаждению или перегреванию организма и даже к его гибели. При многих заболеваниях температура тела повышается до определённых пределов и регулируется организмом на новом уровне, например при лихорадке или простуде.

Температура способна подниматься в результате стресса, страха, ночных кошмаров, при интенсивной умственной работе, сексе, инфекции.

Интересные факты[править | править код]

  • Нормальная температура человеческого тела близка к той, при которой вода (составляющая значительную часть человеческого тела) имеет наименьшую теплоёмкость.
  • Температура тела может повышаться по разным причинам. Например, микробы при попадании в организм выделяют токсины (яды), являющиеся белковыми веществами, чужеродный белок вызывает реакцию в организме, влияющую на выработку специфических веществ, которые действуют на температурный центр мозга, что, в свою очередь, изменяет температуру в сторону её повышения[источник не указан 3093 дня].
  • Психосоматический скачок температуры тела является весьма распространённым явлением. Человек убеждает себя, что температура тела растёт, и через какое-то время температура тела действительно завышается. Известны и случаи обратного эффекта[источник не указан 3303 дня].
  • Самая низкая в мире температура тела 14,2 °C зафиксирована 23 февраля 1994 года у 2-летней канадской девочки, проведшей 6 часов на морозе[2].
  • Бартон А. и Эдхолм О., Человек в условиях холода, пер. с англ., М., 1957
  • Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967
  • Hensel Н., Neural processes in thermoregulation, «Physiological Reviews», 1973, v. 5-3, № 4.
  • Огирко И. В. Рациональное распределение температуры по поверхности термочувствительного тела … стр. 332 // Инженерно-физический журнал Том 47, Номер 2 (Август, 1984)

ТЕМПЕРАТУРА (В ФИЗИКЕ) — Большая советская энциклопедия, БСЭ — Энциклопедические словари

ТЕМПЕРАТУРА (В ФИЗИКЕ)

(от лат. temperatura — надлежащее смешение, соразмерность, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Т. одинакова для всех частей изолированной системы, находящейся в равновесии термодинамическом . Если изолированная система не находится в равновесии, то с течением времени переход энергии (теплопередача) от более нагретых частей системы к менее нагретым приводит к выравниванию Т. во всей системе (первый постулат, или нулевое начало термодинамики ) . Т. определяет: распределение образующих систему частиц по уровням энергии (см. Больцмана статистика ) и распределение частиц по скоростям (см. Максвелла распределение ) ; степень ионизации вещества (см. Саха формула ) ; свойства равновесного электромагнитного излучения тел — спектральную плотность излучения (см. Планка закон излучения ) , полную объёмную плотность излучения (см. Стефана — Больцмана закон излучения ) и т. д. Т., входящую в качестве параметра в распределение Больцмана, часто называют Т. возбуждения, в распределение Максвелла — кинетической Т., в формулу Саха — ионизационной Т., в закон Стефана — Больцмана — радиационной температурой . Поскольку для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, их называют просто температурой системы. В кинетической теории газов и др. разделах статистической механики Т. количественно определяется так, что средняя кинетическая энергия поступательного движения частицы (обладающей тремя степенями свободы) равна кТ, где k — Больцмана постоянная , Т — температура тела. В общем случае Т. определяется как производная от энергии тела в целом по его энтропии . Такая Т. всегда положительна (поскольку кинетическая энергия положительна), её называют абсолютной Т. или Т. по термодинамической температурной шкале. За единицу абсолютной Т. в Международной системе единиц (СИ) принят кельвин (К). Часто Т. измеряют по шкале Цельсия ( t ) , значения t связаны с Т равенством t Т v 273,15 К (градус Цельсия равен Кельвину). Методы измерения Т. рассмотрены в статьях Термометрия , Термометр .

Строго определённой Т. характеризуется лишь равновесное состояние тел. Существуют, однако, системы, состояние которых можно приближённо охарактеризовать несколькими не равными друг другу температурами. Например, в плазме, состоящей из лёгких (электроны) и тяжёлых (ионы) заряженных частиц, при столкновении частиц энергия быстро передаётся от электронов к электронам и от ионов к ионам, но медленно от электронов к ионам и обратно. Существуют состояния плазмы, в которых системы электронов и ионов в отдельности близки к равновесию, и можно ввести Т. электронов Тэ и Т. ионов Ти, не совпадающие между собой.

В телах, частицы которых обладают магнитным моментом , энергия обычно медленно передаётся от поступательных к магнитным степеням свободы, связанным с возможностью изменения направления магнитного момента. Благодаря этому существуют состояния, в которых система магнитных моментов характеризуется Т., не совпадающей с кинетической Т., соответствующей поступательному движению частиц. Магнитная Т. определяет магнитную часть внутренней энергии и может быть как положительной, так и отрицательной (см. Отрицательная температура ) . В процессе выравнивания Т. энергия передаётся от частиц (степеней свободы) с большей Т. к частицам (степеням свободы) с меньшей Т., если они одновременно положительны или отрицательны, но в обратном направлении, если одна из них положительна, а другая отрицательна. В этом смысле отрицательная Т. ‘выше’ любой положительной.

Понятие Т. применяют также для характеристики неравновесных систем (см. Термодинамика неравновесных процессов ) . Например, яркость небесных тел характеризуют яркостной температурой , спектральный состав излучения — цветовой температурой и т. д.

Л. Ф. Андреев.

Большая советская энциклопедия, БСЭ. 2012


Смотрите еще толкования, синонимы, значения слова и что такое ТЕМПЕРАТУРА (В ФИЗИКЕ) в русском языке в словарях, энциклопедиях и справочниках:


Планковская температура — Википедия

Материал из Википедии — свободной энциклопедии

Пла́нковская температу́ра — единица температуры в планковской системе единиц; названа в честь немецкого учёного-физика Макса Планка[1].

В планковской системе в качестве основных единиц выбраны следующие фундаментальные физические постоянные: скорость света c{\displaystyle c}, гравитационная постоянная G{\displaystyle G}, постоянная Дирака (постоянная Планка, делённая на 2π) ℏ{\displaystyle \hbar } и постоянная Больцмана k{\displaystyle k}. Через эти единицы планковская температура TP{\displaystyle T_{P}} выражается следующим образом[1]:

TP=1kℏc5G.{\displaystyle T_{P}={\frac {1}{k}}{\sqrt {\frac {\hbar c^{5}}{G}}}.}

Если выразить входящие в формулу величины в единицах Международной системы единиц (СИ), то получится значение планковской температуры в СИ. Использование наиболее точных на данный момент значений c,G,ℏ{\displaystyle c,\,G,\,\hbar } и k{\displaystyle k} даёт[2]:

TP=1,416808⋅1032{\displaystyle T_{P}=1,416808\cdot 10^{32}} К

c относительной погрешностью (относительным стандартным отклонением), равной 2,3⋅10−5{\displaystyle 2,3\cdot 10^{-5}}[2]. Таким образом, единица температуры в Планковской системе единиц в 1,416808·1032 раз больше, чем единица температуры кельвин в СИ.

Планковская температура — одна из планковских единиц, представляющих собой фундаментальный предел в квантовой механике. Современная физическая теория не способна описать что-либо с более высокой температурой из-за отсутствия в ней разработанной квантовой теории гравитации. Выше планковской температуры энергия частиц становится настолько большой, что гравитационные силы между ними становятся сравнимы с остальными фундаментальными взаимодействиями. В соответствии с текущими представлениями космологии, это температура Вселенной в первый момент (планковское время) Большого взрыва.

  1. 1 2 Томилин К. А. Планковские величины // 100 лет квантовой теории. История. Физика. Философия : Труды международной конференции. — М.: НИА-Природа, 2002. — С. 105—113.
  2. 1 2 Planck temperature (англ.). CODATA Internationally recommended 2014 values of the Fundamental Physical Constants. NIST (2014). Дата обращения 31 октября 2016.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *