Тип кристаллической решетки воды кристаллической – 2. Определение типа кристаллической решетки вещества и описание его свойств

Кристаллическая решетка льда и воды

Трехмерное состояние жидкой воды трудно исследовать, но многое было изучено путем анализа структуры кристаллов льда. Четыре соседних атома кислорода с водородным взаимодействием занимают вершины тетраэдра (тетра = четыре, гедрон = плоскость). Средняя энергия, необходимая для разрушения подобной связи во льду, оценивается в 23 кДж / моль-1.

Кристаллическая решетка льда

Способность молекул воды образовывать данное количество водородных цепей, а также указанная прочность создает необычно высокую температуру плавления. Когда он тает, то удерживается жидкой водой, структура которой нерегулярна. Большая часть водородных связей искажается. Для разрушения кристаллической решетки льда с водородной связью требуется большая масса энергии в виде тепла.

Особенности появления льда (Ih)

Многие из обывателей задаются вопросом о том, какая кристаллическая решетка у льда. Необходимо отметить, что плотность большинства веществ возрастает при замораживании, когда молекулярные движения замедляются и образуются плотно упакованные кристаллы. Плотность воды также увеличивается, когда она остывает до достижения максимума при 4°C (277K). Затем, когда температура опускается ниже этого значения, она расширяется.

Это увеличение обусловлено образованием открытого водородно-связанного кристалла льда с его решеткой и меньшей плотностью, в котором каждая молекула воды жестко связана указанным выше элементом и четырьмя другими значениями, и при этом двигается достаточно быстро, чтобы обладать большей массой. Поскольку происходит подобное действие, жидкость замерзает сверху вниз. Это имеет важные биологические результаты, вследствие которых слой льда на пруду изолирует живых существ подальше от сильного холода. Кроме того, два дополнительных свойства воды связаны с его водородными характеристиками: удельной теплоемкостьюи испарением.

Детальное описание структур

Первый критерий представляет собой количество, необходимое для повышения температуры 1 грамма вещества на 1°С. Для повышения градусов воды требуется относительно большая часть тепла, потому что каждая молекула участвует в многочисленных водородных связях, которые должны быть разрушены, чтобы кинетическая энергия увеличивалась. Кстати, обилие H2O в клетках и тканях всех крупных многоклеточных организмов означает, что флуктуация температуры внутри клеток сведена к минимуму. Эта особенность имеет решающее значение, поскольку скорость большинства биохимических реакций чувствительна.

Теплота испарения воды также значительно выше, чем у многих других жидкостей. Для преобразования этого тела в газ требуется большое количество тепла, потому что водородные связи должны быть разрушены, чтобы молекулы воды могли дислоцироваться друг от друга и войти в указанную фазу. Изменяемые тела представляют собой постоянные диполи и могут взаимодействовать с другими подобными соединениями и теми, что ионизируются и растворяются.

Иные вещества, указанные выше, могут вступать в контакт только при наличии полярности. Именно такое соединение участвует в строении этих элементов. Кроме того, оно может выравниваться вокруг этих частиц, образованных из электролитов, так что отрицательные атомы кислорода молекул воды ориентированы на катионы, а положительные ионы и атомы водорода, ориентированы на анионы.

В твердых веществах образуются, как правило, молекулярные кристаллические решетки и атомные. То есть если йод построен таким образом, что в нем присутствует I

2, то в твердом диоксиде углерода, то есть в сухом льде, в узлах кристаллической решетки находятся молекулы CO2. При взаимодействии с подобными веществами, ионную кристаллическую решетку имеет лед. Графит, например, обладающий атомной структурой, в основе которой углерод, не способен ее менять, также как и алмаз.

Что происходит, когда кристалл столовой соли растворяется в воде: полярные молекулы притягиваются к заряженным элементам в кристалле, что приводит к образованию подобных частиц натрия и хлорида на его поверхности, в результате эти тела дислоцируются друг от друга, и он начинает растворяться. Отсюда можно наблюдать, что лед имеет кристаллическую решетку с ионной связью. Каждый растворенный Na + притягивает отрицательные концы нескольких молекул воды, тогда как каждый растворенный Cl - притягивает положительные концы. Оболочка, окружающая каждый ион, называется сферой спасения и, обычно, содержит несколько слоев частиц растворителя.

Кристаллическая решетка льда и воды

Кристаллическая решетка сухого льда

Говорят, что переменные или ион, окруженные элементами, являются сульфатированными. Когда растворителем выступает вода, такие частицы гидратируются. Таким образом, любая полярная молекула имеет тенденцию к сольватации элементами жидкого тела. У сухого льда тип кристаллической решетки образует в агрегатном состоянии атомные связи, которые неизменны. Другое дело кристаллический лед (замороженная вода). Ионные органические соединения, такие как карбоксилазы и протонированные амины, должны обладать растворимостью в гидроксильной и карбонильной группах. Частицы, содержащиеся в таких структурах, двигаются между молекулами, причем их полярные системы образуют водородные связи с этим телом.

Конечно, количество последних указанных групп в молекуле влияет на ее растворимость, которая также зависит от реакции различных структур в элементе: например, одно-, двух- и трех углеродные спирты смешиваются с водой, но более крупные углеводороды с одиночными гидроксильными соединениями гораздо менее разбавляемы в жидкости.

Шестиугольный Ih схож по форме с атомной кристаллической решеткой. У льда и всего естественного снега на Земле она выглядит именно так. Об этом свидетельствует симметрия кристаллической решетки льда, выращенная из водяного пара (то есть снежинок). Находится в космической группе P 63/мм с 194; D 6h, класса Лауэ 6/мм; аналогичный β-, имеющей кратную 6-ти винтовую ось (вращение вокруг в дополнение к сдвигу вдоль нее). Он обладает довольно открытой структурой с низкой плотностью, где эффективность низкая (~ 1/3) по сравнению с простыми кубическими (~ 1/2) или гранецентрированными кубическими (~ 3/4) структурами.

По сравнению с обычным льдом, кристаллическая решетка сухого льда, связанная молекулами CO2, статична и меняется лишь при распаде атомов.

Какой тип кристаллической решетки характерен для льда

Описание решеток и входящих в них элементов

Кристаллы можно рассматривать, как кристаллические модели, состоящие из листов, расположенных друг над другом. Водородная связь упорядочена, тогда как в действительности она случайна, поскольку протоны могут перемещаться между молекулами воды (льда) при температурах выше примерно 5 К. Действительно, вполне вероятно, что протоны ведут себя, как квантовая жидкость в постоянном туннелированном потоке. Это усиливается рассеянием нейтронов, показывающих плотность их рассеяния на полпути между атомами кислорода, что указывает на локализацию и согласованное движение. Здесь наблюдается схожесть льда с атомной, молекулярной кристаллической решеткой.

Молекулы имеют ступенчатое расположение водородной цепи по отношению к трем своим соседям в плоскости. Четвертый элемент имеет затмеваемое расположение водородной связи. Существует небольшое отклонение от идеальной шестиугольной симметрии, как элементарной ячейки на 0,3% короче в направлении этой цепи. Все молекулы испытывают одинаковые молекулярные среды. Внутри каждой "коробки" достаточно места для удержания частиц интерстициальной воды. Хотя это, как правило, не считается, недавно они были эффективно обнаружены нейтронной дифракцией порошкообразной кристаллической решеткой льда.

Изменение веществ

Шестиугольное тело имеет тройные точки с жидкой и газообразной водой 0,01 ° C, 612 Па, твердыми элементами – три -21,985 ° C, 209,9 МПа, одиннадцать и два -199,8 ° C, 70 МПа, а также -34,7 ° C, 212,9 МПа. Диэлектрическая проницаемость гексагонального льда составляет 97,5.

Кривая плавления этого элемента дается МПа. Уравнения состояния доступны, кроме них некоторые простые неравенства, связывающие изменение физических свойств с температурой гексагонального льда и его водных суспензий. Твердость колеблется в зависимости от градусов, возрастающих примерно от или ниже гипса (≤2) при 0°С, до уровня полевого шпата (6 по шкале Мооса) при -80 ° С, аномально большое изменение абсолютной твердости (> 24 раза).

Шестиугольная кристаллическая решетка льда образует гексагональные пластины и столбцы, где верхняя и нижняя грани являются базальными плоскостями {0 0 0 1} с энтальпией 5,57 мкДж · см -2, а другие эквивалентные боковые называются частями призмы {1 0 -1 0} с 5,94 мкДж · см -2. Вторичные поверхности {1 1 -2 0} с 6.90 μJ ˣ см -2 могут быть сформированы по плоскостям, образованными сторонами структур.

Подобное строение показывает аномальное уменьшение теплопроводности с увеличением давления (как и кубический, и аморфный лед низкой плотности), но отличается от большинства кристаллов. Это связано с изменением водородной связи, уменьшающей поперечную скорость звука в кристаллической решетке льда и воды.

Существуют методы, описывающие, как подготовить большие образцы кристалла и любую желаемую поверхность льда. Предполагается, что водородная связь на поверхности гексагонального исследуемого тела будет более упорядоченной, чем внутри объемной системы. Вариационная спектроскопия с генерацией по частоте колебаний с фазовой решеткой показала, что существует структурная асимметрия между двумя верхними слоями (L1 и L2) в подповерхностной HO цепи базальной поверхности гексагонального льда. Принятые водородные связи в верхних слоях шестиугольниках (L1 O ··· HO L2) сильнее, чем принятые во втором слое к верхнему накоплению (L1 OH ··· O L2). Доступны интерактивные структуры гексагонального льда.

Кристаллическая решетка сухого льда

Особенности развития

Минимальное количество молекул воды, необходимых для зарождения льда, примерно 275 ± 25, как и для полного икосаэдрического кластера 280. Образование происходит с коэффициентом 10 10 на поверхности раздела воздух-вода, а не в объемной воде. Рост кристаллов льда зависит от разных темпов роста различных энергий. Вода должна быть защищена от замерзания при крио консервировании биологических образцов, пищи и органов.

Обычно это достигается быстрыми скоростями охлаждения, использованием небольших образцов и крио консерватора, а также увеличением давления для образования зародышей льда и предотвращения повреждения клеток. Свободная энергия льда / жидкости увеличивается от ~ 30 мДж/м

2 при атмосферном давлении до 40 мДж/м-2 при 200 МПа, что указывает на причину, по которой происходит подобный эффект.

Какой тип кристаллической решетки характерен для льда

В качестве альтернативы они могут расти быстрее с поверхностей призмы (S2), на случайно нарушенной поверхности быстрозамороженных или взволнованных озер. Рост от граней {1 1 -2 0}, по крайней мере, такой же, но превращает их в основания призмы. Данные о развитии кристалла льда были полностью исследованы. Относительные скорости роста элементов разных граней зависят от способности образовывать большую степень совместной гидратации. Температура (низкая) окружающей воды определяет степень разветвления в кристалле льда. Рост частиц ограничивается скоростью диффузии при низкой степени переохлаждения, то есть <2 ° C, что приводит к большему их количеству.

В узлах кристаллической решетки сухого льда находится

Но ограничено кинетикой развития при более высоких уровнях понижения градусов >4°C, что приводит к игольчатому росту. Эта форма схожа со строением сухого льда (имеет кристаллическую решетку с шестиугольной структурой), различными характеристиками развития поверхности и температурой окружающей (переохлажденной) воды, которая находится за плоскими формами снежинок.

Зарождение льда в атмосфере глубоко влияет на образование и свойства облаков. Полевые шпаты, обнаруженные в пустынной пыли, которая попадает в атмосферу миллионами тонн в год, являются важными образователями. Компьютерное моделирование показало, что это связано с зарождением плоскостей призматических кристаллов льда на плоскостях поверхности высоких энергий.

Некоторые другие элементы и решетки

Растворенные вещества (за исключением очень небольшого гелия и водорода, которые могут входить в междоузлия) не могут быть включены в структуру Ih при атмосферном давлении, но вытесняются на поверхность или аморфный слой между частицами микрокристаллического тела. В узлах кристаллической решетки сухого льда находятся некоторые иные элементы: хаотропные ионы, такие как NH

4 + и Cl -, которые включены в более легкое замораживание жидкости, чем другие космотропные, такие как Na + и SO42-, поэтому удаление их невозможно, ввиду того, что они образуют тонкую пленку из оставшейся жидкости между кристаллами. Это может привести к электрической зарядке поверхности из-за диссоциации поверхностной воды, уравновешивающей оставшиеся заряды (что также может привести к магнитному излучению) и изменению рН остаточных жидких пленок, например, NH 42SO4 становится более кислым и NaCl становится более щелочным.

Они перпендикулярны граням кристаллической решетке льда, показывающей присоединенный следующий слой (с атомами О-черный). Им характерна медленно растущая базальная поверхность {0 0 0 1}, где прикрепляются только изолированные молекулы воды. Быстро растущая {1 0 -1 0} поверхность призмы, где пары вновь присоединенных частиц могут связываться друг с другом водородом (одна его связь/две молекулы элемента). Наиболее быстро растущая грань {1 1 -2 0} (вторичная призматика), где цепочки вновь присоединенных частиц могут взаимодействовать друг с другом водородной связью. Одна ее цепочка/ молекула элемента – это форма, образующая хребты, которые делят и поощряют превращение в две стороны призмы.

Кристаллическая решетка льда атомная молекулярная

Энтропия нулевой точки

Может быть определена, как S 0 = k B ˣ Ln (N E0), где k B – это постоянная Больцмана, NE– эточисло конфигураций при энергии E, а E0 - наименьшая энергия. Это значение для энтропии гексагонального льда при нулевом кельвине не нарушает третьего закона термодинамики «Энтропия идеального кристалла при абсолютном нуле ровно равна нулю», поскольку эти элементы и частицы не идеальны, имеют неупорядоченное водородное связывание.

В этом теле водородная связь является случайной и быстро меняющейся. Эти структуры не точно равны по энергии, а распространяются на очень большое количество энергетически близких состояний, подчиняются «правилам льда». Энтропия нулевой точки – это беспорядок, который оставался бы, даже если материал мог бы быть охлажден до абсолютного нуля (0 K = -273,15 ° C). Порождает экспериментальную путаницу для гексагонального льда 3,41 (± 0,2) ˣ моль -1 ˣ K -1. Теоретически, можно было бы вычислить нулевую энтропию известных ледяных кристаллов с гораздо большей точностью (пренебрегая дефектами и разбросом энергетических уровней), чем определить ее экспериментально.

Ученые и их труды в этой сфере

Может быть определена, как S 0 = k B ˣ Ln (N E0), где k B – это постоянная Больцмана, NE– эточисло конфигураций при энергии E, а E0 - наименьшая энергия. Это значение для энтропии гексагонального льда при нулевом кельвине не нарушает третьего закона термодинамики «Энтропия идеального кристалла при абсолютном нуле ровно равна нулю», поскольку эти элементы и частицы не идеальны, имеют неупорядоченное водородное связывание.

В этом теле водородная связь является случайной и быстро меняющейся. Эти структуры не точно равны по энергии, а распространяются на очень большое количество энергетически близких состояний, подчиняются «правилам льда». Энтропия нулевой точки – это беспорядок, который оставался бы, даже если материал мог бы быть охлажден до абсолютного нуля (0 K = -273,15 ° C). Порождает экспериментальную путаницу для гексагонального льда 3,41 (± 0,2) ˣ моль -1 ˣ K -1. Теоретически, можно было бы вычислить нулевую энтропию известных ледяных кристаллов с гораздо большей точностью (пренебрегая дефектами и разбросом энергетических уровней), чем определить ее экспериментально.

Сухой лед имеет кристаллическую решетку

Хотя порядок протонов в объемном льду не упорядочен, поверхность, вероятно, предпочитает порядок указанных частиц в виде полос свисающих Н-атомов и О-одиночных пар (нулевая энтропия с упорядоченными водородными связями). Найден беспорядок нулевой точки ZPE, J ˣ mol -1 ˣ K -1 и других. Из всего вышеизложенного видно и понятно, какие типы кристаллических решеток характерны для льда.

Кристаллическая решётка — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 декабря 2018; проверки требуют 6 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 декабря 2018; проверки требуют 6 правок. У этого термина существуют и другие значения, см. Решётка.

Кристаллическая решётка — вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек, которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции. Это расположение замечательно тем, что относительно каждой точки все остальные расположены совершенно одинаково. Применение к решётке в целом любой из присущих ей трансляций приводит к её параллельному переносу и совмещению. Для удобства анализа обычно точки решётки совмещают с центрами каких-либо атомов из числа входящих в кристалл, либо с элементами симметрии.

В зависимости от пространственной симметрии, все кристаллические решётки подразделяются на семь кристаллических систем. По форме элементарной ячейки они могут быть разбиты на шесть сингоний. Все возможные сочетания имеющихся в кристаллической решётке поворотных осей симметрии и зеркальных плоскостей симметрии приводят к делению кристаллов на 32 класса симметрии, а с учётом винтовых осей симметрии и скользящих плоскостей симметрии на 230 пространственных групп.

Помимо основных трансляций, на которых строится элементарная ячейка, в кристаллической решётке могут присутствовать дополнительные трансляции, называемые решётками Браве. В трёхмерных решётках бывают гранецентрированная (F), объёмноцентрированная (I), базоцентрированная (A, B или C), примитивная (P) и ромбоэдрическая (R) решётки Браве. Примитивная система трансляций состоит из множества векторов (a, b, c), во все остальные входят одна или несколько дополнительных трансляций. Так, в объёмноцентрированную систему трансляций Браве входит четыре вектора (a, b, c, ½(a+b+c)), в гранецентрированную — шесть (a, b, c, ½(a+b), ½(b+c), ½(a+c)). Базоцентрированные системы трансляций содержат по четыре вектора: A включает вектора (a, b, c, ½(b+c)), B — вектора (a, b, c, ½(a+c)), а C — (a, b, c, ½(a+b)), центрируя одну из граней элементарного объёма. В системе трансляций Браве R дополнительные трансляции возникают только при выборе гексагональной элементарной ячейки и в этом случае в систему трансляций R входят вектора (a, b, c, 1/3(a+b+c), —1/3(a+b+c)).

Сингонии:

  • Низшая категория (все трансляции не равны друг другу)
  • Средняя категория (две трансляции из трёх равны между собой)
  • Высшая категория (все трансляции равны между собой)
    • Кубическая: a=b=c{\displaystyle a=b=c}, α=β=γ=90∘{\displaystyle \alpha =\beta =\gamma =90^{\circ }}

Объём элементарной ячейки в общем случае вычисляется по формуле:

V=abc1−cos2⁡α−cos2⁡β−cos2⁡γ+2cos⁡αcos⁡βcos⁡γ{\displaystyle {\mathsf {V=abc{\sqrt {1-\cos ^{2}\alpha -\cos ^{2}\beta -\cos ^{2}\gamma +2\cos \alpha \cos \beta \cos \gamma }}}}}
  • Ландау Л. Д., Лифшиц Е. М. Статистическая физика. Часть 1. — Издание 3-е, доп. — М.: Наука, 1976. — 584 с. — («Теоретическая физика», том V). — Глава XIII
  • Н. Ашкрофт, Н. Мермин Физика твёрдого тела. Том I.
  • Ф. Ф. Греков, Г. Б. Рябенко, Ю. П. Смирнов Структурная кристаллография — Л.:издательство ЛГПИ, 1988.

Какой тип кристаллической решётки у водорода?

Особая разновидность молекулярной связи — водородная связь. Это самая сильная молекулярная связь. При определённых условиях атом водорода может быть связан довольно прочно с двумя другими атомами. Имея лишь одну стабильную орбиталь, атом водорода способен образовывать только одну ковалентную связь. Эта связь может, однако, резонировать между двумя положениями. Наибольшее значение имеют те водородные связи, которые образуются между двумя сильно электроотрицательными атомами, в особенности между атомами азота, кислорода и фтора. Водородные связи, образуемые молекулами воды, обусловливают удивительно высокие точки плавления льда и кипения воды, существование максимума плотности воды, расширение воды при замерзании. Многие особые свойства неорганических и органических молекул, например димеризация жирных кислот, объясняются образованием водородных связей. Водородная связь — особенно важная структура белков особенность белков и нуклеиновых кислот. Молекулярные связи образуют, например, следующие вещества : h3, N2, O2, CO2, h3O. Типы химической связи — это удобное упрощение. Более точно поведение электрона в кристалле описывается законами квантовой механики. Говоря о типе связи в кристалле, необходимо иметь в виду следующее: связь между двумя атомами никогда полностью не соответствует одному из описанных типов. В ионной связи всегда присутствует элемент ковалентной связи и т. п. в сложных веществах связь между разными атомами может быть разного типа. Так например, в кристалле белка связь в молекуле белка ковалентная, а между молекулами (или разными частями одной молекулы) водородная. <a rel="nofollow" href="http://ru.wikipedia.org/wiki/Типы_связей_в_кристаллах" target="_blank">http://ru.wikipedia.org/wiki/Типы_связей_в_кристаллах</a> <a rel="nofollow" href="http://www.himhelp.ru/section23/section3/section21/" target="_blank">http://www.himhelp.ru/section23/section3/section21/</a>

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *