Трапеция с прямым углом – 1. Прямоугольная трапеция с углом в 45° вращается вокруг прямой… Контрольные работы. К-2. В-1. Зив Б.Г. 11 класс Геометрия ГДЗ.

все формулы и примеры задач :: SYL.ru

Задачи с трапецией не кажутся сложными в ряде фигур, которые изучены ранее. Как частный случай рассматривается прямоугольная трапеция. А при поиске ее площади иногда бывает удобнее разбить ее на две уже знакомые: прямоугольник и треугольник. Стоит только немного подумать, и решение обязательно найдется.

Определение прямоугольной трапеции и ее свойства

У произвольной трапеции основания параллельны, а боковые стороны могут иметь произвольное значение углов к ним. Если рассматривается прямоугольная трапеция, то в ней одна из сторон всегда перпендикулярна основаниям. То есть два угла в ней будут равны 90 градусам. Причем они всегда принадлежат смежным вершинам или, другими словами, одной боковой стороне.

прямоугольная трапеция
Другие углы в прямоугольной трапеции − это всегда острый и тупой. Причем их сумма всегда будет равна 180 градусам.

Каждая диагональ образует с ее меньшей боковой стороной прямоугольный треугольник. А высота, которая проведена из вершины с тупым углом, делит фигуру на две. Одна из них прямоугольник, а другая − прямоугольный треугольник. Кстати, эта сторона всегда равна высоте трапеции.

Какие обозначения приняты в представленных формулах?

Все величины, используемые в разных выражениях, которые описывают трапецию, удобно сразу оговорить и представить в таблице:

ВеличинаЕе обозначение
aбольшее основание
bменьшее основание прямоугольной трапеции
c, hперпендикулярная к основаниям боковая сторона, высота
dнаклонная боковая сторона
αострый угол
βтупой угол
мсредняя линия трапеции
д1меньшая диагональ
д2большая диагональ

Формулы, которые описывают элементы прямоугольной трапеции

Самая простая из них связывает высоту и меньшую боковую сторону:

c = h.

Еще несколько формул для этой стороны прямоугольной трапеции:

с = d *sinα;

c = (a — b) * tg α;

c = √ (d2 — (a — b)2).

Первая вытекает из прямоугольного треугольника. И говорит о том, что катет к гипотенузе дает синус противолежащего угла.

В том же треугольнике второй катет равен разности двух оснований. Поэтому справедливо утверждение, которое приравнивает тангенс угла к отношению катетов.

Из того же треугольника можно вывести формулу, основываясь на знании теоремы Пифагора. Это третье записанное выражение.

площадь прямоугольной трапеции
Можно записать формулы для другой боковой стороны. Их тоже три:

d = (a — b) /cosα;

d = c / sin α;

d = √ (c2 + (а – b)2).

Первые две опять получаются из соотношения сторон в том же прямоугольном треугольнике, а вторая выводится из теоремы Пифагора.

Какой формулой можно воспользоваться для расчета площади?

Той, что дана для произвольной трапеции. Только нужно учесть, что высотой является сторона, перпендикулярная к основаниям.

S = (a + b) * h / 2.

Эти величины не всегда даны явно. Поэтому чтобы вычислить площадь прямоугольной трапеции, потребуется выполнить некоторые математические выкладки.

основание прямоугольной трапеции

Как быть, если нужно вычислить диагонали?

В этом случае нужно увидеть, что они образуют два прямоугольных треугольника. Значит, всегда можно воспользоваться теоремой Пифагора. Тогда первая диагональ будет выражаться так:

d1 = √ (с2 + b2)

или по-другому, заменив «с» на «h»:

d1 = √ (h2 + b2).

Аналогичным образом получаются формулы для второй диагонали:

d2 = √ (с2 + b2) или d2 = √ (h2 + а2).

Задача №1

Условие. Площадь прямоугольной трапеции известна и равна 120 дм2. Ее высота имеет длину 8 дм. Необходимо вычислить все стороны трапеции. Дополнительным условием является то, что одно основание меньше другого на 6 дм.

Решение. Поскольку дана прямоугольная трапеция, в которой известна высота, то сразу же можно сказать о том, что одна из сторон равна 8 дм, то есть меньшая боковая сторона.

Теперь можно сосчитать другую: d = √ (с2 + (а – b)2). Причем здесь сразу даны и сторона с, и разность оснований. Последнее равно 6 дм, это известно из условия. Тогда d будет равняться квадратному корню из (64 + 36), то есть из 100. Так найдена еще одна боковая сторона, равная 10 дм.

Сумму оснований можно найти из формулы для площади. Она будет равна удвоенному значению площади, разделенному на высоту. Если считать, то получается 240 / 8. Значит, сумма оснований — это 30 дм. С другой стороны, их разность равна 6 дм. Объединив эти уравнения, можно сосчитать оба основания:

а + b = 30 и а — b = 6.

Можно выразить а как (b + 6), подставить его в первое равенство. Тогда получится, что 2b будет равняться 24. Поэтому просто b окажется 12 дм.

Тогда последняя сторона а равна 18 дм.

Ответ.

Стороны прямоугольной трапеции: а = 18 дм, b = 12 дм, с = 8 дм, d = 10 дм.

стороны прямоугольной трапеции

Задача №2

Условие. Дана прямоугольная трапеция. Ее большая боковая сторона равняется сумме оснований. Ее высота имеет длину 12 см. Построен прямоугольник, стороны которого равны основаниям трапеции. Необходимо вычислить площадь этого прямоугольника.

Решение. Начать нужно с искомого. Нужная площадь определится как произведение a и b. Обе эти величины не известны.

Потребуется использовать дополнительные равенства. Одно из них построено на утверждении из условия: d = а + b. Необходимо воспользоваться третьей формулой для этой стороны, которая дана выше. Получится: d2 = с2 + (a – b)2 или (a + b)2 = с2 + (a – b)2.

Необходимо сделать преобразования, подставив вместо с его значение из условия — 12. После раскрытия скобок и приведения подобных слагаемых получается, что 144 = 4 ab.

В начале решения шла речь о том, что а*b дает искомую площадь. Поэтому в последнем выражении можно заменить это произведение на S. Простой расчет даст значение площади. S = 36 см2.

Ответ. Искомая площадь 36 см2.

углы в прямоугольной трапеции

Задача №3

Условие. Площадь прямоугольной трапеции 150√3 см². Острый угол равняется 60 градусам. Такое же значение имеет угол между маленьким основанием и меньшей диагональю. Нужно вычислить меньшую диагональ.

Решение. Из свойства углов трапеции получается, что ее тупой угол равен 120º. Тогда диагональ делит его на равные, потому что одна его часть уже 60 градусов. Тогда и угол между этой диагональю и вторым основанием тоже 60 градусов. То есть треугольник, образованный большим основанием, наклонной боковой стороной и меньшей диагональю, является равносторонним. Таким образом, искомая диагональ будет равна а, как и боковая сторона d = а.

Теперь нужно рассмотреть прямоугольный треугольник. В нем третий угол равен 30 градусам. Значит катет, лежащий против него, равен половине гипотенузы. То есть меньшее основание трапеции равно половине искомой диагонали: b = a/2. Из него же нужно найти высоту, равную боковой стороне, перпендикулярной основаниям. Сторона с здесь катет. Из теоремы Пифагора:

с = (a/2) * √3.

Теперь осталось только подставить все величины в формулу площади:

150√3 = (a + a/2) * (a/2 * √3) / 2.

Решение этого уравнения дает корень 20

Ответ. Меньшая диагональ имеет длину 20 см.

www.syl.ru

Площадь прямоугольной трапеции | Треугольники

Площадь прямоугольной трапеции можно найти по любой из формул для площади произвольной трапеции. Некоторые из общих формул могут быть упрощены на основании свойств прямоугольной трапеции.

I. Площадь трапеции равна произведению полусуммы оснований на высоту.

Площадь прямоугольной трапеции ABCD,

AD∥BC,

   

равна

   

Так как меньшая боковая сторона прямоугольной трапеции перпендикулярна основаниям, то она равна высоте трапеции, то есть

   

Если обозначить AD=a, BC=b, CF=AB=h, то формула площади прямоугольной трапеции через основания и высоту (меньшую боковую сторону):

   

II. Площадь трапеции равна произведению средней линии на высоту.

Если MN — средняя линия прямоугольной трапеции ABCD,

   

то площадь

   

Если обозначить среднюю линию MN=m, меньшую боковую сторону AB=h, получим формулу для нахождения площади прямоугольной трапеции через среднюю линию:

   

III. Площадь трапеции равна половине произведения диагоналей трапеции на синус угла между ними.

Для прямоугольной

трапеции

ABCD,

AD∥BC,

   

Так как sin(180º-α)=sin α, то также 

   

Если AC=d1, BD=d2, ∠COD=φ, то

   

В частности, если диагонали трапеции перпендикулярны, то

   

 

VI. Площадь трапеции равна произведению её полупериметра на радиус вписанной окружности.

   

Так как в трапецию можно вписать окружность, то

AD+BC=AB+CD=p. Следовательно,

   

или

   

Обозначив AD=a, BC=b, CD=c, AB=h=2r, получим формулы площади прямоугольной трапеции через радиус вписанной окружности:

   

   

Если в трапецию вписана окружность, площадь трапеции также можно найти как удвоенное произведение радиуса и средней линии.  Формула

   

Если в прямоугольную трапецию вписана окружность, ее площадь равна произведению оснований.

   

или

   

www.treugolniki.ru

Формулы боковых сторон прямоугольной трапеции

 

1. Формула боковой стороны (с) прямоугольной трапеции через другие стороны и угол при нижнем основании

a — нижнее основание

b — верхнее основание

d — боковая сторона

α — угол при нижнем основании

h — высота трапеции

c — боковая сторона под прямым углом к основаниям

 

 

Формулы длины боковой стороны (с) :


 

2. Формулы боковой стороны (с) прямоугольной трапеции через диагонали  и угол между ними

 

a — нижнее основание

b — верхнее основание

d1 , d2 — диагонали трапеции

α , β — углы между диагоналями

c — боковая сторона под прямым углом к основаниям

 

 

Формулы длины боковой стороны (с):


 

3. Формулы боковой стороны (с) прямоугольной трапеции через площадь

 

a — нижнее основание

b — верхнее основание

m — средняя линия трапеции

c — боковая сторона под прямым углом к основаниям

 

 

Формула длины боковой стороны (с) :


 

4. Формулы боковой стороны (d) прямоугольной трапеции через другие стороны и угол при нижнем основании

a — нижнее основание

b — верхнее основание

c — боковая сторона под прямым углом к основаниям

α — угол при нижнем основании

h — высота трапеции

d — боковая сторона

 

 

Формулы длины боковой стороны (d) :


 

5. Формула боковой стороны (d) прямоугольной трапеции через площадь

 

a — нижнее основание

b — верхнее основание

m — средняя линия трапеции

α — угол при нижнем основании

d — боковая сторона

 

 

Формула длины боковой стороны (d) :



 

Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

zdesformula.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о