Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΠ·ΡΡΠ°ΡΡ Π² 8 ΠΊΠ»Π°ΡΡΠ΅, ΠΏΠΎΡΡΠΎΠΌΡ Π½ΠΈΡΠ΅Π³ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ Π·Π΄Π΅ΡΡ Π½Π΅Ρ. Π£ΠΌΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ°ΡΡ ΠΈΡ ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ax2 + bx + c = 0, Π³Π΄Π΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ a, b ΠΈ c β ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΏΡΠΈΡΠ΅ΠΌ a β 0.
ΠΡΠ΅ΠΆΠ΄Π΅, ΡΠ΅ΠΌ ΠΈΠ·ΡΡΠ°ΡΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ, Π·Π°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Π²ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ»ΠΎΠ²Π½ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π½Π° ΡΡΠΈ ΠΊΠ»Π°ΡΡΠ°:
- ΠΠ΅ ΠΈΠΌΠ΅ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ;
- ΠΠΌΠ΅ΡΡ ΡΠΎΠ²Π½ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ;
- ΠΠΌΠ΅ΡΡ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠΎΡΠ½Ρ.
Π ΡΡΠΎΠΌ ΡΠΎΡΡΠΎΠΈΡ Π²Π°ΠΆΠ½ΠΎΠ΅ ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΎΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
, Π³Π΄Π΅ ΠΊΠΎΡΠ΅Π½Ρ Π²ΡΠ΅Π³Π΄Π° ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π΅Π½. ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅? ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ Π²Π΅ΡΡ β
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΡΡΡΡ Π΄Π°Π½ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ax2 + bx + c = 0. Π’ΠΎΠ³Π΄Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ β ΡΡΠΎ ΠΏΡΠΎΡΡΠΎ ΡΠΈΡΠ»ΠΎ D = b2 β 4ac.
ΠΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ Π½Π°ΠΈΠ·ΡΡΡΡ. ΠΡΠΊΡΠ΄Π° ΠΎΠ½Π° Π±Π΅ΡΠ΅ΡΡΡ β ΡΠ΅ΠΉΡΠ°Ρ Π½Π΅Π²Π°ΠΆΠ½ΠΎ. ΠΠ°ΠΆΠ½ΠΎ Π΄ΡΡΠ³ΠΎΠ΅: ΠΏΠΎ Π·Π½Π°ΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. Π ΠΈΠΌΠ΅Π½Π½ΠΎ:
- ΠΡΠ»ΠΈ D < 0, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ;
- ΠΡΠ»ΠΈ D = 0, Π΅ΡΡΡ ΡΠΎΠ²Π½ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ;
- ΠΡΠ»ΠΈ D > 0, ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ Π΄Π²Π°.
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅: Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ, Π° Π²ΠΎΠ²ΡΠ΅ Π½Π΅ Π½Π° ΠΈΡ Π·Π½Π°ΠΊΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΡΠ΅ΠΌΡ-ΡΠΎ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΡΡΠΈΡΠ°ΡΡ. ΠΠ·Π³Π»ΡΠ½ΠΈΡΠ΅ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΡ β ΠΈ ΡΠ°ΠΌΠΈ Π²ΡΠ΅ ΠΏΠΎΠΉΠΌΠ΅ΡΠ΅:
ΠΠ°Π΄Π°ΡΠ°. Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
- x2 β 8x + 12 = 0;
- 5x2 + 3x + 7 = 0;
- x2 β 6x + 9 = 0.
ΠΡΠΏΠΈΡΠ΅ΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
a = 1, b = β8, c = 12;
ΠΡΠ°ΠΊ, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠ°Π·Π±ΠΈΡΠ°Π΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
a = 5; b = 3; c = 7;
D = 32 β 4 Β· 5 Β· 7 = 9 β 140 = β131.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ. ΠΡΡΠ°Π»ΠΎΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
a = 1; b = β6; c = 9;
D = (β6)2 β 4 Β· 1 Β· 9 = 36 β 36 = 0.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ β ΠΊΠΎΡΠ΅Π½Ρ Π±ΡΠ΄Π΅Ρ ΠΎΠ΄ΠΈΠ½.
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π±ΡΠ»ΠΈ Π²ΡΠΏΠΈΡΠ°Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ. ΠΠ°, ΡΡΠΎ Π΄ΠΎΠ»Π³ΠΎ, Π΄Π°, ΡΡΠΎ Π½ΡΠ΄Π½ΠΎ β Π·Π°ΡΠΎ Π²Ρ Π½Π΅ ΠΏΠ΅ΡΠ΅ΠΏΡΡΠ°Π΅ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΈ Π½Π΅ Π΄ΠΎΠΏΡΡΡΠΈΡΠ΅ Π³Π»ΡΠΏΡΡ ΠΎΡΠΈΠ±ΠΎΠΊ. ΠΡΠ±ΠΈΡΠ°ΠΉΡΠ΅ ΡΠ°ΠΌΠΈ: ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ»ΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ.
ΠΡΡΠ°ΡΠΈ, Π΅ΡΠ»ΠΈ Β«Π½Π°Π±ΠΈΡΡ ΡΡΠΊΡΒ», ΡΠ΅ΡΠ΅Π· Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΡΠΆΠ΅ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π²ΡΠΏΠΈΡΡΠ²Π°ΡΡ Π²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ. Π’Π°ΠΊΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π²Ρ Π±ΡΠ΄Π΅ΡΠ΅ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π² Π³ΠΎΠ»ΠΎΠ²Π΅. ΠΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ Π»ΡΠ΄Π΅ΠΉ Π½Π°ΡΠΈΠ½Π°ΡΡ Π΄Π΅Π»Π°ΡΡ ΡΠ°ΠΊ Π³Π΄Π΅-ΡΠΎ ΠΏΠΎΡΠ»Π΅ 50-70 ΡΠ΅ΡΠ΅Π½Π½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ β Π² ΠΎΠ±ΡΠ΅ΠΌ, Π½Π΅ ΡΠ°ΠΊ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎ.
ΠΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠ΅ΡΠ΅ΠΉΠ΄Π΅ΠΌ, ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎ, ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ D > 0, ΠΊΠΎΡΠ½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ:
ΠΡΠ½ΠΎΠ²Π½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΠΎΠ³Π΄Π° D = 0, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π»ΡΠ±ΡΡ ΠΈΠ· ΡΡΠΈΡ ΡΠΎΡΠΌΡΠ» β ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΈ Π±ΡΠ΄Π΅Ρ ΠΎΡΠ²Π΅ΡΠΎΠΌ. ΠΠ°ΠΊΠΎΠ½Π΅Ρ, Π΅ΡΠ»ΠΈ D < 0, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ β Π½ΠΈΡΠ΅Π³ΠΎ ΡΡΠΈΡΠ°ΡΡ Π½Π΅ Π½Π°Π΄ΠΎ.
ΠΠ°Π΄Π°ΡΠ°. Π Π΅ΡΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
- x2 β 2x β 3 = 0;
- 15 β 2x β x2 = 0;
- x2 + 12x + 36 = 0.
ΠΠ΅ΡΠ²ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
x2 β 2x β 3 = 0 β a = 1; b = β2; c = β3;
D = (β2)2 β 4 Β· 1 Β· (β3) = 16.
D > 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΈΡ :

ΠΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
15 β 2x β x2 = 0 β a = β1; b = β2; c = 15;
D > 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ½ΠΎΠ²Π° ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΈΡ
\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left( -1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left( -1 \right)}=3. \\ \end{align}\]
ΠΠ°ΠΊΠΎΠ½Π΅Ρ, ΡΡΠ΅ΡΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
x2 + 12x + 36 = 0 β a = 1; b = 12; c = 36;
D = 122 β 4 Β· 1 Β· 36 = 0.
D = 0 β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ. ΠΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π»ΡΠ±ΡΡ ΡΠΎΡΠΌΡΠ»Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ²ΡΡ:
\[x=\frac{-12+\sqrt{0}}{2\cdot 1}=-6\]
ΠΠ°ΠΊ Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ², Π²ΡΠ΅ ΠΎΡΠ΅Π½Ρ ΠΏΡΠΎΡΡΠΎ. ΠΡΠ»ΠΈ Π·Π½Π°ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΡΠΌΠ΅ΡΡ ΡΡΠΈΡΠ°ΡΡ, ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π½Π΅ Π±ΡΠ΄Π΅Ρ. Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΎΡΠΈΠ±ΠΊΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ ΠΏΡΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π² ΡΠΎΡΠΌΡΠ»Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ². ΠΠ΄Π΅ΡΡ ΠΎΠΏΡΡΡ ΠΆΠ΅ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ΅ΠΌ, ΠΎΠΏΠΈΡΠ°Π½Π½ΡΠΉ Π²ΡΡΠ΅: ΡΠΌΠΎΡΡΠΈΡΠ΅ Π½Π° ΡΠΎΡΠΌΡΠ»Ρ Π±ΡΠΊΠ²Π°Π»ΡΠ½ΠΎ, ΡΠ°ΡΠΏΠΈΡΡΠ²Π°ΠΉΡΠ΅ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π³ β ΠΈ ΠΎΡΠ΅Π½Ρ ΡΠΊΠΎΡΠΎ ΠΈΠ·Π±Π°Π²ΠΈΡΠ΅ΡΡ ΠΎΡ ΠΎΡΠΈΠ±ΠΎΠΊ.
ΠΠ΅ΠΏΠΎΠ»Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΡΠ²Π°Π΅Ρ, ΡΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π΄Π°Π½ΠΎ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:
- x2 + 9x = 0;
- x2 β 16 = 0.
ΠΠ΅ΡΠ»ΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π² ΡΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ . Π’Π°ΠΊΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ°ΡΡΡΡ Π΄Π°ΠΆΠ΅ Π»Π΅Π³ΡΠ΅, ΡΠ΅ΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅: Π² Π½ΠΈΡ Π΄Π°ΠΆΠ΅ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΡΠΈΡΠ°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. ΠΡΠ°ΠΊ, Π²Π²Π΅Π΄Π΅ΠΌ Π½ΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ½ΡΡΠΈΠ΅:
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ax2 + bx + c = 0 Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π½Π΅ΠΏΠΎΠ»Π½ΡΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ, Π΅ΡΠ»ΠΈ b = 0 ΠΈΠ»ΠΈ c = 0, Ρ.Π΅. ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΠΈΠ»ΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ.
Π Π°Π·ΡΠΌΠ΅Π΅ΡΡΡ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ΅Π½ ΡΠΎΠ²ΡΠ΅ΠΌ ΡΡΠΆΠ΅Π»ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ, ΠΊΠΎΠ³Π΄Π° ΠΎΠ±Π° ΡΡΠΈΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ: b = c = 0. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄ ax2 = 0. ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ: x = 0.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ. ΠΡΡΡΡ b = 0, ΡΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡΡΠΈΠΌ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ax2 + c = 0. ΠΠ΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ Π΅Π³ΠΎ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΠ· Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΠΌΡΡΠ» ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈ (βc/a) β₯ 0. ΠΡΠ²ΠΎΠ΄:
- ΠΡΠ»ΠΈ Π² Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Π²ΠΈΠ΄Π° ax2 + c = 0 Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ (βc/a) β₯ 0, ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ Π΄Π²Π°. Π€ΠΎΡΠΌΡΠ»Π° Π΄Π°Π½Π° Π²ΡΡΠ΅;
- ΠΡΠ»ΠΈ ΠΆΠ΅ (βc/a) < 0, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΠΎΠ²Π°Π»ΡΡ β Π² Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ Π²ΠΎΠΎΠ±ΡΠ΅ Π½Π΅Ρ ΡΠ»ΠΎΠΆΠ½ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ. ΠΠ° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅ Π΄Π°ΠΆΠ΅ Π½Π΅ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ (βc/a) β₯ 0. ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ x2 ΠΈ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ, ΡΡΠΎ ΡΡΠΎΠΈΡ Ρ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ ΠΎΡ Π·Π½Π°ΠΊΠ° ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. ΠΡΠ»ΠΈ ΡΠ°ΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ β ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ Π΄Π²Π°. ΠΡΠ»ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ β ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅ Π±ΡΠ΄Π΅Ρ Π²ΠΎΠΎΠ±ΡΠ΅.
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌΡΡ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ Π²ΠΈΠ΄Π° ax2 + bx = 0, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. Π’ΡΡ Π²ΡΠ΅ ΠΏΡΠΎΡΡΠΎ: ΠΊΠΎΡΠ½Π΅ΠΉ Π²ΡΠ΅Π³Π΄Π° Π±ΡΠ΄Π΅Ρ Π΄Π²Π°. ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ:
ΠΡΠ½Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π·Π° ΡΠΊΠΎΠ±ΠΊΡΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ, ΠΊΠΎΠ³Π΄Π° Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. ΠΡΡΡΠ΄Π° Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ ΠΊΠΎΡΠ½ΠΈ. Π Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°ΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
ΠΠ°Π΄Π°ΡΠ°. Π Π΅ΡΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
- x2 β 7x = 0;
- 5x2 + 30 = 0;
- 4x2 β 9 = 0.
x2 β 7x = 0 β x Β· (x β 7) = 0 β x1 = 0; x2 = β(β7)/1 = 7.
5x2 + 30 = 0 β 5x2 = β30 β x2 = β6. ΠΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ, Ρ.ΠΊ. ΠΊΠ²Π°Π΄ΡΠ°Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π²Π΅Π½ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ.
4x2 β 9 = 0 β 4x2 = 9 β x2 = 9/4 β x1 = 3/2 = 1,5; x2 = β1,5.
Π‘ΠΌΠΎΡΡΠΈΡΠ΅ ΡΠ°ΠΊΠΆΠ΅:
- Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ°
- Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΡ ΠΈΠ· ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΠ΅ΡΠ°

- Π’Π΅ΡΡ Π½Π° ΡΠ΅ΠΌΡ Β«ΠΠ½Π°ΡΠ°ΡΠ°Ρ ΡΠ°ΡΡΡ ΡΠΈΡΠ»Π°Β»

- ΠΡΠ°Π²ΠΈΠ»Π° ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΎΡΠΈΠΊΠΈ Π² Π·Π°Π΄Π°ΡΠ΅ B6

- ΠΠ°ΠΊ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ ΠΎΠ±ΡΡΠ½ΡΡ Π΄ΡΠΎΠ±Ρ Π² Π²ΠΈΠ΄Π΅ Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠΉ

- ΠΠ°Π΄Π°ΡΠ° B15: ΡΠ°ΡΡΠ½ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ ΠΏΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ

www.berdov.com
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π€ΠΎΡΠΌΡΠ»Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, Π½Π°Ρ
ΠΎΠ΄ΡΡΠ΅Π΅ΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ
ΠΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΊΠΎΡΠΎΡΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΠΈΠΌΠ΅Π΅Ρ Π»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ½ΠΈ ΠΈ ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΈΡ , Π½Π΅ ΡΠ΅ΡΠ°Ρ ΡΠ°ΠΌΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
- ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ.
- ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ.
- ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΠ΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ Π΅ΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΎΡΠΌΡΠ» Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°, ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΏΠ΅ΡΠ²ΡΡ:
D = b2 — 4ac
ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½Π° ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠΎΡΠΌΡΠ»Π΅:

ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ°Π½Π½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π΄Π°ΠΆΠ΅ Π΄Π»Ρ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΡΡΠ°Π²Π½ΠΈΡΡ Π΅Π³ΠΎ Ρ Π½ΡΠ»ΡΠΌ. Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°, Π»ΠΈΠ±ΠΎ ΠΈΡΠΊΠ°ΡΡ ΠΊΠΎΡΠ½ΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅, Π»ΠΈΠ±ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΡΠΈΠΌΠ΅Ρ 1. Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
3x2 — 4x + 2 = 0
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
a = 3, b = -4, c = 2
ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
D = b2 — 4ac = (-4)2 — 4 Β· 3 Β· 2 = 16 — 24 = -8, D < 0
ΠΡΠ²Π΅Ρ: ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΡΠΈΠΌΠ΅Ρ 2.
x2 — 6x + 9 = 0
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
a = 1, b = -6, c = 9
ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
D = b2 — 4ac = (-6)
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π²ΡΠ΅Π³ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ:

ΠΡΠ²Π΅Ρ: 3.
ΠΡΠΈΠΌΠ΅Ρ 3.
x2 — 4x — 5 = 0
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
a = 1, b = -4, c = -5
ΠΠ°ΠΉΠ΄ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
D = b2 — 4ac = (-4)2 — 4 Β· 1 Β· (-5) = 16 + 20 = 36, D > 0
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ:

x1 = (4 + 6) : 2 = 5, Β x2 = (4 — 6) : 2 = -1
ΠΡΠ²Π΅Ρ: 5, -1.
naobumium.info
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°.
ΠΠ°Π΄Π΅ΡΡΡ, ΠΈΠ·ΡΡΠΈΠ² Π΄Π°Π½Π½ΡΡ ΡΡΠ°ΡΡΡ, Π²Ρ Π½Π°ΡΡΠΈΡΠ΅ΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΊΠΎΡΠ½ΠΈ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΡΠ΅ΡΠ°ΡΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ»Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π΄ΡΡΠ³ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²Ρ Π½Π°ΠΉΠ΄Π΅ΡΠ΅ Π² ΡΡΠ°ΡΡΠ΅ «Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ».
ΠΠ°ΠΊΠΈΠ΅ ΠΆΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΠΏΠΎΠ»Π½ΡΠΌΠΈ? ΠΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΠΈΠ΄Π° Π°Ρ 2Β + b x + c = 0, Π³Π΄Π΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ a, b ΠΈ Ρ Π½Π΅ ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ. ΠΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΡΠ΅ΡΠΈΡΡ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, Π½Π°Π΄ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ D.
D = b2Β β 4Π°Ρ .
Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΎΠ³ΠΎ ΠΊΠ°ΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΠΌΡ ΠΈ Π·Π°ΠΏΠΈΡΠ΅ΠΌ ΠΎΡΠ²Π΅Ρ.
ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ (D < 0),ΡΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΡΠ»ΠΈ ΠΆΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΠΎ Ρ = (-b)/2a. ΠΠΎΠ³Π΄Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ (D > 0),
ΡΠΎΠ³Π΄Π° Ρ 1Β = (-b — βD)/2a ,Β ΠΈ Β Ρ 2 = (-b + βD)/2a .
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ. Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ 2Β β 4Ρ + 4= 0.
D = 42Β β 4 ΞΒ 4 = 0
x = (- (-4))/2 = 2
ΠΡΠ²Π΅Ρ: 2.
Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ 2Ρ 2 + Ρ + 3 = 0.
D = 12Β β 4 Ξ 2 Ξ 3 = β 23
ΠΡΠ²Π΅Ρ: ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ 2Ρ 2Β + 5Ρ β 7 = 0.
D = 52Β β 4Β Ξ 2 Ξ (β7) = 81
Ρ 1Β = (-5 — β81)/(2Ξ2)= (-5 — 9)/4= β 3,5
Ρ 2Β = (-5 + β81)/(2Ξ2) = (-5 + 9)/4=1
ΠΡΠ²Π΅Ρ: β 3,5 ; 1.
ΠΡΠ°ΠΊ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΡ Π΅ΠΌΠΎΠΉ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅1.Β
ΠΠΎ ΡΡΠΈΠΌ ΡΠΎΡΠΌΡΠ»Π°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠ°ΡΡ Π»ΡΠ±ΠΎΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. ΠΡΠΆΠ½ΠΎ ΡΠΎΠ»ΡΠΊΠΎ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»Π΅Π΄ΠΈΡΡ Π·Π° ΡΠ΅ΠΌ, ΡΡΠΎΠ±Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π±ΡΠ»ΠΎ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°
Π°Ρ 2 + bx + c, ΠΈΠ½Π°ΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠΏΡΡΡΠΈΡΡ ΠΎΡΠΈΠ±ΠΊΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² Π·Π°ΠΏΠΈΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ + 3 + 2Ρ 2 = 0, ΠΎΡΠΈΠ±ΠΎΡΠ½ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ, ΡΡΠΎ
Π° = 1, b = 3 ΠΈ Ρ = 2. Π’ΠΎΠ³Π΄Π°
D = 32Β β 4 Ξ 1 ΞΒ 2 = 1 ΠΈ ΡΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ. Π ΡΡΠΎ Π½Π΅Π²Π΅ΡΠ½ΠΎ. (Π‘ΠΌΠΎΡΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ° 2 Π²ΡΡΠ΅).
ΠΠΎΡΡΠΎΠΌΡ, Π΅ΡΠ»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ Π½Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°, Π²Π½Π°ΡΠ°Π»Π΅ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π°Π΄ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° (Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΌΠ΅ΡΡΠ΅ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΡΠΎΡΡΡ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½ Ρ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΡΠΎ Π΅ΡΡΡ Π°Ρ 2, Π·Π°ΡΠ΅ΠΌ Ρ ΠΌΠ΅Π½ΡΡΠΈΠΌ Β βΒ bx, Π° Π·Π°ΡΠ΅ΠΌ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½ Ρ.
ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΡΠ΅ΡΠ½ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΠΏΡΠΈ Π²ΡΠΎΡΠΎΠΌ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΠΌΡΡ ΠΈ Ρ ΡΡΠΈΠΌΠΈ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ. ΠΡΠ»ΠΈ Π² ΠΏΠΎΠ»Π½ΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΏΡΠΈ Π²ΡΠΎΡΠΎΠΌ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π±ΡΠ΄Π΅Ρ ΡΠ΅ΡΠ½ΡΠΌ (b = 2k), ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΌ Π½Π° ΡΡ Π΅ΠΌΠ΅ ΡΠΈΡΡΠ½ΠΊΠ° 2.Β
ΠΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΌ, Π΅ΡΠ»ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΠΈ Ρ 2Β ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅Ρ Π²ΠΈΠ΄ Ρ 2Β + px + q = 0. Π’Π°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π΄Π°Π½ΠΎ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ, Π»ΠΈΠ±ΠΎ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π°, ΡΡΠΎΡΡΠΈΠΉ ΠΏΡΠΈ Ρ 2.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ 3 ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π° ΡΡ Π΅ΠΌΠ° ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΡ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΡΠΎΡΠΌΡΠ».
ΠΡΠΈΠΌΠ΅Ρ. Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅
3Ρ 2 + 6Ρ β 6 = 0.
ΠΠ°Π²Π°ΠΉΡΠ΅ ΡΠ΅ΡΠΈΠΌ ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅Π½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ Π½Π° ΡΡ Π΅ΠΌΠ΅ ΡΠΈΡΡΠ½ΠΊΠ° 1.
D = 62Β β 4 ΞΒ 3 Ξ (β 6) = 36 + 72 = 108
βD = β108 = β(36 Ξ 3) = 6β3
Ρ 1Β = (-6 — 6β3 )/(2 ΞΒ 3) = (6 ( -1- β(3)))/6 = β1 β β3
Ρ 2Β = (-6 + 6β3 )/(2 Ξ 3) = (6 ( -1+ β(3)))/6 = β1 + β3
ΠΡΠ²Π΅Ρ: β1 β β3; β1 + β3
ΠΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΠΈ Ρ Π² ΡΡΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΡΠ΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΠΎ Π΅ΡΡΡ b = 6 ΠΈΠ»ΠΈ b = 2k , ΠΎΡΠΊΡΠ΄Π° k = 3. Π’ΠΎΠ³Π΄Π° ΠΏΠΎΠΏΡΠΎΠ±ΡΠ΅ΠΌ ΡΠ΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ , ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΌ Π½Π° ΡΡ Π΅ΠΌΠ΅ ΡΠΈΡΡΠ½ΠΊΠ° D1Β = 32Β β 3 Ξ (β 6) = 9 + 18 = 27
β(D1) = β27 = β(9 Ξ 3) = 3β3
Ρ 1Β = (-3 — 3β3)/3 = (3 (-1 — β(3)))/3 = β 1 β β3
Ρ 2Β = (-3 + 3β3)/3 = (3 (-1 + β(3)))/3 = β 1 + β3
ΠΡΠ²Π΅Ρ: β1 β β3; β1 + β3. ΠΠ°ΠΌΠ΅ΡΠΈΠ², ΡΡΠΎ Π²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π² ΡΡΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Π΄Π΅Π»ΡΡΡΡ Π½Π° 3 ΠΈ Π²ΡΠΏΠΎΠ»Π½ΠΈΠ² Π΄Π΅Π»Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ x2Β + 2Ρ β 2 = 0 Π Π΅ΡΠΈΠΌ ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΈΡΡΠ½ΠΎΠΊ 3.
D2Β = 22Β β 4Β Ξ (β 2) = 4 + 8 = 12
β(D2) = β12 = β(4Β Ξ 3) = 2β3
Ρ 1= (-2 — 2β3)/2 = (2 (-1 — β(3)))/2 = β 1 β β3
Ρ 2= (-2 + 2β3)/2 = (2 (-1+ β(3)))/2 = β 1 + β3
ΠΡΠ²Π΅Ρ: β1 β β3; β1 + β3.
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΠΌ, ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌ ΡΠΎΡΠΌΡΠ»Π°ΠΌ ΠΌΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΠΎΠ΄ΠΈΠ½ ΠΈ ΡΠΎΡ ΠΆΠ΅ ΠΎΡΠ²Π΅Ρ. ΠΠΎΡΡΠΎΠΌΡ Ρ ΠΎΡΠΎΡΠΎ ΡΡΠ²ΠΎΠΈΠ² ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ Π½Π° ΡΡ Π΅ΠΌΠ΅ ΡΠΈΡΡΠ½ΠΊΠ° 1 , Π²Ρ Π²ΡΠ΅Π³Π΄Π° ΡΠΌΠΎΠΆΠ΅ΡΠ΅ ΡΠ΅ΡΠΈΡΡ Π»ΡΠ±ΠΎΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
Β© blog.tutoronline.ru, ΠΏΡΠΈ ΠΏΠΎΠ»Π½ΠΎΠΌ ΠΈΠ»ΠΈ ΡΠ°ΡΡΠΈΡΠ½ΠΎΠΌ ΠΊΠΎΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΡΡΡΠ»ΠΊΠ° Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΈΡΡΠΎΡΠ½ΠΈΠΊ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½Π°.
blog.tutoronline.ru
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. ΠΠ΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ.
ΠΠ°ΠΊ ΡΠ΅ΡΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅?
ΠΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠΎΡΠΌΡΠ»Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ?
ΠΠ°ΠΊΠΈΠ΅ Π±ΡΠ²Π°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ?
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅?
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅?
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ?
Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅?
ΠΡΠΈ Π²ΠΎΠΏΡΠΎΡΡ Π²Π°Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½Π΅ Π±ΡΠ΄ΡΡ ΠΌΡΡΠΈΡΡ, ΠΏΠΎΡΠ»Π΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°.
Π€ΠΎΡΠΌΡΠ»Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
ax2+bx+c=0,Π³Π΄Π΅ aβ 0
Π³Π΄Π΅ x β ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ,
a,b,c β ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ.
ΠΠΈΠ΄Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΡΠΈΠΌΠ΅Ρ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
3x2-3x+2=0
x2-16x+64=0
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
D=b2-4aΡ
ΠΡΠ»ΠΈ D>0, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ ΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΡΡΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΡΠ»ΠΈ D=0, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ
ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΡΠ»ΠΈ D<0, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠΈΠΌΠ΅Ρ β1:
x2-x-6=0
ΠΠ°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠ½Π°ΡΠ°Π»Π°, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ a, b ΠΈ c.
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ a Π²ΡΠ΅Π³Π΄Π° ΡΡΠΎΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ x2, ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΒ b Β Π²ΡΠ΅Π³Π΄Π° ΠΏΠ΅ΡΠ΅Π΄ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΒ cΒ β ΡΡΠΎ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½.
a=1,b=-1,c=-6
ΠΠ°Ρ
ΠΎΠ΄ΠΈΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
D=b2-4ac=(-1)2-4β1β(-6)=1+24=25
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Ρ Π½Π°Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ, Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΈΡ :
ΠΠ°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΏΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΡΠΡΠ²Π΅Ρ: x1=3; x2=-2
ΠΡΠΈΠΌΠ΅Ρ β2:
x2+2x+1=0
ΠΠ°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ a,b ΠΈ c.
a=1,b=2,c=1
ΠΠ°Π»Π΅Π΅ Π½Π°Ρ
ΠΎΠ΄ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ.
D=b2-4ac=(2)2-4β1β1=4-4=0
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ:
x=-b/2a=-2/(2β1)=-1
ΠΡΠ²Π΅Ρ: x=-1
ΠΡΠΈΠΌΠ΅Ρ β3:
7x2-x+2=0
ΠΠ°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ a,b ΠΈ c.
a=7,b=-1,c=2
ΠΠ°Π»Π΅Π΅ Π½Π°Ρ
ΠΎΠ΄ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ.
D=b2-4ac=(-1)2-4β7β2=1-56=-55
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ax2+bx=0, Π³Π΄Π΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ c=0.
ΠΡΠΈΠΌΠ΅Ρ ΠΊΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΡΡ ΡΠ°ΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
x2-8x=0
5x2+4x=0
Π§ΡΠΎΠ±Ρ ΡΠ΅ΡΠΈΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ x Π²ΡΠ½Π΅ΡΡΠΈ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ. Π ΠΏΠΎΡΠΎΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΏΡΠΈΡΠ°Π²Π½ΡΡΡ ΠΊ Π½ΡΠ»Ρ ΠΈ ΡΠ΅ΡΠΈΡΡ ΡΠΆΠ΅ ΠΏΡΠΎΡΡΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ax2+bx=0
x(ax+b)=0
x1=0 x2=-b/a
ΠΡΠΈΠΌΠ΅Ρ β1:
3x2+6x=0
ΠΡΠ½ΠΎΡΠΈΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ x Π·Π° ΡΠΊΠΎΠ±ΠΊΡ,
x(3x+6)=0
ΠΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΊ Π½ΡΠ»Ρ,
x1=0
3x+6=0
3x=-6
ΠΠ΅Π»ΠΈΠΌ Π²ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π° 3, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠ°Π²Π½ΡΠΉ 1.
x=(-6)/3
x2=-2
ΠΡΠ²Π΅Ρ: x1=0; x2=-2
ΠΡΠΈΠΌΠ΅Ρ β2:
x2-x=0
ΠΡΠ½ΠΎΡΠΈΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ x Π·Π° ΡΠΊΠΎΠ±ΠΊΡ,
x(x-1)=0
ΠΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΊ Π½ΡΠ»Ρ,
x1=0
x-1=0
x2=1
ΠΡΠ²Π΅Ρ: x1=0; x2=1
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ax2+c=0, Π³Π΄Π΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ b=0.
Π§ΡΠΎΠ±Ρ ΡΠ΅ΡΠΈΡΡ ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, Π½ΡΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
x2=c/a , Π΅ΡΠ»ΠΈ ΡΠΈΡΠ»ΠΎ c/a Π±ΡΠ΄Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
Π Π΅ΡΠ»ΠΈ c/a ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΊΠΎΡΠ΅Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΡΠΈΠΌΠ΅Ρ β1:
x2+5=0
x2=-5, Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ -5<0, Π·Π½Π°ΡΠΈΡ Π½Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠ²Π΅Ρ: Π½Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΡΠΈΠΌΠ΅Ρ β2:
3x2-12=0
3x2=12
x2=12/3
x2=4
4>0 ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π΅ΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅,
x1=β4
x1=2
x2=-β4
x2=-2
ΠΡΠ²Π΅Ρ: x1=2; x2=-2
ΠΠΎΠ΄ΠΏΠΈΡΡΠ²Π°ΠΉΡΠ΅ΡΡ Π½Π° ΠΊΠ°Π½Π°Π» Π½Π° YOUTUBE ΠΈ ΡΠΌΠΎΡΡΠΈΡΠ΅ Π²ΠΈΠ΄Π΅ΠΎ, ΠΏΠΎΠ΄Π³ΠΎΡΠ°Π²Π»ΠΈΠ²Π°ΠΉΡΠ΅ΡΡ ΠΊ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΠΌ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΈ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ Ρ Π½Π°ΠΌΠΈ.
tutomath.ru
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°
, Π³Π΄Π΅
.Β 
— ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΠΈΒ Β
, ΠΈΠ»ΠΈ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ.
— ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΠΈ Ρ
, ΠΈΠ»ΠΈ Π²ΡΠΎΡΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ.
— ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈΒ
Β
,
,
.
B ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈΒ
Β
,
, 
ΠΡΠ»ΠΈ Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈΒ
ΠΈΠ»ΠΈ Β
, ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΠΠΠΠΠΠ«Π.
ΠΠ΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ°Π΅ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ.
1. ΠΡΠ»ΠΈ
, ΡΠΎ Π½ΡΠΆΠ½ΠΎ Π²ΡΠ½Π΅ΡΡΠΈ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ,


ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΊ Π½ΡΠ»Ρ:
ΠΈΠ»ΠΈ 
ΠΡΠ²Π΅Ρ: {0, Β
}
2. ΠΡΠ»ΠΈΒ
, ΡΠΎ Π½ΡΠΆΠ½ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ²:
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:



ΠΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Β ΠΊ Π½ΡΠ»Ρ, ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
ΠΈΠ»ΠΈΒ 
ΠΠΎΡΠΎΡΠΊΠΎ ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ°Π΅ΡΡΡ ΡΠ°ΠΊ:


Π ΡΡΠΎΠΌ ΠΌΠ΅ΡΡΠ΅ Π²Π°ΠΆΠ½ΠΎ Π½Π΅ Π·Π°Π±ΡΡΡ Π·Π½Π°ΠΊΒ
ΠΏΠ΅ΡΠ΅Π΄ ΠΊΠΎΡΠ½Π΅ΠΌ!
ΠΡΠ²Π΅Ρ: {
}
ΠΡΠ»ΠΈ Β Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈΒ 
ΠΈ Β 
, ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΠΠΠΠ«Π.
ΠΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ°Π΅ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΠΠ‘ΠΠ ΠΠΠΠΠ’Π.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Β Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
.
Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΡΡ ΡΠ°ΠΊ:


Π ΡΡΠΈΡ ΡΠΎΡΠΌΡΠ»Π°Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ, ΠΏΠΎΡΡΠΎΠΌΡ
EΡΠ»ΠΈ 
, ΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΡΠ»ΠΈΒ 
, ΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΌ Π²ΡΡΠ΅ ΡΠΎΡΠΌΡΠ»Π°ΠΌ.
ΠΡΠ»ΠΈΒ
, Β ΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠΈΡ
ΠΊΠΎΡΠ½Ρ:
.
ΠΠ½ΠΎΠ³Π΄Π° Β Π³ΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ.
ΠΡΠ°ΠΊ, ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ°ΠΊΠΈΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠΌ:
1. ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΡΠΌ, ΠΈΠ»ΠΈ Π½Π΅ΠΏΠΎΠ»Π½ΡΠΌ.
2. ΠΡΠ»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅, ΡΠ°ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΈ ΠΏΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΊ Π½ΡΠ»Ρ.
3. ΠΡΠ»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ΅, ΡΠΎ
- Π½Π°Ρ
ΠΎΠ΄ΠΈΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅

- Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠΎ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ, ΡΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ
- Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΠΎ Π½Π°Ρ
ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅Β

- Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠΎ Π½Π°Ρ
ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ:
,Β 
ΠΡΠ»ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΒ
Β ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ — ΡΠ΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΠΎ Π΅ΡΡΡ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΊΠ°ΠΊΒ
, ΠΈΠ»ΠΈ
Β ΡΠΎ Π΄Π»Ρ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ Π΄Π»Ρ ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°:


ΠΠ²Π° ΠΏΠΎΠ»Π΅Π·Π½ΡΡ Π·Π°ΠΌΠ΅ΡΠ°Π½ΠΈΡ:
1. ΠΡΠ»ΠΈ Π΄Π»Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΒ
Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎΒ
, ΡΠΎΒ
,Β 
2. ΠΡΠ»ΠΈ Π΄Π»Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΒ
Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎΒ
, ΡΠΎΒ
,Β 
ΠΡΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠΌΠΎΠ³Π°ΡΡ ΡΡΡΠ½ΠΎ ΡΠ΅ΡΠ°ΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ Π³ΡΠΎΠΌΠΎΠ·Π΄ΠΊΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈΒ
ΡΡΠΌΠΌΠ° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΡΠ°Π²Π½Π° 0, ΠΏΠΎΡΡΠΎΠΌΡΒ
, Β
.
Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ
Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ
, ΠΏΠΎΡΡΠΎΠΌΡ
, Β 
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ².
Π Π΅ΡΠΈΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
1. 
Π°) Π½Π°ΠΉΠ΄Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:

ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, Π·Π½Π°ΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ. 
Π±) Π’ΠΎΠ³Π΄Π°:Β
,Β 
ΠΡΠ²Π΅Ρ: Β {1; 1/2}
2. Β 
Π°) ΠΠ°ΠΉΠ΄Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
. ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎΒ
Β
, ΠΈ Π΄Π°ΠΆΠ΅ Π½Π΅Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π²ΡΡΠΈΡΠ»ΡΡΡ Π΅Π³ΠΎ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅.
ΠΡΠ²Π΅Ρ: ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
3.Β 
Π°)Β ΠΠ°ΠΉΠ΄Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:

Π±) Π’Π°ΠΊ ΠΊΠ°ΠΊΒ
, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠΈΡ
ΠΊΠΎΡΠ½Ρ,

ΠΡΠ»ΠΈ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ Π½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΡΠ΅Ρ ΡΠ»Π΅Π½, ΡΡΠΎΡΡΠΈΠΉ Π² Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΠΎ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΠΎ ΡΡΠΎ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΊ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
, ΠΎΡΡΡΠ΄Π°Β 
ΠΡΠ²Π΅Ρ: 1/4.
Π ΡΠ΅ΠΏΠ΅ΡΡ Ρ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Ρ Π²Π°ΠΌ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:

Β
Π.Π. Π€Π΅Π»ΡΠ΄ΠΌΠ°Π½, ΡΠ΅ΠΏΠ΅ΡΠΈΡΠΎΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅.
ege-ok.ru
Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° βΉοΈ ΠΏΡΠ°Π²ΠΈΠ»Π° Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, ΡΠΏΠΎΡΠΎΠ±Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ, ΡΠ°ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°, ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ

ΠΠ±ΡΠΈΠ΅ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ

Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ β ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΊΠ»ΡΡΠ΅Π²ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. ΠΡΡ Π΄ΡΠ΅Π²Π½ΠΈΠ΅ Π²Π°Π²ΠΈΠ»ΠΎΠ½ΡΠ½Π΅ ΠΈ Π³ΡΠ΅ΠΊΠΈ ΠΏΡΡΠ°Π»ΠΈΡΡ Π½Π°ΠΉΡΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΠ°ΠΊΠΈΡ ΡΠ°Π²Π΅Π½ΡΡΠ². ΠΠΎ ΠΏΠ΅ΡΠ²ΡΠΌ, ΠΊΡΠΎ ΠΎΠΏΠΈΡΠ°Π» ΠΌΠ΅ΡΠΎΠ΄Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ°, Π±ΡΠ» ΠΈΠ½Π΄ΠΈΠΉΡΠΊΠΈΠΉ ΡΠΈΠ»ΠΎΡΠΎΡ ΠΡΠ΄Ρ Π°ΡΠΌΠ°. ΠΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠΈΠ» Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π² Π²ΠΈΠ΄Π΅: ax 2 = c ΠΈ ax 2 + bx = c. Π Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ ΡΠΏΠΎΡΠΎΠ±Ρ ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π»ΠΈΡΡ. Π’Π°ΠΊ, ΠΠ²ΠΊΠ»ΠΈΠ΄ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠΈΠ» ΠΌΠ΅ΡΠΎΠ΄ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΎΡΠ²Π΅ΡΠ°.
ΠΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°ΡΠΈΠΌΡΠΌ ΡΡΠ°Π»ΠΎ ΠΎΡΠΊΡΡΡΠΈΠ΅ ΠΡΠ»Ρ. ΠΠ·ΡΡΠ°Ρ ΡΠΎΡΠΌΡΠ»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, ΠΎΠ½ ΠΏΡΠΈΡΡΠ» ΠΊ Π²ΡΠ²ΠΎΠ΄Ρ, ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΡΡΠΈ Π²ΡΠ΅Π³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ, Π·Π°ΠΌΠ΅Π½ΠΈΠ² ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ Π΄ΡΡΠ³ΠΈΠΌ Π½Π°Π±ΠΎΡΠΎΠΌ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΌ Π½ΠΎΠ²ΡΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅. ΠΡΠΈ ΡΡΠΎΠΌ, Π½Π°ΠΉΠ΄Ρ ΠΈΡ , ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ½Π°ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΆΠ΅ Π½Π΅ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΡΡΠ΄Π°.
Π’Π°ΠΊΠΎΠΉ ΡΠΏΠΎΡΠΎΠ± Π±ΡΠ» ΠΏΡΠΈΠΌΠ΅Π½ΡΠ½ ΠΈ ΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ Π΅ΠΌΡ ΡΡΠ°Π»ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌ ΡΠΏΡΠΎΡΡΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΡ ΡΠΎΡΠΌΡ Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. ΠΡΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΡΠ΅ΡΠ½ΠΎ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠΌ, ΠΈΠΌΠ΅ΡΡΠΈΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΠΈΠ΄: d (m) = a 0 *mn + a 1 *mn-1 + a 2 *mn-2 + β¦ + a n-1 *m + a n, Π³Π΄Π΅ m β ΠΈΡΠΊΠΎΠΌΠΎΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅, a n, a n-1, a n-2, β¦ a 1 ΠΈ a 0 β ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠ΅.
Π’Π΅ΡΠΌΠΈΠ½ Β«Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΒ» Π±ΡΠ» ΠΏΡΠΈΠ΄ΡΠΌΠ°Π½ Π½Π΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°ΠΌΠΈ, Π½ΠΎ ΡΡΠΏΠ΅ΡΠ½ΠΎ ΡΡΠ°Π» ΠΈΠΌΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΏΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΡΠΎΠΈΠ·ΠΎΡΡΠ» ΠΎΠ½ ΠΎΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΡΠ»ΠΎΠ²Π° discriminans, ΡΡΠΎ Π² Π΄ΠΎΡΠ»ΠΎΠ²Π½ΠΎΠΌ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π΅ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΡΠ°Π·Π΄Π΅Π»ΡΡΡΠΈΠΉΒ». ΠΠ°ΠΆΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΡΡΠ°Π»ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈΠ΄ΡΠΌΠ°Π½Π½ΠΎΠ΅ ΠΡΠ»Π΅ΠΌ ΠΈ ΠΈΠΌΠ΅ΡΡΠ΅Π΅ Π²ΠΈΠ΄ b2 β 4ac. Π£ΡΡΠ½ΡΠΉ ΠΎΡΠΊΡΡΠ», ΡΡΠΎ ΠΏΠΎΡΠ»Π΅ ΡΠΎΠ³ΠΎ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡ, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΡΡΡΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ½Π°ΡΠ°Π»ΡΠ½ΠΎΠΌΡ, ΡΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠΌΡ Π½Π° ΡΠ»Π΅Π½, Π½Π°Ρ ΠΎΠ΄ΠΈΠΌΠΎΠΌΡ ΠΈΠ· ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ .
ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π΅Π½ΡΡΠ², ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ ΡΠΎΡΠΌΡΠ»Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈ Π΅Π³ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ Π±ΡΡΡΡΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈ ΠΈΡ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ. ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ: p (x) = m + mx + β― + mx, m β 0, Π³Π΄Π΅: D (p) = mβ(m β m). Π’ΠΎ Π΅ΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° p (x) ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠΌΠΌΠ° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π° Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΠΏΠΎΠ»Π΅ ΠΈΡ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ.
Π‘ΠΌΡΡΠ» Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°

ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ β ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. Π‘ Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡΡΡ Π»Π΅Π³ΠΊΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ²ΠΈΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ, ΡΡΠΎ ΠΈΡ Π½Π΅Ρ. ΠΡΠΈΠΌΠ΅Π½ΡΡΡ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΊΠ°ΠΊ ΠΊ ΠΏΠΎΠ»Π½ΡΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°ΠΌ, ΡΠ°ΠΊ ΠΈ Π½Π΅ΠΏΠΎΠ»Π½ΡΠΌ. ΠΠΎ Π²ΡΡ ΠΆΠ΅ Π²ΠΎ Π²ΡΠΎΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π½Π΅ Π½ΡΠΆΠ½ΠΎ.
ΠΡΠ° ΡΠ΅ΠΌΠ° ΠΈΠ·ΡΡΠ°Π΅ΡΡΡ Π² ΡΠ΅Π΄ΡΠΌΠΎΠΌ ΠΈ Π²ΠΎΡΡΠΌΠΎΠΌ ΠΊΠ»Π°ΡΡΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΠ»Ρ. ΠΡΡΡΠ΅ ΠΏΠΎΠ½ΡΡΡ ΡΠΌΡΡΠ» ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ° ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΡΡΠΎΠΉ ΠΏΡΠΈΠΌΠ΅Ρ. ΠΡΡΡΡ ΠΈΠΌΠ΅Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° m2 + 2m β 8 = 0. ΠΠ΅ ΠΈΠΌΠ΅Ρ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ΅, ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ Π΅Π³ΠΎ ΠΊ ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΡΠΌΠΌΡ m2 + 2m +1 β 1- 8 = 0. ΠΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π² ΠΈΡΠΎΠ³Π΅ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ Π½ΡΠ»ΡΠΌ.
ΠΠ΅ΡΠ²ΡΠ΅ ΡΡΠΈ ΡΠ»Π΅Π½Π° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΡΠΌΠΌΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ²Π΅ΡΠ½ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΡΠΎΠΊΡΠ°ΡΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π΄ΠΎ Π²ΠΈΠ΄Π° a2 +2ab + b2 = (a+b)2. ΠΡΡΡΠ΄Π°, ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΌΡ ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΏΠΎΠ»ΡΡΠΈΡΡΡ: (m + 1)2 β 1 β 8 = 0. ΠΠΎΡΠ»Π΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Ρ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΎΠΌ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ³ΠΎ Π² ΠΎΠ΄Π½Ρ ΡΡΠΎΡΠΎΠ½Ρ (Π° ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ β Π² Π΄ΡΡΠ³ΡΡ) ΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ: (m + 1)2 = 9. Π’ΠΎ Π΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ Π±ΡΠ΄ΡΡ m = 2 Π΄Π»Ρ (m + 1) = 3 ΠΈ m = -4 Π΄Π»Ρ (m + 1) = -3.
Π ΠΎΠ±ΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅ Π²ΡΠ΅ ΡΡΠΈ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ:

- Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ am2 + bm + c = 0 Π½ΡΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅ΠΏΠΈΡΠ°ΡΡ Π² ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅, ΡΠΎ Π΅ΡΡΡ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° ΠΏΠ΅ΡΠ²ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ: m2 + bm / a + c / a = 0.
- Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΡΠΎΠΊΡΠ°ΡΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ Π΄ΠΎΠ±ΠΈΡΡΡΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ ΠΏΡΠΈ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΌ Π²ΠΎ Π²ΡΠΎΡΠΎΠΌ ΡΠ»Π΅Π½Π΅ ΡΡΠΎΡΠ»ΠΎ ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠΠΎΡΡΠΎΠΌΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° Π΄Π²ΠΎΠΉΠΊΡ: m2 + 2bm / 2a + c / a = 0.
- ΠΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠΈΡ ΠΏΠ΅ΡΠ΅ΠΏΠΈΡΠ°ΡΡ Π² Π±ΠΎΠ»Π΅Π΅ Π½Π°Π³Π»ΡΠ΄Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅ m 2 + 2 m * (b /2 a) + c / a = 0. ΠΡΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΡΠ²Π»ΡΠ»ΠΎΡΡ Π±Ρ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΠΌ ΠΊ ΡΠΎΡΠΌΡΠ»Π΅ ΡΠΎΠΊΡΠ°ΡΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, Π΅ΡΠ»ΠΈ Π±Ρ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΌ ΡΠ»Π΅Π½Π΅ Π±ΡΠ» ΠΊΠ²Π°Π΄ΡΠ°Ρ.
- ΠΠΎ Π²ΡΠΎΡΠΎΠΌΡ ΡΠ»Π΅Π½Ρ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΡΠΈΠ±Π°Π²ΠΈΡΡ ΠΈ Π²ΡΡΠ΅ΡΡΡ (b/2a)2. Π ΠΈΡΠΎΠ³Π΅ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ m2 + 2m * (b/2a) + (b/2a)2 β (b/2a)2 + c/a = 0.
- ΠΠ΅ΡΠ²ΡΠ΅ ΡΡΠΈ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅ β ΡΡΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΡΠΌΠΌΡ. ΠΡΠΈΠΌΠ΅Π½ΠΈΠ² Π΅Ρ, ΠΏΠΎΠ»ΡΡΠΈΡΡΡ: (m + b/2a)2 = (b/2a)2 β c/a.
- ΠΠ°ΡΠ΅ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΠΠΎΠ»ΡΡΠΈΡΡΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ Π²ΠΈΠ΄Π° (m + b/2a)2 = b 2 -4 ac /4 a 2.
- Π£ΠΌΠ½ΠΎΠΆΠΈΠ² Π½Π° 4a2 ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅Ρ Π²ΠΈΠ΄ (2 am + b)2 = b 2 β 4 ac.
ΠΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ b2 β 4ac Π±ΡΠ»ΠΎ ΡΠ΅ΡΠ΅Π½ΠΎ ΠΏΡΠΈΠ½ΡΡΡ Π·Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. ΠΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΡΡΡΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ. ΠΡΠΏΠΎΠ»Π½ΠΈΠ² Π΅Π³ΠΎ ΡΠ°ΡΡΡΡ, ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΎΡΠ²Π΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΠ·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°

ΠΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈΠΌΠ΅Π΅Ρ ΠΈ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅. Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈ Π·Π°Π΄Π°ΡΠ° Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΌ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Π΅ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ. Π€Π°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΡΡΠΎ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π½ΡΠ»Π΅ΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΠΎ Π΅ΡΡΡ ΡΠΎΡΠ΅ΠΊ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠ½Π° ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ Π°Π±ΡΡΠΈΡΡΡ. ΠΠ½Π°ΠΊ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ΅ Π±ΡΠ΄Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΡΠΎΠΊ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. ΠΠ½ΠΈ Π±ΡΠ΄ΡΡ ΠΈΠ΄ΡΠΈ Π²Π²Π΅ΡΡ ΠΏΡΠΈ a > 0, ΠΈ Π²Π½ΠΈΠ·, Π΅ΡΠ»ΠΈ a < 0.
ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΡΡΠΎΠ³ΠΎ, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π½ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΡΠΌΠΌΡ ΠΈΠ»ΠΈ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°, ΡΡΠΎΡΡΠ΅Π³ΠΎ Π²ΠΎΠ·Π»Π΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ³ΠΎ Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Ρ ΠΊΠΎΡΠ½Π΅ΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΠΈΠ· b 2 β 4 ac ΠΊ ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΌΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ x1 = (- b + β b 2 β 4 ac) / 2a; x2 = (- b β β b 2 β 4 ac) / 2a. ΠΠΎΠ΄ΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΡΠΎΠΊΡΠ°ΡΡΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΡΠΈ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ:

- ΠΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅. Π ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠΎΡΠ½ΡΠΉ ΠΊΠ²Π°Π΄ΡΠ°Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠ°Π²Π½ΡΡΡΡΡ ΡΠΈΡΠ»Ρ Ρ ΠΌΠΈΠ½ΡΡΠΎΠΌ, ΡΠ΅Π³ΠΎ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΠ·-Π·Π° ΡΠ²ΠΎΠΉΡΡΠ² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. ΠΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅Ρ. ΠΡΠ°ΡΠΈΠΊ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ Π°Π±ΡΡΠΈΡΡΡ.
- Π Π°Π²Π½ΠΎΠ΅ Π½ΡΠ»Ρ. ΠΡΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π²ΠΈΠ΄Π°: (2 am + b)2 = 0. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΠΈΡΠ»Π° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΠΎΠ»ΡΠΊΠΎ Π΅ΡΠ»ΠΈ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ Π½ΡΠ»Π΅Π²ΠΎΠ΅, ΡΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅ΠΏΠΈΡΠ°ΡΡ ΠΊΠ°ΠΊ m = — b / 2a. ΠΡΠΎ ΠΈ Π΅ΡΡΡ ΡΠΏΡΠΎΡΡΠ½Π½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΏΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ΅, ΡΠ°Π²Π½ΠΎΠΌΡ 0. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π»ΠΈΡΡ ΠΎΠ΄Π½Π° ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Π°Π±ΡΡΠΈΡΡΡ.
- ΠΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅. ΠΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½ΡΠ½Π½ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ ΠΈ ΡΠ°ΠΌΡΠΉ ΡΡΠΆΡΠ»ΡΠΉ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ°ΡΡΡΡΠΎΠ². ΠΡΠΈ Π½ΡΠΌ ΠΈΠ· ΠΎΠ±Π΅ΠΈΡ ΡΠ°ΡΡΠ΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΎΡΠ΅ΠΌΡ (2 am + b) 2 = b 2 β 4 ac Π½Π°Π΄ΠΎ ΠΈΠ·Π²Π»Π΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ. Π ΠΈΡΠΎΠ³Π΅ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ 2am + b =Β± βD. Π’ΡΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅: ΠΌΠΈΠ½ΡΡ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ ΠΈΠ·-Π·Π° ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π²ΠΎΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΠ΅ Π² ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΠΈΡΠ»ΠΎ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, 92 = 81 ΠΈ -92 = 81. ΠΠ· ΡΡΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅. ΠΠ½ΠΎ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΡΡΡΡΡ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ m = (-b Β± βD) / 2a. ΠΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ Π°Π±ΡΡΠΈΡΡ Π² Π΄Π²ΡΡ ΡΠΎΡΠΊΠ°Ρ .
ΠΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΌΠ΅Π½Π½ΠΎ Ρ Π΅Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠΎΠ³ΡΡ ΡΠ΅ΡΠ°ΡΡΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°, Π² ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΡΠΎΠΈΡ Π΄Π²ΠΎΠΉΠΊΠ°. Π§Π΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΡΡΡ ΠΊΠΎΡΠ½ΠΈ ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π±ΠΎΠ»ΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ². ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΡΠΈΡΠΌΡ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π΄ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ. ΠΠΎ ΡΡΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ ΡΡΠ°ΡΠΈΠ΅ΡΡ Π½Π°ΡΠΈΠ½Π°ΡΡ ΠΈΠ·ΡΡΠ°ΡΡ Π½Π° ΡΡΠΎΠΊΠ°Ρ Π² Π²ΡΠΏΡΡΠΊΠ½ΠΎΠΌ ΠΊΠ»Π°ΡΡΠ΅, ΠΊΠΎΠ³Π΄Π° ΠΏΡΠΎΡ ΠΎΠ΄ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ n-Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°.
Π’ΠΈΠΏΠΎΠ²ΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ
ΠΠ°ΠΆΠ΅ Π·Π½Π°Ρ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, Π½Π°ΡΡΠΈΡΡΡΡ Π±ΡΡΡΡΠΎ Π²ΡΡΠΈΡΠ»ΡΡΡ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π΅ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ, Π΅ΡΠ»ΠΈ Π½Π΅ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΎΠ²Π°ΡΡΡΡ. ΠΠΎΡΡΠΎΠΌΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ Π·Π°Π΄Π°Ρ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²Ρ ΠΎΠ΄ΠΈΡ ΡΠΊΠΎΠ»ΡΠ½ΡΡ Π² ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ:

- ΠΠ°Π½ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ 6x2 β 13x +2 = 0. ΠΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π΅Π³ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ, Π΅ΡΠ»ΠΈ ΠΎΠ½ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ, ΠΈΡ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. Π ΠΏΠ΅ΡΠ²ΡΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ Π½ΡΠΆΠ½ΠΎ Π½Π°ΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ°Π±Π»ΠΈΡΡ, Π² ΠΊΠΎΡΠΎΡΡΡ Π²ΡΠΏΠΈΡΠ°Π½Ρ Π²ΡΠ΅ Π·Π°Π΄Π°Π½Π½ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ. Π’Π°ΠΊ: a = 6; b = -13; c = 2. ΠΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΠΎΡΠΌΡΠ»Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈ Π½Π°ΠΉΡΠΈ Π΅Π³ΠΎ: D = b2 β 4ac = (-13)2 β 4 * 6 *2 = 149 β 68 = 121. Π’ΠΎ Π΅ΡΡΡ D Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ. ΠΠ½Π°ΡΠΈΡ, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ. Π’Π΅ΠΏΠ΅ΡΡ ΠΈΡ Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ: x1 = (13 + β126) / 2 * 6 = 2; x2 = (13 β β126) / 2 * 6 = 1/6. ΠΠ°Π΄Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ΅Π½ΠΎ.
-
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ 4m2 β 2m β 3 = 2. ΠΠ»Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊ ΡΠ΄ΠΎΠ±Π½ΠΎΠΌΡ Π²ΠΈΠ΄Ρ Π΄Π²ΠΎΠΉΠΊΡ Π½ΡΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π½Π΅ΡΡΠΈ Π²Π»Π΅Π²ΠΎ. Π ΠΈΡΠΎΠ³Π΅ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ 4m2 β 2m β 5 =0. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π½ΡΠ΅ΡΡΡ: D = 4 β 4 * 4 * (-5) = 4 + 80 = 84. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ Π΄Π²Π°. Π’ΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎ Π½Π΅Ρ ΡΠ΅Π»ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ°Π²Π½ΡΠ»ΠΎΡΡ Π±Ρ ΠΊΠΎΡΠ½Ρ ΠΈΠ· β84. ΠΠ΄Π½Π°ΠΊΠΎ, β84 = β4 * β21 = 2 β21. ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠΎΡΠΌΡΠ»Ρ, ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΡΠΎ m = (2 Β± 2β21) / 2 * 4. ΠΠ²ΠΎΠΉΠΊΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ½Π΅ΡΡΠΈ Π² ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΏΠΎΠ»ΡΡΠΈΠ² ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ ΡΠ΄ΠΎΠ±Π½ΡΡ Π·Π°ΠΏΠΈΡΡ: m = (2 * (1 Β±β21) / 2 * 4 = (1 Β± β21) / 4. ΠΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΅ΡΡΡ ΠΈΡΠΊΠΎΠΌΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅.
-
Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅: x /3 β x2 / 4 + 1 /6 = 3x / 2 β 4x2 / 3. ΠΠ»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π½ΡΠΆΠ½ΠΎ ΠΏΡΠ°Π²ΡΡ ΠΈ Π»Π΅Π²ΡΡ ΡΡΠΎΡΠΎΠ½Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° Π΄Π²Π΅Π½Π°Π΄ΡΠ°ΡΡ: 12x / 3 β 12 * x2 / 4 + 12 /6 = (3 * 12x) / 2 β (4 * 12x2) / 3. ΠΠΎΠ»ΡΡΠΈΡΡΡ 4 x β 3 x 2 + 2 = 18 x β 16 x 2. Π§Π»Π΅Π½Ρ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΊ ΡΡΠ°Π½Π΄Π°ΡΡΡ: 4 x β 3 x 2 + 2 β 18 x + 16 x 2 = 13 x 2 β 14 x + 2 = 0. Π‘ΡΠΈΡΠ°Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ: D = (-14)2 β 4 * 13 * 2 = 92. ΠΠ½ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Π΅ΡΡΡ ΡΠΌΡΡΠ» ΠΈΡΠΊΠ°ΡΡ ΠΊΠΎΡΠ½ΠΈ: X = (14 Β± β 92) / 2 * 13 = (14 Β± 2 β 23) / 2 * 13 = 2 (7Β±β23) / 2 *13 = (7Β± β23) /13.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π»ΡΠ±ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π½ΡΠΆΠ½ΠΎ ΡΡΡΠ΅ΠΌΠΈΡΡΡΡ ΠΏΠ΅ΡΠ΅ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΎΠ½ΠΎ ΠΏΡΠΈΠ½ΡΠ»ΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π²ΠΈΠ΄. ΠΡΠΎ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π° ΠΊΠ°ΠΊΠΎΠ΅-Π»ΠΈΠ±ΠΎ ΡΠΈΡΠ»ΠΎ, ΠΏΠΎΠΈΡΠΊ ΠΎΠ±ΡΠ΅Π³ΠΎ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. Π ΡΠΆΠ΅ ΠΏΠΎΡΠ»Π΅ Π½ΡΠΆΠ½ΠΎ ΠΈΡΠΊΠ°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΠΏΠΎ Π²ΠΈΠ΄Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, Π΅ΡΡΡ Π»ΠΈ ΡΠΌΡΡΠ» Π² Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π½Π° ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ΅
ΠΠΎΠΈΡΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ β Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΠΏΡΠΎΡΡΠ°Ρ ΡΠ΅ΠΌΠ°. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ Π²ΡΠ΅Π³ΠΎ Π΄Π²Π΅ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°, Π·Π°Π²ΠΈΡΡΡΠΈΠ΅ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°. ΠΠΎ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΏΠΎΠΏΠ°Π΄Π°ΡΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Ρ, Π»ΠΎΠ³Π°ΡΠΈΡΠΌΡ, ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ Π²ΡΡ ΡΡΠΎ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ Π² Π²ΠΈΠ΄Π΅ ΡΠ»ΠΎΠΆΠ½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ.
Π Π΅ΡΠ°Ρ Π·Π°Π΄Π°Π½ΠΈΡ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ, Π΄Π°ΠΆΠ΅ ΠΈΠΌΠ΅Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΎΠΏΡΡ ΠΈ Π·Π½Π°Π½ΠΈΡ, Π΅ΡΡΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΡ ΠΎΡΠΈΠ±ΠΊΠΈ. ΠΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΡΠ»ΠΎΠΆΠ½ΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΡΡΠΎΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΡ.
ΠΠ· ΡΠ΅ΡΠ²ΠΈΡΠΎΠ², ΠΏΡΠ΅Π΄Π»Π°Π³Π°ΡΡΠΈΡ ΡΠ°ΠΊΠΈΠ΅ ΡΡΠ»ΡΠ³ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ:
- Math.semestr;
- Kontrolnaya-rabota;
- Onlinemschool;
- Wpcalc;
- Webmath.

ΠΡΠΈ ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΠ΅ ΡΠ°ΠΉΡΡ. ΠΡ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΉΡ ΠΈΠ½ΡΡΠΈΡΠΈΠ²Π½ΠΎ ΠΏΠΎΠ½ΡΡΠ΅Π½. ΠΠ»Ρ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ Π½Π΅ Π½ΡΠΆΠ½ΠΎ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΈΠ»ΠΈ ΠΏΠ»Π°ΡΠΈΡΡ Π·Π° ΡΡΠ»ΡΠ³ΠΈ. ΠΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»Ρ Π»ΠΈΡΡ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΡ ΡΠΎΡΠΌΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π΄Π°ΠΆΠ΅ ΠΌΠ°ΡΡΠΈΡΡ, ΡΠΎΡΡΠΎΡΡΡΡ ΠΈΠ· Π½ΠΈΡ . ΠΡΠΎΠ³ΡΠ°ΠΌΠΌΠ° Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ Π²ΡΠΏΠΎΠ»Π½ΠΈΡ Π½ΡΠΆΠ½ΡΠΉ ΡΠ°ΡΡΡΡ ΠΈ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²ΠΈΡ ΠΏΠΎΡΠ°Π³ΠΎΠ²ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π½Π° ΡΠ°ΠΉΡΠ°Ρ ΡΠ΅ΡΠ°ΡΠ΅Π»Π΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡΡΡ Π² ΠΊΡΠ°ΡΠΊΠΎΠΌ Π²ΠΈΠ΄Π΅ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΡΠΈΠΏΠΎΠ²ΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ Ρ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ.
ΠΠ°ΠΆΠ΅ Π½ΠΈΡΠ΅Π³ΠΎ Π½Π΅ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡΠΈΠΉ Π² Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°Ρ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π²ΡΠΈΡΡ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π·, ΡΠΌΠΎΠΆΠ΅Ρ Π²ΠΎΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΏΡΠΎΠ±Π΅Π»Ρ Π² Π·Π½Π°Π½ΠΈΡΡ , ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΡΠΈΡΡΡΡ ΡΠ΅ΡΠ°ΡΡ ΠΏΡΠΈΠΌΠ΅ΡΡ, ΡΠ·Π½Π°Π΅Ρ, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΏΠΈΡΠ°ΡΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°ΠΉΡΠΎΠ² Π΄Π»Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΡ Π²ΡΠ΅ΠΌΡ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠΎΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
nauka.club
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π±ΠΎΠ»ΡΡΠΈΠΌΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ
Π‘Π»ΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠ΅ΡΠΈΡΡ ΡΡΠ°ΡΡΠ΅ΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΠ°, ΠΠ ΡΠΌΠ΅ΡΡΠ΅Π³ΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ.
ΠΠΎ, ΠΊ ΡΠΎΠΆΠ°Π»Π΅Π½ΠΈΡ, Π² ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΠ»ΡΡΠ°ΡΡ , ΠΏΠΎΠ»ΡΡΠ°Ρ Π³ΡΠΎΠΌΠΎΠ·Π΄ΠΊΠΈΠΉΒ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, Β ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π½Π°ΡΠΈΠ½Π°ΡΡ ΠΏΠ°Π½ΠΈΠΊΠΎΠ²Π°ΡΡ (Π±Π΅Π· ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ°).

Π Π½Π° ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π² Π·Π°Π΄Π°ΡΠ°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ Π14, Π²Π°ΠΌ Π²ΠΏΠΎΠ»Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π²ΡΡΡΠ΅ΡΠΈΡΡΡΡ ΠΏΡΠΈΡΡΠ΄Π»ΠΈΠ²ΡΠΉ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ.
ΠΠ΅Ρ Π±Π΅Π·Π²ΡΡ ΠΎΠ΄Π½ΡΡ ΡΠΈΡΡΠ°ΡΠΈΠΉ!
ΠΠ° ΡΠ΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΡ ΡΠΈΠ»Ρ ΠΏΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
Β
ΠΡΠ΅ΠΆΠ΄Π΅ ΡΠ΅ΠΌ ΡΠ°Π·Π±ΠΈΡΠ°ΡΡ ΠΏΡΠΈΠΌΠ΅ΡΡ, Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ Π²ΡΠ΅ ΠΆΠ΅ Β ΡΠΎΡΠΌΡΠ»Ρ Π΄ΠΈΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Β 

Π’ΠΎΠ³Π΄Π° ΠΊΠΎΡΠ½ΠΈ Β ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅

ΠΠ°Π΄Π΅ΡΡΡ, Π²Ρ ΠΏΠΎΠΌΠ½ΠΈΡΠ΅, ΡΡΠΎ ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΊΠ°ΡΡ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π² ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ Ρ ΠΏΠΎΠ»Π½ΡΠΌ Β ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ (
ΠΈ
β Π½Π΅Π½ΡΠ»Π΅Π²ΡΠ΅).
ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ Π½Π΅ΠΏΠΎΠ»Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΡ ΡΠΆΠ΅ Π³ΠΎΠ²ΠΎΡΠΈΠ»ΠΈ.
1) ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ Β«ΡΠ°Π·Π½ΠΎΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ²Β».
ΠΠΎΠΏΡΡΡΠΈΠΌ, Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Β 
Π―ΡΠ½ΠΎ, ΡΡΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ: 
ΠΠ΅ ΡΠΏΠ΅ΡΠΈΠΌ Π²ΠΎΠ·Π²ΠΎΠ΄ΠΈΡΡ 53 Π² ΠΊΠ²Π°Π΄ΡΠ°Ρ! ΠΠ°ΠΌΠ΅ΡΠ°Π΅ΠΌ, ΡΡΠΎ
, ΠΏΠΎΡΡΠΎΠΌΡ

ΠΠΎΡΠ½ΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π΄ΡΠΌΠ°Ρ, ΡΠ΅ΠΏΠ΅ΡΡ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· Π²Π°Ρ Π½Π°ΠΉΠ΄Π΅Ρ Π±Π΅Π· ΡΡΡΠ΄Π°β¦
2) ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΠΏΡΠΈΠ΅ΠΌ Π²ΡΠ½Π΅ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ.
ΠΠΎΠΏΡΡΡΠΈΠΌ, Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅
(ΠΊΡΡΠ°ΡΠΈ, ΠΎΠ½ΠΎ Π²Π·ΡΡΠΎ ΠΈΠ· ΡΠ΅Π°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΊΡΡΠΎΠ²ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ ΠΈΠ· ΠΎΡΠΊΡΡΡΠΎΠ³ΠΎ Π±Π°Π½ΠΊΠ° Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅).
Π―ΡΠ½ΠΎ, ΡΡΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ:Β 

ΠΠ΅Ρ, ΠΌΡ Π½Π΅ ΠΏΠΎΠΉΠ΄Π΅ΠΌ Π½Π°ΠΏΡΠΎΠ»ΠΎΠΌ!
ΠΠ°ΠΌΠ΅ΡΠ°Π΅ΠΌ, ΡΡΠΎ
, Π°
.
ΠΡ ΠΌΠΎΠΆΠ΅ΠΌ Π²ΡΠ½Π΅ΡΡΠΈ Π·Π° ΡΠΊΠΎΠ±ΠΊΡ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ 

ΠΠΎΡΠ½ΠΈ Π½Π°ΠΉΡΠΈ β ΡΠΆΠ΅ Π½Π΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ°β¦
3) Π€ΠΎΡΠΌΡΠ»Π° ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄ΠΈΡΠΊΡΠΈΠΈΠΌΠ½Π°Π½ΡΠ°.
ΠΠΎΠΏΡΡΡΠΈΠΌ, Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ 
ΠΡ Π·Π½Π°Π΅ΡΠ΅, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅
? + ΠΏΠΎΠΊΠ°Π·Π°ΡΡ
ΠΠ³ΠΎ ΠΎΡΠ΅Π½Ρ ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ Π² ΡΠ»ΡΡΠ°Π΅ ΡΠ΅ΡΠ½ΠΎΡΡΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° (ΠΏΡΠΈ x).
ΠΠΎΡ ΡΠΎΡΠΌΡΠ»Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ½Π΅ΠΉ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅:
Π΄Π»Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
, Π³Π΄Π΅
β ΡΠ΅ΡΠ½ΠΎΠ΅



Π’ΠΎΠ³Π΄Π° ΠΊΠΎΡΠ½ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅:
, ΡΠΎ Π΅ΡΡΡ
ΠΈΠ»ΠΈ 
Π₯ΠΎΡΡ Π½Π° ΡΡΡΡ-ΡΡΡΡ, Π½ΠΎ ΡΠΏΡΠΎΡΡΠΈΠ»ΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ. Π‘ΡΠΈΡΠ°Π΅ΡΠ΅, ΡΡΠΎ Π½Π΅ΠΎΠΏΡΠ°Π²Π΄Π°Π½Π½ΠΎ, β Π»ΠΈΡΠ½Π΅ΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ Π·Π°Π±ΠΈΠ²Π°ΡΡ Π³ΠΎΠ»ΠΎΠ²Ρβ¦ ΠΡΠ±ΠΎΡ Π·Π° Π²Π°ΠΌΠΈ.
4) ΠΠΌΠ΅ΡΡΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° β Ρ. ΠΠΈΠ΅ΡΠ°.

ΠΠΎΠΏΡΡΡΠΈΠΌ, Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ 
ΠΡΠΏΠΎΠΌΠΈΠ½Π°Π΅ΠΌ Β ΡΠ΅ΠΎΡΠ΅ΠΌΡ Β ΠΠΈΠ΅ΡΠ°:
ΠΠ»Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ (Ρ.Π΅. ΡΠ°ΠΊΠΎΠ³ΠΎ, ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΡΠΈ
Β Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅)
Β Β ΡΡΠΌΠΌΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΡΠ°Π²Π½Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ
, Π²Π·ΡΡΠΎΠΌΡ Ρ ΠΎΠ±ΡΠ°ΡΠ½ΡΠΌ Π·Π½Π°ΠΊΠΎΠΌ, Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΠ°Π²Π½ΠΎ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠΌΡ ΡΠ»Π΅Π½Ρ
, ΡΠΎ Π΅ΡΡΡ
, 
Π’Π°ΠΊ Π²ΠΎΡ, ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, Π½Π° ΡΠΎΠ»Ρ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΒ
ΠΏΡΠ΅ΡΠ΅Π½Π΄ΡΡΡ ΡΠΈΡΠ»Π°
ΠΈ
, ΡΠ°ΠΊ ΠΊΠ°ΠΊ
ΠΈ 
ΠΠΎΡ, ΠΏΠΎΠΆΠ°Π»ΡΠΉ, Π²ΡΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ»ΡΡΠ°Π΅, Π³Π΄Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΡ Π²ΡΠ΅ΠΌΡ ΠΈ ΡΠΈΠ»ΡΒ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΎ ΠΊΠΎΡΠΎΡΡΡ Ρ Ρ ΠΎΡΠ΅Π»Π° ΡΠ°ΡΡΠΊΠ°Π·Π°ΡΡ.
ΠΠ° ΡΠ»ΡΠ±ΠΊΠΎΠΉ β> + ΠΏΠΎΠΊΠ°Π·Π°ΡΡ

egemaximum.ru

