Усеченная треугольная пирамида: Формулы и свойства правильной четырехугольной пирамиды. Усеченная пирамида

Содержание

Формулы и свойства правильной четырехугольной пирамиды. Усеченная пирамида

Когда человек слышит слово «пирамида», то сразу вспоминает величественные египетские сооружения. Тем не менее древние каменные гиганты являются лишь одним из представителей класса пирамид. В данной статье рассмотрим с геометрической точки зрения свойства правильной четырехугольной пирамиды .

Что такое пирамида в общем случае?

В геометрии под ней понимают объемную фигуру, получить которую можно, если соединить все вершины плоского многоугольника с одной единственной точкой, лежащей в другой плоскости, чем этот многоугольник. Рисунок ниже показывает 4 фигуры, которые удовлетворяют данному определению.

Мы видим что первая фигура имеет треугольное основание, вторая — четырехугольное. Две последние представлены пяти- и шестиугольным основанием. Однако боковая поверхность всех пирамид образована треугольниками. Их число точно равно количеству сторон или вершин многоугольника в основании.

Особым типом пирамид, которые от остальных представительниц класса отличаются идеальной симметрией, являются правильные пирамиды. Чтобы фигура была правильной, должны выполняться следующие два обязательных условия:

  • в основании должен находиться правильный многоугольник;
  • боковая поверхность фигуры должна состоять из равных равнобедренных треугольников.

Отметим, что второе обязательное условие можно заменить иным: перпендикуляр, проведенный к основанию из вершины пирамиды (точка пересечения боковых треугольников), должен пересекать это основание в его геометрическом центре.

Правильная четырехугольная пирамида

Теперь перейдем к теме статьи и рассмотрим, какие свойства правильной четырехугольной пирамиды характеризуют ее. Сначала покажем на рисунке, как выглядит эта фигура.

Ее основание является квадратом. Боковые стороны представляют 4 одинаковых равнобедренных треугольника (они также могут быть равносторонними при определенном соотношении длины стороны квадрата и высоты фигуры). Опущенная из вершины пирамиды высота пересечет квадрат в его центре (точка пересечения диагоналей).

Эта пирамида имеет 5 граней (квадрат и четыре треугольника), 5 вершин (четыре из них принадлежат основанию) и 8 ребер. Ось симметрии четвертого порядка, проходящая через высоту пирамиды, переводит ее в саму себя путем поворота на 90o.

Египетские пирамиды в Гизе являются правильными четырехугольными.

Далее приведем формулы, позволяющие определить все характеристики этой фигуры.

Четыре основных линейных параметра

Начнем рассмотрение математических свойств правильной четырехугольной пирамиды с формул высоты, длины стороны основания, бокового ребра и апофемы. Сразу скажем, что все эти величины связаны друг с другом, поэтому достаточно знать только две из них, чтобы однозначно вычислить оставшиеся две.

Предположим, что известна высота h пирамиды и длина a стороны квадратного основания, тогда боковое ребро b будет равно:

b = √(a2 / 2 + h2)

Теперь приведем формулу для длины ab апофемы (высота треугольника, опущенная на сторону основания):

ab = √(a2 / 4 + h2)

Очевидно, что боковое ребро b всегда больше апофемы ab.

Оба выражения можно применять для определения всех четырех линейных характеристик, если известны другие два параметра, например ab и h.

Площадь и объем фигуры

Это еще два важных свойства правильной четырехугольной пирамиды . Основание фигуры имеет следующую площадь:

So = a2

Эту формулу знает каждый школьник. Площадь боковой поверхности, которая образована четырьмя одинаковыми треугольниками, можно определить через апофему ab пирамиды так:

Sb = 2 × a × ab

Если ab является неизвестной, то можно ее определить по формулам из предыдущего пункта через высоту h или ребро b.

Общая площадь поверхности рассматриваемой фигуры складывается из площадей So и Sb:

S = So + Sb = a2 + 2 × a × ab = a (a + 2 × ab)

Рассчитанная площадь всех граней пирамиды показана на рисунке ниже в виде ее развертки.

Описание свойств правильной четырехугольной пирамиды не будет полным, если не рассмотреть формулу для определения ее объема. Эта величина для рассматриваемой пирамиды вычисляется следующим образом:

V = 1/3 × h × a2

То есть V равен третьей части произведения высоты фигуры на площадь ее основания.

Свойства правильной усеченной четырехугольной пирамиды

Получить эту фигуру можно из исходной пирамиды. Для этого необходимо срезать верхнюю часть пирамиды плоскостью. Оставшаяся под плоскостью среза фигура будет называться пирамидой усеченной.

Удобнее всего изучать характеристики усеченной пирамиды, если ее основания параллельны друг другу. В этом случае нижнее и верхнее основания будут подобными многоугольниками. Поскольку в четырехугольной правильной пирамиде основание — это квадрат, то образованное при срезе сечение тоже будет представлять квадрат, но уже меньшего размера.

Боковая поверхность усеченной фигуры образована не треугольниками, а равнобедренными трапециями.

Одним из важных свойств этой пирамиды является ее объем, который рассчитывается по формуле:

V = 1/3 × h × (So1 + So2 + √(So1 × So2))

Здесь h — расстояние между основаниями фигуры, So1, So2 — площади нижнего и верхнего оснований.

Пирамида и усеченная пирамида

Как можно построить пирамиду? На плоскости р построим какой-либо многоугольник, например пятиугольник ABCDE. Вне плоскости р возьмем точку S. Соединив точку S отрезками со всеми точками многоугольника, получим пирамиду SABCDE (рис.).

Точка S называется вершиной, а многоугольник ABCDE — основанием этой пирамиды. Таким образом, пирамида с вершиной S и основанием ABCDE — это объединение всех отрезков [SM], где М ∈ ABCDE.

Треугольники SAB, SBC, SCD, SDE, SEA называются боковыми гранями пирамиды, общие стороны боковых граней SA, SB, SC, SD, SE — боковыми ребрами.

Пирамиды называются треугольными, четырехугольными, п-угольными в зависимости от числа сторон основания. На рис. даны изображения треугольной, четырехугольной и шестиугольной пирамид.

Плоскость, проходящая через вершину пирамиды и диагональ основания, называется

диагональной, а полученное сечение — диагональным. На рис. 186 одно из диагональных сечений шестиугольной пирамиды заштриховано.

Отрезок перпендикуляра, проведенного через вершину пирамиды к плоскости ее основания, называется высотой пирамиды (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Пирамида называется правильной, если основание пирамиды—правильный многоугольник и вершина пирамиды проектируется в его центр.

Все боковые грани правильной пирамиды — конгруэнтные равнобедренные треугольники. У правильной пирамиды все боковые ребра конгруэнтны.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды. Все апофемы правильной пирамиды конгруэнтны.

Если обозначить сторону основания через

а, а апофему через h, то площадь одной боковой грани пирамиды равна 1/2 ah .

Сумма площадей всех боковых граней пирамиды называется площадью боковой поверхности пирамиды и обозначается через Sбок.

Так как боковая поверхность правильной пирамиды состоит из n конгруэнтных граней, то

Sбок. = 1/2 ahn = Ph/2,

где Р — периметр основания пирамиды. Следовательно,

Sбок. = Ph/2

т. е. площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Площадь полной поверхности пирамиды вычисляется по формуле

S = Socн. + Sбок..

Объем пирамиды равен одной трети произведения площади ее основания Socн.

на высоту Н:

V = 1/3 Socн. Н.

Вывод этой и некоторых других формул будет дан в одной из последующих глав.

Построим теперь пирамиду другим способом. Пусть дан многогранный угол, например, пятигранный, с вершиной S (рис.).

Проведем плоскость р так, чтобы она пересекала все ребра данного многогранного угла в разных точках А, В, С, D, Е (рис.). Тогда пирамиду SABCDE можно рассматривать как пересечение многогранного угла и полупространства с границей р, в котором лежит вершина S.

Очевидно, что число всех граней пирамиды может быть произвольным, но не меньшим четырех. При пересечении трехгранного угла плоскостью получается треугольная пирамида, у которой четыре грани. Любую треугольную пирамиду иногда называют тетраэдром, что означает четырехгранник.

Усеченную пирамиду можно получить, если пирамиду пересечь плоскостью, параллельной плоскости основания.

На рис. дано изображение четырехугольной усеченной пирамиды.

Усеченные пирамиды также называются треугольными, четырехугольными, n-угольными в зависимости от числа сторон основания. Из построения усеченной пирамиды следует, что она имеет два основания: верхнее и нижнее. Основания усеченной пирамиды — два многоугольника, стороны которых попарно параллельны. Боковые грани усеченной пирамиды — трапеции.

Высотой усеченной пирамиды называется отрезок перпендикуляра, проведенного из любой точки верхнего основания к плоскости нижнего.

Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и плоскостью сечения, параллельной основанию. Высота боковой грани правильной усеченной пирамиды (трапеции) называется апофемой.

Можно доказать, что у правильной усеченной пирамиды боковые ребра конгруэнтны, все боковые грани конгруэнтны, все апофемы конгруэнтны.

Если в правильной усеченной n-угольной пирамиде через а и bn обозначить длины сторон верхнего и нижнего оснований, а через h — длину апофемы, то площадь каждой боковой грани пирамиды равна

1/2( а + bn ) h

Сумма площадей всех боковых граней пирамиды называется площадью ее боковой поверхности и обозначается Sбок. . Очевидно, что для правильной усеченной n-угольной пирамиды

Sбок. = n1/2( а + bn ) h .

Так как па = Р и nbn= Р1 — периметры оснований усеченной пирамиды, то

Sбок. = 1/2 (Р + Р1) h ,

т. е. площадь боковой поверхности правильной усеченной пирамиды равна половине произведения суммы периметров ее оснований на апофему.


Сечение, параллельное основанию пирамиды


Теорема. Если пирамиду пересечь плоскостью, параллельной основанию, то:

1) боковые ребра и высота разделятся на пропорциональные части;

2) в сечении получится многоугольник, подобный основанию;

3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Теорему достаточно доказать для треугольной пирамиды.

Так как параллельные плоскости пересекаются третьей плоскостью по параллельным прямым, то (АВ) || (А1В1), (BС) ||( В1C1), (AС) || (A1С1) (рис.).

Параллельные прямые рассекают стороны угла на пропорциональные части, и поэтому

$$ \frac{\left|{SA}\right|}{\left|{SA_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Следовательно, ΔSAB ~ ΔSA1B1 и

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|} $$

ΔSBC ~ ΔSB1C1 и

$$ \frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Таким образом,

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{AC}\right|}{\left|{A_{1}C_1}\right|} $$

Соответственные углы треугольников ABC и A1B1C1 конгруэнтны, как углы с параллельными и одинаково направленными сторонами.

2} $$
откуда
$$ \frac{b}{B}=\frac{b_1}{B_1}\:  или \: \frac{b}{b_1}=\frac{B}{B_1} $$

Следствие. Если В = В1, то и b = b1 , т. е. если у двух пирамид с равными высотами основания равновелики, то равновелики и сечения, равноотстоящие от вершины.

Площадь усеченной треугольной пирамиды. Пирамида

Многогранник, у которого одна из граней – многоугольник, а все остальные грани – треугольники с общей вершиной, называется пирамидой.

Эти треугольники, из которых составлена пирамида, называют боковыми гранями , а оставшийся многоугольник – основанием пирамиды.

В основании пирамиды лежит геометрическая фигура – n-угольник. В таком случае пирамиду называют еще n-угольной .

Треугольную пирамиду, все ребра которой равны, называют тетраэдром.

Ребра пирамиды, которые не принадлежат основанию, называются боковыми , а их общая точка – это вершина пирамиды. Другие ребра пирамиды обычно называют

сторонами основания .

Пирамиду называют правильной , если у нее в основании лежит правильный многоугольник, а все боковые ребра равны между собой.

Расстояние от вершины пирамиды до плоскости основания называется высотой пирамиды. Можно сказать, что высота пирамиды есть отрезок, перпендикулярный основанию, концы которого находятся в вершине пирамиды и на плоскости основания.

Для любой пирамиды имеют место следующие формулы:

1) S полн = S бок + S осн , где

S полн – площадь полной поверхности пирамиды;

S бок – площадь боковой поверхности, т.е. сумма площадей всех боковых граней пирамиды;

S осн – площадь основания пирамиды.

2) V = 1/3 S осн · Н , где

V – объем пирамиды;

Н – высота пирамиды.

Для правильной пирамиды имеет место:

S бок = 1/2 P осн h , где

P осн – периметр основания пирамиды;

h – длина апофемы, то есть длина высоты боковой грани, опущенной из вершины пирамиды.

Часть пирамиды, заключенная между двумя плоскостями – плоскостью основания и секущей плоскостью, проведенной параллельно основанию, называют усеченной пирамидой .

Основание пирамиды и сечение пирамиды параллельной плоскостью называются основаниями усеченной пирамиды. Остальные грани называют боковыми . Расстояние между плоскостями оснований называют высотой усеченной пирамиды. Ребра, которые не принадлежат основаниям, называются боковыми .

Кроме того, основания усеченной пирамиды подобные n-угольники . Если основания усеченной пирамиды – правильные многоугольники, а все боковые ребра равны между собой, то такая усеченная пирамида называется правильной .

Для произвольной усеченной пирамиды имеют место следующие формулы:

1) S полн = S бок + S 1 + S 2 , где

S полн – площадь полной поверхности;

S бок – площадь боковой поверхности, т.е. сумма площадей всех боковых граней усеченной пирамиды, которые представляют собой трапеции;

S 1 , S 2 – площади оснований;

2) V = 1/3(S 1 + S 2 + √(S 1 · S 2))H , где

V – объем усеченной пирамиды;

H – высота усеченной пирамиды.

Для правильной усеченной пирамиды также имеем:

S бок = 1/2(P 1 + P 2) · h, где

P 1 , P 2 – периметры оснований;

h – апофема (высота боковой грани, представляющей собой трапецию).

Рассмотрим несколько задач на усеченную пирамиду.

Задача 1.

В треугольной усеченной пирамиде с высотой, равной 10, стороны одного из оснований равны 27, 29 и 52. Определите объем усеченной пирамиды, если периметр другого основания равен 72.

Решение.

Рассмотрим усеченную пирамиду АВСА 1 В 1 С 1 , изображенную на рисунке1.

1. Объем усеченной пирамиды может быть найден по формуле

V = 1/3H · (S 1 + S 2 + √(S 1 · S 2)), где S 1 – площадь одного из оснований, можно найти по формуле Герона

S = √(p(p – a)(p – b)(p – c)),

т.к. в задаче даны длины трех сторон треугольника.

Имеем: p 1 = (27 + 29 + 52)/2 = 54.

S 1 = √(54(54 – 27)(54 – 29)(54 – 52)) = √(54 · 27 · 25 · 2) = 270.

2. Пирамида усеченная, а значит, в основаниях лежат подобные многоугольники. В нашем случае треугольник АВС подобен треугольнику А 1 В 1 С 1 . Кроме того, коэффициент подобия можно найти как отношение периметров рассматриваемых треугольников, а отношение их площадей будет равно квадрату коэффициента подобия. Таким образом, имеем:

S 1 /S 2 = (P 1) 2 /(P 2) 2 = 108 2 /72 2 = 9/4. Отсюда S 2 = 4S 1 /9 = 4 · 270/9 = 120.

Итак, V = 1/3 · 10(270 + 120 + √(270 · 120)) = 1900.

Ответ: 1900.

Задача 2.

В треугольной усеченной пирамиде через сторону верхнего основания проведена плоскость параллельно противоположному боковому ребру. В каком отношении разделился объем усеченной пирамиды, если соответственные стороны оснований относятся как 1: 2?

Решение.

Рассмотрим АВСА 1 В 1 С 1 – усеченную пирамиду, изображенную на рис. 2.

Так как в основаниях стороны относятся как 1: 2, то площади оснований относятся как 1: 4 (треугольник АВС подобен треугольнику А 1 В 1 С 1).

Тогда объем усеченной пирамиды равен:

V = 1/3h · (S 1 + S 2 + √(S 1 · S 2)) = 1/3h · (4S 2 + S 2 + 2S 2) = 7/3 · h · S 2 , где S 2 – площадь верхнего основания, h – высота.

Но объем призмы АDEA 1 B 1 C 1 составляет V 1 = S 2 · h и, значит,

V 2 = V – V 1 = 7/3 · h · S 2 — h · S 2 = 4/3 · h · S 2 .

Итак, V 2: V 1 = 3: 4.

Ответ: 3: 4.

Задача 3.

Стороны оснований правильной четырехугольной усеченной пирамиды равны 2 и 1, а высота равна 3. Через точку пересечения диагоналей пирамиды параллельно основаниям пирамиды проведена плоскость, делящая пирамиду на две части. Найти объем каждой из них.

Решение.

Рассмотрим усеченную пирамиду АВСDА 1 В 1 С 1 D 1 , изображенную на рис. 3.

Обозначим О 1 О 2 = х, тогда ОО₂ = О 1 О – О 1 О 2 = 3 – х.

Рассмотрим треугольник В 1 О 2 D 1 и треугольник ВО 2 D:

угол В 1 О 2 D 1 равен углу ВО 2 D как вертикальные;

угол ВDO 2 равен углу D 1 B 1 O 2 и угол O 2 ВD равен углу B 1 D 1 O 2 как накрест лежащие при B 1 D 1 || BD и секущих B₁D и BD₁ соответственно.

Следовательно, треугольник В 1 О 2 D 1 подобен треугольнику ВО 2 D и имеет место отношение сторон:

В1D 1 /ВD = О 1 О 2 /ОО 2 или 1/2 = х/(х – 3), откуда х = 1.

Рассмотрим треугольник В 1 D 1 В и треугольник LО 2 B: угол В – общий, а так же имеется пара односторонних углов при B 1 D 1 || LM, значит, треугольник В 1 D 1 В подобен треугольнику LО 2 B, откуда В 1 D: LO 2 = OO 1: OO 2 = 3: 2, т.е.

LO 2 = 2/3 · B 1 D 1 , LN = 4/3 · B 1 D 1 .

Тогда S KLMN = 16/9 · S A 1 B 1 C 1 D 1 = 16/9.

Итак, V 1 = 1/3 · 2(4 + 16/9 + 8/3) = 152/27.

V 2 = 1/3 · 1 · (16/9 + 1 + 4/3) = 37/27.

Ответ: 152/27; 37/27.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Умение вычислять объем пространственных фигур является важным при решение ряда практических задач по геометрии. Одной из распространенных фигур является пирамида. В данной статье рассмотрим пирамиды как полной, так и усеченной.

Пирамида как объемная фигура

Каждый знает о египетских пирамидах, поэтому хорошо представляет, о какой фигуре пойдет речь. Тем не менее египетские каменные сооружения являются лишь частным случаем огромного класса пирамид.

Рассматриваемый геометрический объект в общем случае представляет собой многоугольное основание, каждая вершина которого соединена с некоторой точкой в пространстве, не принадлежащей плоскости основания. Данное определение приводит к фигуре, состоящей из одного n-угольника и n треугольников.

Любая пирамида состоит из n+1 граней, 2*n ребер и n+1 вершины. Поскольку рассматриваемая фигура является совершенным полиэдром, то числа отмеченных элементов подчиняются равенству Эйлера:

2*n = (n+1) + (n+1) — 2.

Многоугольник, находящийся в основании, дает название пирамиды, например, треугольная, пятиугольная и так далее. Набор пирамид с разными основаниями приведен на фото ниже.

Точка, в которой n треугольников фигуры соединяются, называется вершиной пирамиды. Если из нее опустить на основание перпендикуляр и он пересечет его в геометрическом центре, тогда такая фигура будет называться прямой. Если это условие не выполняется, то имеет место наклонная пирамида.

Прямая фигура, основание которой образовано равносторонним (равноугольным) n-угольником, называется правильной.

Формула объема пирамиды

Для вычисления объема пирамиды воспользуемся интегральным исчислением. Для этого разобьем фигуру параллельными основанию секущими плоскостями на бесконечное число тонких слоев. Рисунок ниже показывает четырехугольную пирамиду высотой h и длиной стороны L, в которой четырехугольником отмечен тонкий слой сечения.

Площадь каждого такого слоя можно вычислить по формуле:

A(z) = A 0 *(h-z) 2 /h 2 .

Здесь A 0 — площадь основания, z — значение вертикальной координаты. Видно, что если z = 0, то формула дает значение A 0 .

Чтобы получить формулу объема пирамиды, следует вычислить интеграл по всей высоте фигуры, то есть:

V = ∫ h 0 (A(z)*dz).

Подставляя зависимость A(z) и вычисляя первообразную, приходим к выражению:

V = -A 0 *(h-z) 3 /(3*h 2)| h 0 = 1/3*A 0 *h.

Мы получили формулу объема пирамиды. Чтобы найти величину V, достаточно умножить высоту фигуры на площадь основания, а затем результат поделить на три.

Заметим, что полученное выражение справедливо для вычисления объема пирамиды произвольного типа. То есть она может быть наклонной, а ее основание представлять собой произвольный n-угольник.

и ее объем

Полученную в пункте выше общую формулу для объема можно уточнить в случае пирамиды с правильным основанием. Площадь такого основания вычисляется по следующей формуле:

A 0 = n/4*L 2 *ctg(pi/n).

Здесь L является длиной стороны правильного многоугольника с n вершинами. Символ pi — это число пи.

Подставляя выражение для A 0 в общую формулу, получаем объем правильной пирамиды:

V n = 1/3*n/4*L 2 *h*ctg(pi/n) = n/12*L 2 *h*ctg(pi/n).

Например, для треугольной пирамиды эта формула приводит к следующему выражению:

V 3 = 3/12*L 2 *h*ctg(60 o) = √3/12*L 2 *h.

Для правильной четырехугольной пирамиды формула объема приобретает вид:

V 4 = 4/12*L 2 *h*ctg(45 o) = 1/3*L 2 *h.

Определение объемов правильных пирамид требует знания стороны их основания и высоты фигуры.

Пирамида усеченная

Предположим, что мы взяли произвольную пирамиду и отсекли у нее часть боковой поверхности, содержащей вершину. Оставшаяся фигура называется усеченной пирамидой. Она состоит уже из двух n-угольных оснований и n трапеций, которые их соединяют. Если секущая плоскость была параллельна основанию фигуры, тогда образуется усеченная пирамида с параллельными подобными основаниями. То есть длины сторон одного из них можно получить, умножая длины другого на некоторый коэффициент k.

Рисунок выше демонстрирует усеченную правильную Видно, что верхнее основание ее так же, как и нижнее, образовано правильным шестиугольником.

Формула которую можно вывести, используя подобное приведенному интегральное исчисление, имеет вид:

V = 1/3*h*(A 0 + A 1 + √(A 0 *A 1)).

Где A 0 и A 1 — площади нижнего (большого) и верхнего (маленького) оснований соответственно. Переменной h обозначается высота усеченной пирамиды.

Объем пирамиды Хеопса

Любопытно решить задачу на определение объема, который заключает внутри себя самая большая египетская пирамида.

В 1984 году британские египтологи Марк Легнер (Mark Lehner) и Джон Гудман (Jon Goodman) установили точные размеры пирамиды Хеопса. Ее первоначальная высота равнялась 146,50 метра (в настоящее время около 137 метров). Средняя длина каждой из четырех сторон сооружения составила 230,363 метра. Основание пирамиды с высокой точностью является квадратным.

Воспользуемся приведенными цифрами для определения объема этого каменного гиганта. Поскольку пирамида является правильной четырехугольной, тогда для нее справедлива формула:

Подставляем цифры, получаем:

V 4 = 1/3*(230,363) 2 *146,5 ≈ 2591444 м 3 .

Объем пирамиды Хеопса равен практически 2,6 млн м 3 . Для сравнения отметим, что олимпийский бассейн имеет объем 2,5 тыс. м 3 . То есть для заполнения всей пирамиды Хеопса понадобится больше 1000 таких бассейнов!

  • 09.10.2014

    Показанный на рисунке предварительный усилитель предназначен для использования с 4-я видами источников звука, например микрофон, CD-проигрыватель, магнитола и др. При этом у предварительно усилителя один вход, который может менять чувствительность от 50 мВ до 500мВ. выходное напряжение усилителя 1000мВ. Подключая разные источники сигнала при переключении переключателя SA1, мы всегда получим …

  • 20.09.2014

    БП рассчитан на нагрузку мощностью 15…20 Вт. Источник выполнен по схеме однотактного импульсного высокочастотного преобразователя. На транзисторе собран автогенератор, работающий на частоте 20…40кГц. Частота настраивается емкостью С5. Элементы VD5,VD6 и С6 образуют цепь запуска автогенератора. Во вторичной цепи после мостового выпрямителя стоит обычный линейный стабилизатор на микросхеме, что позволяет иметь …

  • 28. 09.2014

    На рисунке представлен генератор на микросхеме К174ХА11, частота которого управляется напряжением. При изменении емкости С1 от 560 до 4700пФ можно получить широкий диапазон частот, при этом настройка частоты производится изменением сопротивления R4. Так например автор выяснил что, при С1=560пФ частоту генератора можно изменять при помощи R4 от 600Гц до 200кГц, …

  • 03.10.2014

    Блок предназначен для питания мощного УНЧ, он рассчитан на выходное напряжение ±27В и так нагрузки до 3А на каждое плече. БП двух полярный, выполнен на комплектарных составных транзисторах КТ825-КТ827. Оба плеча стабилизатора выполнены по одной схеме, но в другом плече (он не показан) изменена полярность конденсаторов и использованы транзисторы другой …

Пирамидой называется многогранник, одна из граней которого многоугольник (основание ), а все остальные грани – треугольники с общей вершиной (боковые грани ) (рис. 15). Пирамида называется правильной , если ее основанием является правильный многоугольник и вершина пирамиды проектируется в центр основания (рис. 16). Треугольная пирамида, у которой все ребра равны, называется тетраэдром .

Боковым ребром пирамиды называется сторона боковой грани, не принадлежащая основанию Высотой пирамиды называется расстояние от ее вершины до плоскости основания. Все боковые ребра правильной пирамиды равны между собой, все боковые грани – равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из вершины, называется апофемой . Диагональным сечением называется сечение пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Площадью боковой поверхности пирамиды называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех боковых граней и основания.

Теоремы

1. Если в пирамиде все боковые ребра равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности описанной около основания.

2. Если в пирамиде все боковые ребра имеют равные длины, то вершина пирамиды проектируется в центр окружности описанной около основания.

3. Если в пирамиде все грани равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности вписанной в основание.

Для вычисления объема произвольной пирамиды верна формула:

где V – объем;

S осн – площадь основания;

H – высота пирамиды.

Для правильной пирамиды верны формулы:

где p – периметр основания;

h а – апофема;

H – высота;

S полн

S бок

S осн – площадь основания;

V – объем правильной пирамиды.

Усеченной пирамидой называется часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды (рис. 17). Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды.

Основания усеченной пирамиды – подобные многоугольники. Боковые грани – трапеции. Высотой усеченной пирамиды называется расстояние между ее основаниями. Диагональю усеченной пирамиды называется отрезок, соединяющий ее вершины, не лежащие в одной грани. Диагональным сечением называется сечение усеченной пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Для усеченной пирамиды справедливы формулы:

(4)

где S 1 , S 2 – площади верхнего и нижнего оснований;

S полн – площадь полной поверхности;

S бок – площадь боковой поверхности;

H – высота;

V – объем усеченной пирамиды.

Для правильной усеченной пирамиды верна формула:

где p 1 , p 2 – периметры оснований;

h а – апофема правильной усеченной пирамиды.

Пример 1. В правильной треугольной пирамиде двугранный угол при основании равен 60º. Найти тангенс угла наклона бокового ребра к плоскости основания.

Решение. Сделаем рисунок (рис. 18).

Пирамида правильная, значит в основании равносторонний треугольник и все боковые грани равные равнобедренные треугольники. Двугранный угол при основании – это угол наклона боковой грани пирамиды к плоскости основания. Линейным углом будет угол a между двумя перпендикулярами: и т.е. Вершина пирамиды проектируется в центре треугольника (центр описанной окружности и вписанной окружности в треугольник АВС ). Угол наклона бокового ребра (например SB ) – это угол между самим ребром и его проекцией на плоскость основания. Для ребра SB этим углом будет угол SBD . Чтобы найти тангенс необходимо знать катеты SO и OB . Пусть длина отрезка BD равна 3а . Точкой О отрезок BD делится на части: и Из находим SO : Из находим:

Ответ:

Пример 2. Найти объем правильной усеченной четырехугольной пирамиды, если диагонали ее оснований равны см и см, а высота 4 см.

Решение. Для нахождения объема усеченной пирамиды воспользуемся формулой (4). Чтобы найти площади оснований необходимо найти стороны квадратов-оснований, зная их диагонали. Стороны оснований равны соответственно 2 см и 8 см. Значит площади оснований и Подставив все данные в формулу, вычислим объем усеченной пирамиды:

Ответ: 112 см 3 .

Пример 3. Найти площадь боковой грани правильной треугольной усеченной пирамиды, стороны оснований которой равны 10 см и 4 см, а высота пирамиды 2 см.

Решение. Сделаем рисунок (рис. 19).

Боковая грань данной пирамиды является равнобокая трапеция. Для вычисления площади трапеции необходимо знать основания и высоту. Основания даны по условию, остается неизвестной только высота. Ее найдем из где А 1 Е перпендикуляр из точки А 1 на плоскость нижнего основания, A 1 D – перпендикуляр из А 1 на АС . А 1 Е = 2 см, так как это высота пирамиды. Для нахождения DE сделаем дополнительно рисунок, на котором изобразим вид сверху (рис. 20). Точка О – проекция центров верхнего и нижнего оснований. так как (см. рис. 20) и С другой стороны ОК – радиус вписанной в окружности и ОМ – радиус вписанной в окружности:

MK = DE .

По теореме Пифагора из

Площадь боковой грани:

Ответ:

Пример 4. В основании пирамиды лежит равнобокая трапеция, основания которой а и b (a > b ). Каждая боковая грань образует с плоскостью основания пирамиды угол равный j . Найти площадь полной поверхности пирамиды.

Решение. Сделаем рисунок (рис. 21). Площадь полной поверхности пирамиды SABCD равна сумме площадей и площади трапеции ABCD .

Воспользуемся утверждением, что если все грани пирамиды равнонаклонены к плоскости основания, то вершина проектируется в центр вписанной в основание окружности. Точка О – проекция вершины S на основание пирамиды. Треугольник SOD является ортогональной проекцией треугольника CSD на плоскость основания. По теореме о площади ортогональной проекции плоской фигуры получим:

Аналогично и значит Таким образом задача свелась к нахождению площади трапеции АВСD . Изобразим трапецию ABCD отдельно (рис.22). Точка О – центр вписанной в трапецию окружности.

Так как в трапецию можно вписать окружность, то или Из по теореме Пифагора имеем

Урок 15. пирамида — Геометрия — 10 класс

Геометрия, 10 класс

Урок № 15. Пирамида

Перечень вопросов, рассматриваемых в теме:

  • Понятие пирамиды;
  • Виды пирамид;
  • Элементы пирамиды: вершина, ребра, грани, основание;
  • Площадь боковой поверхности и полной поверхности пирамиды.

Глоссарий по теме

Пирамида – многогранник, составленный из n-угольника и n треугольников

Основание пирамиды – грань пирамиды, являющаяся n-угольником

Вершина пирамиды – общая точка всех треугольников, лежащих в боковых гранях.

Боковая грань – грань пирамиды, являющаяся треугольником

Боковые ребра – общие отрезки боковых граней

Высота – перпендикуляр, опущенный из вершины пирамиды на ее основание

Апофема – высота боковой грани правильной пирамиды

Правильная пирамида – пирамида, в основании которой лежит правильный многоугольник, а отрезок, соединяющий вершину и центр основания пирамиды, является высотой

Усеченная пирамида – многогранник, образованный двумя n-угольниками, расположенными в параллельных плоскостях (нижнее и верхнее основание) и n-четырехугольников (боковые грани).

Площадь полной поверхности пирамиды – сумма площадей всех граней пирамиды

Площадь боковой поверхности пирамиды – сумма площадей боковых граней пирамиды

Основная литература:

Потоскуев Е. В., Звавич Л. И. Геометрия. 11кл.: учеб. Для классов с углубл. и профильным изучением математики общеобразоват. Учреждений.. – М.: Дрофа, 2009. – 368 с.: ил. (117 с. – 121 с.)

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы : учеб. Для общеобразоват. организаций : базовый и углубл. уровни – М. : Просвещение, 2014. – 255 с. (65 с. – 68 с.)

Открытые электронные ресурсы:

Многогранники.ru – сайт о создании моделей многогранников из бумаги https://www.mnogogranniki.ru/

Образовательный портал «Решу ЕГЭ». https://mathb-ege.sdamgia.ru/test?theme=177

Теоретический материал для самостоятельного изучения

Определение пирамиды

Рассмотрим многоугольник A1A2…An и точку Р, не лежащую в плоскости этого многоугольника (рис.1). Соединив точку Р с вершинами многоугольника, получим n треугольников: PA1A2, PA2A3,…, PAnA1.

Многогранник, составленный из n-угольника A1A2…An и n треугольников, называется пирамидой. Многоугольник A1A2…An называется основанием, а треугольники PA1A2, PA2A3,…, PAnA1 боковые грани пирамиды, отрезки PA1, PA2,…, PAnбоковые ребра пирамиды, точка Р – вершина пирамиды. Пирамиду с основанием A1A2…An и вершиной Р называют n-угольной пирамидой и обозначают PA1A2…An.

Рисунок 1 — пирамида

Высота пирамиды

Перпендикуляр, проведенный из вершины пирамиды к плоскости основания, называется высотой пирамиды. На рисунке 1 PH является высотой. Обратите внимание, что высота может лежать и вне пирамиды (рис. 3) или быть одним из боковых ребер (рис. 4).

Рисунок 3 – высота вне пирамиды

Рисунок 4 – Высота пирамиды — боковое ребро

Правильная пирамида

Будем называть пирамиду правильной, если ее основание – правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой. Напомним, что центром правильного многоугольника называется центр вписанной в него (или описанной около него) окружности (рис.5).

Рисунок 5 – Правильная пирамида

Правильная пирамида обладает несколькими хорошими свойствами. Давайте выясним, какими.

Рассмотрим правильную пирамиду PA1A2…An (рис. 5).

Пусть О – центр описанной около основания окружности, тогда РО – высота пирамиды, значит РО перпендикулярен любой прямой, лежащей в плоскости основания. Таким образом, высота РО перпендикулярна радиусам А1О, А2О,…АnО.

Образованные высотой и радиусами треугольники являются прямоугольными. Причем, эти треугольники имеют общий катет – РО и равные катеты А1О, А2О,…АnО (равны как радиусы). Значит, треугольники РОА1, РОА2,…РОАn равны по двум катетам, значит равны гипотенузы PA1 , РA2… РAn, которые являются боковыми ребрами правильной пирамиды.

Боковые ребра пирамиды равны, значит боковые грани – равнобедренные треугольники. Основания этих треугольников равны друг другу, так как в основании лежит правильный многоугольник. Следовательно, боковые грани равны по третьему признаку равенства треугольников.

Таким образом, верны следующие утверждения:

  • Все боковые ребра правильной пирамиды равны.
  • Боковые ребра правильной пирамиды являются равными равнобедренными треугольниками.

Введем еще одно определение. Апофемой называется высота боковой грани правильной пирамиды, проведенная из ее вершины. На рисунке 5 PE – одна из апофем.

Все апофемы правильной пирамиды равны друг другу как высоты в равных треугольниках.

Усеченная пирамида

Возьмем произвольную пирамиду PA1A2…An и проведем секущую плоскость β, параллельную плоскости основания пирамиды α и пересекающую боковые ребра в точках В12,. ..Вn (рис. 6). Плоскость β разбивает пирамиду на два многогранника. Многогранник, гранями которого являются n-угольники A1A2…An и В1В2…Вn (нижнее и верхнее основания соответственно), расположенные в параллельных плоскостях и n четырехугольников A1A2B2B1, A2A3B3B2, … A1AnBnB1(боковые грани), называется усеченной пирамидой.

Рисунок 6 – Усеченная пирамида

Отрезки A1B1, A2B2, … AnBn называют боковыми ребрами усеченной пирамиды.

Усеченную пирамиду с основаниями A1A2…An и В1В2…Вn обозначают следующим образом: A1A2…AnВ1В2…Вn.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания называется высотой усеченной пирамиды. На рисунке 7 отрезки HH1 и В1O –высоты усеченной пирамиды.

Рисунок 7 – Высота усеченной пирамиды

Площадь поверхности пирамиды

Площадью полной поверхности пирамиды называются сумма площадей всех ее граней, а площадью боковой поверхности пирамиды – сумма площадей ее боковых граней.

Для пирамиды, верно равенство Sполн= Sбок+Sосн.

Докажем теорему для площади боковой поверхности правильной пирамиды.

Теорема. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Для площади боковой поверхности усеченной пирамиды верна следующая теорема

Теорема. Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

Примеры и разбор решения заданий тренировочного модуля

Задание 1. В пятиугольной пирамиде все боковые грани равны между собой. Площадь основания равна 42, а площадь боковой грани на 15 меньше. Чему равна площадь полной поверхности пирамиды?

Решение

Поскольку в пирамиде все боковые грани равны, то и площади их будут равны. Знаем, что площадь боковой грани на 15 меньше площади основания, значит она равна 27. В пятиугольной пирамиде боковых граней 5. Таким образом площадь полной поверхности равна 27*5+42 = 177.

Ответ: 177

Задание 2. В правильной пирамиде высота боковой грани равна 10, а в основании лежит квадрат со стороной 4. Чему равна площадь боковой поверхности?

Решение

Боковая грань пирамиды – это треугольник. Все боковые грани этой пирамиды равны между собой, так как пирамида правильная. Вычислим площадь треугольника: ½*4*10=20. В основании пирамиды лежит квадрат, значит боковых граней будет 4. Таким образом, площадь боковой поверхности равна 4* 20=80.

Ответ: 80

Многогранная пирамида.

Азы геометрии: правильная пирамида — это

Пирамидой называется многогранник, одна из граней которого многоугольник (основание ), а все остальные грани – треугольники с общей вершиной (боковые грани ) (рис. 15). Пирамида называется правильной , если ее основанием является правильный многоугольник и вершина пирамиды проектируется в центр основания (рис. 16). Треугольная пирамида, у которой все ребра равны, называется тетраэдром .

Боковым ребром пирамиды называется сторона боковой грани, не принадлежащая основанию Высотой пирамиды называется расстояние от ее вершины до плоскости основания. Все боковые ребра правильной пирамиды равны между собой, все боковые грани – равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из вершины, называется апофемой . Диагональным сечением называется сечение пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Площадью боковой поверхности пирамиды называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех боковых граней и основания.

Теоремы

1. Если в пирамиде все боковые ребра равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности описанной около основания.

2. Если в пирамиде все боковые ребра имеют равные длины, то вершина пирамиды проектируется в центр окружности описанной около основания.

3. Если в пирамиде все грани равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности вписанной в основание.

Для вычисления объема произвольной пирамиды верна формула:

где V – объем;

S осн – площадь основания;

H – высота пирамиды.

Для правильной пирамиды верны формулы:

где p – периметр основания;

h а – апофема;

H – высота;

S полн

S бок

S осн – площадь основания;

V – объем правильной пирамиды.

Усеченной пирамидой называется часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды (рис. 17). Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды.

Основания усеченной пирамиды – подобные многоугольники. Боковые грани – трапеции. Высотой усеченной пирамиды называется расстояние между ее основаниями. Диагональю усеченной пирамиды называется отрезок, соединяющий ее вершины, не лежащие в одной грани. Диагональным сечением называется сечение усеченной пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Для усеченной пирамиды справедливы формулы:

(4)

где S 1 , S 2 – площади верхнего и нижнего оснований;

S полн – площадь полной поверхности;

S бок – площадь боковой поверхности;

H – высота;

V – объем усеченной пирамиды.

Для правильной усеченной пирамиды верна формула:

где p 1 , p 2 – периметры оснований;

h а – апофема правильной усеченной пирамиды.

Пример 1. В правильной треугольной пирамиде двугранный угол при основании равен 60º. Найти тангенс угла наклона бокового ребра к плоскости основания.

Решение. Сделаем рисунок (рис. 18).

Пирамида правильная, значит в основании равносторонний треугольник и все боковые грани равные равнобедренные треугольники. Двугранный угол при основании – это угол наклона боковой грани пирамиды к плоскости основания. Линейным углом будет угол a между двумя перпендикулярами: и т.е. Вершина пирамиды проектируется в центре треугольника (центр описанной окружности и вписанной окружности в треугольник АВС ). Угол наклона бокового ребра (например SB ) – это угол между самим ребром и его проекцией на плоскость основания. Для ребра SB этим углом будет угол SBD . Чтобы найти тангенс необходимо знать катеты SO и OB . Пусть длина отрезка BD равна 3а . Точкой О отрезок BD делится на части: и Из находим SO : Из находим:

Ответ:

Пример 2. Найти объем правильной усеченной четырехугольной пирамиды, если диагонали ее оснований равны см и см, а высота 4 см.

Решение. Для нахождения объема усеченной пирамиды воспользуемся формулой (4). Чтобы найти площади оснований необходимо найти стороны квадратов-оснований, зная их диагонали. Стороны оснований равны соответственно 2 см и 8 см. Значит площади оснований и Подставив все данные в формулу, вычислим объем усеченной пирамиды:

Ответ: 112 см 3 .

Пример 3. Найти площадь боковой грани правильной треугольной усеченной пирамиды, стороны оснований которой равны 10 см и 4 см, а высота пирамиды 2 см.

Решение. Сделаем рисунок (рис. 19).

Боковая грань данной пирамиды является равнобокая трапеция. Для вычисления площади трапеции необходимо знать основания и высоту. Основания даны по условию, остается неизвестной только высота. Ее найдем из где А 1 Е перпендикуляр из точки А 1 на плоскость нижнего основания, A 1 D – перпендикуляр из А 1 на АС . А 1 Е = 2 см, так как это высота пирамиды. Для нахождения DE сделаем дополнительно рисунок, на котором изобразим вид сверху (рис. 20). Точка О – проекция центров верхнего и нижнего оснований. так как (см. рис. 20) и С другой стороны ОК – радиус вписанной в окружности и ОМ – радиус вписанной в окружности:

MK = DE .

По теореме Пифагора из

Площадь боковой грани:

Ответ:

Пример 4. В основании пирамиды лежит равнобокая трапеция, основания которой а и b (a > b ). Каждая боковая грань образует с плоскостью основания пирамиды угол равный j . Найти площадь полной поверхности пирамиды.

Решение. Сделаем рисунок (рис. 21). Площадь полной поверхности пирамиды SABCD равна сумме площадей и площади трапеции ABCD .

Воспользуемся утверждением, что если все грани пирамиды равнонаклонены к плоскости основания, то вершина проектируется в центр вписанной в основание окружности. Точка О – проекция вершины S на основание пирамиды. Треугольник SOD является ортогональной проекцией треугольника CSD на плоскость основания. По теореме о площади ортогональной проекции плоской фигуры получим:

Аналогично и значит Таким образом задача свелась к нахождению площади трапеции АВСD . Изобразим трапецию ABCD отдельно (рис.22). Точка О – центр вписанной в трапецию окружности.

Так как в трапецию можно вписать окружность, то или Из по теореме Пифагора имеем

Понятие пирамиды

Определение 1

Геометрическая фигура, образованная многоугольником и точкой, не лежащей в плоскости, содержащей этот многоугольник, соединенной со всеми вершинами многоугольника называется пирамидой (рис. 1).

Многоугольник, из которого составлена пирамида, называется основанием пирамиды, получаемые при соединение с точкой треугольники — боковыми гранями пирамиды, стороны треугольников — сторонами пирамиды, а общая для всех треугольников точка— вершиной пирамиды.

Виды пирамид

В зависимости от количества углов в основании пирамиды ее можно назвать треугольной, четырехугольной и так далее (рис. 2).

Рисунок 2.

Еще один вид пирамид — правильная пирамида.

Введем и докажем свойство правильной пирамиды.

Теорема 1

Все боковые грани правильной пирамиды являются равнобедренными треугольниками, которые равны между собой.

Доказательство.

Рассмотрим правильную $n-$угольную пирамиду с вершиной $S$ высотой $h=SO$. Опишем вокруг основания окружность (рис. 4).

Рисунок 4.

Рассмотрим треугольник $SOA$. По теореме Пифагора, получим

Очевидно, что так будет определяться любое боковое ребро. Следовательно, все боковые ребра равны между собой, то есть все боковые грани — равнобедренные треугольники. Докажем, что они равны между собой. Так как основание — правильный многоугольник, то основания всех боковых граней равны между собой. Следовательно, все боковые грани равны по III признаку равенства треугольников.

Теорема доказана.

Введем теперь следующее определение, связанное с понятием правильной пирамиды.

Определение 3

Апофемой правильной пирамиды называется высота её боковой грани.

Очевидно, что по теореме один все апофемы равны между собой.

Теорема 2

Площадь боковой поверхности правильной пирамиды определяется как произведение полупериметра основания на апофему.

Доказательство.

Обозначим сторону основания $n-$угольной пирамиды через $a$, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как, по теореме 1, все боковые стороны равны, то

Теорема доказана.

Еще один вид пирамиды — усеченная пирамида.

Определение 4

Если через обычную пирамиду провести плоскость, параллельную её основанию, то фигура, образованная между этой плоскостью и плоскостью основания называется усеченной пирамидой (рис. 5).

Рисунок 5. Усеченная пирамида

Боковыми гранями усеченной пирамиды являются трапеции.

Теорема 3

Площадь боковой поверхности правильной усеченной пирамиды определяется как произведение суммы полупериметров оснований на апофему.

Доказательство.

Обозначим стороны оснований $n-$угольной пирамиды через $a\ и\ b$ соответственно, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как все боковые стороны равны, то

Теорема доказана.

Пример задачи

Пример 1

Найти площадь боковой поверхности усеченной треугольной пирамиды, если она получена из правильной пирамиды со стороной основания 4 и апофемой 5 путем отсечения плоскостью, проходящей через среднюю линию боковых граней.

Решение.

По теореме о средней линии получим, что верхнее основание усеченной пирамиды равно $4\cdot \frac{1}{2}=2$, а апофема равна $5\cdot \frac{1}{2}=2,5$.

Тогда, по теореме 3, получим

С понятием пирамида учащиеся сталкиваются еще задолго до изучения геометрии. Виной всему знаменитые великие египетские чудеса света. Поэтому, начиная изучение этого замечательного многогранника, большинство учеников уже наглядно представляют ее себе. Все вышеупомянутые достопримечательности имеют правильную форму. Что такое правильная пирамида , и какие свойства она имеет и пойдет речь дальше.

Вконтакте

Определение

Определений пирамиды можно встретить достаточно много. Начиная еще с древних времен, она пользовалась большой популярностью.

К примеру, Эвклид определял ее как телесную фигуру, состоящую из плоскостей, которые, начиная от одной, сходятся в определенной точке.

Герон представил более точную формулировку. Он настаивал на том, что это фигура, которая имеет основание и плоскости в виде треугольников, сходящиеся в одной точке.

Опираясь на современное толкование, пирамиду представляют, как пространственный многогранник, состоящий из определённого k-угольника и k плоских фигур треугольной формы, имеющую одну общую точку.

Разберемся более подробно, из каких элементов она состоит:

  • k-угольник считают основой фигуры;
  • фигуры 3-угольной формы выступают гранями боковой части;
  • верхняя часть, из которой берут начало боковые элементы, называют вершиной;
  • все отрезки, соединяющие вершину, называют рёбрами;
  • если из вершины на плоскость фигуры опустить прямую под углом в 90 градусов, то её часть, заключенная во внутреннем пространстве — высота пирамиды;
  • в любом боковом элементе к стороне нашего многогранника можно провести перпендикуляр, называемый апофемой.

Число рёбер вычисляется по формуле 2*k, где k – количество сторон k-угольника. Сколько граней у такого многогранника, как пирамида, можно определить посредством выражения k+1.

Важно! Пирамидой правильной формы называют стереометрическую фигуру, плоскость основы которой является k-угольник с равными сторонами.

Основные свойства

Правильная пирамида обладает множеством свойств, которые присущи только ей. Перечислим их:

  1. Основа – фигура правильной формы.
  2. Ребра пирамиды, ограничивающие боковые элементы, имеют равные числовые значения.
  3. Боковые элементы – равнобедренные треугольники.
  4. Основание высоты фигуры попадает в центр многоугольника, при этом он одновременно является центральной точкой вписанной и описанной .
  5. Все боковые рёбра наклонены к плоскости основы под одинаковым углом.
  6. Все боковые поверхности имеют одинаковый угол наклона по отношению к основе.

Благодаря всем перечисленным свойствам, выполнение вычислений элементов намного упрощается. Исходя из приведенных свойств, обращаем внимание на два признака:

  1. В том случае, когда многоугольник вписывается в окружность, боковые грани будут иметь с основой равные углы.
  2. При описании окружности около многоугольника, все рёбра пирамиды, исходящие из вершины, будут иметь равную длину и равные углы с основой.

В основе лежит квадрат

Правильная четырёхугольная пирамида – многогранник, у которого в основе лежит квадрат.

У неё четыре боковых грани, которые по своему виду являются равнобедренными.

На плоскости квадрат изображают , но основываются на всех свойствах правильного четырёхугольника.

К примеру, если необходимо связать сторону квадрата с его диагональю, то используют следующую формулу: диагональ равна произведению стороны квадрата на корень квадратный из двух.

В основе лежит правильный треугольник

Правильная треугольная пирамида – многогранник, в основании которого лежит правильный 3-угольник.

Если основание является правильным треугольником, а боковые рёбра равны ребрам основания, то такая фигура называется тетраэдром.

Все грани тетраэдра являются равносторонними 3-угольниками. В данном случае необходимо знать некоторые моменты и не тратить на них время при вычислениях:

  • угол наклона ребер к любому основанию равен 60 градусов;
  • величина всех внутренних граней также составляет 60 градусов;
  • любая грань может выступить основанием;
  • , проведённые внутри фигуры, это равные элементы.

Сечения многогранника

В любом многограннике различают несколько видов сечения плоскостью. Зачастую в школьном курсе геометрии работают с двумя:

  • осевое;
  • параллельное основе.

Осевое сечение получают при пересечении плоскостью многогранника, которая проходит через вершину, боковые рёбра и ось. В данном случае осью является высота, проведённая из вершины. Секущая плоскость ограничивается линиями пересечения со всеми гранями, в результате получаем треугольник.

Внимание! В правильной пирамиде осевым сечением является равнобедренный треугольник.

Если секущая плоскость проходит параллельно основанию, то в результате получаем второй вариант. В этом случае имеем в разрезе фигуру, подобную основе.

К примеру, если в основании лежит квадрат, то сечение параллельно основе также будет квадратом, только меньших размеров.

При решении задач при таком условии используют признаки и свойства подобия фигур, основанные на теореме Фалеса . В первую очередь необходимо определить коэффициент подобия.

Если плоскость проведена параллельно основе, и она отсекает верхнюю часть многогранника, то в нижней части получают правильную усеченную пирамиду. Тогда говорят, что основы усеченного многогранника являются подобными многоугольниками. В этом случае боковые грани являются равнобокими трапециями. Осевым сечением также является равнобокая .

Для того чтобы определить высоту усеченного многогранника, необходимо провести высоту в осевом сечении, то есть в трапеции.

Площади поверхностей

Основные геометрические задачи, которые приходится решать в школьном курсе геометрии, это нахождение площадей поверхности и объема у пирамиды.

Значение площади поверхности различают двух видов:

  • площади боковых элементов;
  • площади всей поверхности.

Из самого названия понятно, о чём идёт речь. Боковая поверхность включает в себя только боковые элементы. Из этого следует, что для ее нахождения необходимо просто сложить площади боковых плоскостей, то есть площади равнобедренных 3-угольников. Попробуем вывести формулу площади боковых элементов:

  1. Площадь равнобедренного 3-угольника равна Sтр=1/2(aL), где а – сторона основания, L – апофема.
  2. Количество боковых плоскостей зависит от вида k-го угольника в основании. К примеру, правильная четырехугольная пирамида имеет четыре боковые плоскости. Следовательно, необходимо сложить площади четырёх фигур Sбок=1/2(aL)+1/2(aL)+1/2(aL)+1/2(aL)=1/2*4а*L. Выражение упрощено таким способом потому, что значение 4а=Росн, где Росн – периметр основы. А выражение 1/2*Росн является её полупериметром.
  3. Итак, делаем вывод, что площадь боковых элементов правильной пирамиды равна произведению полупериметра основания на апофему: Sбок=Росн*L.

Площадь полной поверхности пирамиды состоит из суммы площадей боковых плоскостей и основания: Sп.п.= Sбок+Sосн.

Что касается площади основания, то здесь формула используется соответственно виду многоугольника.

Объем правильной пирамиды равен произведению площади плоскости основания на высоту, разделенную на три: V=1/3*Sосн*Н, где Н – высота многогранника.

Что такое правильная пирамиды в геометрии

Свойства правильной четырехугольной пирамиды

Решая задачу C2 методом координат, многие ученики сталкиваются с одной и той же проблемой. Они не могут рассчитать координаты точек , входящих в формулу скалярного произведения. Наибольшие трудности вызывают пирамиды . И если точки основания считаются более-менее нормально, то вершины — настоящий ад.

Сегодня мы займемся правильной четырехугольной пирамидой. Есть еще треугольная пирамида (она же — тетраэдр ). Это более сложная конструкция, поэтому ей будет посвящен отдельный урок.

Для начала вспомним определение:

Правильная пирамида — это такая пирамида, у которой:

  1. В основании лежит правильный многоугольник: треугольник, квадрат и т.д.;
  2. Высота, проведенная к основанию, проходит через его центр.

В частности, основанием четырехугольной пирамиды является квадрат . Прямо как у Хеопса, только чуть поменьше.

Ниже приведены расчеты для пирамиды, у которой все ребра равны 1. Если в вашей задаче это не так, выкладки не меняются — просто числа будут другими.

Вершины четырехугольной пирамиды

Итак, пусть дана правильная четырехугольная пирамида SABCD , где S — вершина, основание ABCD — квадрат. Все ребра равны 1. Требуется ввести систему координат и найти координаты всех точек. Имеем:

Вводим систему координат с началом в точке A :

  1. Ось OX направлена параллельно ребру AB ;
  2. Ось OY — параллельно AD . Поскольку ABCD — квадрат, AB ⊥ AD ;
  3. Наконец, ось OZ направим вверх, перпендикулярно плоскости ABCD .

Теперь считаем координаты. Дополнительное построение: SH — высота, проведенная к основанию. Для удобства вынесем основание пирамиды на отдельный рисунок. Поскольку точки A , B , C и D лежат в плоскости OXY , их координата z = 0. Имеем:

  1. A = (0; 0; 0) — совпадает с началом координат;
  2. B = (1; 0; 0) — шаг на 1 по оси OX от начала координат;
  3. C = (1; 1; 0) — шаг на 1 по оси OX и на 1 по оси OY ;
  4. D = (0; 1; 0) — шаг только по оси OY .
  5. H = (0,5; 0,5; 0) — центр квадрата, середина отрезка AC .

Осталось найти координаты точки S . Заметим, что координаты x и y точек S и H совпадают, поскольку они лежат на прямой, параллельной оси OZ . Осталось найти координату z для точки S .

Рассмотрим треугольники ASH и ABH :

  1. AS = AB = 1 по условию;
  2. Угол AHS = AHB = 90°, поскольку SH — высота, а AH ⊥ HB как диагонали квадрата;
  3. Сторона AH — общая.

Следовательно, прямоугольные треугольники ASH и ABH равны по одному катету и гипотенузе. Значит, SH = BH = 0,5 · BD . Но BD — диагональ квадрата со стороной 1. Поэтому имеем:

Итого координаты точки S :

В заключение, выпишем координаты всех вершин правильной прямоугольной пирамиды:


Что делать, когда ребра разные

А что, если боковые ребра пирамиды не равны ребрам основания? В этом случае рассмотрим треугольник AHS :


Треугольник AHS — прямоугольный , причем гипотенуза AS — это одновременно и боковое ребро исходной пирамиды SABCD . Катет AH легко считается: AH = 0,5 · AC . Оставшийся катет SH найдем по теореме Пифагора . Это и будет координата z для точки S .

Задача. Дана правильная четырехугольная пирамида SABCD , в основании которой лежит квадрат со стороной 1. Боковое ребро BS = 3. Найдите координаты точки S .

Координаты x и y этой точки мы уже знаем: x = y = 0,5. Это следует из двух фактов:

  1. Проекция точки S на плоскость OXY — это точка H ;
  2. Одновременно точка H — центр квадрата ABCD , все стороны которого равны 1.

Осталось найти координату точки S . Рассмотрим треугольник AHS . Он прямоугольный, причем гипотенуза AS = BS = 3, катет AH — половина диагонали. Для дальнейших вычислений нам потребуется его длина:

Теорема Пифагора для треугольника AHS : AH 2 + SH 2 = AS 2 . Имеем:

Итак, координаты точки S :

Боковые грани правильной треугольной пирамиды. Пирамида

Понятие пирамиды

Определение 1

Геометрическая фигура, образованная многоугольником и точкой, не лежащей в плоскости, содержащей этот многоугольник, соединенной со всеми вершинами многоугольника называется пирамидой (рис. 1).

Многоугольник, из которого составлена пирамида, называется основанием пирамиды, получаемые при соединение с точкой треугольники — боковыми гранями пирамиды, стороны треугольников — сторонами пирамиды, а общая для всех треугольников точка— вершиной пирамиды.

Виды пирамид

В зависимости от количества углов в основании пирамиды ее можно назвать треугольной, четырехугольной и так далее (рис. 2).

Рисунок 2.

Еще один вид пирамид — правильная пирамида.

Введем и докажем свойство правильной пирамиды.

Теорема 1

Все боковые грани правильной пирамиды являются равнобедренными треугольниками, которые равны между собой.

Доказательство.

Рассмотрим правильную $n-$угольную пирамиду с вершиной $S$ высотой $h=SO$. Опишем вокруг основания окружность (рис. 4).

Рисунок 4.

Рассмотрим треугольник $SOA$. По теореме Пифагора, получим

Очевидно, что так будет определяться любое боковое ребро. Следовательно, все боковые ребра равны между собой, то есть все боковые грани — равнобедренные треугольники. Докажем, что они равны между собой. Так как основание — правильный многоугольник, то основания всех боковых граней равны между собой. Следовательно, все боковые грани равны по III признаку равенства треугольников.

Теорема доказана.

Введем теперь следующее определение, связанное с понятием правильной пирамиды.

Определение 3

Апофемой правильной пирамиды называется высота её боковой грани.

Очевидно, что по теореме один все апофемы равны между собой.

Теорема 2

Площадь боковой поверхности правильной пирамиды определяется как произведение полупериметра основания на апофему.

Доказательство.

Обозначим сторону основания $n-$угольной пирамиды через $a$, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как, по теореме 1, все боковые стороны равны, то

Теорема доказана.

Еще один вид пирамиды — усеченная пирамида.

Определение 4

Если через обычную пирамиду провести плоскость, параллельную её основанию, то фигура, образованная между этой плоскостью и плоскостью основания называется усеченной пирамидой (рис. 5).

Рисунок 5. Усеченная пирамида

Боковыми гранями усеченной пирамиды являются трапеции.

Теорема 3

Площадь боковой поверхности правильной усеченной пирамиды определяется как произведение суммы полупериметров оснований на апофему.

Доказательство.

Обозначим стороны оснований $n-$угольной пирамиды через $a\ и\ b$ соответственно, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как все боковые стороны равны, то

Теорема доказана.

Пример задачи

Пример 1

Найти площадь боковой поверхности усеченной треугольной пирамиды, если она получена из правильной пирамиды со стороной основания 4 и апофемой 5 путем отсечения плоскостью, проходящей через среднюю линию боковых граней.

Решение.

По теореме о средней линии получим, что верхнее основание усеченной пирамиды равно $4\cdot \frac{1}{2}=2$, а апофема равна $5\cdot \frac{1}{2}=2,5$.

Тогда, по теореме 3, получим

Решая задачу C2 методом координат, многие ученики сталкиваются с одной и той же проблемой. Они не могут рассчитать координаты точек , входящих в формулу скалярного произведения. Наибольшие трудности вызывают пирамиды . И если точки основания считаются более-менее нормально, то вершины — настоящий ад.

Сегодня мы займемся правильной четырехугольной пирамидой. Есть еще треугольная пирамида (она же — тетраэдр ). Это более сложная конструкция, поэтому ей будет посвящен отдельный урок.

Для начала вспомним определение:

Правильная пирамида — это такая пирамида, у которой:

  1. В основании лежит правильный многоугольник: треугольник, квадрат и т.д.;
  2. Высота, проведенная к основанию, проходит через его центр.

В частности, основанием четырехугольной пирамиды является квадрат . Прямо как у Хеопса, только чуть поменьше.

Ниже приведены расчеты для пирамиды, у которой все ребра равны 1. Если в вашей задаче это не так, выкладки не меняются — просто числа будут другими.

Вершины четырехугольной пирамиды

Итак, пусть дана правильная четырехугольная пирамида SABCD , где S — вершина, основание ABCD — квадрат. Все ребра равны 1. Требуется ввести систему координат и найти координаты всех точек. Имеем:

Вводим систему координат с началом в точке A :

  1. Ось OX направлена параллельно ребру AB ;
  2. Ось OY — параллельно AD . Поскольку ABCD — квадрат, AB ⊥ AD ;
  3. Наконец, ось OZ направим вверх, перпендикулярно плоскости ABCD .

Теперь считаем координаты. Дополнительное построение: SH — высота, проведенная к основанию. Для удобства вынесем основание пирамиды на отдельный рисунок. Поскольку точки A , B , C и D лежат в плоскости OXY , их координата z = 0. Имеем:

  1. A = (0; 0; 0) — совпадает с началом координат;
  2. B = (1; 0; 0) — шаг на 1 по оси OX от начала координат;
  3. C = (1; 1; 0) — шаг на 1 по оси OX и на 1 по оси OY ;
  4. D = (0; 1; 0) — шаг только по оси OY .
  5. H = (0,5; 0,5; 0) — центр квадрата, середина отрезка AC .

Осталось найти координаты точки S . Заметим, что координаты x и y точек S и H совпадают, поскольку они лежат на прямой, параллельной оси OZ . Осталось найти координату z для точки S .

Рассмотрим треугольники ASH и ABH :

  1. AS = AB = 1 по условию;
  2. Угол AHS = AHB = 90°, поскольку SH — высота, а AH ⊥ HB как диагонали квадрата;
  3. Сторона AH — общая.

Следовательно, прямоугольные треугольники ASH и ABH равны по одному катету и гипотенузе. Значит, SH = BH = 0,5 · BD . Но BD — диагональ квадрата со стороной 1. Поэтому имеем:

Итого координаты точки S :

В заключение, выпишем координаты всех вершин правильной прямоугольной пирамиды:


Что делать, когда ребра разные

А что, если боковые ребра пирамиды не равны ребрам основания? В этом случае рассмотрим треугольник AHS :


Треугольник AHS — прямоугольный , причем гипотенуза AS — это одновременно и боковое ребро исходной пирамиды SABCD . Катет AH легко считается: AH = 0,5 · AC . Оставшийся катет SH найдем по теореме Пифагора . Это и будет координата z для точки S .

Задача. Дана правильная четырехугольная пирамида SABCD , в основании которой лежит квадрат со стороной 1. Боковое ребро BS = 3. Найдите координаты точки S .

Координаты x и y этой точки мы уже знаем: x = y = 0,5. Это следует из двух фактов:

  1. Проекция точки S на плоскость OXY — это точка H ;
  2. Одновременно точка H — центр квадрата ABCD , все стороны которого равны 1.

Осталось найти координату точки S . Рассмотрим треугольник AHS . Он прямоугольный, причем гипотенуза AS = BS = 3, катет AH — половина диагонали. Для дальнейших вычислений нам потребуется его длина:

Теорема Пифагора для треугольника AHS : AH 2 + SH 2 = AS 2 . Имеем:

Итак, координаты точки S :

Здесь собраны основные сведения о пирамидах и связанных с ней формулах и понятиях. Все они изучаются с репетитором по математике при подготовке к ЕГЭ.

Рассмотрим плоскость , многоугольник , лежащий в ней и точку S, не лежащую в ней. Соединим S со всеми вершинами многоугольника. Полученный при этом многогранник называется пирамидой. Отрезки называются боковыми ребрами. Многоугольник называется основанием, а точка S — вершиной пирамиды. В зависимости от числа n пирамида называется треугольной (n=3), четырехугольной (n=4), птяиугольной (n=5) и так далее. Альтернативное название треугольной пирамиды – тетраэдр . Высотой пирамиды называется перпендикуляр, опущенный из ее вершины к плоскости основания.

Пирамида называется правильной, если правильный многоугольник, а основание высоты пирамиды (основание перпендикуляра) является его центром.

Комментарий репетитора :
Не путайте понятие «правильная пирамида» и «правильный тетраэдр». У правильной пирамиды боковые ребра совсем не обязательно равны ребрам основания, а в правильном тетраэдре все 6 ребер ребра равные. Это его определение. Легко доказать, что из равенства следует совпадение центра P многоугольника с основанием высоты, поэтому правильный тетраэдр является правильной пирамидой.

Что такое апофема?
Апофемой пирамиды называется высота ее боковой грани. Если пирамида правильная, то все ее апофемы равны. Обратное неверно.

Репетитор по математике о своей терминологии: работа с пирамидами на 80% строится через два вида треугольников:
1) Содержащий апофему SK и высоту SP
2) Содержащий боковое ребро SA и его проекцию PA

Чтобы упростить ссылки на эти треугольники репетитору по математике удобнее называть первый из них апофемным , а второй реберным . К сожалению, этой терминологии вы не встретите ни в одном из учебников, и преподавателю приходится вводить ее в одностороннем порядке.

Формула объема пирамиды :
1) , где – площадь основания пирамиды, а -высота пирамиды
2) , где – радиус вписанного шара, а – площадь полной поверхности пирамиды.
3) , где MN – расстояние любыми двумя скрещивающимися ребрами, а – площадь параллелограмма, образованного серединами четырех оставшихся ребер.

Свойство основания высоты пирамиды:

Точка P (смотри рисунок) совпадает с центром вписанной окружности в основание пирамиды, если выполняется одно из следующих условий:
1) Все апофемы равны
2) Все боковые грани одинаково наклонены к основанию
3) Все апофемы одинаково наклонены к высоте пирамиды
4) Высота пирамиды одинаково наклонена ко всем боковым граням

Комментарий репетитора по математике : обратите внимание, что все пункты объединяет одно общее свойство: так или иначе везде участвуют боковые грани (апофемы — это их элементы). Поэтому репетитор может предложить менее точную, но более удобную для заучивания формулировку: точка P совпадает с центром вписанной окружности основание пирамиды, если имеется любая равная информация о ее боковых гранях. Для доказательства достаточно показать, что все апофемные треугольники равны.

Точка P совпадает с центром описанной около основания пирамиды окружностью, если верно одно их трех условий:
1) Все боковые ребра равны
2) Все боковые ребра одинаково наклонены к основанию
3) Все боковые ребра одинаково наклонены к высоте

С понятием пирамида учащиеся сталкиваются еще задолго до изучения геометрии. Виной всему знаменитые великие египетские чудеса света. Поэтому, начиная изучение этого замечательного многогранника, большинство учеников уже наглядно представляют ее себе. Все вышеупомянутые достопримечательности имеют правильную форму. Что такое правильная пирамида , и какие свойства она имеет и пойдет речь дальше.

Вконтакте

Определение

Определений пирамиды можно встретить достаточно много. Начиная еще с древних времен, она пользовалась большой популярностью.

К примеру, Эвклид определял ее как телесную фигуру, состоящую из плоскостей, которые, начиная от одной, сходятся в определенной точке.

Герон представил более точную формулировку. Он настаивал на том, что это фигура, которая имеет основание и плоскости в виде треугольников, сходящиеся в одной точке.

Опираясь на современное толкование, пирамиду представляют, как пространственный многогранник, состоящий из определённого k-угольника и k плоских фигур треугольной формы, имеющую одну общую точку.

Разберемся более подробно, из каких элементов она состоит:

  • k-угольник считают основой фигуры;
  • фигуры 3-угольной формы выступают гранями боковой части;
  • верхняя часть, из которой берут начало боковые элементы, называют вершиной;
  • все отрезки, соединяющие вершину, называют рёбрами;
  • если из вершины на плоскость фигуры опустить прямую под углом в 90 градусов, то её часть, заключенная во внутреннем пространстве — высота пирамиды;
  • в любом боковом элементе к стороне нашего многогранника можно провести перпендикуляр, называемый апофемой.

Число рёбер вычисляется по формуле 2*k, где k – количество сторон k-угольника. Сколько граней у такого многогранника, как пирамида, можно определить посредством выражения k+1.

Важно! Пирамидой правильной формы называют стереометрическую фигуру, плоскость основы которой является k-угольник с равными сторонами.

Основные свойства

Правильная пирамида обладает множеством свойств, которые присущи только ей. Перечислим их:

  1. Основа – фигура правильной формы.
  2. Ребра пирамиды, ограничивающие боковые элементы, имеют равные числовые значения.
  3. Боковые элементы – равнобедренные треугольники.
  4. Основание высоты фигуры попадает в центр многоугольника, при этом он одновременно является центральной точкой вписанной и описанной .
  5. Все боковые рёбра наклонены к плоскости основы под одинаковым углом.
  6. Все боковые поверхности имеют одинаковый угол наклона по отношению к основе.

Благодаря всем перечисленным свойствам, выполнение вычислений элементов намного упрощается. Исходя из приведенных свойств, обращаем внимание на два признака:

  1. В том случае, когда многоугольник вписывается в окружность, боковые грани будут иметь с основой равные углы.
  2. При описании окружности около многоугольника, все рёбра пирамиды, исходящие из вершины, будут иметь равную длину и равные углы с основой.

В основе лежит квадрат

Правильная четырёхугольная пирамида – многогранник, у которого в основе лежит квадрат.

У неё четыре боковых грани, которые по своему виду являются равнобедренными.

На плоскости квадрат изображают , но основываются на всех свойствах правильного четырёхугольника.

К примеру, если необходимо связать сторону квадрата с его диагональю, то используют следующую формулу: диагональ равна произведению стороны квадрата на корень квадратный из двух.

В основе лежит правильный треугольник

Правильная треугольная пирамида – многогранник, в основании которого лежит правильный 3-угольник.

Если основание является правильным треугольником, а боковые рёбра равны ребрам основания, то такая фигура называется тетраэдром.

Все грани тетраэдра являются равносторонними 3-угольниками. В данном случае необходимо знать некоторые моменты и не тратить на них время при вычислениях:

  • угол наклона ребер к любому основанию равен 60 градусов;
  • величина всех внутренних граней также составляет 60 градусов;
  • любая грань может выступить основанием;
  • , проведённые внутри фигуры, это равные элементы.

Сечения многогранника

В любом многограннике различают несколько видов сечения плоскостью. Зачастую в школьном курсе геометрии работают с двумя:

  • осевое;
  • параллельное основе.

Осевое сечение получают при пересечении плоскостью многогранника, которая проходит через вершину, боковые рёбра и ось. В данном случае осью является высота, проведённая из вершины. Секущая плоскость ограничивается линиями пересечения со всеми гранями, в результате получаем треугольник.

Внимание! В правильной пирамиде осевым сечением является равнобедренный треугольник.

Если секущая плоскость проходит параллельно основанию, то в результате получаем второй вариант. В этом случае имеем в разрезе фигуру, подобную основе.

К примеру, если в основании лежит квадрат, то сечение параллельно основе также будет квадратом, только меньших размеров.

При решении задач при таком условии используют признаки и свойства подобия фигур, основанные на теореме Фалеса . В первую очередь необходимо определить коэффициент подобия.

Если плоскость проведена параллельно основе, и она отсекает верхнюю часть многогранника, то в нижней части получают правильную усеченную пирамиду. Тогда говорят, что основы усеченного многогранника являются подобными многоугольниками. В этом случае боковые грани являются равнобокими трапециями. Осевым сечением также является равнобокая .

Для того чтобы определить высоту усеченного многогранника, необходимо провести высоту в осевом сечении, то есть в трапеции.

Площади поверхностей

Основные геометрические задачи, которые приходится решать в школьном курсе геометрии, это нахождение площадей поверхности и объема у пирамиды.

Значение площади поверхности различают двух видов:

  • площади боковых элементов;
  • площади всей поверхности.

Из самого названия понятно, о чём идёт речь. Боковая поверхность включает в себя только боковые элементы. Из этого следует, что для ее нахождения необходимо просто сложить площади боковых плоскостей, то есть площади равнобедренных 3-угольников. Попробуем вывести формулу площади боковых элементов:

  1. Площадь равнобедренного 3-угольника равна Sтр=1/2(aL), где а – сторона основания, L – апофема.
  2. Количество боковых плоскостей зависит от вида k-го угольника в основании. К примеру, правильная четырехугольная пирамида имеет четыре боковые плоскости. Следовательно, необходимо сложить площади четырёх фигур Sбок=1/2(aL)+1/2(aL)+1/2(aL)+1/2(aL)=1/2*4а*L. Выражение упрощено таким способом потому, что значение 4а=Росн, где Росн – периметр основы. А выражение 1/2*Росн является её полупериметром.
  3. Итак, делаем вывод, что площадь боковых элементов правильной пирамиды равна произведению полупериметра основания на апофему: Sбок=Росн*L.

Площадь полной поверхности пирамиды состоит из суммы площадей боковых плоскостей и основания: Sп.п.= Sбок+Sосн.

Что касается площади основания, то здесь формула используется соответственно виду многоугольника.

Объем правильной пирамиды равен произведению площади плоскости основания на высоту, разделенную на три: V=1/3*Sосн*Н, где Н – высота многогранника.

Что такое правильная пирамиды в геометрии

Свойства правильной четырехугольной пирамиды

Пирамидой называется многогранник, одна из граней которого многоугольник (основание ), а все остальные грани – треугольники с общей вершиной (боковые грани ) (рис. 15). Пирамида называется правильной , если ее основанием является правильный многоугольник и вершина пирамиды проектируется в центр основания (рис. 16). Треугольная пирамида, у которой все ребра равны, называется тетраэдром .

Боковым ребром пирамиды называется сторона боковой грани, не принадлежащая основанию Высотой пирамиды называется расстояние от ее вершины до плоскости основания. Все боковые ребра правильной пирамиды равны между собой, все боковые грани – равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из вершины, называется апофемой . Диагональным сечением называется сечение пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Площадью боковой поверхности пирамиды называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех боковых граней и основания.

Теоремы

1. Если в пирамиде все боковые ребра равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности описанной около основания.

2. Если в пирамиде все боковые ребра имеют равные длины, то вершина пирамиды проектируется в центр окружности описанной около основания.

3. Если в пирамиде все грани равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности вписанной в основание.

Для вычисления объема произвольной пирамиды верна формула:

где V – объем;

S осн – площадь основания;

H – высота пирамиды.

Для правильной пирамиды верны формулы:

где p – периметр основания;

h а – апофема;

H – высота;

S полн

S бок

S осн – площадь основания;

V – объем правильной пирамиды.

Усеченной пирамидой называется часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды (рис. 17). Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды.

Основания усеченной пирамиды – подобные многоугольники. Боковые грани – трапеции. Высотой усеченной пирамиды называется расстояние между ее основаниями. Диагональю усеченной пирамиды называется отрезок, соединяющий ее вершины, не лежащие в одной грани. Диагональным сечением называется сечение усеченной пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Для усеченной пирамиды справедливы формулы:

(4)

где S 1 , S 2 – площади верхнего и нижнего оснований;

S полн – площадь полной поверхности;

S бок – площадь боковой поверхности;

H – высота;

V – объем усеченной пирамиды.

Для правильной усеченной пирамиды верна формула:

где p 1 , p 2 – периметры оснований;

h а – апофема правильной усеченной пирамиды.

Пример 1. В правильной треугольной пирамиде двугранный угол при основании равен 60º. Найти тангенс угла наклона бокового ребра к плоскости основания.

Решение. Сделаем рисунок (рис. 18).

Пирамида правильная, значит в основании равносторонний треугольник и все боковые грани равные равнобедренные треугольники. Двугранный угол при основании – это угол наклона боковой грани пирамиды к плоскости основания. Линейным углом будет угол a между двумя перпендикулярами: и т.е. Вершина пирамиды проектируется в центре треугольника (центр описанной окружности и вписанной окружности в треугольник АВС ). Угол наклона бокового ребра (например SB ) – это угол между самим ребром и его проекцией на плоскость основания. Для ребра SB этим углом будет угол SBD . Чтобы найти тангенс необходимо знать катеты SO и OB . Пусть длина отрезка BD равна 3а . Точкой О отрезок BD делится на части: и Из находим SO : Из находим:

Ответ:

Пример 2. Найти объем правильной усеченной четырехугольной пирамиды, если диагонали ее оснований равны см и см, а высота 4 см.

Решение. Для нахождения объема усеченной пирамиды воспользуемся формулой (4). Чтобы найти площади оснований необходимо найти стороны квадратов-оснований, зная их диагонали. Стороны оснований равны соответственно 2 см и 8 см. Значит площади оснований и Подставив все данные в формулу, вычислим объем усеченной пирамиды:

Ответ: 112 см 3 .

Пример 3. Найти площадь боковой грани правильной треугольной усеченной пирамиды, стороны оснований которой равны 10 см и 4 см, а высота пирамиды 2 см.

Решение. Сделаем рисунок (рис. 19).

Боковая грань данной пирамиды является равнобокая трапеция. Для вычисления площади трапеции необходимо знать основания и высоту. Основания даны по условию, остается неизвестной только высота. Ее найдем из где А 1 Е перпендикуляр из точки А 1 на плоскость нижнего основания, A 1 D – перпендикуляр из А 1 на АС . А 1 Е = 2 см, так как это высота пирамиды. Для нахождения DE сделаем дополнительно рисунок, на котором изобразим вид сверху (рис. 20). Точка О – проекция центров верхнего и нижнего оснований. так как (см. рис. 20) и С другой стороны ОК – радиус вписанной в окружности и ОМ – радиус вписанной в окружности:

MK = DE .

По теореме Пифагора из

Площадь боковой грани:

Ответ:

Пример 4. В основании пирамиды лежит равнобокая трапеция, основания которой а и b (a > b ). Каждая боковая грань образует с плоскостью основания пирамиды угол равный j . Найти площадь полной поверхности пирамиды.

Решение. Сделаем рисунок (рис. 21). Площадь полной поверхности пирамиды SABCD равна сумме площадей и площади трапеции ABCD .

Воспользуемся утверждением, что если все грани пирамиды равнонаклонены к плоскости основания, то вершина проектируется в центр вписанной в основание окружности. Точка О – проекция вершины S на основание пирамиды. Треугольник SOD является ортогональной проекцией треугольника CSD на плоскость основания. По теореме о площади ортогональной проекции плоской фигуры получим:

Аналогично и значит Таким образом задача свелась к нахождению площади трапеции АВСD . Изобразим трапецию ABCD отдельно (рис.22). Точка О – центр вписанной в трапецию окружности.

Так как в трапецию можно вписать окружность, то или Из по теореме Пифагора имеем

Правильная пирамида

Правильная пирамида — частный случай пирамиды.

Определение 1. Пирамида называется правильной, если её  основанием является правильный многоугольник, при этом вершина такой пирамиды проецируется в центр ее основания.  

Определение 2. Пирамида называется правильной, если ее основание – правильный многоугольник, а высота проходит через центр основания.

Элементы правильной пирамиды

  • Высота боковой грани, проведенная из ее вершины называется апофема. На рисунке обозначена как отрезок ON
  • Точка, соединяющая боковые рёбра и не лежащая в плоскости основания, называется вершиной пирамиды (О)
  • Треугольники, имеющие общую сторону с основанием и одну из вершин, совпадающую с вершиной, называются боковыми гранями (AOD, DOC, COB, AOB)  
  • Отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания называется высотой пирамиды (ОК)
  • Диагональное сечение пирамиды — это сечение, проходящее через вершину и диагональ основания (AOC, BOD)
  • Многоугольник, которому не принадлежит вершина пирамиды, называется основанием пирамиды (ABCD)

Если в основании правильной пирамиды лежит треугольник, четырехугольник и т. д. то она называется правильной треугольной, четырехугольной и т.д.

Треугольная пирамида есть четырехгранник — тетраэдр.

Свойства правильной пирамиды

Для решения задач необходимо знать свойства отдельных элементов, которые в условии обычно опускаются, так как считается, что ученик должен это знать изначально.

  • боковые ребра равны между собой
  • апофемы равны
  • боковые грани равны между собой (при этом, соответственно, равны их площади, боковые стороны и основания), то есть они являются равными треугольниками
  • все боковые грани являются равными равнобедренными треугольниками
  • в любую правильную пирамиду можно как вписать, так и описать около неё сферу
  • если центры вписанной и описанной сферы совпадают, то сумма плоских углов при вершине пирамиды равна π, а каждый из них соответственно π/n, где n — количество сторон многоугольника основания
  • площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
  • около основания правильной пирамиды можно описать окружность (см. также радиус описанной окружности треугольника)
  • все боковые грани образуют с плоскостью основания правильной пирамиды равные углы
  • все высоты боковых граней равны между собой

Указания к решению задач. Свойства, перечисленные выше, должны помочь в практическом решении. Если требуется найти углы наклона граней, их поверхность и т. д., то общая методика сводится к разбиению всей объемной фигуры на отдельные плоские фигуры и применение их свойств для нахождения отдельных элементов пирамиды, поскольку многие элементы являются общими для нескольких фигур.

Необходимо разбить всю объемную фигуру на отдельные элементы — треугольники, квадраты, отрезки. Далее, к отдельным элементам применить знания из курса планиметрии, что существенно упрощает нахождение ответа.

Формулы для правильной пирамиды

Формулы для нахождения объема и площади боковой поверхности:

Обозначения:
V — объем пирамиды
S — площадь основания
h — высота пирамиды
Sb — площадь боковой поверхности 
a — апофема (не путать с α)
P — периметр основания
n — число сторон основания
b — длина бокового ребра
α — плоский угол при вершине пирамиды

Данная формула нахождения объема может применяться только для правильной пирамиды:

, где

V — объем правильной пирамиды
h — высота правильной пирамиды
n — число сторон правильного многоугольника, который является основанием для правильной пирамиды
a — длина стороны правильного многоугольника

Правильная усеченная пирамида

Если провести сечение, параллельное основанию пирамиды, то тело, заключённое между этими плоскостями и боковой поверхностью, называется усеченной пирамидой. Это сечение для усеченной пирамиды является одним из её оснований. 

Высота боковой грани (которая является равнобокой трапецией), называется — апофема правильной усеченной пирамиды.

Усечённая пирамида называется правильной, если пирамида, из которой она была получена – правильная.

  •  Расстояние между основаниями усеченной пирамиды называется высотой усеченной пирамиды
  • Все грани правильной усеченной пирамиды являются равнобокими (равнобедренными) трапециями 

Примечания

См. также: частные случаи (формулы) для правильной пирамиды:

Как воспользоваться приведенными здесь теоретическими материалами для решения своей задачи:

  1. Ознакомьтесь со справочными материалами
  2. Выясните, по условию задачи, о какой именно правильной пирамиде идет речь
  3. После этого в дереве знаний справа, найдите подходящий урок с данной фигурой (см. решение задач про правильную пирамиду с треугольником в основании, с четырехугольником в основании). Если нужного решения не нашлось, попробуйте ознакомиться с содержанием соседних уроков, возможно, решение подобной задачи есть именно там
  4. Если Вы просмотрели весь раздел, но аналогичной задачи не нашлось, напишите о своей проблеме на форуме «раздел для школьников» в соответствующей теме. Обязательно ознакомьтесь предварительно с правилами форума.

Содержание главы:
 Пирамида и вписанный конус | Описание курса | Апофема правильной пирамиды 

   

Как решить усеченную призму? – Theburningofrome.com

Как решить усеченную призму?

Общая площадь поверхности усеченной призмы равна сумме площадей двух многоугольных оснований и правых трапециевидных граней. В общем случае объем усеченной призмы равен произведению площади ее прямого сечения и среднего значения длин ее боковых ребер.

Как найти объем усеченной призмы?

Формула объема усеченной квадратной пирамиды высотой h, с верхним краем a см и нижним ребром b см: V = 1/3*(a2 + ab + b2)*h.

Что такое усеченная призма?

Усеченную призму можно получить, разрезав призму плоскостью, параллельной основанию, или плоскостью, не параллельной основанию. Однако в результате получаются две призмы, когда плоскость параллельна основанию. Боковые грани усеченной призмы — трапеции.

Как найти площадь поверхности усеченной пирамиды?

Чтобы получить площадь усеченной пирамиды, мы должны добавить к общей площади исходной пирамиды площадь основания малой пирамиды и вычесть площадь треугольных сторон малой пирамиды.

Что такое усеченный треугольник?

Усеченный кубический сотовый заполнитель. т{4,3,4} или. В геометрии усечение — это операция в любом измерении, которая разрезает вершины многогранника, создавая новую грань вместо каждой вершины. Термин происходит от названий Кеплера для архимедовых тел.

Каков объем трапециевидной призмы?

Объем трапециевидной призмы равен произведению площади основания на высоту призмы в кубических единицах. Формула объема трапециевидной призмы – это площадь основания × высота призмы.

Как называется усеченный конус?

В геометрии усеченный конус (множественное число: frusta или frustums) — это часть твердого тела (обычно конуса или пирамиды), которая лежит между одной или двумя пересекающими его параллельными плоскостями. В аэрокосмической промышленности усеченный конус представляет собой обтекатель между двумя ступенями многоступенчатой ​​ракеты (например, Saturn V), имеющий форму усеченного конуса.

Какова площадь поверхности этой треугольной пирамиды?

Таким образом, площадь поверхности треугольной пирамиды равна 1/2(a × b) + 3/2(b × s) в квадрате.

Что подразумевается под усеченной пирамидой?

Существительное. 1. усеченная пирамида – усеченная пирамида. усеченный конус или пирамида; часть, которая остается, когда конус или пирамиду разрезают плоскостью, параллельной основанию, и удаляют вершинную часть.

Как рассчитать объем усеченной призмы?

Объем усеченной призмы находится по приведенной ниже формуле. K — это B, умноженное на значение sinθ, L — средняя длина его боковых ребер, а n — количество сторон основания.Усеченная прямоугольная призма имеет основание равностороннего треугольника с одной стороной, равной 3 сантиметрам.

В чем проблема с усеченными призмами и призматоидами?

• ЗАДАЧА 3: • В ходе одной строительной операции необходимо было удалить часть холма, форма которого примерно соответствовала форме, показанной на эскизе. Нижнее основание — прямоугольник, верхнее — прямоугольный треугольник. АВ параллелен DE; АС параллелен DG.

Какова высота усеченной справа треугольной призмы?

Стороны A, B и C перпендикулярны основанию треугольника и имеют высоту 8.6 футов, 7,1 фута и 5,5 фута соответственно. Объем прямоугольной усеченной треугольной призмы равен 311 куб. футов. Если воспроизведение не начнется в ближайшее время, попробуйте перезагрузить устройство. В настоящее время ваш браузер не распознает ни один из доступных форматов видео.

Как уменьшить объем призм онлайн?

Шаг 1: Найдите площадь основания. Шаг 2: Умножьте площадь основания на высоту. Если воспроизведение не начнется в ближайшее время, попробуйте перезагрузить устройство. Видео, которое вы смотрите, может быть добавлено в историю просмотра телевизора и влиять на рекомендации телевизора.Чтобы избежать этого, отмените подписку и войдите в YouTube на своем компьютере.

математических визуализаций | Плоские развертки геометрических тел (5): Пирамида и усеченная пирамида

Пирамида — это многогранник с многоугольной гранью (известной как основание), а остальные грани — треугольниками, встречающимися в одной точке (вершине пирамиды). пирамида). Эти грани (боковые грани) являются треугольниками.

Один частный случай, когда основание вписано в окружность.В первом матлете мы можем играть с пирамидами, в основе которых лежит правильный многоугольник. Если вершина выше центра этой окружности, то можно сказать, что пирамида правильная. Правильная пирамида — это правильная пирамида, основание которой — правильный многоугольник.

Основной интерес на этой странице состоит в том, чтобы увидеть, как пирамиду можно превратить в плоскость.

Развертка плоскости или развертка пятиугольной пирамиды:

Другой пример, сетка шестиугольной пирамиды:

Чтобы вычислить площадь боковой поверхности пирамиды, нам нужна высота наклона.Наклонная высота пирамиды, если расстояние от вершины до центр стороны основания. Это высота боковой грани. Существует связь между наклонной высотой и высотой пирамиды. (Теорема Пифагора).

Мы собираемся вычислить площадь боковой поверхности пирамиды. Если P — периметр основания, формула для бокового Площадь поверхности пирамиды (боковые грани — треугольники) аналогична формуле площади треугольника:

Когда мы изучаем площадь боковой поверхности конуса, формула будет аналогична (как Кеплер и площадь круга.)

Наиболее правильной пирамидой является тетраэдр. Это платоново тело, состоящее из четырех равносторонних треугольников. Тогда тетраэдр есть частный случай треугольной пирамиды.

А это плоская сетка тетраэдра:

Когда мы разрезаем пирамиду плоскостью, параллельной основанию, мы получаем пирамидальную усеченную (или усеченную пирамиду).

Например, это шестиугольный усеченный конус:

А это его плоская сеть:

Другой пример:

Как и прежде, нам нужна наклонная высота для вычисления площади боковой поверхности усеченного конуса:

Если P — периметр нижнего основания, а p — периметр верхнего основания, то формула для площади боковой поверхности аналогична формуле для площади трапеция (боковые грани — конгруэнтные трапеции):

В приведенных выше примерах основаниями были правильные многоугольники. Но мы можем рассматривать пирамиды, основания которых не являются правильными многоугольниками. В следующем матлете основания — неправильные многоугольники (хотя они вписаны в окружность и являются выпуклыми многоугольниками). Каждый раз, когда мы меняем количество стороны основания генерируется новая призма со случайно нарисованными сторонами:

БОЛЬШЕ ССЫЛОК

Плоские развертки конусов и усеченного конуса. Как рассчитать площадь боковой поверхности.

Плоские развертки конусов, срезанных косой плоскостью.Сечение представляет собой эллипс.

Мы изучаем разные цилиндры и видим, как они превращаются в плоскость. Затем мы объясним, как рассчитать площадь боковой поверхности.

Плоские сетки призм с правильным основанием с разным числом сторон, разрезанные косой плоскостью.

Мы изучаем различные призмы и видим, как они превращаются в плоскую сеть. Затем мы объясним, как рассчитать площадь боковой поверхности.

Первый рисунок плоской сетки правильного додекаэдра был опубликован Дрером в его книге «Underweysung der Messung» («Четыре книги измерений»), изданной в 1525 году.

Первый рисунок плоской сетки правильного октаэдра был опубликован Дрером в его книге «Underweysung der Messung» («Четыре книги измерений»), изданной в 1525 году.

Первый рисунок плоской сетки правильного тетраэдра был опубликован Дрером в его книге «Underweysung der Messung» («Четыре книги измерений»), изданной в 1525 году.

Объем тетраэдра равен одной трети содержащей его призмы.

Первый рисунок плоской сетки правильного тетраэдра был опубликован Дрером в его книге «Underweysung der Messung» («Четыре книги измерений»), изданной в 1525 году.

Объем октаэдра в четыре раза больше объема тетраэдра. Это легко вычислить, и тогда мы сможем получить объем тетраэдра.

Двенадцать вершин икосаэдра лежат в трех золотых прямоугольниках. Тогда мы можем вычислить объем икосаэдра

Некоторые свойства этого платонового тела и его связь с золотым сечением. Построение додекаэдров различными способами.

Вы можете скосить куб, и тогда вы получите многогранник, похожий (но не равный) усеченному октаэдру.Вы также можете получить ромбический додекаэдр.

Очень простая техника построения сложных и красочных многогранников.

Теоретическое исследование запасания водорода в молекуле усеченной треугольной пирамиды, состоящей из пиридинового и бензольного колец, соединенных мостиковыми виниленовыми группами

СтатьиЖурналыИсследователи

в

Все SubjectsAccountingAcousticsAerospace и AeronauticsAgronomy и AgricultureAlgebra и номер TheoryAllergyAnalysisAnalytical ChemistryAnatomy и MorphologyAnesthesiologyAnthropologyApplied MathematicsArchaeologyArchitectureArthritis и RheumatologyArtificial разведки и изображения ProcessingAstronomy и AstrophysicsAutomobile Дизайн и EngineeringBehavioral Наука и сравнительный PsychologyBiochemistry и молекулярная BiologyBiomedical EngineeringBiophysicsBiotechnologyBuilding и ConstructionBusiness и ManagementCardiovascular системы и HematologyChemical EngineeringCivil EngineeringClassicsClinical PsychologyCommunication и СМИ StudiesComplementary и альтернативная теория MedicineComputation и МатематикаКомпьютерное оборудование и архитектураИнформатикаФизика конденсированных средКонтроль и оптимизацияКультурологияМолочные продукты и зоотехникаДемографияСтоматологияДерматология и венерические болезниИсследования развитияПсихология развития и детская психологияДиология screte Математика и CombinatoricsEcologyEconometricsEconomicsEducationElectrical и электронное EngineeringEmergency и Critical Care MedicineEndocrinology и MetabolismEnergyEntomologyEnvironmental и профессионального HealthEnvironmental EngineeringEnvironmental SciencesEpidemiologyEvolutionary BiologyExperimental PsychologyFinanceFisheries и водные ScienceFood ScienceForestryGastroenterology и HepatologyGender StudiesGeneral и внутреннее MedicineGeneral Искусство, Гуманитарные и Общественные SciencesGeneral ChemistryGeneral Клинической MedicineGeneral MathematicsGeneral PhysicsGeneral Психология и Когнитивный SciencesGeneral Наука и TechnologyGenetics и HeredityGeochemistry и геофизикаГеографияГеология и инженерная геологияГеологияГеометрия и топологияГериатрияГеронтологияПолитика и услуги в области здравоохраненияИсторияИстория науки, техники и медициныИстория социальных наукСадоводствоЧеловеческий факторИммунологияПромышленная инженерия и автоматизацияПромышленные отношенияИнформация и d Библиотека SciencesInformation SystemsInorganic и атомное ChemistryInstrumentationInternational RelationsLanguages ​​и LinguisticsLawLegal и судебная MedicineLiterary StudiesLogicLogistics и TransportationMarketingMaterialsMathematical PhysicsMechanical Инжиниринг и TransportsMedical InformaticsMeteorology и атмосферные SciencesMicrobiologyMining и MetallurgyModeling и SimulationMuseologyMycology и ParasitologyNanoscience и NanotechnologyNetworking и TelecommunicationsNeurology и NeurosurgeryNuclear и частица PhysicsNuclear медицина и медицинская ImagingNumerical и компьютерное MathematicsNursingNutrition и DieteticsObstetrics и репродуктивная МедицинаОкеанографияОнкология и канцерогенезОперационные исследованияОфтальмология и оптометрияОптикаОптоэлектроника и фотоникаОрганическая химияОртопедияОториноларингологияПалеонтологияПатология и судебная медицинаПедиатрияФармакология и фармацияФилософияФизическая химияФизиологияБиология растений и ботаникаПолитика mersPsychiatryPublic AdministrationRadiationRehabilitationReligions и TheologyRespiratory SystemSafety Исследование и CriminologyScience StudiesSocial PsychologySocial WorkSociology и политический ScienceSoftware EngineeringSoil ScienceSpectroscopySpeech-Language Патология и AudiologySport SciencesSport, досуг и TourismStatistical и нелинейное PhysicsStatistics и ProbabilityStratigraphySurfaces и InterfacesSurgeryToxicologyUrban и региональные PlanningUrology и NephrologyVeterinary SciencesVirologyZoology

Поиск

Как построить усеченную пирамиду

Производство строительных конструкций и металлических деталей требует умения построить модель пирамиды. В основании любой пирамиды часто находится треугольник или квадрат, а боковые грани — треугольники. Пирамида называется многогранником. У усеченной пирамиды гранями являются трапеции. Так же, как и обычная пирамида, усеченная бывает треугольной или четырехугольной.

Как построить усеченную пирамиду

Необходимо

  • — карандаш;
  • — линейка;
  • — транспортир;
  • — клей;
  • — бумага;
  • — проволока;
  • — паяльник;
  • — плоскогубцы.

Инструкции

Шаг 1

Вы можете построить модель усеченной пирамиды из готового чертежа полной пирамиды, у которой вы хотите отрезать вершину. Сначала нужно построить на бумаге развертку полной пирамиды. Начните с основания – в зависимости от желаемого варианта это будет квадрат или равносторонний треугольник по заданным размерам. Если вам нужно построить пирамиду с большим количеством граней, то нужно предварительно рассчитать углы и стороны основания. Лучше всего это делать по кругу с помощью циркуля.

Шаг 2

Теперь позаботьтесь о высоте боковых граней. Высота правильных пирамид одинакова и падает от вершины к середине ребра между данной гранью и основанием. Нужно найти все середины ребер и провести через них перпендикуляры к основанию. Измерьте нужную высоту от точек пересечения и укажите это место точкой. Соедините углы основания с этой точкой.Неправильная пирамида требует расчета высоты каждой грани отдельно.

Этап 3

Теперь отрежьте ненужную нам вершину пирамиды. На высоте одной грани определите точку, через которую будет проходить секущая плоскость. Через точку проведите прямую линию, параллельную стороне основания. Проделайте ту же операцию с оставшимися гранями. Ненужную верхнюю часть лица можно удалить ластиком.

Шаг 4

Переходим к верхней базе. Она проходит через все ребра по тем точкам, которые мы отложили для среза вершины пирамиды.Соедините точки и получите многогранник, повторяющий основание в уменьшенном варианте. Итак, ваше распределение готово.

Шаг 5

Чтобы собрать из выкройки усеченную пирамиду, нужно добавить припуски на склейку. У боковых граней делаем припуски на низ и верх грани. Верхнюю основу можно приклеить и по-другому – через припуски с каждой стороны. Выберите вариант, который вам больше нравится.

Шаг 6

Осталось только вырезать усеченную пирамиду, согнуть ее по линиям и склеить.Если вы строите проволочную модель усеченной пирамиды, выкройку делать не нужно. Отмерьте кусок проволоки длиной по периметру основания, согните его по нужному варианту и закрепите концы проволоки пайкой. Повторите процесс для верхней базы. Также припаяйте кусочки проволоки для боковых ребер и выровняйте так, чтобы модель получилась правильной. Кстати, проволока для пирамидки должна хорошо держать форму.

усеченная шестиугольная пирамида

Нарисуйте следующее: заданную высоту; план в разрезе; … — найдите точки поверхности разреза и точки соединения, чтобы получить развертку усеченной пирамиды. Его можно рассматривать как «крышку» икосаэдра; остальная часть икосаэдра образует гироудлиненную пятиугольную пирамиду, J 11. Студенты могут легко решать задачи на площадь и объем пирамид здесь, в BYJU’S. Изометрические линейные формы, кубический конус, цилиндрическая пирамида, низкополигональные объекты. маленькая-h = (высота усеченной пирамиды * длина стороны вершины) / (длина стороны основания — длина стороны вершины) И большая-h = маленькая-h + высота усеченной пирамиды.Вектор минимальный изометрический. Итак, теперь у нас есть высоты обеих пирамид. В геометрии усеченный конус (множественное число: frusta или frustums) — это часть твердого тела (обычно конуса или пирамиды), которая находится между одной или двумя пересекающими его параллельными плоскостями. Куб, усеченный октаэдром и ромбододекаэдром [math]m\bar3m[/math] * Частным случаем двугранного скаленоэдра, где двугранные углы равны 60º, является шестиугольный скаленоэдр. Бумажные усеченные пирамиды одинаковой высоты. В нем используются 6 камней: рубин, янтарь, цитрин, изумруд, лазурит и аметист. Просматривайте снимки экрана, читайте последние отзывы клиентов и сравнивайте оценки для Math Studio. шестиугольные усеченные пирамидальные структуры Jong-Hoi Cho a, , Seung-Hyuk Lim a,d, , Min-Ho Jang a , Chulwon Lee a , Hwan-Seop Yeo a , Young Chul Sim a , Je-Hyung Kim a , Samuel Matta b , Blandine Alloing b , Mathieu Leroux b , Seoung-Hwan Park c , Откройте для себя (и сохраните!) Объем клина. Обычный калькулятор усеченной пирамиды. Если вы проткнете криволинейную поверхность цилиндра и, пока краска влажная, поместите цилиндр на плоскую поверхность, а затем прокатите его один раз, рисунок, оставшийся на плоской поверхности, будет развитием изогнутой поверхности цилиндра. .Шестиугольная призма Цилиндр Восьмиугольная призма Октаэдр Тор Эллипсоид Тетраэдр Шестиугольная пирамида Кубоид Пятиугольная пирамида Треугольная призма Куб Сфера Конус Квадратная пирамида Полусфера Усеченный конус Усеченный квадрат Пирамида . Итак, что такое […] Этот тип развертки часто называют радиальной разверткой, потому что многие линии в развертке идут радиально от точки, что требует использования дуг компаса. Построить данное развитие. Сторона правильной шестиугольной пирамиды с основанием 20 мм и высотой 60 мм опирается вертикально своим основанием на HP, так что две стороны основания перпендикулярны VP.V = 1/3 x 3∙3/2 a 2 x H. V = ∅3/2 a 2 H. Где a — длина стороны основания шестиугольника, а H — высота пирамиды. Объем усеченного конуса. Общая точка, где сходятся все треугольные грани, называется вершиной. Шестиугольная усеченная пирамидальная структура GaN включает полуполярные грани {10 1}, а также полярную грань (0001), которые имеют принципиально разные пьезоэлектрические поля и скорости роста квантовых точек GaN. Наши продукты >> Усеченная шестиугольная пирамидальная сетка Оргонит Изготовлен из изготовленной на заказ формы с 90 усеченными шестиугольными пирамидами в сетке, так что есть 15 пирамид каждого из 6 камней.Формула треугольной пирамиды. Правильный шестиугольник также может быть создан как усеченный равносторонний треугольник с символом Шлефли t{3}. Высота пирамиды находится точно в центре шестиугольного основания. Ваши отзывы и комментарии могут быть опубликованы как голос клиента. Расчеты при правильной правильной усеченной пирамиде. Высота правильной шестиугольной призмы. Загрузите это приложение из Microsoft Store для Windows 10 Mobile, Windows Phone 8.1. Правильный шестиугольник является частью правильной шестиугольной мозаики {6,3} с тремя шестиугольными гранями вокруг каждой вершины.Пирамида может быть любым многоугольником в качестве основания, поэтому структура основания здесь не фиксирована. Итак, это квадратная пирамида, а другой популярной формой пирамиды является треугольная пирамида. Введите длины обеих сторон… Скачать : Скачать полноразмерное изображение Нарисуйте вид спереди, вид с торца и план усеченной пирамиды с заданными размерами. Первое, что приходит на ум при слове «пирамида», — это Великая пирамида Египта. Подобно кубу, он может создавать мозаику (или «упаковывать») трехмерное пространство, поскольку… синие светодиоды (LED) на основе GaN с микроусеченной гексагональной пирамидой (THP) были выращены на кремнии с селективной площадью -имплантированные шаблоны GaN (SIG). Демонстрация разворачивания усеченной шестиугольной пирамиды, чтобы показать ее развитие (нетто)Упражнения скоро на www.graphicalcommunication.com Значок усеченной шестиугольной пирамиды на темном фоне Значок усеченной пятиугольной пирамиды. ДЛЯ ЧЕРТЕЖА ЗАДАННОЙ ВЫСОТЫ. Истинные длины некоторых сторон необходимы для построения требуемой развертки, как показано ниже. Объем усеченной квадратной пирамиды Калькулятор, \(\normalsize Усеченная\ квадратная\ пирамида\\. Эта усеченная пирамида имеет 6 граней: основание, вершину и 4 боковые грани.При рассмотрении двух типов (цветов) ребер эта форма имеет только симметрию D3. Секущая плоскость делит ось пирамиды пополам. Объем усеченной квадратной пирамиды. Объем обелиска. Мы сообщаем о росте нанокристаллов феррита галлия (GaFeO 3 или GFO) с уникальной морфологией «усеченная гексагональная бипирамида» (THBP) и с новой орторомбической симметрией P2 1 2 1 2 1 в гидротермальных условиях в чистых воды без использования каких-либо восстанавливающих или формообразующих реагентов. А. Усеченная пирамида или усеченная пирамида – это пирамида, вершина которой срезана плоскостью, параллельной основанию.Объем квадратной пирамиды через основание и высоту. Это вопрос по усеченной шестиугольной косой пирамиде. Объем шестиугольной пирамиды, основание которой представляет собой правильный шестиугольник, определяется по формуле: Объем = 1/3 х площадь основания х высота. 463. Прямое усечение — это параллельное усечение правильной пирамиды или прямого конуса. 12 августа 2018 г. — этот пин был обнаружен пользователем Falodun Kehinde. Правильная шестиугольная пирамида разрезана плоскостью X – X, как показано на рисунке. Правильная пятиугольная пирамида имеет основание, являющееся правильным пятиугольником, и боковые грани, являющиеся равносторонними треугольниками.Это одно из тел Джонсона (J 2).. Завершение отправки, Объем квадратной пирамиды с учетом стороны основания и высоты, Объем квадратной пирамиды с учетом основания и боковых сторон, Объем усеченного круглого конуса, а не усеченного конуса. Развитие усеченной шестиугольной пирамиды. Решенные задачи — 5: Правильная шестиугольная пирамида со стороной основания 30 мм и высотой 60 мм покоится вертикально своим основанием на HP так, что две стороны основания перпендикулярны VP. Ваза Оригами Оригами Бумага Diy Бумага Бумажные Ремесла 3d Шаблоны Бумажная Коробка Шаблон Бумажная Ваза Бетонные Ремесла Киригами.Микроволновой метод был использован для синтеза карбида вольфрама в форме усеченной гексагональной пирамиды (THP) (WC THP /G), и материалы WC THP /G, содержащие Pt, демонстрируют высокую активность и чрезвычайно высокую стабильность в реакции восстановления кислорода. Это правильная пирамида с усеченной вершиной параллельно основанию. Количество сторон пирамиды будет равно общему количеству сторон или треугольных граней пирамиды. Сохранено черно-белой прессой. Расстояние между нижним и верхним основаниями равно высоте усеченной пирамиды h.На этой странице вычисляется объем любой усеченной пирамиды, основанием и вершиной которой являются прямоугольники со сторонами a, b и c, d соответственно. Также прочитайте: ваши собственные пины на Pinterest Z [ \ v w x z { | } ~ › œ éÙÎôã´Ã´Ù˜ÙÎ ÎxÙÎôÃg´Ã´Ù˜ÙÎ Î j“’ hO[Š UmH nH u , j’ hO[Š >*B*UmH nH ph ÿ u hO[Š mH nH uhO[Š mH nH sH u j™&. Объем пирамиды. Некоторые функции теперь ограничены, потому что настройка JAVASCRIPT браузера ВЫКЛЮЧЕНА. Мы будем использовать их в наших формулах объема.Возьмем пример, где основание треугольное. Правильная усеченная пирамида – это усеченная пирамида, образованная из правильной пирамиды. Усеченные пирамиды от 3 до 12 сторон. Бумажная сетка усеченной пирамиды представляет собой плоскую геометрическую фигуру, полностью повторяющую поверхность тела и позволяющую при сгибании и склеивании создавать геометрическое тело. Шестиугольная мозаика может быть искажена, как центросимметричные шестиугольники. Тригексагональная мозаика Объем правильной шестиугольной призмы. Верхняя часть была удалена, а оставшаяся часть известна как усеченная часть пирамиды.Усеченная шестиугольная пирамида В основании пирамиды правильный шестиугольник (все стороны равны, углы между сторонами 120 градусов). Объем квадратной пирамиды через основание и боковые стороны. Объем правого цилиндра. объем большой пирамиды = … Шестиугольная пирамида со сторонами 35 мм и высотой 65 мм опирается на НР на своем основании так, что две стороны ее основания перпендикулярны ВП. Значок усеченной пятиугольной пирамиды на темном фоне 3D геометрических фигур. В компьютерной графике усеченная видимая область — это трехмерная область, видимая на экране.От кандидатов ожидалось следующее: УСЕЧЕННАЯ ШЕСТИУГОЛЬНАЯ ПИРАМИДА. Иллюстрация правильной шестиугольной пирамиды, разрезанной плоскостью, параллельной основанию. Спасибо за вашу анкету. В геометрии усеченный октаэдр представляет собой архимедово тело. Он имеет 14 граней (8 правильных шестиугольников и 6 квадратных), 36 ребер и 24 вершины. Поскольку каждая из его граней имеет точечную симметрию, усеченный октаэдр является зоноэдром. Многогранник Гольдберга G IV (1,1), содержащий квадратные и шестиугольные грани.[1]  10/07/2020 20:40   Мужчина / Уровень 30 лет / Инженер / Очень /, [2]  11/02/2020 05:52   Мужчина / До 20 лет / Начальная школа/ Ученик младших классов средней школы / Очень /, [3]  2020/01/16 05:00   Мужчина / 20 лет уровень / Инженер / Очень /, [4]  2020/01/04 23:24   Мужчина / 30 лет уровень / Инженер / Очень /, [5]  21. 10.2019 21:53   Мужчина / 30 лет уровень / Инженер / Очень /, [6]  2019/07/02 22:44   Мужчина / 50 лет уровень / Инженер / Очень /, [7]  2019/06/25 01:17   Мужчина / 30 лет уровень / Инженер / Очень /, [8]  2019/06/25 17:54   Женщина / 20 лет уровень / Инженер / Очень/, [9 ]  22/05/2019 17:11   Мужчина / До 20 лет / Старшая школа/ Университет/ Аспирант / Немного /, [10]  2019/05/17 17:38   Мужчина / Уровень 20 лет / Офисный работник /Государственный служащий/Полезный/.Третью мозаику плоскости можно сформировать тремя цветными шестиугольниками вокруг каждой вершины. Формула пирамиды, такая как площадь поверхности, площадь основания и объем треугольных, пятиугольных и шестиугольных пирамид. Если посмотреть на изображение исторической Пирамиды, то ее основание на самом деле представляет собой квадрат. ¸ éÙÎôã´Ã´Ù˜ÙÎ ÎxÙÎôÃg´Ã´Ù˜ÙÎ Î jŸ% hO[Š UmH nH u , j»% hO[Š >*B*UmH nH ph ÿ u hO[Š mH nH uhO[Š mH nH sH u j¥$ hO[Š UmH nH uj hO[Š UmH nH u hO[Š mH nH u hO[Š 0J mH nH uj hO[Š 0J UmH nH u , j($ hO[Š >*B*UmH nH ph ÿ u ¸ ¹ º Ý Þ ß ù ú û ý þ ÿ ! Эпитаксиальный слой GaN, выращенный на темплатах SIG, демонстрировал селективный рост и последующий латеральный рост с образованием THP множество. Вторая шестиугольная мозаика плоскости может быть сформирована как усеченная треугольная мозаика или ромбическая мозаика с одним из трех шестиугольников, окрашенных по-разному. Получите развертку боковой поверхности усеченной пирамиды… Объем шестиугольной пирамиды. Рисунок 3. … Следовательно, мы успешно продемонстрировали платообразный широкополосный УФ-спектр в диапазоне от –400 нм (УФ-А) до –270 нм (УФ-С) от квантовых точек GaN. Скачать развертку усеченной шестиугольной пирамиды для печати на листе формата А4.Решение требует, чтобы кандидат сначала скопировал данный вид и нашел вершину на плане.

20-мм патрон против 50 калибра, Downy Commercial Song Camp Hiawatha, Jordan 1 Dark Mocha Foot Locker, Факты о реке Нил для детей, Коробки для попкорна Target, Лорд Печально известные похороны, Оригинальные танцевальные шаги Иерусалима,

Успех! Теперь проверьте свою электронную почту, чтобы подтвердить подписку.

Вы успешно подписались!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *