Трапеция — это… Что такое Трапеция?
Трапе́ция (от др.-греч. τραπέζιον — «столик»; τράπεζα — «стол, еда») — четырёхугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна). Две параллельные стороны называются основанием трапеции, а две другие — это боковые стороны. Иногда трапеция определяется как четырёхугольник, у которого пара противолежащих сторон параллельна (про другую не уточняется), в этом случае параллелограмм является частным случаем трапеции. В частности, существует понятие криволинейная трапеция.
Связанные определения
Элементы трапеции
- Параллельные стороны называются основаниями трапеции.
- Две другие стороны называются боковыми сторонами.
- Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
- Расстояние между основаниями называется высотой трапеции.
Виды трапеций
Прямоугольная трапеция Равнобедренная трапеция- Трапеция, у которой боковые стороны равны, называется равнобокой или равнобедренной.
- Трапеция, имеющая прямые углы при боковой стороне, называется прямоугольной.
Общие свойства
- Средняя линия трапеции параллельна основаниям и равна их полусумме.
- Отрезок, соединяющий середины диагоналей, равен полуразности оснований.
- (Обобщённая теорема Фалеса). Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.
- В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
Свойства и признаки равнобедренной трапеции
- Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции.
- Высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
- В равнобедренной трапеции углы при любом основании равны.
- В равнобедренной трапеции длины диагоналей равны.
- Если трапецию можно вписать в окружность, то она равнобедренная.
- Около равнобедренной трапеции можно описать окружность.
- Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Вписанная и описанная окружность
Площадь
- Здесь приведены формулы, свойственные именно трапеции. См. также формулы для площади произвольных четырёхугольников.
- В случае, если и — основания и — высота, формула площади:
- В случае, если — средняя линия и — высота, формула площади:
ɴʙ Эти формулы — одинаковы, так как полусумма оснований равняется средней линии трапеции:
- Формула, где , — основания, и — боковые стороны трапеции:
- Площадь равнобедренной трапеции с радиусом вписанной окружности, равным , и углом при основании :
- В частности, если угол при основании равен 30°, то:
- .
См. также
Примечания
dal.academic.ru
Высота трапеции
Высота трапеции
на рисунке обозначены:
a — большее основание трапеции
b — меньшее основание
c,d — боковые стороны трапеции
m — средняя линия трапеции
h — высота трапеции
d1, d2 — диагонали трапеции
α, β — углы между основанием и боковыми сторонами
γ, δ — углы между диагоналями трапеции
Формулы нахождения высоты трапеции
Высоту трапеции можно найти через длины ее сторон, диагоналей, углы между боковыми сторонами и основанием и углы между диагоналями. Также ее можно вычислить через площадь и среднюю линию трапеции:
Высота трапеции равна произведению длины боковой стороны на синус угла между этой стороной и большим основанием трапеции. (Формулы 2 и 3)
Высоту трапеции можно найти как произведение длин диагоналей и синуса угла между ними, деленное на сумму длин оснований трапеции. (Формулы 4 и 5)
Высота трапеции равна произведению длин диагоналей и синуса угла между ними, деленными на удвоенную среднюю линию трапеции (Формулы 5 и 6)
Высоту трапеции можно вычислить как площадь такой трапеции деленную на длину ее средней линии (Формула 8)
Решение | Если в трапецию вписана окружность, то суммы ее противоположных сторон равны:
Средняя линия трапеции равна полусумме оснований, поэтому можно записать
или
Из найдем
Из условия задачи известно, что см, из чего следует
или
Так как , то см. |
ru.solverbook.com