Химические соединения неорганические – ХИМИЯ. НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ — это… Что такое ХИМИЯ. НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ?

Содержание

ХИМИЯ. НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ — это… Что такое ХИМИЯ. НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ?


Номенклатура неорганических соединений. Номенклатура большинства распространенных неорганических соединений основана на следующих правилах.
Элементы. Названия металлов обычно кончаются на -ий (например, натрий, калий, алюминий, магний). Исключение составляют металлы, известные с древности и тогда же получившие свои названия. Это, например, железо, медь, золото. Названия неметаллов, как правило, кончаются на -ор (хлор, бор, фосфор), -од (водород, кислород, иод) или -он (аргон, неон). Зная названия элементов и наиболее распространенных ионов и используя приведенные ниже правила, можно дать название практически любому неорганическому соединению.
Кислоты. Названия кислот, молекулы которых не содержат кислорода, оканчиваются на водородная, например хлороводородная (HCl), бромоводородная (HBr), иодоводородная (HI). Названия кислородсодержащих кислот зависят от степени окисления центрального элемента. Название той кислоты, в которой этот элемент имеет меньшую степень окисления, оканчивается на -истая, например азотистая (HNO2), сернистая (h3SO3), а большую — на -ная, например азотная (HNO3), серная (h3SO4). На примере хлора рассмотрим случай, когда элемент образует более двух кислородсодержащих кислот. Их названия формируются следующим образом: хлорноватистая кислота, HClO; хлористая, HClO2; хлорноватая, HClO3; хлорная, HClO4. Степень окисления хлора здесь составляет +1, +3, +5 и +7 соответственно. Названия кислот, молекулы которых содержат разное количество воды, отличаются друг от друга приставками орто-, гипо-, пиро- и мета- (в порядке уменьшения содержания воды):

Положительно заряженные ионы. Названия этих ионов образуются следующим образом: после слова ион указывают название элемента и римскими цифрами — степень его окисления. Например, Cu2+ — ион меди(II), Cu+ — ион меди(I). Названия некоторых положительных ионов оканчиваются на -оний: аммоний, Nh5+; гидроксоний, h4O+.
Отрицательно заряженные ионы. Названия одноатомных отрицательно заряженных ионов (и соответственно солей), полученных из не содержащих кислорода кислот, оканчиваются на -ид: хлорид-ион, Cl-; бромид-ион, Br-. Названия ионов (и соответственно солей), полученных из кислородсодержащих кислот, в которых центральный элемент имеет меньшую степень окисления, оканчиваются на -ит: сульфит, SO32-; нитрит, NO2-; фосфит, PO33-; а большую — на -ат: сульфат, SO42-; нитрат, NO3-; фосфат, РО43-. Названия ионов, полученных из частично нейтрализованных кислот, образуются прибавлением к названию иона слова кислый либо приставок гидро- или би-: гидрокарбонат (бикарбонат), HCO3-; кислый сульфат, HSO4-.
Соли и ковалентные соединения. Для солей и ковалентных соединений используют названия ионов, которые в них входят: хлорид натрия, NaCl; гидроксид натрия, NaOH. Если элемент может иметь несколько степеней окисления, то после его названия римскими цифрами указывают степень окисления в данном соединении: сульфат железа(II), FeSO4; сульфат железа(III), Fe2(SO4)3. Если соединение образуют два неметалла, то для указания числа их атомов используют приставки ди-, три-, тетра-, пента- и т.д. Например, дисульфид углерода, CS2; пентахлорид фосфора, PCl5, и т.д.

Энциклопедия Кольера. — Открытое общество. 2000.

  • ХИМИЯ. ФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА
  • НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Смотреть что такое «ХИМИЯ. НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ» в других словарях:

  • ХИМИЯ — наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Она изучает, из каких веществ состоит тот или иной предмет; почему и как ржавеет железо, и почему олово не ржавеет; что происходит с пищей… …   Энциклопедия Кольера

  • ХИМИЯ — ХИМИЯ, отрасль науки, изучающая свойства, состав и структуру веществ и их взаимодействие друг с другом. В настоящее время химия представляет собой обширную область знаний и подразделяется прежде всего на органическую и неорганическую химию.… …   Научно-технический энциклопедический словарь

  • ХИМИЯ И МЕТОДЫ ПЕРЕРАБОТКИ НЕФТИ — Нефть это природная жидкая смесь разнообразных углеводородов с небольшим количеством других органических соединений; ценное полезное ископаемое, залегающее часто вместе с газообразными углеводородами (попутные газы, природный газ). См. также… …   Энциклопедия Кольера

  • ХИМИЯ АНАЛИТИЧЕСКАЯ — наука о методах определения химического состава веществ. Химический анализ буквально пронизывает всю нашу жизнь. Его методами проводят скрупулезную проверку лекарственных препаратов. В сельском хозяйстве с его помощью определяют кислотность почв… …   Энциклопедия Кольера

  • Соединения природные —         вещества, являющиеся промежуточными или конечными продуктами жизнедеятельности организмов. Термин условен, т.к. к С. п. обычно не относят ряд простых продуктов метаболизма (метан, уксусная кислота, этиловый спирт и др.), компоненты,… …   Большая советская энциклопедия

  • Химия силикатов — – раздел физической химии, подразумевающий изучение физического и химического строения, структуры, состава, физических и химических свойств веществ, в основе которых лежит кремний, в сочетании с кислородом и другими элементами на 90 %… …   Википедия

  • Неорганические кислоты — Основная статья: Кислота Неорганические (минеральные) кислоты  неорганические вещества, обладающие комплексом физико химических свойств, которые присущи кислотам. Вещества кислотной природы известны для большинства химических элементов за… …   Википедия

  • Химия природных соединений

    — (ХПС)  раздел органической химии, изучающий химические соединения, входящие в состав живых организмов, природные пути их превращений и методы искусственного получения. Как наука, химия природных соединений возникла одновременно с… …   Википедия

  • ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ — изучает химические силы, действующие на поверхности. В общем случае химия поверхности рассматривает свойства трех состояний вещества твердого (Т), жидкого (Ж) и газообразного (Г) и дает описание вещества как фазовой системы. Однако если два… …   Энциклопедия Кольера

  • ХИМИЯ. ФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА — Рассмотрим некоторые физические свойства вещества: агрегатное состояние, температуры плавления и кипения, кристаллическую структуру, электропроводность. Агрегатное состояние вещества определяется силой притяжения между составляющими его… …   Энциклопедия Кольера


dic.academic.ru

НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ — это… Что такое НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ?


Номенклатура неорганических соединений. Номенклатура большинства распространенных неорганических соединений основана на следующих правилах.
Элементы. Названия металлов обычно кончаются на -ий (например, натрий, калий, алюминий, магний). Исключение составляют металлы, известные с древности и тогда же получившие свои названия. Это, например, железо, медь, золото. Названия неметаллов, как правило, кончаются на -ор (хлор, бор, фосфор), -од (водород, кислород, иод) или -он (аргон, неон). Зная названия элементов и наиболее распространенных ионов и используя приведенные ниже правила, можно дать название практически любому неорганическому соединению.
Кислоты. Названия кислот, молекулы которых не содержат кислорода, оканчиваются на водородная, например хлороводородная (HCl), бромоводородная (HBr), иодоводородная (HI). Названия кислородсодержащих кислот зависят от степени окисления центрального элемента. Название той кислоты, в которой этот элемент имеет меньшую степень окисления, оканчивается на -истая, например азотистая (HNO2), сернистая (h3SO3), а большую — на -ная, например азотная (HNO3), серная (h3SO4). На примере хлора рассмотрим случай, когда элемент образует более двух кислородсодержащих кислот. Их названия формируются следующим образом: хлорноватистая кислота, HClO; хлористая, HClO2; хлорноватая, HClO3; хлорная, HClO4. Степень окисления хлора здесь составляет +1, +3, +5 и +7 соответственно. Названия кислот, молекулы которых содержат разное количество воды, отличаются друг от друга приставками орто-, гипо-, пиро- и мета- (в порядке уменьшения содержания воды):

Положительно заряженные ионы.
Названия этих ионов образуются следующим образом: после слова ион указывают название элемента и римскими цифрами — степень его окисления. Например, Cu2+ — ион меди(II), Cu+ — ион меди(I). Названия некоторых положительных ионов оканчиваются на -оний: аммоний, Nh5+; гидроксоний, h4O+.
Отрицательно заряженные ионы. Названия одноатомных отрицательно заряженных ионов (и соответственно солей), полученных из не содержащих кислорода кислот, оканчиваются на -ид: хлорид-ион, Cl-; бромид-ион, Br-. Названия ионов (и соответственно солей), полученных из кислородсодержащих кислот, в которых центральный элемент имеет меньшую степень окисления, оканчиваются на -ит: сульфит, SO32-; нитрит, NO2-; фосфит, PO33-; а большую — на -ат: сульфат, SO42-; нитрат, NO3-; фосфат, РО43-. Названия ионов, полученных из частично нейтрализованных кислот, образуются прибавлением к названию иона слова кислый либо приставок гидро- или би-: гидрокарбонат (бикарбонат), HCO3-; кислый сульфат, HSO4-.
Соли и ковалентные соединения. Для солей и ковалентных соединений используют названия ионов, которые в них входят: хлорид натрия, NaCl; гидроксид натрия, NaOH. Если элемент может иметь несколько степеней окисления, то после его названия римскими цифрами указывают степень окисления в данном соединении: сульфат железа(II), FeSO4; сульфат железа(III), Fe2(SO4)3. Если соединение образуют два неметалла, то для указания числа их атомов используют приставки ди-, три-, тетра-, пента- и т.д. Например, дисульфид углерода, CS2; пентахлорид фосфора, PCl5, и т.д.

Энциклопедия Кольера. — Открытое общество. 2000.

  • ХИМИЯ. НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ
  • ХИМИЯ. РАСТВОРЫ И РАСТВОРИМОСТЬ

Смотреть что такое «НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ» в других словарях:

  • неорганические соединения — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN inorganic compounds …   Справочник технического переводчика

  • неорганические соединения — neorganiniai junginiai statusas T sritis chemija apibrėžtis Cheminiai junginiai, išskyrus organinius junginius. atitikmenys: angl. inorganic compounds rus. неорганические соединения …   Chemijos terminų aiškinamasis žodynas

  • Неорганические соединения — Неорганические вещества – это химические вещества, которые не являются органическими, то есть они не содержат углерода (кроме карбидов, цианидов, карбонатов, оксидов углерода и некоторых других соединений, которые традиционно относят к… …   Википедия

  • ХИМИЯ. НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ — К неорганическим относятся соединения всех химических элементов, за исключением большинства соединений углерода. Кислоты, основания и соли. Кислотами называются соединения, которые в воде диссоциируют с высвобождением ионов водорода (Н+). Эти… …   Энциклопедия Кольера

  • Соединения природные —         вещества, являющиеся промежуточными или конечными продуктами жизнедеятельности организмов. Термин условен, т.к. к С. п. обычно не относят ряд простых продуктов метаболизма (метан, уксусная кислота, этиловый спирт и др.), компоненты,… …   Большая советская энциклопедия

  • Неорганические вещества — Неорганические вещества  это химические вещества, которые не являются органическими, то есть они не содержат углерода (кроме карбидов, цианидов, карбонатов, оксидов углерода и некоторых других соединений, которые традиционно относят к… …   Википедия

  • Неорганические кислоты — Основная статья: Кислота Неорганические (минеральные) кислоты  неорганические вещества, обладающие комплексом физико химических свойств, которые присущи кислотам. Вещества кислотной природы известны для большинства химических элементов за… …   Википедия

  • НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ — Имеют неорг. главные цепи и не содержат орг. боковых радикалов. Главные цепи построены из ковалентных или ионно ковалентных связей; в нек рых Н. п. цепочка ионно ковалентных связей может прерываться единичными сочленениями координац. характера.… …   Химическая энциклопедия

  • Неорганические тиоцианаты — У этого термина существуют и другие значения, см. тиоцианаты. Тиоцианаты (тиоцианиды, роданиды, сульфоцианиды)  соли …   Википедия

  • Неорганические азиды — Азиды  химические соединения, производные азотистоводородной кислоты HN3. Содержат одну или несколько групп N3. Содержание 1 Азиды металлов 2 Азиды неметаллов …   Википедия


dic.academic.ru

НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА. Все о химии

Неорганические вещества

К группе неорганических веществ относятся все вещества, противоположные по своей сути органическим. То есть, этот означает, что в составе неорганических веществ отсутствует углерод. Исключение составляют карбиды, цианиды, карбонаты и оксид углерода.

Все неорганические вещества подразделяются на две большие группы:

• простые вещества

• сложные вещества.

Простые вещества

– это вещества, состоящие из атомов одного элемента.

Подразделяются на две большие группы:

• металлы,

• неметаллы.

Металлы

Металлы — называется группа простых тел, обладающих известными характерными свойствами, которые в типических представителях резко отличают металлы от других химических элементов.

В физическом отношении это по большей части тела твердые при обыкновенной температуре, непрозрачные (в толстом слое), обладающие известным блеском, ковкие, тягучие, хорошие проводники тепла и электричества и прочее. В химическом отношении для них является характерной способность образовать с кислородом основные окислы, которые, соединяясь с кислотами, дают соли.

К металлам относятся: железо, медь, цинк, кальций, калий, алюминий, золото, серебро, натрий, олово, бериллий и т.д.

Неметаллы

Неметаллами называется группа простых тел, обладающих известными характерными свойствами, которые резко отличают неметаллы от других химических элементов.

В физическом отношении это различные тела твердые: твердые, жидкие и газообразные.

К неметаллам относятся: водород, кислород, азот, фосфор, сера, углерод, аргон, неон и т.д.

Сложные вещества

— это вещества, состоящие из атомов двух и более элементов. Подразделяются на четыре большие группы:

• оксиды

• основания

• кислоты

• соли

Оксиды

Оксиды — это соединения различных химических элементов с кислородом.

В зависимости от химических свойств различают:

• солеобразующие оксиды,

• несолеобразующие оксиды.

Солеобразующие оксиды – это оксиды, дающие при взаимодействии с другими элементами соли. Они подразделяются на 3 группы:

• основные оксиды (оксид натрия Na2O, оксид меди (II) CuO),

• кислотные оксиды (оксид серы SO3, оксид азота NO2),

• амфотерные оксиды (оксид цинка ZnO, оксид алюминия Аl2О3)

Несолеобразующие оксиды — это оксиды, не дающие при взаимодействии с другими элементами соли. Обычно они распадаются до газа и воды.

Пример: оксид углерода СО, оксид азота NO.

Основания

— это вещества, молекулы которых состоят из молекул металла и гидрокс-группы — ОН. Основания образуются при взаимодействии ряда металлов (натрий, калий) или некоторых оксидов (оксид кальция CaO) с водой.

Пример: NaOH, Ca(OH)2, Al(OH)3, Fe(OH)3.

Кислоты

— называется группа соединений с известной, довольно определенной химической функцией. Эта функция выражена в таких типичных представителях этой группы, как серная кислота h3SO4, азотная кислота HNO3, соляная кислота НСl и прочие.

Существует большое количество классификаций кислот, среди которых особый интерес представляют две – по содержанию кислорода и по принадлежности к классу химических соединений.

Классификация кислот по содержанию кислорода:

• безкислородные (HCl, h3S, HBr)

• кислородсодержащие (HNO3, h3SO4, h4PO4).

Классификация кислот по принадлежности к классу химических соединений:

• неорганические (HBr,HCl, h3S, HNO3, h3SO4),

• органические (HCOOH, Ch4COOH).

Соли

— это химическое соединение, образовавшееся в результате взаимодействия кислоты и основания.

Пример: NaCl, KNO3, CuSO4, Ca3(PO4)2.

Поделиться ссылкой

sitekid.ru

Неорганическая химия — Википедия. Что такое Неорганическая химия

Неоргани́ческая хи́мия — раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Эта область охватывает все химические соединения, за исключением органических веществ (класса соединений, в которые входит углерод, за исключением нескольких простейших соединений, обычно относящихся к неорганическим[1]). Различия между органическими и неорганическими соединениями, содержащими углерод, являются по некоторым представлениям произвольными[2]. Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических соединений). Обеспечивает создание материалов новейшей техники. Число известных на 2013 г. неорганических веществ приближается к 500 тысячам.

Теоретическим фундаментом неорганической химии является периодический закон и основанная на нём периодическая система Д. И. Менделеева. Важнейшая задача неорганической химии состоит в разработке и научном обосновании способов создания новых материалов с нужными для современной техники свойствами.

История определения

Исторически название неорганическая химия происходит от представления о части химии, которая занимается исследованием элементов, соединений, а также реакций веществ, которые не образованы живыми существами. Однако со времен синтеза мочевины из неорганического соединения цианата аммония (NH4OCN), который совершил в 1828 году выдающийся немецкий химик Фридрих Вёлер, стираются границы между веществами неживой и живой природы. Так, живые существа производят много неорганических веществ. С другой стороны, почти все органические соединения можно синтезировать в лаборатории. Однако деление на различные области химии является актуальным и необходимым, как и раньше, поскольку механизмы реакций, структура веществ в неорганической и органической химии различаются. Это позволяет проще систематизировать методы и способы исследования в каждой из отраслей.

Классификация химических элементов

Периоди́ческая систе́ма хими́ческих элеме́нтов (таблица Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен[3] вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и так далее). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.

Простые вещества

Состоят из атомов одного химического элемента (являются формой его существования в свободном состоянии). В зависимости от того, какова химическая связь между атомами, все простые вещества в неорганической химии разделяются на две основные группы: металлы и неметаллы. Для первых характерна, соответственно, металлическая связь, для вторых — ковалентная. Стоит, впрочем, заметить, что радикальных и существенных отличий друг от друга вышеупомянутые простые вещества не имеют. Также выделяются две примыкающие к ним группы — металлоподобных и неметаллоподобных веществ. Существует явление аллотропии, которое состоит в возможности образования нескольких типов простых веществ из атомов одного и того же элемента; каждый из таких типов называется аллотропной модификацией. Если данное явление обусловлено различным молекулярным составом, то оно определяется как аллотропия состава; если способом размещения молекул и атомов в кристаллах — то как аллотропия формы.

Металлы

Мета́ллы (от лат. metallum — шахта, рудник) — группа элементов, обладающая характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. Из 118[4]химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:

Таким образом, к металлам относится 96 элементов из всех открытых.

В силу особенностей металлической атомной связи (а именно — ненасыщаемости и ненаправленности) металлы характеризуются максимально плотными координационными решетками. Наиболее типичны для них кубическая гранецентрированная, кубическая объемно центрированная и гексагональная кристаллические решетки. Кроме того, из-за энергетической близости решеток у многих металлов проявляется полиморфизм.

Неметаллы

Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы. В молекулярной форме в виде простых веществ в природе встречаются азот, кислород и сера. Чаще неметаллы находятся в химически связанном виде: это вода, минералы, горные породы, различные силикаты, фосфаты, бораты. По распространённости в земной коре неметаллы существенно различаются. Наиболее распространёнными являются кислород, кремний, водород; наиболее редкими — мышьяк, селен, иод. Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их бо́льшую способность к присоединению дополнительных электронов и проявлению более высокой окислительной активности, чем у металлов. К неметаллам также относят водород и гелий.

Сложные вещества

Количественная классификация

По количеству элементов, входящих в состав вещества, различаются бинарные, трехэлементные соединения и т. п.

Бинарные соединения

Бинарными называются соединения, состоящие из атомов двух элементов. Их классификация также производится на основании типа химической связи; выделяют соединения ионные, ковалентные, металлические, а также характеризующиеся смешанным типом связи. Их химические свойства варьируются в зависимости от химической природы конкретных элементов: соединения, в состав которых входят металлические элементы, характеризуются основными свойствами, в то время как соединения неметаллических элементов проявляют кислотные свойства.

Трехэлементные соединения

Трехэлементные — наиболее простые по составу соединения, которые образуются при взаимодействии, как правило, существенно отличающихся друг от друга по химической природе бинарных соединений. С точки зрения химической связи их подразделяют на ионные, ковалентные и ионно-ковалентные. В зависимости от устойчивости ионов их внешней сферы варьируется устойчивость анионных комплексов, которая, в свою очередь, влияет на свойства соединения и степень его подобия бинарному.

Если же взаимодействующие соединения мало отличаются друг от друга по химической природе, то в результате возникают особые разновидности веществ: смешанные соединения, твердые растворы и эвтектики. Первые из перечисленных — это полимеры, являющиеся продуктом взаимодействия соединений элементов, одинаково склонных к комплексообразованию (к примеру, оксид алюминия и оксид магния), вторые образуются в том случае, если электроположительные элементы могут образовывать схожие структурные единицы (то есть не имеющие принципиальных различий по части строения, размера и устойчивости), а третьи представляют собой результат взаимодействия соединений таких элементов, которые близки друг другу химически, но отличаются по строению или размеру атомов. В последнем случае химического взаимодействия, строго говоря, не происходит вообще — возникает механический конгломерат кристаллов.

Качественная классификация

Большую часть сложных неорганических веществ (то есть состоящих из двух и более химических элементов) можно разделить на следующие группы:

Оксиды

Окси́д (о́кисел, о́кись) — бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF2. Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами называется класс минералов, представляющих собой соединения металла с кислородом.

Соли

Со́ли — класс химических соединений, к которому относятся вещества, состоящие из катионов металла (или катионов аммония Nh5+{\displaystyle \mathrm {NH_{4}^{+}} }; известны соли фосфония Ph5+{\displaystyle \mathrm {PH_{4}^{+}} } или гидроксония h4O+{\displaystyle \mathrm {H_{3}O^{+}} }) и анионов кислотного остатка. Типы солей:

Особую группу составляют соли органических кислот, свойства которых значительно отличаются от свойств минеральных солей. Некоторые из них можно отнести к особенному классу органических солей, так называемых ионных жидкостей или по-другому «жидких солей», органических солей с температурой плавления ниже 100 °C.

Основания

Основа́ния — класс химических соединений:

Кислоты

Кисло́ты — сложные вещества, в состав которых обычно входят атомы водорода, способные замещаться на атомы металлов, и кислотный остаток. Водные растворы кислот имеют кислый вкус, обладают раздражающим действием, способны менять окраску индикаторов, отличаются рядом общих химических свойств.

Прочее

Также можно выделить следующие группы неорганических веществ: карбиды, нитриды, гидриды, интерметаллиды и другие, которые не укладываются в приведённую выше классификацию (более подробно см. Неорганическое вещество).

Карбиды

Карби́ды — соединения металлов и неметаллов с углеродом. Традиционно к карбидам относят соединения, в которых углерод имеет большую электроотрицательность, чем второй элемент (таким образом из карбидов исключаются такие соединения углерода, как оксиды, галогениды и тому подобные). Карбиды — тугоплавкие твёрдые вещества: карбиды бора и кремния (В4С и SiC), титана, вольфрама, циркония (TiC, WC и ZrC соответственно) обладают высокой твёрдостью, жаростойкостью, химической инертностью.

Нитриды

Нитри́ды — соединения азота с менее электроотрицательными элементами, например, с металлами (AlN;TiNx;Na3N;Ca3N2;Zn3N2; и т. д.) и с рядом неметаллов (NH3, BN, Si3N4). Соединения азота с металлами чаще всего являются тугоплавкими и устойчивыми при высоких температурах веществами, например, эльбор. Нитридные покрытия придают изделиям твёрдость, коррозионную стойкость; находят применение в энергетике, космической технике.

Гидриды

Гидри́ды — соединения водорода с металлами и с имеющими меньшую электроотрицательность, чем водород, неметаллами. Иногда к гидридам причисляют соединения всех элементов с водородом. Гидриды делятся на три типа в зависимости от характера связи в соединении: ионные гидриды, металлические гидриды и ковалентные гидриды.[5][6].

Интерметаллиды

Металлические соединения, или интерметаллиды — один из четырёх базовых вариантов взаимодействия между металлами (остальные три — полное отсутствие какого-либо влияния, взаимное растворение в жидком состоянии и образование эвтектики в твердом, а также формирование как жидких, так и твердых растворов любого состава). В отличие от, например, твердых растворов интерметаллиды характеризуются сложной кристаллической структурой, непохожей на структуру исходных веществ; аналогичным образом у них могут появляться физические или химические особенности, не свойственные их составляющим в чистом виде. В целом для интерметаллидов характерно широкое разнообразие кристаллических структур и типов химической связи, что, в свою очередь, является причиной обширного спектра их возможных физических и химических свойств.

Интерметаллиды, как и другие химические соединения, имеют фиксированное соотношение между компонентами. Интерметаллиды обладают, как правило, высокой твёрдостью и высокой химической стойкостью. Очень часто интерметаллиды имеют более высокую температуру плавления, чем исходные металлы. Почти все интерметаллиды хрупки, так как связь между атомами в решётке становится ковалентной или ионной (например, в ауриде цезия CsAu), а не металлической. Некоторые из них имеют полупроводниковые свойства, причём, чем ближе к стехиометрии соотношение элементов, тем выше электрическое сопротивление. Никелид титана, известный под маркой «нитинол», обладает памятью формы — после закалки изделие может быть деформировано механически, но примет исходную форму при небольшом нагреве.

Нестехиометрические соединения

Вплоть до начала XX века аксиоматическим считалось положение о постоянстве состава тех или иных веществ, впервые высказанное и сформулированное веком ранее. Рассматриваемое утверждение было аналогичным образом поименовано как закон постоянства состава, а соответствующее свойство веществ — как стехиометричность. Впоследствии проведенные ученым Н. С. Курнаковым исследования показали, что существуют также и соединения переменного состава, то есть нестехиометрические, и при этом они характеризуются довольно высокой степенью распространенности в природе. Н. С. Курнаков предложил также именовать соединения постоянного состава дальтонидами, а переменного — бертоллидами.

В той или иной степени переменный состав характерен для тех веществ, у которых наблюдается либо атомное, либо ионное строение. В таком случае в кристалле могут возникать различного рода дефекты — либо недостаток атомов в определенных узлах, либо их избыток в промежутках между узлами. К примеру, явная нестехиометричность характерна для оксида и сульфата железа (II). Существуют определенные пределы, внутри которых отклонения от стехиометрического состава считаются допустимыми; соответствующий диапазон называется областью гомогенности. В свою очередь, вещества с молекулярным строением имеют постоянный состав; следует, впрочем, заметить, что вплоть до 95 % неорганических веществ такого строения не имеют и в силу этого являются нестехиометрическими. Длительное преобладание представлений о постоянстве состава объясняется тем, что часто изменения оказываются недостаточно существенными для их обнаружения в ходе химического анализа.

См. также

Примечания

  1. ↑ К неорганическим соединениям углерода обычно относят некоторые соли (карбонаты, цианиды, цианаты, тиоцианаты) и соответствующие им кислоты, а также оксиды углерода, карбонилы металлов и карбиды.
  2. ↑ Spencer L. Seager, Michael R. Slabaugh. Chemistry for Today: general, organic, and biochemistry. // Thomson Brooks/Cole, 2004. — Р. 342. ISBN 0-534-39969-X
  3. ↑ В книге В. М. Потапов, Г. Н. Хомченко «Химия», М. 1982 (стр. 26) утверждается, что их более 400.
  4. ↑ Международный химический союз признал 112-й химический элемент
  5. ↑ Гидриды. XuMuK.ru. Проверено 15 июля 2010. Архивировано 22 июня 2012 года.
  6. ↑ onium compounds // IUPAC Gold Book

Литература

  • Капустинский А. Ф. Очерки по истории неорганической и физической химии в России. М.-Л., 1949
  • Жамбулова М. Ш. Развитие неорганической химии (Историко-методологический аспект). Алма-Ата, 1981.- 187 с.
  • Неорганическое материаловедение в СССР. Под ред. И. В. Тананаева — Киев: Наукова думка, 1983. — 720 с.
  • Популярная библиотека химических элементов. Т. 1,2. / Под ред. И. В. Петрянова-Соколова — М.: Наука, 1983. — 575 с., — 572 с.
  • Реми Г. Курс неорганической химии. Т. 1. М.: Изд-во иностранной литературы, 1963. — 920 с.
  • Реми Г. Курс неорганической химии. Т. 2. М.: Мир, 1974. — 775 с.
  • Шрайвер Э. Неорганическая химия. Т. 1,2. / Э. Шрайвер, П. Эткинс — М.: Мир, 2004. — 679 с., — 486 с.
  • Энциклопедия неорганических материалов / Под ред. И. М. Федорчен-ко. В 2-х т. — Киев: Укр. сов. энциклопедия, 1977. — 1652 с.
  • Аблесимов Н. Е. Синопсис химии: Справочно-учебное пособие по общей химии — Хабаровск: Изд-во ДВГУПС, 2005. — 84 с. — http://www.neablesimov.narod.ru/pub04c.html
  • Аблесимов Н. Е. Сколько химий на свете? ч. 1. // Химия и жизнь — XXI век. — 2009. — № 5. — С. 49-52.
  • Ахметов Н.С. Общая и неорганическая химия. — 4 изд., испр. — Москва: Высшая школа, Издательский центр «Академия», 2001. — С. 253-269. — 743 с. — 15 000 экз. — ISBN 5-06-003363-5, 5-7695-0704-7.

Ссылки

wiki.sc

Классификация неорганических соединений

В настоящее время известно более 118 химических элементов: по различным источникам, в природе встречаются от 88 до 94. Химические элементы образуют огромное количество неорганических соединений. Хотя каждому соединению присущи свои особенности, свои специфические свойства, имеется целый ряд веществ с некоторыми сходными, общими свойствами. Исходя из общности свойств, соединения объединяют в группы, классы, то есть классифицируют их, что облегчает изучение многообразия веществ.

Неорганические веществаВспомним, что, исходя их состава молекул, вещества делятся на простые и сложные.

Простые вещества – вещества, молекулы которых состоят из атомов одного вида (атомов одного элемента). В химических реакциях не могут разлагаться с образованием других веществ.

Сложные вещества (или химические соединения) – вещества, молекулы которых состоят из атомов разного вида (атомов различных химических элементов). В химических реакциях разлагаются с образованием нескольких других веществ.

Простые вещества разбиваются на две большие группы: металлы и неметаллы.

Металлы – группа элементов, обладающая характернымиметаллическими свойствами: твёрдые вещества (исключение составляет ртуть) имеют металлический блеск, являются хорошими проводниками теплоты и электричества, ковкие (железо (Fe), медь (Cu), алюминий (Al), ртуть (Hg), золото (Au), серебро (Ag) и др.).

Неметаллы – группа элементов: твёрдые, жидкие (бром) и газообразные веществ, которые  не обладают металлическим блеском, являются изоляторы, хрупкие.

Неорганические веществаА сложные вещества в свою очередь подразделятся на четыре группы, или класса: оксиды, основания, кислоты и соли.

Оксиды – это сложные вещества, в состав молекул которых входят атомы кислорода и какого – нибудь другого вещества.

Основания – это сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами.

С точки зрения теории электролитической диссоциации, основания – сложные вещества, при диссоциации которых в водном растворе образуются катионы металла (или NH4+) и гидроксид – анионы OH.

Кислоты – это сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла.

Соли – это сложные вещества, молекулы которых состоят из атомов металлов и кислотных остатков. Соль представляет собой продукт частичного или полного замещения атомов водорода кислоты металлом.

Остались вопросы? Хотите знать больше о классификации неорганических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Органические и неорганические вещества. Неорганические вещества клетки :: SYL.ru

Впервые химические вещества классифицировал в конце IX столетия арабский ученый Абу Бакр ар-Рази. Он, опираясь на происхождение веществ, распределили их по трем группам. В первой группе он отвел место минеральным, во второй – растительным и в третьей – животным веществам.

Этой классификации было суждено просуществовать почти целое тысячелетие. Лишь в XIX веке из тех групп сформировали две – органические и неорганические вещества. Химические вещества обоих типов строятся благодаря девяноста элементам, внесенным в таблицу Д. И. Менделеева.

неорганические вещества

Группа неорганических веществ

Среди неорганических соединений различают простые и сложные вещества. Группа простых веществ объединяет металлы, неметаллы и благородные газы. Сложные вещества представлены оксидами, гидроксидами, кислотами и солями. Все неорганические вещества могут строиться из любых химических элементов.

Группа органических веществ

В состав всех органических соединений в обязательном порядке входит углерод и водород (в этом их принципиальное отличие от минеральных веществ). Вещества, образованные C и H называются углеводородами – простейшими органическими соединениями. В составе производных углеводородов находится азот и кислород. Они, в свою очередь, классифицированы на кислород- и азотсодержащие соединения.

органические и неорганические вещества

Группа кислородсодержащих веществ представлена спиртами и эфирами, альдегидами и кетонами, карбоновыми кислотами, жирами, восками и углеводами. К азотсодержащим соединениям причислены амины, аминокислоты, нитросоединения и белки. У гетероциклических веществ положение двояко – они, в зависимости от строения, могут относиться и к тому и к другому виду углеводородов.

Химические вещества клетки

Существование клеток возможно, если в их состав входят органические и неорганические вещества. Они погибают, когда в них отсутствует вода, минеральные соли. Клетки умирают, если сильно обеднены нуклеиновыми кислотами, жирами, углеводами и белками.

Они способны к нормальной жизнедеятельности, если в них находится несколько тысяч соединений органической и неорганической природы, способных вступать во множество различных химических реакций. Биохимические процессы, текущие в клетке – основа ее жизнедеятельности, нормального развития и функционирования.

Химические элементы, насыщающие клетку

Клетки живых систем содержат группы химических элементов. Они обогащены макро-, микро- и ультрамикроэлементами.

неорганические вещества клетки
  • Макроэлементы, прежде всего, представлены углеродом, водородом, кислородом и азотом. Эти неорганические вещества клетки образуют практически все ее органические соединения. А еще к ним причислены жизненно необходимые элементы. Клетка не способна жить и развиваться без кальция, фосфора, серы, калия, хлора, натрия, магния и железа.
  • Группа микроэлементов образована цинком, хромом, кобальтом и медью.
  • Ультрамикроэлементы — еще одна группа, представляющая важнейшие неорганические вещества клетки. Группа сформирована золотом и серебром, оказывающим бактерицидное действие, ртутью, препятствующей обратному всасыванию воды, заполняющей почечные канальцы, оказывающей влияние на ферменты. В нее же включена платина и цезий. Определенную роль в ней отводят селену, дефицит которого ведет к различным видам рака.

Вода в составе клетки

Важность воды, распространенного на земле вещества для жизни клетки, неоспорима. В ней растворяются многие органические и неорганические вещества. Вода – та благодатная среда, где протекает невероятное количество химических реакций. Она способна растворять продукты распада и обмена. Благодаря ей клетку покидают шлаки и токсины.

неорганические химические вещества

Эта жидкость наделена высокой теплопроводностью. Это позволяет теплу равномерно распространяться по тканям тела. У нее существенная теплоемкость (способность поглощать теплоту, когда собственная температура изменяется минимально). Такая способность не позволяет возникать в клетке резким перепадам температур.

Вода обладает исключительно высоким поверхностным натяжением. Благодаря ему растворенные неорганические вещества, как и органические, без труда передвигаются по тканям. Множество небольших организмов, используя особенность поверхностного натяжения, держатся на водной поверхности и свободно по ней скользят.

Тургор растительных клеток зависит от воды. С опорной функцией у определенных видов животных справляется именно вода, а не какие-нибудь другие неорганические вещества. Биология выявила и изучила животных с гидростатическими скелетами. К ним относятся представители иглокожих, круглых и кольчатых червей, медуз и актиний.

Воду содержат клетки смазывающих жидкостей. Ей наполнены клетки слизей, облегчающих прохождение веществ по желудочно-кишечному тракту. Благодаря воде формируется влажная среда в дыхательных путях. Водой насыщенны клетки слюны, желчи, слез и прочего.

Насыщенность клеток водой

Работающие клетки заполнены водой на 80 % от их общего объема. Жидкость пребывает в них в свободной и связанной форме. Белковые молекулы прочно соединяются со связанной водой. Они, окруженные водной оболочкой, изолируются друг от дружки.

неорганические вещества вода

Молекулы воды полярны. Они образуют водородные связи. Благодаря водородным мостикам вода обладает высокой теплопроводностью. Связанная вода позволяет клеткам выдерживать пониженные температуры. На долю свободной воды приходится 95 %. Она способствует растворению веществ, вовлекаемых в клеточный обмен.

Высокоактивные клетки в тканях мозга содержат до 85 % воды. Мышечные клетки насыщены водой на 70 %. Менее активным клеткам, образующим жировую ткань, достаточно 40 % воды. Она в живых клетках не только растворяет неорганические химические вещества, она ключевой участник гидролиза органических соединений. Под ее воздействием органические вещества, расщепляясь, превращаются в промежуточные и конечные вещества.

Важность минеральных солей для клетки

Минеральные соли представлены в клетках катионами калия, натрия, кальция, магния и анионами HPO42-, H2PO4, Cl, HCO3. Правильные пропорции анионов и катионов создают необходимую для жизни клетки кислотность. Во многих клетках поддерживается слабощелочная среда, которая практически не меняется и обеспечивает их стабильное функционирование.

Концентрация катионов и анионов в клетках отлична от их соотношения в межклеточном пространстве. Причина тому – активная регуляция, направленная на транспортировку химических соединений. Такое течение процессов обуславливает постоянство химических составов в живых клетках. После гибели клеток концентрация химических соединений в межклеточном пространстве и цитоплазме обретает равновесие.

неорганические вещества в составе клетки

Неорганические вещества в химической организации клетки

В химическом составе живых клеток нет каких-либо особых элементов, характерных только для них. Это определяет единство химических составов живых и неживых объектов. Неорганические вещества в составе клетки играют огромную роль.

Сера и азот помогают формироваться белкам. Фосфор участвует в синтезе ДНК и РНК. Магний — важная составляющая ферментов и молекул хлорофилла. Медь необходима окислительным ферментам. Железо – центр молекулы гемоглобина, цинк входит в состав гормонов, вырабатываемых поджелудочной железой.

Важность неорганических соединений для клеток

Соединения азота преобразуют белки, аминокислоты, ДНК, РНК и АТФ. В растительных клетках ионы аммония и нитраты в процессе окислительно-восстановительных реакций превращаются в NH2, становятся участниками синтеза аминокислот. Живые организмы используют аминокислоты для формирования собственных белков, необходимых для строительства тел. После гибели организмов белки вливаются в круговорот веществ, при их распаде азот выделяется в свободной форме.

Неорганические вещества, в составе которых есть калий, играют роль «насоса». Благодаря «калиевому насосу» в клетки сквозь мембрану проникают вещества, в которых они остро нуждаются. Калиевые соединения приводят к активизации жизнедеятельности клеток, благодаря им проводятся возбуждения и импульсы. Концентрация ионов калия в клетках весьма высока в отличие от окружающей среды. Ионы калия после гибели живых организмов легко переходят в природное окружение.

неорганические вещества биология

Вещества, содержащие фосфор, способствуют формированию мембранных структур и тканей. В их присутствии образуются ферменты и нуклеиновые кислоты. Солями фосфора в той или иной степени насыщены различные слои почвы. Корневые выделения растений, растворяя фосфаты, усваивают их. Вслед за отмиранием организмов остатки фосфатов, подвергаются минерализации, превращаясь в соли.

Неорганические вещества, содержащие кальций, способствуют формированию межклеточного вещества и кристаллов в растительных клетках. Кальций из них проникает в кровь, регулируя процесс ее свертывания. Благодаря ему формируются кости, раковины, известковые скелеты, коралловые полипы у живых организмов. Клетки содержат ионы кальция и кристаллы его солей.

www.syl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *