1 | Найти производную — d/dx | квадратный корень x | |
2 | Найти производную — d/dx | натуральный логарифм x | |
3 | Вычислить | интеграл натурального логарифма x по x | |
4 | Найти производную — d/dx | e^x | |
5 | Вычислить | интеграл e^(2x) относительно x | |
6 | Найти производную — d/dx | 1/x | |
7 | Найти производную — d/dx | x^2 | |
8 | Вычислить | интеграл e^(-x) относительно x | |
9 | Найти производную — d/dx | 1/(x^2) | |
10 | Найти производную — d/dx | sin(x)^2 | |
11 | Найти производную — d/dx | sec(x) | |
12 | Вычислить | интеграл e^x относительно x | |
13 | Вычислить | интеграл x^2 относительно x | |
14 | Вычислить | интеграл квадратного корня x по x | |
15 | Вычислить | натуральный логарифм 1 | |
16 | Вычислить | e^0 | |
17 | Вычислить | sin(0) | |
18 | Найти производную — d/dx | cos(x)^2 | |
19 | Вычислить | интеграл 1/x относительно x | |
20 | Вычислить | cos(0) | |
21 | Вычислить | интеграл sin(x)^2 относительно x | |
22 | Найти производную — d/dx | x^3 | |
23 | Найти производную — d/dx | sec(x)^2 | |
24 | Найти производную — d/dx | 1/(x^2) | |
25 | Вычислить | интеграл arcsin(x) относительно x | |
26 | Вычислить | интеграл cos(x)^2 относительно x | |
27 | Вычислить | интеграл sec(x)^2 относительно x | |
28 | Найти производную — d/dx | e^(x^2) | |
29 | Вычислить | интеграл в пределах от 0 до 1 кубического корня 1+7x по x | |
30 | Найти производную — d/dx | sin(2x) | |
31 | Вычислить | интеграл натурального логарифма x по x | |
32 | Найти производную — d/dx | tan(x)^2 | |
33 | Вычислить | интеграл e^(2x) относительно x | |
34 | Вычислить | интеграл 1/(x^2) относительно x | |
35 | Найти производную — d/dx | 2^x | |
36 | График | натуральный логарифм a | |
37 | Вычислить | e^1 | |
38 | Вычислить | интеграл 1/(x^2) относительно x | |
39 | Вычислить | натуральный логарифм 0 | |
40 | Найти производную — d/dx | cos(2x) | |
41 | Найти производную — d/dx | xe^x | |
42 | Вычислить | интеграл 1/x относительно x | |
43 | Вычислить | интеграл 2x относительно x | |
44 | Найти производную — d/dx | ( натуральный логарифм x)^2 | |
45 | Найти производную — d/dx | натуральный логарифм (x)^2 | |
46 | Найти производную — d/dx | 3x^2 | |
47 | Вычислить | натуральный логарифм 2 | |
48 | Вычислить | интеграл xe^(2x) относительно x | |
49 | Найти производную — d/dx | 2e^x | |
50 | Найти производную — d/dx | натуральный логарифм 2x | |
51 | Найти производную — d/dx | -sin(x) | |
52 | Вычислить | tan(0) | |
53 | Найти производную — d/dx | 4x^2-x+5 | |
54 | Найти производную — d/dx | y=16 корень четвертой степени 4x^4+4 | |
55 | Найти производную — d/dx | 2x^2 | |
56 | Вычислить | интеграл e^(3x) относительно x | |
57 | Вычислить | интеграл cos(2x) относительно x | |
58 | Вычислить | интеграл cos(x)^2 относительно x | |
59 | Найти производную — d/dx | 1/( квадратный корень x) | |
60 | Вычислить | интеграл e^(x^2) относительно x | |
61 | Вычислить | sec(0) | |
62 | Вычислить | e^infinity | |
63 | Вычислить | 2^4 | |
64 | Найти производную — d/dx | x/2 | |
65 | Вычислить | 4^3 | |
66 | Найти производную — d/dx | -cos(x) | |
67 | Найти производную — d/dx | sin(3x) | |
68 | Вычислить | натуральный логарифм 1/e | |
69 | Вычислить | интеграл x^2 относительно x | |
70 | Упростить | 1/( кубический корень от x^4) | |
71 | Найти производную — d/dx | 1/(x^3) | |
72 | Вычислить | интеграл e^x относительно x | |
73 | Вычислить | интеграл tan(x)^2 относительно x | |
74 | Вычислить | интеграл 1 относительно x | |
75 | Найти производную — d/dx | x^x | |
76 | Найти производную — d/dx | x натуральный логарифм x | |
77 | Вычислить | интеграл sin(x)^2 относительно x | |
78 | Найти производную — d/dx | x^4 | |
79 | Вычислить | предел (3x-5)/(x-3), если x стремится к 3 | |
80 | Вычислить | интеграл от x^2 натуральный логарифм x по x | |
81 | Найти производную — d/dx | f(x) = square root of x | |
82 | Найти производную — d/dx | x^2sin(x) | |
83 | Вычислить | интеграл sin(2x) относительно x | |
84 | Найти производную — d/dx | 3e^x | |
85 | Вычислить | интеграл xe^x относительно x | |
86 | Найти производную — d/dx | y=x^2 | |
87 | Найти производную — d/dx | квадратный корень x^2+1 | |
88 | Найти производную — d/dx | sin(x^2) | |
89 | Вычислить | интеграл e^(-2x) относительно x | |
90 | Вычислить | интеграл натурального логарифма квадратного корня x по x | |
91 | Вычислить | 2^5 | |
92 | Найти производную — d/dx | e^2 | |
93 | Найти производную — d/dx | x^2+1 | |
94 | Вычислить | интеграл sin(x) относительно x | |
95 | Вычислить | 2^3 | |
96 | Найти производную — d/dx | arcsin(x) | |
97 | Вычислить | предел (sin(x))/x, если x стремится к 0 | |
98 | Вычислить | e^2 | |
99 | Вычислить | интеграл e^(-x) относительно x | |
100 | Вычислить | интеграл 1/x относительно x |
4.1. Первообразная. Простейшие способы интегрирования
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального
образования «Санкт-Петербургский государственный морской технический университет»
(СПбГМТУ)
КОНСПЕКТ ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
Направление подготовки: 180100 «Кораблестроение, океанотехника и системотехника объектов морской инфраструктуры»;
Профили подготовки: 1.180100.62.01 «Кораблестроение», 1.180100.62.03 «Океанотехника».
Квалификация (степень) выпускника: Бакалавр техники и технологии
Форма обучения: очная
Санкт-Петербург
2011
1
Раздел 4. Интегральное исчисление функций одной переменной
Первообразная функция. Неопределенный интеграл и его свойства. Таблица неопределенных интегралов. Простейшие способы интегрирования. Методы замены переменной и интегрирования по частям в неопределенном интеграле.
4.1.1.Первообразная функция
Вразделе 3 мы ввели понятие производной и научились находить производную от данной функции.
Вэтой главе мы будем решать обратную задачу, а именно: известна функция f (x) ,
требуется найти такую функцию F(x) , производная которой равна | f (x) , т.е. F ‘ (x) = f (x) . | ||||||||||||||||
Определение 4.1.1. |
|
|
|
|
|
|
|
|
|
|
|
| |||||
| Функция F(x) называется первообразной для функции | f (x) | на интервале | (a; b) , | если | ||||||||||||
F(x) | дифференцируема на (a; b) и F ‘ (x) = f (x) . |
|
|
|
|
|
|
|
|
|
|
|
| ||||
ЗАМЕЧАНИЕ |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||
| Аналогично можно определить понятие первообразной на отрезке [a;b], но в точках | а и | b надо | ||||||||||||||
| рассматривать односторонние производные. |
|
|
|
|
|
|
|
|
|
|
|
| ||||
Пример 4.1.1 |
|
| 1 |
|
|
|
|
|
|
|
| 1 |
| ||||
1) | F(x) = | x есть первообразная для функции f(x) = |
|
| на (0; ∞) , т.к. ( | x )’ = |
| . | |||||||||
|
|
|
| 2 | x |
|
|
|
|
| 2 | x | |||||
2) | Для функции f (x) = x2 первообразной будет функция | F(x) = | x3 | на | (−∞;+∞) , |
| т.к. | ||||||||||
|
| ||||||||||||||||
|
|
|
|
|
|
|
|
| 3 |
|
|
|
|
|
|
| |
x3 | ‘ | = x2 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Теорема 4.1.1 |
|
|
|
|
|
|
|
|
| С – |
|
|
| ||||
| Если F(x) | первообразная для функции f (x) на (a; b) , | то | F(x) +C , где | любое | ||||||||||||
постоянное число, также первообразная для f (x) . |
|
|
|
|
|
|
|
|
|
|
|
| |||||
Доказательство |
|
|
|
|
|
|
|
|
|
|
|
| |||||
|
|
|
| (F(x) +C)’ = F ‘ (x) + 0 = F ‘ (x) = f (x) . |
|
|
|
|
|
|
|
|
| ||||
Теорема 4.1.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||
| Если F1(x) | и F2 (x) – две первообразные для f (x) | на | (a; b) , то на (a; b) справедливо | |||||||||||||
F1(x) − F2 (x) = C , где С – постоянная. |
|
|
|
|
|
|
|
|
|
|
|
| |||||
Доказательство |
|
|
|
|
|
|
|
|
|
|
|
| |||||
|
| По условию F ‘1(x) − F ‘2 (x) = f (x) . Составим функцию Ф(x) = F (x) − F (x) | и найдём ее |
|
| ||||||||||||
|
|
|
|
|
|
|
| 1 | 2 |
|
|
|
|
|
|
производную x (a;b) :
Ф’ (x) = (F1( x) − F2 ( x))’ = F1′ ( x) − F2′ (x) = f (x) − f (x) = 0 .
Следовательно Ф(x) = C , т.е. F1(x) − F2 (x) = C .
2
1 | Найти производную — d/dx | квадратный корень x | |
2 | Найти производную — d/dx | натуральный логарифм x | |
3 | Вычислить | интеграл натурального логарифма x по x | |
4 | Найти производную — d/dx | e^x | |
5 | Вычислить | интеграл e^(2x) относительно x | |
6 | Найти производную — d/dx | 1/x | |
7 | Найти производную — d/dx | x^2 | |
8 | Вычислить | интеграл e^(-x) относительно x | |
9 | Найти производную — d/dx | 1/(x^2) | |
10 | Найти производную — d/dx | sin(x)^2 | |
11 | Найти производную — d/dx | sec(x) | |
12 | Вычислить | интеграл e^x относительно x | |
13 | Вычислить | интеграл x^2 относительно x | |
14 | Вычислить | интеграл квадратного корня x по x | |
15 | Вычислить | натуральный логарифм 1 | |
16 | Вычислить | e^0 | |
17 | Вычислить | sin(0) | |
18 | Найти производную — d/dx | cos(x)^2 | |
19 | Вычислить | интеграл 1/x относительно x | |
20 | Вычислить | cos(0) | |
21 | Вычислить | интеграл sin(x)^2 относительно x | |
22 | Найти производную — d/dx | x^3 | |
23 | Найти производную — d/dx | sec(x)^2 | |
24 | Найти производную — d/dx | 1/(x^2) | |
25 | Вычислить | интеграл arcsin(x) относительно x | |
26 | Вычислить | интеграл cos(x)^2 относительно x | |
27 | Вычислить | интеграл sec(x)^2 относительно x | |
28 | Найти производную — d/dx | e^(x^2) | |
29 | Вычислить | интеграл в пределах от 0 до 1 кубического корня 1+7x по x | |
30 | Найти производную — d/dx | sin(2x) | |
31 | Вычислить | интеграл натурального логарифма x по x | |
32 | Найти производную — d/dx | tan(x)^2 | |
33 | Вычислить | интеграл e^(2x) относительно x | |
34 | Вычислить | интеграл 1/(x^2) относительно x | |
35 | Найти производную — d/dx | 2^x | |
36 | График | натуральный логарифм a | |
37 | Вычислить | e^1 | |
38 | Вычислить | интеграл 1/(x^2) относительно x | |
39 | Вычислить | натуральный логарифм 0 | |
40 | Найти производную — d/dx | cos(2x) | |
41 | Найти производную — d/dx | xe^x | |
42 | Вычислить | интеграл 1/x относительно x | |
43 | Вычислить | интеграл 2x относительно x | |
44 | Найти производную — d/dx | ( натуральный логарифм x)^2 | |
45 | Найти производную — d/dx | натуральный логарифм (x)^2 | |
46 | Найти производную — d/dx | 3x^2 | |
47 | Вычислить | натуральный логарифм 2 | |
48 | Вычислить | интеграл xe^(2x) относительно x | |
49 | Найти производную — d/dx | 2e^x | |
50 | Найти производную — d/dx | натуральный логарифм 2x | |
51 | Найти производную — d/dx | -sin(x) | |
52 | Вычислить | tan(0) | |
53 | Найти производную — d/dx | 4x^2-x+5 | |
54 | Найти производную — d/dx | y=16 корень четвертой степени 4x^4+4 | |
55 | Найти производную — d/dx | 2x^2 | |
56 | Вычислить | интеграл e^(3x) относительно x | |
57 | Вычислить | интеграл cos(2x) относительно x | |
58 | Вычислить | интеграл cos(x)^2 относительно x | |
59 | Найти производную — d/dx | 1/( квадратный корень x) | |
60 | Вычислить | интеграл e^(x^2) относительно x | |
61 | Вычислить | sec(0) | |
62 | Вычислить | e^infinity | |
63 | Вычислить | 2^4 | |
64 | Найти производную — d/dx | x/2 | |
65 | Вычислить | 4^3 | |
66 | Найти производную — d/dx | -cos(x) | |
67 | Найти производную — d/dx | sin(3x) | |
68 | Вычислить | натуральный логарифм 1/e | |
69 | Вычислить | интеграл x^2 относительно x | |
70 | Упростить | 1/( кубический корень от x^4) | |
71 | Найти производную — d/dx | 1/(x^3) | |
72 | Вычислить | интеграл e^x относительно x | |
73 | Вычислить | интеграл tan(x)^2 относительно x | |
74 | Вычислить | интеграл 1 относительно x | |
75 | Найти производную — d/dx | x^x | |
76 | Найти производную — d/dx | x натуральный логарифм x | |
77 | Вычислить | интеграл sin(x)^2 относительно x | |
78 | Найти производную — d/dx | x^4 | |
79 | Вычислить | предел (3x-5)/(x-3), если x стремится к 3 | |
80 | Вычислить | интеграл от x^2 натуральный логарифм x по x | |
81 | Найти производную — d/dx | f(x) = square root of x | |
82 | Найти производную — d/dx | x^2sin(x) | |
83 | Вычислить | интеграл sin(2x) относительно x | |
84 | Найти производную — d/dx | 3e^x | |
85 | Вычислить | интеграл xe^x относительно x | |
86 | Найти производную — d/dx | y=x^2 | |
87 | Найти производную — d/dx | квадратный корень x^2+1 | |
88 | Найти производную — d/dx | sin(x^2) | |
89 | Вычислить | интеграл e^(-2x) относительно x | |
90 | Вычислить | интеграл натурального логарифма квадратного корня x по x | |
91 | Вычислить | 2^5 | |
92 | Найти производную — d/dx | e^2 | |
93 | Найти производную — d/dx | x^2+1 | |
94 | Вычислить | интеграл sin(x) относительно x | |
95 | Вычислить | 2^3 | |
96 | Найти производную — d/dx | arcsin(x) | |
97 | Вычислить | предел (sin(x))/x, если x стремится к 0 | |
98 | Вычислить | e^2 | |
99 | Вычислить | интеграл e^(-x) относительно x | |
100 | Вычислить | интеграл 1/x относительно x |
1.5 Первообразная | Экономика для школьников
Понятие первообразной функцииПод дифференцированием функции $f(x)$ мы понимаем нахождение её производной $f'(x)$. Нахождение функции $f(x)$ по заданной её производной $f'(x)$ называют операцией интегрирования.
Таким образом, операция интегрирования обратна операции дифференцирования. Следовательно, операция интегрирования состоит в том, что по заданной производной $f'(x)$ восстанавливают функцию $f(x)$.
Определение 1
Функция $F$ называется первообразной для функции $f$ на заданном промежутке, если для всех $x$ из этого промежутка $F'(x)=f(x)$.
Множество всех первообразных для функции $f(x)$ можно представить в виде $F(x)+C$, где $C \in R$.
Теорема
Если функция $F$ есть первообразная для функции $f$ на промежутке $X$, то при любой постоянной $C$ функция $F(x)+C$ также является первообразной для функции $f$ на промежутке $X$. Любая первообразная функции $f$ на промежутке $X$ может быть записана в виде $F(x)+C$.
Определение 2
Выражение $F(x)+C$ называют общим видом пербообразных для функции $f$.
Пример 1
Функция $F(x)=x^4$ есть первообразная для функции $f(x)=4x^3$ на промежутке $(-\infty;\infty)$, ибо для всех $x \in R$ справедливо равенство $F'(x)=(x^4)’=4x^3$.
Первообразные некоторых функций:
$k$ (постоянная) | $kx+C$ |
$x^a$ ($a \in R$, $a \neq 1$) | $\dfrac{x^{a+1}}{a+1}+C$ |
$\dfrac{1}{\sqrt{x}}$ | $2\sqrt{x}+C$ |
Пример 2
Найти общий вид первообразной для функции $f=x^2$
$f=x^2$
$f=x^{a}$
$a=2$
$F=\dfrac{x^{2+1}}{2+1}+C=\dfrac{x^3}{3}+C$
Три правила нахождения первообразных
- Если $F$ есть первообразная для $f$, а $G$ есть первообразная для $g$, то $F+G$ есть первообразная для $f+g$, то есть $(F+G)’=f+g$.
- Если $F$ есть первообразная для $f$, а $k$ есть постоянная, то $kF$ есть первообразная для $kf$, то есть $(kF)’=kf$.
- Если $F(x)$ есть первообразная для функции $f(x)$, а $k$ и $b$ являются постоянными, $k\neq0$, то $\dfrac{1}{k}F(kx+b)$ есть первообразная для функции $f(kx+b)$, то есть $\left(\dfrac{1}{k}F(kx+b)\right)’=f(kx+b)$
Пример 3
Найти общий вид первообразной для функции $f=x^3+\dfrac{1}{x^2}$
Так как для функции $x^3$ одна из первообразных есть $\dfrac{x^4}{4}$, а для функции $\dfrac{1}{x^2}$ одной из первообразных является функция $-\dfrac{1}{x}$, то по правилу $1$ находим, что для функции $f=x^3+\dfrac{1}{x^2}$ одной из первообразных будет $\dfrac{x^4}{4}-\dfrac{1}{x}$, а общий вид первообразных будет $\dfrac{x^4}{4}-\dfrac{1}{x}+C$.
Первообразная и неопределенный интеграл.
Функция $F(x)$ называется первообразной функции $f(x),$ заданной на некотором множестве $X,$ если $F'(x)=f(x)$ для всх $x\in X.$ Если $F(x -)$ первообразная функции $f(x),$ то $\Phi(x)$ является первообразной той же функции в том и только в том случае, когда $\Phi(x)=F(x)+C,$ где $C$ — некоторая постоянная. Совокупность всех первообразных функции $f(x)$ называется неопределенным интегралом от этой функции и обозначается символом $$\int f(x)\,dx.$$ Таким образом, по определению $$\int f(x)\,dx=F(x)+C,$$ где $F(x)$ одна из первообразных функции $f(x)$ а постоянная $C$ принимает действительные значения.
Свойства неопределенного интеграла.
1. $\left(\int f(x)\,dx\right)’=f(x).$
2. $\int f'(x)dx=f(x)+C.$
3. $\int af(x)dx=a\int f(x) dx.\,\,\,\,\,\,a\neq 0.$
4. $\int (f_1(x)+f_2(x))dx=\int f_1(x)\,dx+\int f_2(x)\, dx.$
Таблица основных неопределенных интегралов.
1. $\int dx=x+C$
2. $\int x^{\alpha}dx=\frac{x^{\alpha+1}}{\alpha+1}+C$
3. $\int {dx}{x}=\ln |x|+C$
4. $\int a^x dx=\frac{a^x}{\ln a}+C$
5. $\int e^x dx=e^x+C$
6. $\int \sin x dx=-\cos x+C$
7. $\int \cos x dx=\sin x+C$
8. $\int \frac{dx}{\cos^2 x}=tg x+C$
9. $\int \frac{dx}{sin^2 x}=-ctg x+C$
10. $\int \frac{dx}{\sqrt{a^2-x^2}}=\arcsin\frac{x}{a}+C$
11. $\int \frac{dx}{\sqrt{x^2 \pm a^2}}=\ln\left|x+\sqrt{x^2\pm a^2}\right|+C$
12. $\int \frac{dx}{x^2+a^2}=\frac{1}{a}arctg\frac{x}{a}+C$
13. $\int \frac{dx}{x^2 -a^2}=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C$
14. $\int sh x dx = ch x+C$
15. $\int ch x dx = sh x+C$
16. $\int \frac{dx}{ch^2 x} = th x+C$
17. $\int \frac{dx}{sh^2 x} = -cth x+C$
Примеры.
Найти первообразные следующих функций:
6.1. $2x^7.$
Решение.
Из определения первообразной следует, что нам необходимо найти такую функцию $F(x),$ что $F'(x)=2x^7.$
$$(x^8)’=8x^7\Rightarrow (\frac{1}{4}x^8)’=2x^7.$$
Таким образом, $F(x)=0,25 x^8,$ а все первообразные заданной функции имеют вид $0,25x^8+c.$
Ответ: $0,25x^8+c.$
6.4.$\frac{x^3+5x^2-1}{x}.$
Решение.
Из определения первообразной следует, что нам необходимо найти такую функцию $F(x),$ что $F'(x)=\frac{x^3+5x^2-1}{x}=x^2+5x-\frac{1}{x}.$
$$(x^3)’=3x^2\Rightarrow (\frac{1}{3}x^3)’=x^2;$$
$$(x^2)’=2x\Rightarrow (\frac{5}{2}x^2)’=5x;$$
$$(\ln |x|)’=\frac{1}{x}.$$
Отсюда находим, $$F(x)=\frac{1}{3} x^3+\frac{5}{2}x^2-\ln |x|,$$ а все первообразные заданной функции имеют вид $\frac{1}{3} x^3+\frac{5}{2}x^2-\ln |x|+c.$
Ответ: $\frac{1}{3} x^3+\frac{5}{2}x^2-\ln |x|+c.$
6.7.$\frac{1}{\sqrt{a+bx}}.$
Решение.
Из определения первообразной следует, что нам необходимо найти такую функцию $F(x),$ что $F'(x)=\frac{1}{\sqrt{a+bx}}.$
$$(\sqrt{a+bx})’=\frac{1}{2\sqrt{a+bx}}(a+bx)’=\frac{b}{2\sqrt{a+bx}}\Rightarrow$$ $$\Rightarrow (\frac{2}{b}\sqrt{a+bx})’=\frac{1}{\sqrt{a+bx}}.$$
Таким образом, $$F(x)=\frac{2}{b}\sqrt{a+bx},$$ а все первообразные заданной функции имеют вид $\frac{2}{b}\sqrt{a+bx}+c.$
Ответ: $\frac{2}{b}\sqrt{a+bx}+c.$
6.10.$\frac{1}{\cos^2{4x}}.$
Решение.
Из определения первообразной следует, что нам необходимо найти такую функцию $F(x),$ что $F'(x)=\frac{1}{\cos^2{4x}}.$
$$(tg 4x)’=\frac{1}{\cos^2{4x}}(4x)’=\frac{4}{\cos^2{4x}}\Rightarrow (\frac{1}{4}tg 4x)’=\frac{1}{\cos^2 4x}.$$
Таким образом, $$F(x)=\frac{1}{4 }tg 4x,$$ а все первообразные заданной функции имеют вид $0,25 tg 4x+c.$
Ответ: $0,25 tg 4x+c.$
Используя таблицу основных интегралов, найти следующие интегралы:
6.15.$\int\left(3x^2+2x+\frac{1}{x}\right)\, dx.$
Решение.
$$\int\left(3x^2+2x+\frac{1}{x}\right)\, dx=3\int x^2 dx+2\int xdx+\int\frac{1}{x}dx=$$ $$=3\frac{x^3}{3}+2\frac{x^2}{2}+\ln |x|+c=x^3+x^2+\ln|x|+c.$$
Ответ: $x^3+x^2+\ln|x|+c.$
6.17.$\int\sqrt{mx}\,dx.$
Решение.
$$\int\sqrt{mx}\, dx=\sqrt m\int x^{\frac{1}{2}}\,dx=\sqrt m\frac{x^{1/2+1}}{1/2+1}+c=\sqrt m\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+c=$$ $$=\frac{2\sqrt {mx^3}}{3}+c.$$
Ответ: $\frac{2\sqrt{mx^3}}{3}+c.$
6.19.$\int\left(\frac{1}{\sqrt[3]{x^2}}-\frac{x+1}{\sqrt[4]{x^3}}\right)\,dx.$
Решение.
$$\int\left(\frac{1}{\sqrt[3]{x^2}}-\frac{x+1}{\sqrt[4]{x^3}}\right)\,dx=\int x^{-2/3}dx-\int\frac{x}{x^{3/4}}\,dx-\int\frac{1}{x^{3/4}}dx=$$ $$=\int x^{-2/3}dx-\int{x^{1/4}}\,dx-\int{x^{-3/4}}dx=$$ $$=\frac{x^{-2/3+1}}{-2/3+1}-\frac{x^{1/4+1}}{1/4+1}-\frac{x^{-3/4+1}}{-3/4+1}+c=$$ $$=3x^{1/3}-\frac{4x^{5/4}}{5}-4{x^{1/4}}+c=$$
Ответ: $3\sqrt[3]x-\frac{4}{5}x\sqrt[4]{x}-4\sqrt[4]{x}+c.$
6.22.$\int 2^xe^x\, dx.$
Решение.
$$\int 2^xe^x\,dx=\int (2e)^x\,dx=\frac{(2e)^x}{\ln (2e)}+c=\frac{(2e)^x}{\ln2+1}+c$$
Ответ: $\frac{(2e)^x}{\ln 2+1}+c.$
6.24.$\int(2x+3\cos x)\,dx.$
Решение.
$$\int (2x+3\cos x)\,dx=2\int x\,dx+3\int\cos x\,dx=2\frac{x^2}{2}+3\sin x+c=$$ $$=x^2+3\sin x+c$$
Ответ: $x^2+3\sin x+c.$
6.28.$\int\sin^2\frac{x}{2}\,dx.$
Решение.
$$\int \sin^2\frac{x}{2}\,dx=\int \frac{1-\cos x}{2}\,dx=\frac{1}{2}\int\,dx-\frac{1}{2}\int\cos x\,dx=$$ $$=0,5 x-0,5\sin x+c.$$
Ответ: $0,5 x-0,5\sin x+c.$
6.42.$\int\frac{dx}{\sqrt{x^2-7}}.$
Решение.
$$\int \frac{dx}{\sqrt{x^2-7}}=\ln|x+\sqrt{x^2-7}|+c.$$
Ответ: $\ln|x+\sqrt{x^2-7}|+c.$
1 | Найти производную — d/dx | квадратный корень x | |
2 | Найти производную — d/dx | натуральный логарифм x | |
3 | Вычислить | интеграл натурального логарифма x по x | |
4 | Найти производную — d/dx | e^x | |
5 | Вычислить | интеграл e^(2x) относительно x | |
6 | Найти производную — d/dx | 1/x | |
7 | Найти производную — d/dx | x^2 | |
8 | Вычислить | интеграл e^(-x) относительно x | |
9 | Найти производную — d/dx | 1/(x^2) | |
10 | Найти производную — d/dx | sin(x)^2 | |
11 | Найти производную — d/dx | sec(x) | |
12 | Вычислить | интеграл e^x относительно x | |
13 | Вычислить | интеграл x^2 относительно x | |
14 | Вычислить | интеграл квадратного корня x по x | |
15 | Вычислить | натуральный логарифм 1 | |
16 | Вычислить | e^0 | |
17 | Вычислить | sin(0) | |
18 | Найти производную — d/dx | cos(x)^2 | |
19 | Вычислить | интеграл 1/x относительно x | |
20 | Вычислить | cos(0) | |
21 | Вычислить | интеграл sin(x)^2 относительно x | |
22 | Найти производную — d/dx | x^3 | |
23 | Найти производную — d/dx | sec(x)^2 | |
24 | Найти производную — d/dx | 1/(x^2) | |
25 | Вычислить | интеграл arcsin(x) относительно x | |
26 | Вычислить | интеграл cos(x)^2 относительно x | |
27 | Вычислить | интеграл sec(x)^2 относительно x | |
28 | Найти производную — d/dx | e^(x^2) | |
29 | Вычислить | интеграл в пределах от 0 до 1 кубического корня 1+7x по x | |
30 | Найти производную — d/dx | sin(2x) | |
31 | Вычислить | интеграл натурального логарифма x по x | |
32 | Найти производную — d/dx | tan(x)^2 | |
33 | Вычислить | интеграл e^(2x) относительно x | |
34 | Вычислить | интеграл 1/(x^2) относительно x | |
35 | Найти производную — d/dx | 2^x | |
36 | График | натуральный логарифм a | |
37 | Вычислить | e^1 | |
38 | Вычислить | интеграл 1/(x^2) относительно x | |
39 | Вычислить | натуральный логарифм 0 | |
40 | Найти производную — d/dx | cos(2x) | |
41 | Найти производную — d/dx | xe^x | |
42 | Вычислить | интеграл 1/x относительно x | |
43 | Вычислить | интеграл 2x относительно x | |
44 | Найти производную — d/dx | ( натуральный логарифм x)^2 | |
45 | Найти производную — d/dx | натуральный логарифм (x)^2 | |
46 | Найти производную — d/dx | 3x^2 | |
47 | Вычислить | натуральный логарифм 2 | |
48 | Вычислить | интеграл xe^(2x) относительно x | |
49 | Найти производную — d/dx | 2e^x | |
50 | Найти производную — d/dx | натуральный логарифм 2x | |
51 | Найти производную — d/dx | -sin(x) | |
52 | Вычислить | tan(0) | |
53 | Найти производную — d/dx | 4x^2-x+5 | |
54 | Найти производную — d/dx | y=16 корень четвертой степени 4x^4+4 | |
55 | Найти производную — d/dx | 2x^2 | |
56 | Вычислить | интеграл e^(3x) относительно x | |
57 | Вычислить | интеграл cos(2x) относительно x | |
58 | Вычислить | интеграл cos(x)^2 относительно x | |
59 | Найти производную — d/dx | 1/( квадратный корень x) | |
60 | Вычислить | интеграл e^(x^2) относительно x | |
61 | Вычислить | sec(0) | |
62 | Вычислить | e^infinity | |
63 | Вычислить | 2^4 | |
64 | Найти производную — d/dx | x/2 | |
65 | Вычислить | 4^3 | |
66 | Найти производную — d/dx | -cos(x) | |
67 | Найти производную — d/dx | sin(3x) | |
68 | Вычислить | натуральный логарифм 1/e | |
69 | Вычислить | интеграл x^2 относительно x | |
70 | Упростить | 1/( кубический корень от x^4) | |
71 | Найти производную — d/dx | 1/(x^3) | |
72 | Вычислить | интеграл e^x относительно x | |
73 | Вычислить | интеграл tan(x)^2 относительно x | |
74 | Вычислить | интеграл 1 относительно x | |
75 | Найти производную — d/dx | x^x | |
76 | Найти производную — d/dx | x натуральный логарифм x | |
77 | Вычислить | интеграл sin(x)^2 относительно x | |
78 | Найти производную — d/dx | x^4 | |
79 | Вычислить | предел (3x-5)/(x-3), если x стремится к 3 | |
80 | Вычислить | интеграл от x^2 натуральный логарифм x по x | |
81 | Найти производную — d/dx | f(x) = square root of x | |
82 | Найти производную — d/dx | x^2sin(x) | |
83 | Вычислить | интеграл sin(2x) относительно x | |
84 | Найти производную — d/dx | 3e^x | |
85 | Вычислить | интеграл xe^x относительно x | |
86 | Найти производную — d/dx | y=x^2 | |
87 | Найти производную — d/dx | квадратный корень x^2+1 | |
88 | Найти производную — d/dx | sin(x^2) | |
89 | Вычислить | интеграл e^(-2x) относительно x | |
90 | Вычислить | интеграл натурального логарифма квадратного корня x по x | |
91 | Вычислить | 2^5 | |
92 | Найти производную — d/dx | e^2 | |
93 | Найти производную — d/dx | x^2+1 | |
94 | Вычислить | интеграл sin(x) относительно x | |
95 | Вычислить | 2^3 | |
96 | Найти производную — d/dx | arcsin(x) | |
97 | Вычислить | предел (sin(x))/x, если x стремится к 0 | |
98 | Вычислить | e^2 | |
99 | Вычислить | интеграл e^(-x) относительно x | |
100 | Вычислить | интеграл 1/x относительно x |
Тренажёр по алгебре (11 класс) по теме: Первообразная
Тест по теме: «Первообразная и интеграл»
1. Определите функцию, для которой F(x) = x2 – sin2x – 1 является первообразной:
1) f(x) = ; 2) f(x) = 2x – 2cos2x; 3) f(x) = 2x +cos2x; 4) f(x) = cos2x + x.
2. Найдите первообразную для функции. F (x) = 4х3 + cos x
1) F(x) = 12×2 – sinx + c; 2) F(x) = 4×3 + sinx + c; 3) F(x) = x4 – sinx + c; 4) F(x) = x4 + sinx + c.
3. Для функции f(x) = х2 найдите первообразную F, принимающую заданное значение в заданной точке F (- 1) = 2
1) F(x) = ; 2) F(x) = 2x + ; 3) F(x) = – ; 4) F(x) = .
4. Точка движется по прямой так, что её скорость в момент времени t равна V (t) = t + t2. Найдите путь, пройденный точкой за время от 1 до 3 сек, если скорость измеряется в м /сек. 1) 18 м; 2) 12м; 3) 17м; 4) 20 м.
5. Вычислите 1) 6; 2) 6; 3) 2; 4) 3.
6. Найдите площадь криволинейной трапеции, ограниченной линиями у = – х2 + 3 и у = 0
1) 4; 2) 6; 3) 9; 4) 8.
7. Найдите площадь фигуры, ограниченной линиями у = и у = х
1) 2; 2) 1; 3) 2; 4) 1.
8. Вычислите площадь фигуры, ограниченной графиком функции у = 2 – х2, касательной к этому графику в его точке с абсциссой х = — 1 и прямой х = 0
1) 1; 2) 2; 3) ; 4) 1.
9. Вычислите
10. Найдите сумму абсцисс точек пересечения графиков функции у = (х – 1)(х + 2) и её первообразной, если одна из этих точек находится на оси ординат.
11. Найдите ту первообразную функции f(x) = 3х – 1 , для которой уравнение F(x) = 5 имеет единственный корень.