2X y 1 x y 1 7: Помогите пожалуйста в) Решить систему уравнений: {x-y=1, {x/2+y/4=2x-y/3 / это дробь

Содержание

заказ решений на аукционе за минимальную цену с максимальным качеством

Предлагаю идею сайта-аукциона по выполнению домашних заданий. Он будет включать:

  • решение задач по математике (сейчас доступен решебник Филиппова), физике, химии, экономике
  • написание лабораторных, рефератов и курсовых
  • выполнение заданий по литературе, русскому или иностранному языку.

Основное отличие от большинства сайтов, предлагающих выполнение работ на заказ – сайт рассчитан на две категории пользователей: заказчиков и решающих задания. Причем, по желанию (чтобы заработать, увеличить свой рейтинг, получить решение сложной задачи) пользователи могут играть любую из этих ролей.

Объединение сервисов в одну систему

Основой для идеи послужили несколько работающих систем, объединение которых позволит сделать сервис для решения задач на заказ. Эти системы:

  • Форум, где посетители обмениваются идеями и помогают друг другу
  • Система bugtracking, где обнаруженные проблемы проходят путь от публикации до принятия в исполнение и решения
  • Аукцион
    , где цена за товар или услугу определяется в результате торгов
  • Система рейтингов, где участники могут оценивать ответы друг друга. Причем, чем больше рейтинг пользователя, тем более значимым становится его голос

Принцип работы

Для удобства и проведения аналогий с реальной жизнью назовем заказчиков студентами, а решающих задания – репетиторами.

Итак, студенту необходимо решить несколько задач. Он заходит на сайт, выбирает раздел с соответствующей дисциплиной и создает новую тему (аналогия с форумом). Но при создании темы он также указывает стартовую (максимальную) цену, которую он готов заплатить за решение задач и крайний срок исполнения задания. Можно будет назначить и нулевую цену – если студенту нужно только бесплатное решение.

Как только тема создана, все пожелавшие подписаться на раздел репетиторы получают уведомление. Причем, условие получения уведомлений можно настроить. Например, уведомлять только о заказах со стартовой ценой более 500 р. и сроком решения не менее недели.

Заинтересовавшиеся репетиторы делают ставки. Причем студент (автор темы) видит ставки и может посмотреть информацию по каждому репетитору (его решения, рейтинг, дату начала участия в проекте).

Когда студент посчитает нужным, он может остановить аукцион и назначить задание одному из репетиторов, сделавшему ставку (не обязательно самую низкую, т.к. можно учитывать и другие факторы – см. выше).

Деньги блокируются на счете студента, и репетитор начинает решать задание. Он должен представить его к сроку, заданному изначально. Выполненное решение публикуется в свободном доступе и его может оценить как заказчик, так и другие репетиторы. На этих оценках и строится рейтинг. Если к решению нет претензий – деньги окончательно переводятся со счета студента на счет репетитора.

За счет чего будет развиваться сервис

Первое – положительная обратная связь. Чем больше условий задач и решений будет опубликовано на сайте, тем чаще его будут находить пользователи через поисковики, будет больше ссылок на готовые решения. Именно поэтому важно размещать решенные задачи в свободном доступе. Знаю это по опыту своего сайта exir.ru (ex irodov.nm.ru) – большая ссылочная база получена исключительно за счет благодарных пользователей.

Второе – удобный сервис для заказчиков и для желающих заработать на решениях.

Преимущества для заказчиков

Студентам и школьникам не нужно перебирать десятки сайтов для сравнения цен, а потом надеяться, что после оплаты они получат качественное решение (и, вообще, все не закончится перечислением денег). Заказчики создают аукцион на понижение цены и могут смотреть на рейтинги желающих решить задачи и ранее выполненные ими решения. Кроме того, деньги окончательно перечисляются исполнителю только после полного решения.

Преимущества для решающих задания

Не нужно создавать и продвигать свой сайт, размещать множество объявлений во всех доступных источниках информации. Заказчики сами придут к вам. Не нужно решать все присланные задания с целью поддержания репутации – можно выбирать те, которые будут интересны по уровню сложности, цене и срокам решения.

Преимущества для владельца сервиса

Если вы не понимаете, какую выгоду получит делающий вам какое-нибудь предложение – будьте осторожны! 🙂 У меня уже есть большой опыт работы с сайтом, предоставляющим бесплатные решения по физике. И вариант с получением прибыли от размещения рекламы подходит и для нового сервиса. Кроме того, мне нравится помогать людям и довольно тяжело смотреть, как множество вопросов по задачам остаются на форуме без ответа. Предложенный аукцион решений сможет значительно сократить число вопросов без ответов.

В будущем возможен вариант и с получением некоторого небольшого процента от оплаты заказов. Но процент этот должен быть минимален и на начальном этапе он взиматься точно не будет.

Что необходимо для создания сервиса

  1. Самым важное сейчас – собрать команду, готовую принять участие в выполнении заданий. Если покупатели заходят в пустой магазин – они надолго забывают в него дорогу.

    Поэтому я собираю предварительные заявки от посетителей, готовых заниматься решениями. Не нужно подписания никаких договоров о намерениях. Просто сообщите, на какие темы вы готовы решать задания, какой у вас опыт подобной работы (e-mail: [email protected]). Когда сервис заработает – я пришлю приглашение на регистрацию.

  2. Выбрать платежную систему.
  3. Сделать подходящий движок для сайта. Нужно решить – создавать его с нуля или изменить какой-нибудь существующий движок (например, форумный) с открытой лицензией.
  4. Привлечь посетителей. Учитывая посещаемость exir.ru и число публикуемых на форуме вопросов, думаю, это не будет большой проблемой.

Вычисление двойных интегралов: теория и примеры

Записывается двойной интеграл так:

.

Здесь D – плоская фигура, ограниченная линиями, выражения которых (равенства) даны в задании вычисления двойного интеграла. Слева и справа – равенствами, в которых слева переменная x, а сверху и снизу – равенствами, в которых слева переменная y. Это место и далее – одно из важнейших для понимания техники вычисления двойного интеграла.

Вычислить двойной интеграл - значит найти число, равное площади упомянутой фигуры D.

Пока мы не касаемся определения двойного интеграла, а будем учиться его вычислять. Понять, что такое двойной интеграл, проще, когда решены несколько задач на его вычисление, поэтому определение двойного интеграла вы найдёте в конце этого урока. Чуть забегая вперёд, можно лишь отметить, что определение двойного интеграла также связано с упоминавшейся фигурой D.

В случае если фигура D представляет собой прямоугольник, все линии, ограничивающие её – это прямые линии. Если фигура D - криволинейна, то слева и справа она ограничена прямыми, а сверху и снизу – кривыми линиями, заданными равенствами, которые даны в задании. Бывают и случаи, когда фигура D – треугольник, но о таких случаях чуть дальше.

Для вычисления двойного интеграла нужно, таким образом, рассортировать линии, огранивающие фигуру D

, которая имеет строгое название – область интегрирования. Рассортировать на левые и правые и на верхние и нижние. Это потребуется при сведении двойного интеграла к повторному интегралу – методе вычисления двойного интеграла.

Случай прямоугольной области:

Случай криволинейной области:

А это уже решение знакомых нам определённых интегралов, в которых заданы верхний и нижний пределы интегрирования. Выражения, задающие линии, которые ограничивают фигуру D, будут пределами интегрирования для обычных определённых интегралов, к которым мы уже подходим.

Случай прямоугольной области

Пусть дана функция двух переменных f(xy) и ограничения для D: D = {(xy) | a ≤ x ≤ bc ≤ y ≤ d}, означающие, что фигуру D слева и справа ограничивают прямые x = a и x = 

b, а снизу и сверху - прямые y = c и y = d. Здесь a, b, c, d - числа.

Пусть для такой функции существует двойной интеграл

.

Чтобы вычислить этот двойной интеграл, нужно свести его к повторному интегралу, который имеет вид

.

Здесь пределы интегрирования a, b, c, d - числа, о которых только что упоминалось.

Сначала нужно вычислять внутренний (правый) определённый интеграл, затем - внешний (левый) определённый интеграл.

Можно и поменять ролями x и y. Тогда повторный интеграл будет иметь вид

.

Такой повторный интеграл нужно решать точно так же: сначала - внутренний (правый) интеграл, затем - внешний (левый).

Пример 1. Вычислить двойной интеграл

,

где

.

Решение. Сводим данный двойной интеграл к повторному интегралу

.

На чертеже строим область интегрирования:

Вычисляем внутренний (правый) интеграл, считая игрек константой. Получаем.

.

Теперь вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого):

Результат и будет решением данного двойного интеграла.

Пример 2. Вычислить двойной интеграл

,

где

.

Решение. Сводим данный двойной интеграл к повторному интегралу

.

На чертеже строим область интегрирования:

Вычисляем внутренний (правый) интеграл, считая икс константой. Получаем.

Теперь вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого):

Результат и будет решением данного двойного интеграла.

Случай криволинейной или треугольной области

Пусть снова дана функция двух переменных f(xy), а ограничения для D: уже несколько другого вида:

.

Эта запись означает, что фигуру D слева и справа ограничивают, как и в случае прямолинейной области - прямые x = a и x = b, но снизу и сверху - кривые, которые заданы уравнениями и . Иными словами, и - функции.

Пусть для такой функции также существует двойной интеграл

.

Чтобы вычислить этот двойной интеграл, нужно свести его к повторному интегралу, который имеет вид

.

Здесь пределы интегрирования a и b - числа, а и - функции. В случае треугольной области одна из функций или - это уравнение прямой линии.

Такой случай будет разобран в примере 3.

Как и в случае прямолинейной области, сначала нужно вычислять правый определённый интеграл, затем - левый определённый интеграл.

Точно так же можно поменять ролями x и y. Тогда повторный интеграл будет иметь вид

.

Такой повторный интеграл нужно решать точно так же: сначала - внутренний (правый) интеграл, затем - внешний (левый).

Пример 3. Вычислить двойной интеграл

,

где

.

Решение. Сводим данный двойной интеграл к повторному интегралу

.

На чертеже строим область интегрирования и видим, что она треугольная:

Вычисляем внутренний (правый) интеграл, считая икс константой. Получаем.

Теперь вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого). Сначала представляем этот интеграл в виде суммы интегралов:

.

Вычисляем первое слагаемое:

Вычисляем второе слагаемое:

Вычисляем третье слагаемое:

Получаем сумму, которая и будет решением данного двойного интеграла:

.

Пример 4. Вычислить двойной интеграл

,

где

.

Решение. Сводим данный двойной интеграл к повторному интегралу

.

На чертеже строим область интегрирования:

Вычисляем внутренний (правый) интеграл, считая икс константой. Получаем.

.

Теперь вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого):

Результат и будет решением данного двойного интеграла.

Случается, область интегрирования двойного интеграла ограничена такими линиями, что возникает необходимость разбить область интегрирования на части и решать каждый соответствующий повторный интеграл отдельно. Это случаи, когда:

1) область интегрирования представляет собой фигуру, имеющую в виде нижней или верхней (левой или правой) границы две или более двух прямых или кривых линий;

2) область интегрирования представляет собой фигуру, границу которой прямые пересекают более чем в двух точках.

Если вышесказанное относится к левой или правой границе области интегрирования, то есть ограничениях, заданных линиями, выраженными через x, то область интегрирования называется x-неправильной. Если же прямая y = y0 пересекает соответствующую границу лишь в одной точке и если границей служит лишь одна прямая или кривая, то область интегрирования называется x-правильной

Аналогично, если границу, заданную линиями, выраженными через y, прямая x = x0 пересекает более чем в одной точке или если границей служат более одной прямой или кривой, то область интегрирования называется y-неправильной. Вывести теперь признаки y-правильной области, надо полагать, совсем просто.

До сих пор мы рассматривали примеры с x-неправильными и y-правильными областями интегрирования. Теперь рассмотрим случаи, когда условие правильности нарушается.

Как уже отмечалось выше, после приведения двойного интеграла к повторному интегралу, можно поменять переменные x и y ролями, или, говоря иначе, поменять порядок интегрирования.

Смена порядка интегрирования образно может быть описана следующими словами О'Генри: "Так ведёт себя обитатель джунглей - зверь, попав в клетку, и так ведёт себя обитатель клетки - человек, заблудившись в джунглях сомнений". Результат, так же по О'Генри один и тот же: "Чалмерс разорвал письмо на тысячу мельчайших клочков и принялся терзать свой дорогой ковёр, расхаживая по нему взад и вперёд". (О'Генри. Шехерезада с Мэдисон-сквера. )

Тогда, если левый интеграл у нас по переменной x, а правый - по y, то после смены порядка интегрирования всё будет наоборот. Тогда пределы интегрирования для "нового" игрека нужно "позаимствовать" у "старого" икса, а пределы интегрирования для "нового" икса получить в виде обратной функции, разрешив относительно икса уравнение, задававшее предел для игрека.

Пример 8. Сменить порядок интегрирования для повторного интеграла

.

Решение. После смены порядка интегрирования интеграл по игреку станет левым, а интеграл по иксу - правым. Пределы интегрирования для "нового" игрека позаимствуем у "старого" икса, то есть нижний предел равен нулю, а верхний - единице. Пределы интегрирования для "старого" игрека заданы уравнениями и . Разрешив эти уравнения относительно икса, получим новые пределы интегрирования для икса:

(нижний) и (верхний).

Таким образом, после смены порядка интегрирования повторный интеграл запишется так:

.

После смены порядка интегрирования в двойном интеграле нередко область интегрирования превращается в y-неправильную или x-неправильную (см. предыдущий параграф). Тогда требуется разбить область интегрирования на части и решать каждый соответствующий повторный интеграл отдельно.

Поскольку разбиение области интегрирования на части представляет определённые трудности для многих студентов, то не ограничимся примером, приведённым в предыдущем параграфе, а разберём ещё пару примеров.

Пример 9. Сменить порядок интегрирования для повторного интеграла

.

Решение. Итак, область интегрирования данного повторного интеграла ограничена прямыми y = 1, y = 3, x = 0, x = 2y.

При интегрировании в другом порядке нижняя граница области состоит из двух прямых: AB и BC, которые заданы уравнениями y = 1 и y = x/2, что видно на рисунке ниже.

Выход из такой неопределённости состоит в разбиении области интегрирования на две части. Делить область интегрирования будет прямая . Новые пределы интегрирования вычисляем, находя обратную функцию. Соответственно этому решению повторный интеграл после смены порядка интегрирования будет равным сумме двух интегралов:

Естественно, таким же будет решение двойного интеграла, который сводится к повторному интегралу, данному в условии этого примера.

Пример 10. Сменить порядок интегрирования для повторного интеграла

.

Решение. Итак, область интегрирования повторного интеграла ограничена прямыми x = 0, x = 2 и кривыми и .

Как видно на рисунке ниже, прямая, параллельная оси 0x, будет пересекать нижнюю границу области интегрирования более чем в двух точках.

Поэтому разобьём область интегрирования на три части прямыми, которые на рисунке начерчены чёрным. Новые пределы интегрирования вычисляем, находя обратную функцию. Пределы для трёх новых областей интегрирования будут следующими.

Для :

Для :

Для :

Соответственно этому решению повторный интеграл после смены порядка интегрирования будет равным сумме трёх интегралов:

Той же сумме трёх интегралов будет равен и двойной интеграл, который сводится к повторному интегралу, данному в условии этого примера.

И всё же обстоятельства непреодолимой силы нередко мешают студентам уже на предыдущем шаге - расстановке пределов интегрирования. Тревога и смятение не лишены некоторого основания: если для разбиения области интегрирования на части обычно достаточно приглядеться к чертежу, а для решения повторного интеграла - таблицы интегралов, то в расстановке пределов интегрирования нужен некоторый опыт тренировок. Пробежим пример, в котором остановимся только на расстановке пределов интегрирования и - почти на автомате - на разбиении области и опустим само решение.

Пример 11. Найти пределы интегрирования двойного интеграла, если область интегрирования D задана следующим образом:

y - 2x ≤ 0;
2y - x ≥ 0;
xy ≤ 2.

Решение. В явном виде (через x и y "без примесей") линии, ограничивающие область интегрирования, не заданы. Так как для икса ими чаще всего оказываются прямые, касающиеся в одной точке верхней и нижней границ, выраженных через игрек, то пойдём именно по этому пути. Тем более, что при смене порядка интегирования мы получим область интегрирования с такой же площадью. Разрешим неравенства относительно игрека и получим:

y ≤ 2x;
y ≥ x/2;
y ≤ 2/x.

Строим полученные линии на чертёже. Пределами интегрирования по иксу действительно служат линии x = 0 и x = 2. Но область интегрирования оказалась y-неправильной, так как её верхнюю границу нельзя задать одной линией y = y(x).

Поэтому разобьём область интегрирования на две части при помощи прямой x = 1 (на чертеже - чёрного цвета).

Теперь данный двойной интеграл можем записать как сумму двух повторных интегралов с правильно расставленными пределами интегрирования:

.

В этом параграфе даны примеры, в которых двойной интеграл равен отрицательному числу. Но, как отмечалось в теоретической справке в начале урока, площадь области интегрирования равна самому двойному интегралу. А если двойной интеграл - отрицательное число, то площадь равна его модулю.

Вычисление площади плоской фигуры с помощью двойного интеграла имеет более универсальный характер, чем вычисление площади криволинейной трапеции с помощью определённого интеграла. С помощью двойного интеграла можно вычислять площади не только криволинейной трапеции, но и фигур, расположенных произвольно по отношению к к координатным осям.

Пример 12. Вычислить площадь области, ограниченной линиями y² = x + 1 и x + y = 1.

Решение. Область интегрирования представляет собой фигуру, ограниченную слева параболой y² = x + 1, а справа прямой y = 1 - x. (рисунок ниже).

Решая как систему уравнения этих линий, получаем точки их пересечения: . Ординаты этих точек - - 2 и 1 будут соответственно нижним и верхним пределами интегрирования по игреку. Итак, площадь фигуры найдём как двойной интеграл, сведённый к повторному:

.

Вычисляем внутренний (правый) интеграл:

.

Вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого):

Как видим, решение двойного интеграла - отрицательное число. За площадь данной плоской фигуры принимается модуль этого числа, то есть 4/9.

Объём криволинейного цилиндра, ограниченного сверху поверхностью , снизу плоскостью z = 0 и с боковых сторон цилиндрической поверхностью, у которой образующие параллельны оси 0z, а направляющей служит контур области, вычисляется также по формуле двойного интеграла. То есть, с помощью двойного интеграла можно вычислять объёмы тел.

Пример 13. Вычислить объём тела, ограниченного поверхностями x = 0, y = 0, z = 0 и x + y + z = 1 (рисунок ниже).

Расставляя пределы интегрирования, получаем следующий повторный интеграл:

.

Вычисляем внутренний (правый) интеграл:

.

Вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого):

Вновь видим, что решение двойного интеграла - отрицательное число. За объём данного тела принимается модуль этого числа, то есть 1/6.

Мы уже знаем, что представляет собой область D. Пусть z = f(xy) - некоторая функция двух переменных, определённая и ограниченная в этой области. Разобъём область D произвольно на n частей, не имеющих общих точек, с площадями . В каждой из этих частей выберем произвольную точку и составим сумму

,

которую назовём интегральной суммой. Диаметром области D условимся называть наибольшее расстояние между граничными точками этой области. Учитывается также наибольший из диаметров частичных областей.

Определение. Если интегральная сумма при неограниченном возрастании числа n разбиений области D и стремлении наибольшего из диаметров частичных областей к нулю имеет предел, то этот предел называется двойным интегралом от функции f(xy) по области D.

Если областью интегрирования является окружность или часть окружности, то двойной интеграл проще вычислить в полярных координатах. Обобщением понятия двойного интеграла для функции трёх переменных является тройной интеграл.

Кратные и криволинейные интегралы

Поделиться с друзьями

Уравнения в целых числах (диофантовы уравнения) / math5school.ru

 

 

Немного теории

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

xn + yn = zn

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

  • способ перебора вариантов;

  • применение алгоритма Евклида;

  • представление чисел в виде непрерывных (цепных) дробей;

  • разложения на множители;

  • решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

  • метод остатков;

  • метод бесконечного спуска.

 

Задачи с решениями

1. Решить в целых числах уравнение x2 – xy – 2y2 = 7.

Решение

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

 

2. Решить в целых числах уравнение:

а) 20х + 12у = 2013;

б) 5х + 7у = 19;

в) 201х – 1999у = 12.

Решение

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

 

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

x0 = 1, y0 = 2.

Тогда

5x0 + 7y0 = 19,

откуда

5(х – x0) + 7(у – y0) = 0,

5(х – x0) = –7(у – y0).

Поскольку числа 5 и 7 взаимно простые, то

х – x0 = 7k, у – y0 = –5k.

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

 

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x0 = 1273·12 = 15276, y0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

 

3. Решить в целых числах уравнение:

а) x3 + y3 = 3333333;

б) x3 + y3 = 4(x2y + xy2 + 1).

Решение

а) Так как x3 и y3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x3 + y3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

 

б) Перепишем исходное уравнение в виде (x + y)3 = 7(x2y + xy2) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

 

4. Решить

а) в простых числах уравнение х2 – 7х – 144 = у2 – 25у;

б) в целых числах уравнение x + y = x2 – xy + y2.

Решение

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

2 х 16, 2 у 16.

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

 

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x2 – (y + 1)x + y2 – y = 0. 

Дискриминант этого уравнения равен –3y2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

 

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x2 + y2 + z2 = x3 + y3 + z3 ?

Решение

Попробуем подбирать такие тройки, где у = –z. Тогда y3 и z3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

x2 + 2y2 = x3

или, иначе,

x2(x–1) = 2y2.

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n2+1. Подставляя в x2(x–1) = 2y2 такое число, после несложных преобразований получаем:

y = xn = n(2n2+1) = 2n3+n.

Все тройки, полученные таким образом, имеют вид (2n2+1; 2n3+n; –2n3– n).

Ответ: существует.

 

6. Найдите такие целые числа x, y, z, u, что x2 + y2 + z2 + u2 = 2xyzu.

Решение

Число x2 + y2 + z2 + u2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x2 + y2 + z2 + u2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x2 + y2 + z2 + u2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

x = 2x1, y = 2y1, z = 2z1, u = 2u1,

и исходное уравнение примет вид

x12 + y12 + z12 + u12 = 8x1y1z1u1.

Теперь заметим, что (2k + 1)2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x12 + y12 + z12 + u12 не делится на 8. А если ровно два из этих чисел нечётно, то x12 + y12 + z12 + u12 не делится даже на 4. Значит,

x1 = 2x2, y1 = 2y2, z1 = 2z2, u1 = 2u2,

и мы получаем уравнение

x22 + y22 + z22 + u22 = 32x2y2z2u2.

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

Ответ: (0; 0; 0; 0).

 

7. Докажите, что уравнение

(х – у)3 + (y – z)3 + (z – x)3 = 30

не имеет решений в целых числах.

Решение

Воспользуемся следующим тождеством:

(х – у)3 + (y – z)3 + (z – x)3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

abc = 10.

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

 

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у2.

Решение

Очевидно, что

если х = 1, то у2 = 1,

если х = 3, то у2 = 9.

Этим случаям соответствуют следующие пары чисел:

х1 = 1, у1 = 1;

х2 = 1, у2 = –1;

х3 = 3, у3 = 3;

х4 = 3, у4 = –3.

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

 

9. Решите следующую систему уравнений в натуральных числах:

a3 – b3 – c3 = 3abc,  a2 = 2(b + c).

Решение

Так как

3abc > 0, то a3 > b3 + c3;

таким образом имеем

b

Складывая эти неравенства, получим, что

b + c

С учётом последнего неравенства, из второго уравнения системы получаем, что

a2

Но второе уравнение системы также показывает, что а – чётное число. Таким образом, а = 2, b = c = 1.

Ответ: (2; 1; 1)

 

10. Найти все пары целых чисел х и у, удовлетворяющих уравнению х2 + х = у4 + у3 + у2 + у.

Решение

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у2 + 1),

или

х(х + 1) = (у2 + у)(у2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

х1 = 0, у1 = 0;

х2 = 0, у2 = –1;

х3 = –1, у3 = 0;

х4 = –1, у4 = –1.

Произведение (у2 + у)(у2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

х5 = 5, у5 = 2;

х6 = –6, у6 = 2.

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

 

Задачи без решений

1. Решить в целых числах уравнение:

а) ху = х + у + 3;

б) х2 + у2 = х + у + 2.

 

2. Решить в целых числах уравнение:

а) х3 + 21у2 + 5 = 0;

б) 15х2 – 7у2 = 9.

 

3. Решить в натуральных числах уравнение:

а) 2х + 1 = у2;

б) 3·2х + 1 = у2.

 

4. Доказать, что уравнение х3 + 3у3 + 9z3 = 9xyz в рациональных числах имеет единственное решение

x = y = z = 0.

 

5. Доказать, что уравнение х2 + 5 = у3 в целых числах не имеет решений.

 

Плоскость в пространстве, всевозможные уравнения, расстояние от точки до плоскости.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

 

Существуют такие формы записи уравнения плоскости:

1) $Ax+By+Cz+D=0 -$ общее уравнение плоскости $P,$ где $\overline{N}=(A, B, C) -$ нормальный вектор плоскости $P.$

 

2) $A(x-x_0)+B(y-y_0)+C(z-z_0)=0 -$  уравнение плоскости $P,$ которая проходит через точку $M(x_0, y_0, z_0)$ перпендикулярно вектору $\overline{N}=(A, B, C).$ Вектор $\overline N$ называется нормальным вектором плоскости.

 

3) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 -$  уравнение плоскости в отрезках на осях, где $a,$  $b$ и $c -$ величины отрезков, которые плоскость отсекает на осях координат.

 

4) $\begin{vmatrix}x-x_1&y-y_1&z-z_1\\x_2-x_1&y_2-y_1&z_2-z_1\\x_3-x_1&x_2-x_1&x_3-x_1\end{vmatrix}=0 - $ уравнение плоскости, которая проходит через три точки $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ и $C(x_3, y_3, z_3).$ 

 

 

5) $x\cos\alpha+y\cos\beta+z\cos\gamma-p=0 -$ нормальное уравнение плоскости, где $\cos\alpha, \cos\beta$ и $\cos\gamma -$ направляющие косинусы нормального вектора $\overline{N},$ направленного из начала координат в сторону плоскости, а $p>0 -$ расстояние от начала координат до плоскости.2}}\right|.$$

 {jumi[*3]}

Примеры:

2.180.

а) Заданы плоскость $P: -2x+y-z+1=0$ и точка $M(1, 1, 1).$ Написать уравнение плоскости $P',$ проходящей через точку $M$ параллельно плоскости $P$ и вычислить расстояние $\rho(P, P').$ 

Решение.

Так как п.лоскости $P$ и $P'$ параллельны, то нормальный вектор для плоскости $P$ будет также нормальным вектором для плоскости $P'.$ Из уравнения плоскости получаем $\overline{N}=(-2, 1, -1).$

Далее запишем уравнение плоскости по формуле (2): $A(x-x_0)+B(y-y_0)+C(z-z_0)=0 -$  уравнение плоскости, которая проходит через точку $M(x_0, y_0, z_0)$ перпендикулярно вектору $\overline{N}=(A, B, C).$ 

$-2(x-1)+(y-1)-(z-1)=0\Rightarrow -2x+y-z+2=0.$

Ответ: $-2x+y-z+2=0.$

 

 

 

2.181. 

а) Написать уравнение плоскости $P',$ проходящей через заданные точки $M_1(1, 2, 0)$ и $M_2(2, 1, 1)$ перпендикулярно заданной плоскости $P: -x+y-1=0.$

Решение.

Из уравнения плоскости $P,$ находим ее нормальный вектор $\overline{N}=(-1, 1, 0).$ Плоскость, перпендикулярная плоскости $P,$ параллельна ее нормальному вектору. Отсюда следует, что можно выбрать точку $M_3(x, y, z)\in P'$ такую, что что $\overline{M_1M_3}||\overline{N}.$

$\overline{M_1M_3}=(x-1, y-2, z).$

Условие коллинеарности векторов $\overline{M_1M_3}$ и $\overline{N}:$ $\frac{x_{M_1M_3}}{x_N}=\frac{y_{M_1M_3}}{y_N}=\frac{z_{M_1M_3}}{z_N}.$

Поскольку $z_N=0,$ то есть вектор $N\in XoY,$ то $z_{M_1M_3}=0.$

$\frac{x-1}{-1}=\frac{y-2}{1}.$ Пусть $x=2,$ тогда $y=1.$

Мы нашли точку $M_3=(2, 1, 0).$

Так как точка $M_1\in P',$ то и $M_3\in P'.$ Запишем уравнение плоскости, которая проходит через три точки $M_1 (1, 2, 0), M_2(2, 1, 1)$ и $M_3(2, 1, 0).$

$\begin{vmatrix}x-1&y-2&z\\2-1&1-2&1\\2-1&1-2&0-0\end{vmatrix}=0 \Rightarrow $

$\begin{vmatrix}x-1&y-2&z\\1&-1&1\\1&-1&0\end{vmatrix}=0 \Rightarrow $

$(x-1)(-1)0+(-1)z+(y-2)-(-1)z-(-1)(x-1)-(y-2)0=0\Rightarrow$ $\Rightarrow-z+y-2+z+x-1=0\Rightarrow x+y-3=0.$

Ответ: $x+y-3=0.$ 

 

2.182.

а) Написать уравнение плоскости $P,$ проходящей через точку $M(1, 1, 1)$ параллельно векторам $a_1(0, 1, 2)$ и $a_2(-1, 0, 1).$ 

Решение.

Поскольку вектор $[a_1, a_2]$ перпендикулярен плоскости векторов $a_1$ и $a_2$ (см. векторное произведение), то он будет также перпендикулярен искомой плоскости. То есть вектор $[a_1, a_2]$ является нормальным для плоскости $P.$ Найдем этот вектор:

$[a_1, a_2]=\begin{vmatrix}i&j&k\\0&1&2\\-1&0&1\end{vmatrix}=i(1-0)-j(0+2)+k(0+1)=i-2j+k.$

Таким образом $\overline{N}=[a_1, a_2]=(1, -2, 1).$

Теперь можно найти уравнение плоскости $P,$ по формуле (2), как плоскости, проходящей через точку $M(1, 1, 1)$ перпендикулярно  вектору $\overline N=(1, -2, 1):$

$1(x-1)-2(y-1)+1(z-1)=0\Rightarrow$

$x-2y+z=0.$

Ответ: $x-2y+z=0.$

 

 

2.183.

а) Написать уравнение плоскости $P,$ проходящей через точки $M_1(1, 2, 0)$ и $M_2(2, 1, 1)$ параллельно вектору $a=(3, 0, 1).$

Решение.

Поскольку вектор $a$ параллелен плоскости $P,$ то для всякого вектора $\overline{M_1M_3},$ параллельного вектору $a,$ точка $M_3\in P.$

Пусть $M_3=(x, y, z).$ Тогда $\overline{M_1M_3}=(x-1, y-2, z).$ Так как $\overline{M_1M_3}||a,$ то $\frac{x_{M_1M_3}}{x_а}=\frac{y_{M_1M_3}}{y_а}=\frac{z_{M_1M_3}}{z_а}.$ $y_a=0,$ то есть вектор $a\in XoZ$ и  всякий параллельный ему вектор так же будет принадлежать этой плоскости. Таким образом, $y_{M_1M_3}=y-2=0\Rightarrow y=2.$

Из условия параллельности векторов имеем $\frac{x-1}{3}=\frac{z}{1}.$ Пусть $x=4,$ тогда $z=1.$

Мы получили точку $M_3=(4, 2, 1).$

Запишем уравнение плоскости, которая проходит через три точки $M_1 (1, 2, 0), M_2(2, 1, 1)$ и $M_3(4, 2, 1).$

$\begin{vmatrix}x-1&y-2&z\\2-1&1-2&1\\4-1&2-2&1\end{vmatrix}=0 \Rightarrow $

$\begin{vmatrix}x-1&y-2&z\\1&-1&1\\3&0&1\end{vmatrix}=0 \Rightarrow $

$(x-1)(-1)1+1\cdot z\cdot 0+(y-2)3-3(-1)z-0\cdot 1\cdot(x-1)-1(y-2)1=0\Rightarrow$

$\Rightarrow -x+1+3y-6+3z-y+2=0\Rightarrow -x+2y+3z-3=0.$

Ответ: $-x+2y+3z-3=0.$ 

 

2.184.

а) Написать уравнение плоскости, проходящей через три заданные точки $M_1(1, 2,0),$ $M_2(2, 1, 1)$ и $M_3(3, 0, 1).$ 

Решение.

Воспользуемся формулой (4):

$\begin{vmatrix}x-1&y-2&z\\2-1&1-2&1\\3-1&0-2&1\end{vmatrix}=0 \Rightarrow $

$\begin{vmatrix}x-1&y-2&z\\1&-1&1\\2&-2&1\end{vmatrix}=0 \Rightarrow $

$(x-1)(-1)1+z(-2)+2(y-2)1-2(-1)z-(-2)(x-1)-1(y-2)1=0\Rightarrow$

$\Rightarrow -x+1+-2z+2y-4+2z+2x-2-y+2=0\Rightarrow x+y-3=0.$

Ответ: $x+y-3=0.$ 

 

 {jumi[*4]} 

11.3.1. Показательная функция, ее свойства и график.

Автор Татьяна Андрющенко На чтение 5 мин. Просмотров 7k. Опубликовано




data-ad-client="ca-pub-8602906481123293"
data-ad-slot="8834522701"
data-ad-format="auto">
  • Функцию вида y=ax, где а>0, a≠1, х – любое число, называют показательной функцией.
  • Область определения показательной функции: D (y)=R – множество всех действительных чисел.
  • Область значений показательной функции: E (y)=R+ - множество всех положительных чисел.
  • Показательная функция  y=ax возрастает при a>1.
  • Показательная функция y=ax убывает при 0<a<1.

Справедливы все свойства степенной функции:

  • а0=1  Любое число (кроме нуля) в нулевой степени равно единице.
  •  а1=а  Любое число в первой степени равно самому себе.
  •  ax∙ay=ax+y   При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.
  •  ax:ay=ax- y  При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.
  • (ax)y=axy   При возведении степени в степень основание оставляют прежним, а показатели перемножают
  •  (a∙b)x=ax∙by   При возведении произведения в степень возводят в эту степень каждый из множителей.
  • (a/b)x=ax/by  При возведении дроби в степень возводят в эту степень и числитель и знаменатель дроби.
  •   а=1/ax
  •  (a/b)-x=(b/a)x.

Примеры.

1) Построить график функции y=2xНайдем значения функции

при х=0, х=±1, х=±2, х=±3.

x=0, y=20=1;                   Точка А.

x=1, y=21=2;                   Точка В.

x=2, y=22=4;                   Точка С.

x=3, y=23=8;                   Точка D.              

x=-1, y=2-1=1/2=0,5;       Точка K.

x=-2, y=2-2=1/4=0,25;     Точка M.

x=-3, y=2-3=1/8=0,125;   Точка N.

Большему  значению аргумента х соответствует и большее значение функции у. Функция y=2x возрастает на всей области определения D (y)=R, так как основание функции 2>1.

2) Построить график функции y=(1/2)x. Найдем значения функции

при х=0, х=±1, х=±2, х=±3.

x=0, y=(½)0=1;                  Точка A.

x=1, y=(½)1=½=0,5;          Точка B.

x=2, y=(½)2=¼=0,25;        Точка C.

x=3, y=(½)3=1/8=0,125;    Точка D.

x=-1, y=(½)-1=21=2;          Точка K.

x=-2, y=(½)-2=22=4;          Точка M.

x=-3, y=(½)-3=23=8;          Точка N.

 

Большему значению аргумента х соответствует меньшее значение функции y. Функция y=(1/2)убывает на всей своей области определения: D (y)=R, так как основание функции  0<(1/2)<1.

3) В одной координатной плоскости построить графики функций: 

y=2x, y=3x, y=5x, y=10x. Сделать выводы.

График функции у=2х мы уже строили, графики остальных функций строим аналогично, причем, достаточно будет найти значения функций при х=0 и при х=±1.

Переменная х может принимать любое значение (D (y)=R), при этом значение у всегда будет больше нуля  (E (y)=R+).

Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю. Чем больше основание а (если a>1) показательной функции у=ах, тем ближе расположена кривая к оси Оу.

Все  данные функции являются возрастающими, так как большему значению аргумента соответствует и большее значение функции.

 

4) В одной координатной плоскости построить графики функций:

y=(1/2)x, y=(1/3)x, y=(1/5)x, y=(1/10)x. Сделать выводы.

Смотрите построение графика функции y=(1/2)x выше, графики остальных функций строим аналогично, вычислив их значения при х=0 и при х=±1.

Переменная х может принимать любое значение: D (y)=R, при этом область значений функции: E (y)=R+.

Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю.

Чем меньше основание а (при 0<a<1) показательной функции у=ах, тем ближе расположена кривая к оси Оу.

Все  эти функции являются убывающими, так как большему значению аргумента соответствует меньшее значение функции.

Решить графически уравнения:

1) 3x=4-x.

В одной координатной плоскости построим графики функций: у=3х и у=4-х.

 

Графики пересеклись в точке А(1; 3).

 

Ответ: 1.

 

 

 

 

2) 0,5х=х+3.

 

В одной координатной плоскости строим графики функций: у=0,5х

(y=(1/2)x )

 и у=х+3.

Графики пересеклись в точке В(-1; 2).

Ответ: -1.

 

 

Найти область значений функции: 1) y=-2x; 2) y=(1/3)x+1; 3) y=3x+1-5.

Решение.

 1) y=-2

Область значений показательной функции y=2x – все положительные числа, т.е.

0<2x<+∞. Значит, умножая каждую часть двойного неравенства на (-1), получаем:

— ∞<-2x<0.

Ответ: Е(у)=(-∞; 0).

 2) y=(1/3)x+1;

0<(1/3)x<+∞, тогда, прибавляя ко всем частям двойного неравенства число 1, получаем:

0+1<(1/3)x+1<+∞+1;

1<(1/3)x+1<+∞.

Ответ: Е(у)=(1; +∞).

 3) y=3x+1-5.

Запишем функцию в виде: у=3х∙3-5.

0<3x<+∞;   умножаем все части двойного неравенства на 3:

0∙3<3x3<(+∞)∙3;

0<3x∙3<+∞;  из всех частей двойного неравенства вычитаем 5:

0-5<3x∙3-5<+∞-5;

— 5<3x∙3-5<+∞.

Ответ: Е(у)=(-5; +∞).

Смотрите Карту сайта, и Вы найдете нужные Вам темы!

страница не найдена - Williams College

'62 Центр театра и танца, '62 Центр
касса 597-2425
Магазин костюмов 597-3373
Менеджер мероприятий / Помощник менеджера 597-4808 597-4815 факс
Производство 597-4474 факс
Магазин сцен 597-2439
'68 Центр карьерного роста, Мирс 597-2311 597-4078 факс
Academic Resources, Парески 597-4672 597-4959 факс
Служба поддержки инвалидов, Парески 597-4672
Прием, Вестон Холл 597-2211 597-4052 факс
Affirmative Action, Хопкинс-холл 597-4376
Africana Studies, Hollander 597-2242 597-4222 факс
Американские исследования, Шапиро 597-2074 597-4620 факс
Антропология и социология, Холландер 597-2076 597-4305 факс
Архивы и специальные коллекции, Sawyer 597-4200 597-2929 факс
Читальный зал 597-4200
Искусство (История, Студия), Spencer Studio Art / Lawrence 597-3578 597-3693 факс
Архитектурная студия, Spencer Studio Art 597-3134
Фотография Студия, Spencer Studio Art 597-2030
Printmaking Studio, Spencer Studio Art 597-2496
Студия скульптуры, Spencer Studio Art 597-3101
Senior Studio, Spencer Studio Art 597-3224
Видео / фотостудия, Spencer Studio Art 597-3193
Asian Studies, Hollander 597-2391 597-3028 факс
Астрономия / Астрофизика, Thompson Physics 597-2482 597-3200 факс
Департамент легкой атлетики, физическое воспитание, отдых, Ласелл 597-2366 597-4272 факс
Спортивный директор 597-3511
Boat House, Озеро Онота 443-9851
Автобусы 597-2366
Фитнес-центр 597-3182
Hockey Rink Ice Line, Лансинг Чепмен 597-2433
Intramurals, Атлетический центр Чандлера 597-3321
Физическая культура 597-2141
Pool Wet Line, Атлетический центр Чандлера 597-2419
Sports Information, Hopkins Hall 597-4982 597-4158 факс
Спортивная медицина 597-2493 597-3052 факс
Площадки для сквоша 597-2485
Поле для гольфа Taconic 458-3997
Биохимия и молекулярная биология, Thompson Biology 597-2126
Биоинформатика, геномика и протеомика, Бронфман 597-2124
Биология, Thompson Biology 597-2126 597-3495 факс
Охрана и безопасность кампуса, Хопкинс Холл 597-4444 597-3512 факс
Карты доступа / системы сигнализации 597-4970 / 4033
Служба сопровождения, Хопкинс Холл 597-4400
Офицеры и диспетчеры 597-4444
Секретарь, удостоверения личности 597-4343
Коммутатор 597-3131
Центр развития творческого сообщества, 66 Stetson Court 884-0093
Центр экономики развития, 1065 Main St 597-2148 597-4076 факс
Компьютерный зал 597-2522
Вестибюль 597-4383
Центр экологических исследований, класс 1966 г. Экологический центр 597-2346 597-3489 факс
Лаборатория экологических наук, Морли 597-2380
Экологические исследования 597-2346
Лаборатория ГИС 597-3183
Центр иностранных языков, литератур и культур, Холландер 597-2391 597-3028 факс
Арабоведение, Голландер 597-2391 597-3028 факс
Сравнительная литература, Холландер 597-2391
Критические языки, Hollander 597-2391 597-3028 факс
Языковая лаборатория 597-3260
Россия, Холландер 597-2391
Центр обучения в действии, Brooks House 597-4588 597-3090 факс
Библиотека редких книг Чапина, Сойер 597-2462 597-2929 факс
Читальный зал 597-4200
Офис капелланов, Парески 597-2483 597-3955 факс
Еврейский религиозный центр, Стетсон Корт 24, 597-2483
Мусульманская молитвенная комната, часовня Томпсона (нижний уровень) 597-2483
Католическая часовня Ньюмана, часовня Томпсона (нижний уровень) 597-2483
Химия, Thompson Chemistry 597-2323 597-4150 факс
Классика (греческий и латинский), Hollander 597-2242 597-4222 факс
Когнитивная наука, Бронфман 597-4594
Маршал колледжа, Thompson Physics 597-2008
Отношения с колледжем 597-4057
Программа 25-го воссоединения, Фогт 597-4208 597-4039 факс
Программа 50-го воссоединения, Фогт 597-4284 597-4039 факс
Advancement Operations, Мирс-Вест 597-4154 597-4333 факс
Мероприятия для выпускников, Vogt 597-4146 597-4548 факс
Фонд выпускников 597-4153 597-4036 факс
Связи с выпускниками, Мирс Вест 597-4151 597-4178 факс
Почтовые службы для выпускников / разработчиков, Мирс-Вест 597-4369
Девелопмент, Фогт 597-4256
Отношения с донорами, Vogt 597-3234 597-4039 факс
Офис по планированию подарков, Vogt 597-3538 597-4039 факс
Grants Office, Мирс Вест 597-4025 597-4333 факс
Программа крупных подарков, Фогт 597-4256 597-4548 факс
Фонд родителей, Фогт 597-4357 597-4036 факс
Prospect Management & Research, Мирс 597-4119 597-4178 факс
Начало и академические мероприятия, Jesup 597-2347 597-4435 факс
Коммуникации, Хопкинс Холл 597-4277 597-4158 факс
Sports Information, Hopkins Hall 597-4982 597-4158 факс
Веб-команда, Саутвортская школа
Williams Magazines (ранее Alumni Review), Hopkins Hall 597-4278
Компьютерные науки, Thompson Chemistry 597-3218 597-4250 факс
Conferences & Events, Парески 597-2591 597-4748 факс
Запросы Elm Tree House, Mt.Ферма Надежды 597-2591
Офис диспетчера, Хопкинс Холл 597-4412 597-4404 факс
Счета к оплате и ввод данных, Хопкинс Холл 597-4453
Bursar & Cash Receipts, Hopkins Hall 597-4396
Финансовые информационные системы, Хопкинс Холл 597-4023
Карты покупок, Хопкинс Холл 597-4413
Студенческие ссуды, Хопкинс Холл 597-4683
Dance, 62 Центр 597-2410
Davis Center (ранее Multicultural Center), Jenness 597-3340 597-3456 факс
Харди Хаус 597-2129
Jenness House 597-3344
Райс Хаус 597-2453
Декан колледжа, Хопкинс Холл 597-4171 597-3507 факс
Декан факультета, Хопкинс Холл 597-4351 597-3553 факс
Столовая, капельницы 597-2121 597-4618 факс
'82 Гриль, Парески 597-4585
Булочная, Паресский 597-4511
Общественное питание, Дом факультета 597-2452
Driscoll Dining Hall, Дрисколл 597-2238
Eco Café, Научный центр 597-2383
Grab 'n Go, Парески 597-4398
Lee Snack Bar, Парески 597-3487
Обеденный зал Mission Park, Mission Park 597-2281
Whitmans ', Парески 597-2889
Экономика, Шапиро 597-2476 597-4045 факс
Английский, Холландер 597-2114 597-4032 факс
Сооружения, сооружения, здание службы 597-2301
Запрос на получение автомобиля в колледж 597-2302
Скорая помощь вечером / в выходные дни 597-4444
Запросы на работу объектов 597-4141 факс
Особые мероприятия 597-4020
Склад 597-2143 597-4013 факс
Клуб преподавателей, Дом факультетов / Центр выпускников 597-2451 597-4722 факс
Бронирование 597-3089
Fellowships Office, Hopkins Hall 597-3044 597-3507 факс
Financial Aid, Weston Hall 597-4181 597-2999 факс
Науки о Земле, Кларк Холл 597-2221 597-4116 факс
Немецко-Русский, Hollander 597-2391 597-3028 факс
Global Studies, Hollander 597-2247
Программа магистратуры по истории искусств, Кларк 458-2317 факс
Службы здравоохранения и благополучия, Thompson Ctr Health 597-2206 597-2982 факс
Санитарное просвещение 597-3013
Услуги интегративного благополучия (консультирование) 597-2353
Чрезвычайные ситуации с опасностью для жизни Позвоните 911
Медицинские услуги 597-2206
История, Холландер 597-2394 597-3673 факс
История науки, Бронфман 597-4116 факс
Хопкинс Форест 597-4353
Розенбург Центр 458-3080
Отдел кадров, B&L Building 597-2681 597-3516 факс
Услуги няни, корпус B&L 597-4587
Льготы 597-4355
Программа помощи сотрудникам 800-828-6025
Занятость 597-2681
Заработная плата 597-4162
Ресурсы для супруга / партнера 597-4587
Занятость студентов 597-4568
Линия погоды (ICEY) 597-4239
Humanities, Schapiro 597-2076
Информационные технологии, Jesup 597-2094 597-4103 факс
Пакеты для чтения курса, Drop Box для офисных услуг 597-4090
Центр аренды оборудования, Додд Приложение 597-4091
Служба поддержки преподавателей / сотрудников, [электронная почта защищена] 597-4090
Медиа-услуги и справочная служба 597-2112
Служба поддержки студентов, [электронная почта] 597-3088
Телекоммуникации / телефоны 597-4090
Междисциплинарные исследования, Холландер 597-2552
Международное образование и учеба, Хопкинс Холл 597-4262 597-3507 факс
Инвестиционный офис, Хопкинс Холл 597-4447
Офис в Бостоне 617-502-2400 617-426-5784 факс
Еврейские исследования, Мазер 597-3539
Справедливость и закон, Холландер 597-2102
Latina / o Studies, Hollander 597-2242 597-4222 факс
Исследования лидерства, Шапиро 597-2074 597-4620 факс
Морские исследования, Бронфман 597-2297
Математика и статистика, Bascom 597-2438 597-4061 факс
Музыка, Бернхард 597-2127 597-3100 факс
Concertline (записанная информация) 597-3146
Неврология, Thompson Biology 597-4107 597-2085 факс
Окли Центр, Окли 597-2177 597-4126 факс
Управление институционального разнообразия и справедливости, Хопкинс-холл 597-4376 597-4015 факс
Управление счетов студентов, Хопкинс Холл 597-4396 597-4404 факс
Performance Studies, '62 Центр 597-4366
Философия, Шапиро 597-2074 597-4620 факс
Физика, Thompson Physics 597-2482 597-4116 факс
Планетарий / Обсерватория Хопкинса 597-3030
Театр Old Hopkins Observatory 597-4828
Бронирование 597-2188
Политическая экономия, Шапиро 597-2327
Политология, Шапиро 597-2168 597-4194 факс
Офис президента, Хопкинс Холл 597-4233 597-4015 факс
Дом президента 597-2388 597-4848 факс
Услуги печати / почты для преподавателей / сотрудников, '37 House 597-2022
Программа обучения, Бронфман 597-4522 597-2085 факс
Офис Провоста, Хопкинс Холл 597-4352 597-3553 факс
Психология, психологические кабинеты и лаборатории 597-2441 597-2085 факс
Недвижимость, B&L Building 597-2195 / 4238 597-5031 факс
Ипотека для преподавателей / сотрудников 597-4238
Профессорско-преподавательский состав Аренда жилья 597-2195
Офис регистратора, Хопкинс Холл 597-4286 597-4010 факс
Религия, Холландер 597-2076 597-4222 факс
Romance Languages, Hollander 597-2391 597-3028 факс
Планировщик помещений 597-2555
Соответствие требованиям безопасности и охраны окружающей среды, класс ’37, дом 597-3003
Библиотека Сойера, Сойер 597-2501 597-4106 факс
Службы доступа 597-2501
Приобретения / Серийные номера 597-2506
Услуги каталогизации / метаданных 597-2507
Межбиблиотечный абонемент 597-2005 597-2478 факс
Исследовательские и справочные службы 597-2515
Стеллаж 597-4955 597-4948 факс
Системы 597-2084
Научная библиотека Шоу, Научный центр 597-4500 597-4600 факс
Исследования в области науки и технологий, Бронфман 597-2239
Научный центр, Бронфман 597-4116 факс
Магазин электроники 597-2205
Машинно-модельный цех 597-2230
Безопасность 597-4444
Специальные академические программы, Харди 597-3747 597-4530 факс
Sports Information, Hopkins Hall 597-4982 597-4158 факс
Студенческая жизнь, Парески 597-4747
Планировщик помещений 597-2555
Управление студенческими центрами 597-4191
Организация студенческих мероприятий 597-2546
Студенческий дом, Парески 597-2555
Участие студентов 597-4749
Программы проживания для старших классов 597-4625
Студенческая почта, Паресский почтовый кабинет 597-2150
Устойчивое развитие / Центр Зилха, Харпер 597-4462
Коммутатор, Хопкинс Холл 597-3131
Книжный магазин Williams 458-8071 458-0249 факс
Театр, 62 Центр 597-2342 597-4170 факс
Trust & Estate Administration, Sears House 597-4259
Учебники 597-2580
вице-президент по кампусной жизни, Хопкинс-холл 597-2044 597-3996 факс
вице-президент по связям с колледжем, Мирс 597-4057 597-4178 факс
Вице-президент по финансам и администрированию, Хопкинс Холл 597-4421 597-4192 факс
Центр визуальных ресурсов, Лоуренс 597-2015 597-3498 факс
Детский центр Williams College, Детский центр Williams 597-4008 597-4889 факс
Музей искусств колледжа Уильямс (WCMA), Лоуренс 597-2429 597-5000 факс
Подготовка музея 597-2426
Служба безопасности музея 597-2376
Музейный магазин 597-3233
Уильямс Интернэшнл 597-2161
Williams Outing Club, Парески 597-2317
Оборудование / стол для студентов 597-4784
Проект Уильямса по экономике высшего образования, Мирс-Вест 597-2192
Williams Record, Парески 597-2400 597-2450 факс
Программа Уильямса-Эксетера в Оксфорде, Оксфордский университет 011-44-1865-512345
Программа Williams-Mystic, Mystic Seaport Museum 860-572-5359 860-572-5329 факс
Исследования женщин, гендера и сексуальности, Schapiro 597-3143 597-4620 факс
Написание программ, Хопкинс Холл 597-4615
Центр экологических инициатив «Зилха», Харпер 597-4462

Wolfram | Примеры альфа: пошаговые дифференциальные уравнения


Разделимые уравнения

Посмотрите, как решаются разделяемые уравнения:

Другие примеры


Линейные уравнения первого порядка

Решите линейные уравнения первого порядка:

См. Шаги, которые используют преобразования Лапласа для решения ОДУ:

Другие примеры


Точные уравнения первого порядка

Превратите в точное уравнение:

Другие примеры


Уравнения Бернулли

Научитесь решать уравнения Бернулли:

Другие примеры


Замены первого порядка

Примените линейную замену:

Решите однородное уравнение первого порядка с помощью замены:

Сделайте общие замены:

Другие примеры


Уравнения типа Чини

Решите уравнение Риккати:

Решите уравнение Абеля первого рода с постоянным инвариантом:

Решите уравнение Чини с постоянным инвариантом:

Другие примеры


Общие уравнения первого порядка

См. Шаги для решения уравнения Клеро:

Решите уравнение Даламбера:

Посмотрите, как решаются обыкновенные дифференциальные уравнения первого порядка:

Другие примеры


Линейные уравнения второго порядка с постоянными коэффициентами

Решите линейное однородное уравнение с постоянными коэффициентами:

Решите линейное уравнение с постоянными коэффициентами несколькими методами:

См. Шаги, которые используют преобразования Лапласа для решения ОДУ:

Другие примеры


Снижение порядка

Сведите к уравнению первого порядка:

Выведите уравнение цепной линии:

Другие примеры


Уравнения Эйлера – Коши.

Решите уравнения Эйлера – Коши:

Другие примеры


Общие уравнения второго порядка

Посмотрите, как решаются обыкновенные дифференциальные уравнения второго порядка:

Другие примеры


Уравнения высшего порядка

См. Шаги для уравнений высшего порядка:

Другие примеры

Учебное пособие по алгебре

- MathPapa

Это учебное пособие по использованию калькулятора по алгебре , пошагового калькулятора для алгебры.

Решение уравнений

Сначала перейдите на главную страницу Калькулятора алгебры. В текстовом поле калькулятора вы можете ввести математическую задачу, которую хотите вычислить.

Например, попробуйте ввести уравнение 3x + 2 = 14 в текстовое поле.

После того, как вы введете выражение, Калькулятор алгебры распечатает пошаговое объяснение того, как решить 3x + 2 = 14.


Примеры

Чтобы увидеть больше примеров задач, которые понимает калькулятор алгебры, посетите Страница примеров.2.


Вычисление выражений

Калькулятор алгебры может вычислять выражения, содержащие переменную x.

Чтобы оценить выражение, содержащее x, введите выражение, которое вы хотите оценить, затем знак @ и значение, которое вы хотите вставить для x. Например, команда 2x @ 3 вычисляет выражение 2x для x = 3, что равно 2 * 3 или 6.

Калькулятор алгебры также может вычислять выражения, содержащие переменные x и y.Чтобы оценить выражение, содержащее x и y, введите выражение, которое вы хотите оценить, затем знак @ и упорядоченную пару, содержащую ваше значение x и значение y. Вот пример вычисления выражения xy в точке (3,4): xy @ (3,4).

Проверка ответов для решения уравнений

Так же, как Калькулятор алгебры можно использовать для вычисления выражений, Калькулятор алгебры также можно использовать для проверки ответов на решение уравнений, содержащих x.

В качестве примера предположим, что мы решили 2x + 3 = 7 и получили x = 2.Если мы хотим вставить 2 обратно в исходное уравнение, чтобы проверить нашу работу, мы можем сделать это: 2x + 3 = 7 @ 2. Поскольку ответ правильный, калькулятор алгебры показывает зеленый знак равенства.

Если вместо этого мы попробуем значение, которое не работает, скажем, x = 3 (попробуйте 2x + 3 = 7 @ 3), вместо этого калькулятор алгебры покажет красный знак «не равно».

Чтобы проверить ответ на систему уравнений, содержащую x и y, введите два уравнения, разделенные точкой с запятой, за которыми следует знак @ и упорядоченную пару, содержащую ваше значение x и значение y.Пример: x + y = 7; х + 2у = 11 @ (3,4).


Режим планшета

Если вы используете планшет, например iPad, войдите в режим планшета, чтобы отобразить сенсорную клавиатуру.


Статьи по теме

Вернуться к калькулятору алгебры »

Решение совместных уравнений | Уравнения и неравенства

\ (- 10 х = -1 \) и \ (- 4 х + 10 у = -9 \).

Решите относительно \ (x \):

\ begin {align *} - 10х = -1 \\ \ поэтому x = \ frac {1} {10} \ end {выровнять *}

Подставьте значение \ (x \) во второе уравнение и решите относительно \ (y \):

\ begin {align *} -4x + 10y & = -9 \\ -4 \ left (\ frac {1} {10} \ right) + 10y & = -9 \\ \ frac {-4} {10} + 10y & = -9 \\ 100л & = -90 + 4 \\ y & = \ frac {-86} {100} \\ & = \ frac {-43} {50} \ end {выровнять *}

Следовательно, \ (x = \ frac {1} {10} \ text {и} y = - \ frac {43} {50} \).

\ (3x - 14y = 0 \) и \ (x - 4y + 1 = 0 \)

Запишите \ (x \) через \ (y \):

\ begin {align *} 3х - 14лет & = 0 \\ 3х & = 14л \\ x & = \ frac {14} {3} y \ end {выровнять *}

Подставьте значение \ (x \) во второе уравнение:

\ begin {align *} х - 4у + 1 & = 0 \\ \ frac {14} {3} y - 4y + 1 & = 0 \\ 14лет - 12лет + 3 & = 0 \\ 2у & = -3 \\ y & = - \ frac {3} {2} \ end {выровнять *}

Подставьте значение \ (y \) обратно в первое уравнение:

\ begin {align *} x & = \ frac {14 \ left (- \ frac {3} {2} \ right)} {3} \\ & = -7 \ end {выровнять *}

Следовательно, \ (x = -7 \ text {и} y = - \ frac {3} {2} \).

\ (x + y = 8 \) и \ (3x + 2y = 21 \)

Запишите \ (x \) через \ (y \):

\ begin {align *} х + у & = 8 \\ х & = 8 - у \ end {выровнять *}

Подставьте значение \ (x \) во второе уравнение:

\ begin {align *} 3х + 2у & = 21 \\ 3 (8 - у) + 2у & = 21 \\ 24 - 3л + 2у & = 21 \\ y & = 3 \ end {выровнять *}

Подставьте значение \ (y \) обратно в первое уравнение:

\ [x = 5 \]

Следовательно, \ (x = 5 \ text {и} y = 3 \).

\ (y = 2x + 1 \) и \ (x + 2y + 3 = 0 \)

Запишите \ (y \) через \ (x \):

\ [y = 2x + 1 \]

Подставьте значение \ (y \) во второе уравнение:

\ begin {align *} х + 2у + 3 & = 0 \\ х + 2 (2х + 1) + 3 & = 0 \\ х + 4х + 2 + 3 & = 0 \\ 5x & = -5 \\ х & = -1 \ end {выровнять *}

Подставьте значение \ (x \) обратно в первое уравнение:

\ begin {align *} у & = 2 (-1) + 1 \\ & = -1 \ end {выровнять *}

Следовательно, \ (x = -1 \ text {и} y = -1 \).

\ (5x-4y = 69 \) и \ (2x + 3y = 23 \)

Сделайте \ (x \) предметом первого уравнения:

\ begin {align *} 5х-4л & = 69 \\ 5х & = 69 + 4у \\ x & = \ frac {69 + 4y} {5} \ end {выровнять *}

Подставьте значение \ (x \) во второе уравнение:

\ begin {align *} 2х + 3у & = 23 \\ 2 \ left (\ frac {69 + 4y} {5} \ right) + 3y & = 23 \\ 2 (69 + 4у) +3 (5) у & = 23 (5) \\ 138 + 8л + 15л & = 115 \\ 23лет & = -23 \\ \ поэтому y & = -1 \ end {выровнять *}

Подставьте значение \ (y \) обратно в первое уравнение:

\ begin {align *} x & = \ frac {69 + 4y} {5} \\ & = \ frac {69 + 4 (-1)} {5} \\ & = 13 \ end {выровнять *}

Следовательно, \ (x = 13 \ text {и} y = -1 \).

\ (x + 3y = 26 \) и \ (5x + 4y = 75 \)

Сделайте \ (x \) предметом первого уравнения:

\ begin {align *} х + 3у & = 26 \\ x & = 26 - 3 года \ end {выровнять *}

Подставьте значение \ (x \) во второе уравнение:

\ begin {align *} 5х + 4у & = 75 \\ 5 (26 - 3л) + 4л & = 75 \\ 130 - 15л + 4л & = 75 \\ -11лет & = -55 \\ \ поэтому y & = 5 \ end {выровнять *}

Подставьте значение \ (y \) обратно в первое уравнение:

\ begin {align *} х & = 26 - 3у \\ & = 26 - 3 (5) \\ & = 11 \ end {выровнять *}

Следовательно, \ (x = 11 \ text {и} y = 5 \).

\ (3x - 4y = 19 \) и \ (2x - 8y = 2 \)

Если мы умножим первое уравнение на 2, то коэффициент при \ (y \) будет одинаковым в обоих уравнениях:

\ begin {align *} 3х - 4л & = 19 \\ 3 (2) х - 4 (2) у & = 19 (2) \\ 6x - 8 лет & = 38 \ end {выровнять *}

Теперь мы можем вычесть второе уравнение из первого:

\ [\ begin {array} {cccc} & 6x - 8лет & = & 38 \\ - & (2x - 8y & = & 2) \\ \ hline & 4x + 0 & = & 36 \ конец {массив} \]

Решите относительно \ (x \):

\ begin {align *} \ поэтому x & = \ frac {36} {4} \\ & = 9 \ end {выровнять *}

Подставьте значение \ (x \) в первое уравнение и решите относительно \ (y \):

\ begin {align *} 3х-4л & = 19 \\ 3 (9) -4y & = 19 \\ \ поэтому y & = \ frac {19-3 (9)} {- 4} \\ & = 2 \ end {выровнять *}

Следовательно, \ (x = 9 \ text {и} y = 2 \).

\ (\ dfrac {a} {2} + b = 4 \) и \ (\ dfrac {a} {4} - \ dfrac {b} {4} = 1 \)

Сделайте \ (a \) предметом первого уравнения:

\ begin {align *} \ frac {a} {2} + b & = 4 \\ а + 2b & = 8 \\ а & = 8 - 2b \ end {выровнять *}

Подставьте значение \ (a \) во второе уравнение:

\ begin {align *} \ frac {a} {4} - \ frac {b} {4} & = 1 \\ а - б & = 4 \\ 8 - 2б - б & = 4 \\ 3b & = 4 \\ b & = \ frac {4} {3} \ end {выровнять *}

Подставьте значение \ (b \) обратно в первое уравнение:

\ begin {align *} a & = 8 - 2 \ left (\ frac {4} {3} \ right) \\ & = \ frac {16} {3} \ end {выровнять *}

Следовательно, \ (a = \ frac {16} {3} \ text {и} b = \ frac {4} {3} \).

\ (- 10x + y = -1 \) и \ (- 10x - 2y = 5 \)

Если мы вычтем второе уравнение из первого, то мы сможем решить для \ (y \):

\ [\ begin {array} {cccc} & -10x + y & = & -1 \\ - & (-10x - 2y & = & 5) \\ \ hline & 0 + 3г & = & -6 \ конец {массив} \]

Решить относительно \ (y \):

\ begin {align *} 3лет & = -6 \\ \ поэтому y & = -2 \ end {выровнять *}

Подставьте значение \ (y \) в первое уравнение и решите относительно \ (x \):

\ begin {align *} -10x + y & = -1 \\ -10x - 2 & = -1 \\ -10x & = 1 \\ x & = \ frac {1} {- 10} \ end {выровнять *}

Следовательно, \ (x = \ frac {-1} {10} \ text {и} y = -2 \).

\ (- 10 x - 10 y = -2 \) и \ (2 x + 3 y = 2 \)

Сделайте \ (x \) предметом первого уравнения:

\ begin {align *} - 10 х - 10 у = -2 \\ 5х + 5у & = 1 \\ 5x & = 1 - 5л \\ \ поэтому x = -y + \ frac {1} {5} \ end {выровнять *}

Подставьте значение \ (x \) во второе уравнение и решите относительно \ (y \):

\ begin {align *} 2х + 3у & = 2 \\ 2 \ left (-y + \ frac {1} {5} \ right) + 3y & = 2 \\ -2y + \ frac {2} {5} + 3y & = 2 \\ y & = \ frac {8} {5} \ end {выровнять *}

Подставьте значение \ (y \) в первое уравнение:

\ begin {align *} 5х + 5у & = 1 \\ 5x + 5 \ влево (\ frac {8} {5} \ right) & = 1 \\ 5х + 8 & = 1 \\ 5x & = -7 \\ x & = \ frac {-7} {5} \ end {выровнять *}

Следовательно, \ (x = - \ frac {7} {5} \ text {и} y = \ frac {8} {5} \).

\ (\ dfrac {1} {x} + \ dfrac {1} {y} = 3 \) и \ (\ dfrac {1} {x} - \ dfrac {1} {y} = 11 \)

Переставьте оба уравнения, умножив на \ (xy \):

\ begin {align *} \ frac {1} {x} + \ frac {1} {y} & = 3 \\ у + х & = 3xy \\\\ \ frac {1} {x} - \ frac {1} {y} & = 11 \\ у - х & = 11xy \ end {выровнять *}

Сложите два уравнения:

\ [\ begin {array} {cccc} & y + x & = & 3xy \\ + & (у - х & = & 11xy) \\ \ hline & 2y + 0 & = & 14xy \ конец {массив} \]

Решите относительно \ (x \):

\ begin {align *} 2y & = 14xy \\ у & = 7xy \\ 1 & = 7x \\ х & = \ гидроразрыв {1} {7} \ end {выровнять *}

Подставьте значение \ (x \) обратно в первое уравнение:

\ begin {align *} y + \ frac {1} {7} & = 3 \ left (\ frac {1} {7} \ right) y \\ 7у + 1 & = 3у \\ 4г & = -1 \\ y & = - \ frac {1} {4} \ end {выровнять *}

Следовательно, \ (x = \ frac {1} {7} \ text {и} y = - \ frac {1} {4} \).2 + 1 \\ 0 & = 0 \ end {выровнять *}

Поскольку это верно для всех \ (x \) в действительных числах, \ (x \) может быть любым действительным числом.

Посмотрите, что происходит с \ (y \), когда \ (x \) очень маленький или очень большой:

Наименьшее значение \ (x \) может быть равно 0. Когда \ (x = 0 \), \ (y = 2- \ frac {3} {2} = \ frac {1} {2} \).{2к} \ end {Equation}

3.8 Неявное дифференцирование - Объем исчисления 1

Цели обучения

  • Найдите производную сложной функции, используя неявное дифференцирование.
  • Используйте неявное дифференцирование, чтобы определить уравнение касательной.

Мы уже изучили, как найти уравнения касательных к функциям и скорости изменения функции в определенной точке. Во всех этих случаях мы имели явное уравнение для функции и явно дифференцировали эти функции.Предположим вместо этого, что мы хотим определить уравнение касательной к произвольной кривой или скорость изменения произвольной кривой в точке. В этом разделе мы решаем эти проблемы, находя производные функций, которые неявно определяются в терминах.

В большинстве математических дискуссий, если зависимая переменная является функцией независимой переменной, мы выражаем через. Если это так, мы говорим, что это явная функция из. Например, когда мы пишем уравнение, мы явно определяем в терминах.С другой стороны, если связь между функцией и переменной выражается уравнением, где не выражается полностью через, мы говорим, что уравнение неявно определяет через. Например, уравнение неявно определяет функцию.

Неявное дифференцирование позволяет нам находить наклоны касательных к кривым, которые явно не являются функциями (они не проходят тест вертикальной линии). Мы используем идею, что части являются функциями, которые удовлетворяют данному уравнению, но на самом деле это не функция.

В общем, уравнение определяет функцию неявно, если функция удовлетворяет этому уравнению. Уравнение может неявно определять множество различных функций. Например, функции

`` и, которые проиллюстрированы на (Рисунок), являются всего лишь тремя из многих функций, неявно определяемых уравнением.

Рисунок 1. Уравнение неявно определяет множество функций.

Если мы хотим найти наклон касательной линии к графику в точке, мы могли бы вычислить производную функции в точке.С другой стороны, если нам нужен наклон касательной в точке, мы могли бы использовать производную от. Однако не всегда легко найти функцию, неявно определяемую уравнением. К счастью, метод неявного дифференцирования позволяет нам найти производную неявно определенной функции, даже не решая ее явно. Процесс поиска с использованием неявного дифференцирования описан в следующей стратегии решения проблем.

Использование неявной дифференциации

Предполагая, что это неявно определяется уравнением, найти.

Решение

Следуйте инструкциям стратегии решения проблем.

Использование неявной дифференциации и правила произведения

Предполагая, что это неявно определяется уравнением, найти.

Решение

Использование неявного дифференцирования для нахождения второй производной

Найдите, если.

Найти для, неявно определенного уравнением.

Решение

Ключевые концепции

  • Мы используем неявное дифференцирование, чтобы найти производные от неявно определенных функций (функций, определяемых уравнениями).
  • Используя неявное дифференцирование, мы можем найти уравнение касательной к графику кривой.

Глоссарий

неявное дифференцирование
- это метод вычисления функции, определяемой уравнением, который достигается путем дифференцирования обеих сторон уравнения (не забывая рассматривать переменную как функцию) и решения для

Графические уравнения с пошаговым решением математических задач

Язык математики особенно эффективен для представления отношений между двумя или более переменными.В качестве примера рассмотрим пройденное расстояние через определенный промежуток времени автомобилем, движущимся с постоянной скоростью 40 миль в час. Мы можем представить эту взаимосвязь как

  1. 1. Словесное предложение:
    Пройденное расстояние в милях равно сороккратному количеству пройденных часов.
  2. 2. Уравнение:
    d = 40r.
  3. 3. Таблица значений.
  4. 4. График, показывающий зависимость между временем и расстоянием.

Мы уже использовали словесные предложения и уравнения для описания таких отношений; В этой главе мы будем иметь дело с табличным и графическим представлениями.

7.1 РЕШЕНИЕ УРАВНЕНИЙ ОТ ДВУХ ПЕРЕМЕННЫХ

ЗАКАЗАННЫЕ ПАРЫ

Уравнение d = 40f объединяет расстояние d для каждого момента времени t. Например,


, если t = 1, то d = 40
, если t = 2, то d = 80
, если t = 3, то d = 120

и так далее.

Пара чисел 1 и 40, рассматриваемая вместе, называется решением уравнение d = 40r, потому что, когда мы подставляем 1 вместо t и 40 вместо d в уравнении, мы получаем верное утверждение. Если мы согласны ссылаться на парные номера в указанном порядок, в котором первое число относится ко времени, а второе число относится к расстояния, мы можем сократить приведенные выше решения как (1, 40), (2, 80), (3, 120) и скоро.Мы называем такие пары чисел упорядоченными парами и ссылаемся на первую и вторые числа в парах как компоненты. В соответствии с этим соглашением решения Уравнение d - 40t - это упорядоченные пары (t, d), компоненты которых удовлетворяют уравнению. Некоторые упорядоченные пары для t, равного 0, 1, 2, 3, 4 и 5, равны

(0,0), (1,40), (2,80), (3,120), (4,160) и (5,200)

Такие пары иногда отображаются в одной из следующих табличных форм.

В любом конкретном уравнении, включающем две переменные, когда мы присваиваем значение одной переменных определяется значение другой переменной и, следовательно, зависит от первого.Удобно говорить о переменной, связанной с первый компонент упорядоченной пары как независимая переменная и переменная связанный со вторым компонентом упорядоченной пары в качестве зависимой переменной. Если в уравнении используются переменные x и y, подразумевается, что заменить - элементы для x являются первыми компонентами, следовательно, x - независимая переменная и замены y являются вторыми компонентами и, следовательно, y является зависимой переменной. Например, мы можем получить пары для уравнения

, подставив конкретное значение одной переменной в уравнение (1) и решив для другая переменная.

Пример 1

Найдите недостающий компонент, чтобы упорядоченная пара была решением

2х + у = 4

а. (0 ,?)

г. (1 ,?)

г. (2 ,?)

Решение

если x = 0, то 2 (0) + y = 4
y = 4

если x = 1, то 2 (1) + y = 4
y = 2

если x = 2, то 2 (2) + y = 4
y = 0

Три пары теперь могут отображаться как три упорядоченные пары

(0,4), (1,2) и (2,0)

или в табличной форме

ЯВНО ВЫРАЖАЮЩИЙ ПЕРЕМЕННУЮ

Мы можем добавить -2x к обоим членам 2x + y = 4, чтобы получить

-2x + 2x + y = -2x + 4
y = -2x + 4

В уравнении (2), где y есть само по себе, мы говорим, что y явно выражается через из х.Часто бывает проще получить решения, если сначала выразить уравнения в такой форме потому что зависимая переменная явно выражается через независимые Переменная.

Например, в уравнении (2) выше

, если x = 0, то y = -2 (0) + 4 = 4
, если x = 1, то y = -2 (1) + 4 = 2
, если x = 2, то y = -2 (2) + 4 = 0

Мы получаем те же пары, что и с помощью уравнения (1)

(0,4), (1,2) и (2,0)

Мы получили уравнение (2) добавлением одинаковой величины -2x к каждому члену уравнения (1), таким образом получая y само по себе.В общем, мы можем написать эквивалент уравнения с двумя переменными, используя свойства, которые мы ввели в главе 3, где мы решали уравнения первой степени с одной переменной.

Уравнения эквивалентны, если:

  1. Одно и то же количество прибавляется к равным количествам или вычитается из них.
  2. Равные количества умножаются или делятся на одинаковое ненулевое количество.

Пример 2

Решите 2y - 3x = 4 явно для y через x и получите решения для x = 0, х = 1 и х = 2.

Решение
Во-первых, прибавив 3x к каждому члену, мы получим

2y - 3x + 3x = 4 + 3x
2y = 4 + 3x (продолжение)

Теперь, разделив каждый член на 2, получаем

В этой форме мы получаем значения y для заданных значений x следующим образом:

В этом случае три решения: (0, 2), (1, 7/2) и (2, 5).

ФУНКЦИОНАЛЬНОЕ ОБОЗНАЧЕНИЕ

Иногда мы используем специальные обозначения для наименования второго компонента упорядоченного пара, которая связана с указанным первым компонентом.Символ f (x), который часто бывает используется для обозначения алгебраического выражения в переменной x, также может использоваться для обозначения значение выражения для конкретных значений x. Например, если

f (x) = -2x + 4

, где f (x) играет ту же роль, что и y в уравнении (2) на странице 285, тогда f (1) представляет значение выражения -2x + 4, когда x заменяется на 1

f (l) = -2 (1) + 4 = 2

Аналогично

f (0) = -2 (0) + 4 = 4

и

f (2) = -2 (2) + 4 = 0

Символ f (x) обычно называют обозначением функции.

Пример 3

Если f (x) = -3x + 2, найти f (-2) и f (2).

Решение

Замените x на -2, чтобы получить
f (-2) = -3 (-2) + 2 = 8

Замените x на 2, чтобы получить
f (2) = -3 (2) + 2 = -4

7.2 ГРАФИКИ ЗАКАЗАННЫХ ПАР

В разделе 1.1 мы видели, что каждое число соответствует точке на линии. Simi- Как правило, каждая упорядоченная пара чисел (x, y) соответствует точке на плоскости. К граф упорядоченной пары чисел, мы начинаем с построения пары перпендикулярных числовые линии, называемые осями.Горизонтальная ось называется осью x, вертикальная ось называется осью Y, а точка их пересечения называется началом координат. Эти топоры разделите плоскость на четыре квадранта, как показано на рисунке 7.1.

Теперь мы можем присвоить упорядоченную пару чисел точке на плоскости, указав на перпендикулярное расстояние точки от каждой из осей. Если первый составляющая положительная, точка лежит правее вертикальной оси; если отрицательный, это лежит слева.Если второй компонент положительный, точка находится выше Горизонтальная ось; если отрицательный, он находится внизу.

Пример 1

График (3, 2), (-3, 2), (-3, -2) и (3, -2) в прямоугольной системе координат.

Решение
График (3, 2) находится на 3 единицы правее ось y и на 2 единицы выше оси x; график (-3,2) лежит на 3 единицы слева от ось y и на 2 единицы выше оси x; график (-3, -2) лежит на 3 единицы слева от ось y и на 2 единицы ниже оси x; график (3, -2) лежит на 3 единицы правее ось y и на 2 единицы ниже оси x.

Расстояние y, на котором точка расположена от оси x, называется ординатой. точки, а расстояние x, на котором точка расположена от оси y, называется абсцисса точки. Абсцисса и ордината вместе называются прямоугольником. Гулярные или декартовы координаты точки (см. рисунок 7.2).

7.3 ИЗОБРАЖЕНИЕ УРАВНЕНИЙ ПЕРВОЙ СТЕПЕНИ

В разделе 7.1 мы видели, что решение уравнения с двумя переменными является упорядоченным пара.В разделе 7.2 мы видели, что компонентами упорядоченной пары являются координаты точки на плоскости. Таким образом, чтобы построить уравнение с двумя переменными, мы Изобразите набор упорядоченных пар, которые являются решениями уравнения. Например, мы может найти некоторые решения уравнения первой степени

у = х + 2

, положив x равным 0, -3, -2 и 3. Тогда

для x = 0, y = 0 + 2 = 2
для x = 0, y = -3 + 2 = -1
для x = -2, y = -2 + 2-0
для x = 3, y = 3 + 2 = 5

и получаем решения

(0,2), (-3, -1), (-2,0) и (3,5)

, который можно отобразить в табличной форме, как показано ниже.

Если мы изобразим точки, определенные этими упорядоченные пары и проведите прямую через их, мы получаем график всех решений y = x + 2, как показано на рисунке 7.3. Это, каждое решение y = x + 2 лежит на прямой, и каждая точка на линии - это решение у = х + 2.

Графики уравнений первой степени в двух переменные всегда прямые; следовательно, такие уравнения также называются линейными уравнения.

В приведенном выше примере значения, которые мы использовали для x были выбраны случайным образом; мы могли бы использовать любые значения x, чтобы найти решения уравнения.Графики любых других упорядоченных пар, которые являются решениями уравнения, также будут быть на линии, показанной на рисунке 7.3. Фактически, каждое линейное уравнение с двумя переменными имеет бесконечное количество решений, график которых лежит на прямой. Однако мы только нужно найти два решения, потому что для определения прямая линия. Третий балл можно получить как проверку.

Для построения графика уравнения первой степени:

  1. Постройте набор прямоугольных осей, показывающих масштаб и переменную, представляющую отправляется каждой осью.
  2. Найдите две упорядоченные пары, которые являются решениями уравнения, которое нужно построить на графике. присвоение любого удобного значения одной переменной и определение соответствующего значение другой переменной.
  3. Изобразите эти упорядоченные пары.
  4. Проведите прямую линию через точки.
  5. Проверьте, построив третью упорядоченную пару, которая является решением уравнения и убедитесь, что он лежит на линии.

Пример 1

Изобразите уравнение y = 2x - 6.

Решение
Сначала мы выбираем любые два значения x, чтобы найти соответствующие значения y.
Мы будем использовать 1 и 4 для x.
Если x = 1, y = 2 (1) - 6 = -4
Если x = 4, y = 2 (4) - 6 = 2
Таким образом, два решения уравнения:
(1, -4) и (4, 2).
Затем мы строим график этих упорядоченных пар и проводим прямую линию через точки, как показано на рисунке. Мы используем стрелки, чтобы показать, что линия тянется бесконечно далеко в обоих направлениях. Любая третья упорядоченная пара, удовлетворяющая уравнение можно использовать в качестве проверки:
, если x = 5, y = 2 (5) -6 = 4
Затем отметим, что график (5, 4) также лежит на линии
. Чтобы найти решения уравнения, как мы уже отмечали, часто проще всего сначала решить явно для y через x.

Пример 2

График x + 2y = 4.

Решение
Сначала решаем y через x, чтобы получить

Теперь мы выбираем любые два значения x, чтобы найти соответствующие значения y. Мы будем использовать 2 и 0 для x.

Таким образом, двумя решениями уравнения являются (2, 1) и (0, 2).

Затем мы графически отображаем эти упорядоченные пары и проведите через точки прямую, как показано на рисунке.

Любая третья упорядоченная пара, удовлетворяющая уравнение можно использовать как проверку:

Заметим, что график (-2, 3) также лежит на линии.

ОСОБЫЕ СЛУЧАИ ЛИНЕЙНЫХ УРАВНЕНИЙ

Уравнение y = 2 можно записать как

0x + y = 2

и может рассматриваться как линейное уравнение в двух переменные, у которых коэффициент при x равен 0. Некоторые решения 0x + y = 2 равны

(1,2), (-1,2) и (4,2)

Фактически, любая упорядоченная пара вида (x, 2) является решение (1). Графическое изображение решений дает горизонтальную линию, как показано на рисунке 7.4.

Точно так же уравнение, такое как x = -3, может можно записать как

х + 0у = -3

и может рассматриваться как линейное уравнение в двух переменные, у которых коэффициент при y равен 0.

Некоторые решения x + 0y = -3 являются (-3, 5), (-3, 1) и (-3, -2). Фактически любой упорядоченная пара вида (-3, y) является решением из (2). Построение графика решений дает вертикальную линии, как показано на рисунке 7.5.

Пример 3

График

а. у = 3
б. х = 2

Решение
а. Мы можем записать y = 3 как Ox + y = 3.
Некоторые решения: (1, 3), (2,3) и (5, 3).

б. Мы можем записать x = 2 как x + Oy = 2.
Некоторые решения: (2, 4), (2, 1) и (2, -2).

7.4 МЕТОД ПЕРЕСЕЧЕНИЯ ГРАФИКА

В Разделе 7.3 мы присвоили значения x в уравнениях с двумя переменными, чтобы найти соответствующие значения y. Решения уравнения с двумя переменными, равные как правило, легче всего найти те, в которых первый или второй компонент 0. Например, если мы заменим 0 на x в уравнении

3x + 4y = 12

у нас есть

3 (0) + 4y = 12
y = 3

Таким образом, решением уравнения (1) является (0, 3).Мы также можем найти упорядоченные пары, которые решения уравнений с двумя переменными путем присвоения значений y и определения соответствующие значения x. В частности, если мы подставим 0 вместо y в уравнение (1), мы получить

3x + 4 (0) = 12
x = 4

и второе решение уравнения (4, 0). Теперь мы можем использовать упорядоченные пары (0, 3) и (4, 0) для построения графика уравнения (1). График представлен на рисунке 7.6. Уведомление что линия пересекает ось x в точке 4 и ось y в точке 3. По этой причине число 4 называется пересечением по оси x графа, а число 3 - точкой пересечения по оси y.

Этот метод построения графика линейного уравнения называется пересечением. метод построения графиков. Обратите внимание, что когда мы используем этот метод построения графиков линейного уравнение, нет никакого преимущества в том, чтобы сначала явно выразить y через x.

Пример 1

График 2x - y = 6 методом пересечения.

Решение
Мы находим точку пересечения с x, подставляя 0 вместо y в уравнение, чтобы получить

2x - (0) = 6
2x = 6
x = 3

Теперь мы находим точку пересечения по оси Y, подставляя для x в уравнении, чтобы получить

2 (0) - y = 6
-y = 6
y = -6

Упорядоченные пары (3, 0) и (0, -6) являются решениями 2x - y = 6.Графическое изображение этих точки и соединив их прямой линией, получим график 2x - y = 6. Если график пересекает оси в или около начала координат, метод перехвата не работает. удовлетворительно. Затем мы должны построить график упорядоченной пары, которая является решением уравнения и чей график не является началом координат или не слишком близок к началу координат.

Пример 2

График y = 3x.

Решение
Мы можем заменить 0 на x и найти
y = 3 (0) = 0
Точно так же, заменив 0 на y, мы получим
0 = 3.x, x = 0
Таким образом, 0 является и точкой пересечения по оси x, и точкой пересечения по оси y.

Так как одной точки недостаточно для графического = 3x, мы прибегаем к методам, описанным в Раздел 7.3. Выбирая любое другое значение для x, скажем 2, получаем

у = 3 (2) = 6

Таким образом, (0, 0) и (2, 6) являются решениями уравнение. График y = 3x показан на верно.

7,5 НАКЛОН ЛИНИИ

ФОРМУЛА НАКЛОНА

В этом разделе мы изучим важное свойство линии.Мы назначим число к линии, которую мы называем уклоном, что даст нам меру "крутизны" или «направление» линии.

Часто бывает удобно использовать специальные обозначения для различения прямоугольников. Гулярные координаты двух разных точек. Мы можем обозначить одну пару координат на (x 1 , y 1 (читается «x sub one, y sub one»), связанный с точкой P 1 , и второй пара координат по (x 2 , y 2 ), связанная со второй точкой P 2 , как показано на рисунке 7.7. Обратите внимание на рис. 7.7, что при переходе от P 1 к P 2 вертикальное изменение (или расстояние по вертикали) между двумя точками составляет y 2 - y 1 , а горизонтальное изменение (или расстояние по горизонтали) составляет x 2 - x 1 .

Отношение вертикального изменения к горизонтальному называется крутизной линия, содержащая точки P 1 и P 2 . Это соотношение обычно обозначают m. Таким образом,

Пример 1

Найдите наклон прямой, содержащей два точки с координатами (-4, 2) и (3, 5) как показано на рисунке справа.

Решение
Обозначим (3, 5) как (x 2 , y 2 ) и (-4, 2) как (x 1 , y 1 ). Подставляя в уравнение (1) дает

Обратите внимание, что мы получим тот же результат, если подставим -4 и 2 вместо x 2 и y 2 и 3 и 5 для x 1 и y 1

Линии с различным уклоном показаны на Рисунке 7.8 ниже. Наклоны линий, которые вверх вправо положительны (рисунок 7.8а) и наклоны спускающихся вниз справа отрицательны (рис. 7.8b). Обратите внимание (рис. 7.8c), что поскольку все точки на горизонтальной линии имеют одинаковое значение y, y 2 - y 1 равно нулю для любых двух точек и наклон линии просто

Также обратите внимание (рисунок 7.8c), что, поскольку все точки на вертикали имеют одинаковое значение x, x 2 - x 1 равняется нулю для любых двух точек. Однако

не определен, поэтому вертикальная линия не имеет наклона.

ПАРАЛЛЕЛЬНЫЕ И ПЕРПЕНДИКУЛЯРНЫЕ ЛИНИИ

Рассмотрим линии, показанные на рисунке 7.9. Линия l 1 имеет наклон m 1 = 3, а линия l 2 имеет уклон м 2 = 3. В данном случае

Эти линии никогда не пересекаются и называются параллельными линиями. Теперь рассмотрим линии показано на рисунке 7.10. Линия l 1 имеет наклон m 1 = 1/2, а прямая l 2 имеет наклон m 2 = -2. В данном случае

Эти линии пересекаются, образуя прямой угол, и называются перпендикулярными линиями.

В общем, если две линии имеют уклон и м2:

    а. Линии параллельны, если они имеют одинаковый наклон, т. Е. если m 1 = m 2 .
    г. Линии перпендикулярны, если произведение их уклонов равно -1, то есть если m 1 * m 2 = -1.

7.6 УРАВНЕНИЯ ПРЯМЫХ ЛИНИЙ

ОПОРНО-СКЛОННАЯ ФОРМА

В разделе 7.5 мы нашли наклон прямой по формуле

Допустим, мы знаем, что линия проходит через точку (2, 3) и имеет наклон 2.Если обозначить любую другую точку на прямой как P (x, y) (см. Рис. 7.1а), наклоном формула

Таким образом, уравнение (1) - это уравнение прямой, проходящей через точку (2, 3), и имеет уклон 2.

В общем, допустим, мы знаем, что линия проходит через точку P 1 (x 1 , y 1 и имеет уклон м. Если мы обозначим любую другую точку на прямой как P (x, y) (см. Рис. 7.11 b), то через формула наклона

Уравнение (2) называется формой точечного уклона для линейного уравнения.В уравнении (2), m, x 1 и y 1 известны, а x и y - переменные, которые представляют координаты любая точка на линии. Таким образом, всякий раз, когда мы знаем наклон линии и точки на линии, мы можем найти уравнение линии, используя уравнение (2).

Пример 1

Прямая имеет наклон -2 и проходит через точку (2, 4). Найдите уравнение прямой.

Решение
Замените -2 вместо m и (2, 4) вместо (x 1 , y 1 ) в уравнении (2)

Таким образом, прямая с наклоном -2, проходящая через точку (2, 4), имеет уравнение у = -2х + 8.Мы могли бы также записать уравнение в эквивалентной форме y + 2x = 8, 2x + y = 8 или 2x + y - 8 = 0.

ФОРМА НАКЛОНА

Теперь рассмотрим уравнение прямой с наклоном m и точкой пересечения оси y b, как показано на Рисунок 7.12. Подставляя 0 вместо x 1 и b вместо y 1 в форме точечного наклона линейного уравнение, имеем

y - b = m (x - 0)
y - b = mx

или

у = mx + b

Уравнение (3) называется формой пересечения наклона для линейного уравнения.Наклон и пересечение по оси Y можно получить непосредственно из уравнения в эта форма.

Пример 2 Если линия имеет уравнение

, то наклон линии должен быть -2, а точка пересечения оси Y должна быть 8. Точно так же график

у = -3x + 4

имеет наклон -3 и точку пересечения по оси Y 4; и график

имеет наклон 1/4 и точку пересечения по оси Y -2.

Если уравнение не записано в форме x = mx + b, и мы хотим знать наклон и / или точку пересечения с y, мы переписываем уравнение, решая относительно y через x.

Пример 3

Найдите наклон и точку пересечения оси Y для 2x - 3y = 6.

Решение
Сначала мы решаем y в терминах x, добавляя -2x к каждому члену.

2x - 3y - 2x = 6 - 2x
- 3y = 6 - 2x

Теперь разделив каждый член на -3, мы получим

Сравнивая это уравнение с формой y = mx + b, отметим, что наклон m (величина коэффициент при x) равен 2/3, а точка пересечения оси y равна -2.

7.7 ПРЯМОЕ ИЗМЕНЕНИЕ

Частный случай уравнения первой степени с двумя переменными дается

y = kx (k - постоянная)

Такая связь называется прямой вариацией.Мы говорим, что переменная y изменяется прямо как x.

Пример 1

Мы знаем, что давление P в жидкости прямо пропорционально глубине d ниже поверхность жидкости. Мы можем обозначить эту взаимосвязь в символах как

P = kd

В прямом варианте, если мы знаем набор условий для двух переменных, и если мы также знаем другое значение для одной из переменных, мы можем найти значение вторая переменная для этого нового набора условий.

В приведенном выше примере мы можем решить для константы k, чтобы получить

Поскольку отношение P / d постоянно для каждого набора условий, мы можем использовать соотношение для решения задач, связанных с прямым изменением.

Пример 2

Если давление P напрямую зависит от глубины d и P = 40, когда d = 10, найдите P, когда d = 15.

Решение
Поскольку отношение P / d является постоянным, мы можем подставить значения для P и d и получить пропорция

Таким образом, P = 60 при d = 15.

7,8 НЕРАВЕНСТВА В ДВУХ ПЕРЕМЕННЫХ

В разделах 7.3 и 7.4 мы построили уравнения с двумя переменными. В этом разделе мы построит график неравенств по двум переменным. Например, рассмотрим неравенство

у ≤ -x + 6

Решения - это упорядоченные пары чисел, которые «удовлетворяют» неравенству.Это, (a, b) является решением неравенства, если неравенство является истинным утверждением после того, как мы заменим a на x и b на y.

Пример 1

Определите, является ли данная упорядоченная пара решением y = -x + 6.

а. (1, 1)
г. (2, 5)

Решение
Упорядоченная пара (1, 1) является решением, потому что, когда 1 заменяется на x, а 1 подставив вместо y, мы получим

(1) = - (1) + 6, или 1 = 5

, что является верным утверждением. С другой стороны, (2, 5) не является решением, потому что когда 2 заменяется на x и 5 заменяется на y, мы получаем

(5) = - (2) + 6, или 5 = 4

, что является ложным заявлением.

Чтобы построить график неравенства y = -x + 6, сначала построим график уравнения y = -x + 6 показано на рисунке 7.13. Обратите внимание, что (3, 3), (3, 2), (3, 1), (3, 0) и т. Д., Связанные с точками, находящимися на линии или под ней, являются решениями неравенства y = -x + 6, тогда как (3,4), (3, 5) и (3,6), связанные с точками над линии не являются решениями неравенства. Фактически, все упорядоченные пары, связанные с точки на линии или ниже являются решениями y = - x + 6. Таким образом, каждая точка на или под линией находится на графике.Мы представляем это, закрашивая область под линия (см. рисунок 7.14).

В общем, чтобы построить график неравенства первой степени с двумя переменными в виде Ax + By = C или Ax + By = C, сначала строим график уравнения Ax + By = C и затем определите, какая полуплоскость (область выше или ниже линии) содержит решения. Затем закрашиваем эту полуплоскость. Мы всегда можем определить, какая половина плоскость заштриховать, выбрав точку (не на линии уравнения Ax + By = C) и тестирование, чтобы увидеть, является ли упорядоченная пара, связанная с точкой, решением учитывая неравенство.Если да, то закрашиваем полуплоскость, содержащую контрольную точку; иначе, заштриховываем вторую полуплоскость. Часто (0, 0) - удобная контрольная точка.

Пример 2

График 2x + 3y = 6

Решение
Сначала построим линию 2x + 3y = 6 (см. График a). Используя начало координат как контрольную точку, мы определяем, является ли (0, 0) решением 2x + 3y ≥ 6. Поскольку утверждение

2 (0) + 3 (0) = 6

ложно, (0, 0) не является решением и мы закрашиваем полуплоскость, не содержащую начало координат (см. график b).

Когда линия Ax + By = C проходит через начало координат, (0, 0) не является допустимым тестом точка, так как она находится на линии.

Пример 3

График y = 2x.

Решение
Начнем с построения линии y = 2x (см. График a). Поскольку линия проходит через начало координат, мы должны выбрать другую точку не на линии в качестве нашей тестовой точки. Мы будем используйте (0, 1). Поскольку выписка

(1) = 2 (0)

верно, (0, 1) является решением, и мы закрашиваем полуплоскость, содержащую (0, 1) (см. график б).

Если символ неравенства - ', точки на графике Ax + By = C не являются решениями неравенства. Затем мы используем пунктирную линию для графика Ax + By = C.

РЕЗЮМЕ ГЛАВЫ

  1. Решение уравнения с двумя переменными - это упорядоченная пара чисел. в упорядоченная пара (x, y), x называется первым компонентом, а y называется вторым составная часть. Для уравнения с двумя переменными переменная, связанная с первой компонент решения называется независимой переменной, а переменная связанный со вторым компонентом, называется зависимой переменной.Обозначение функции f (x) используется для обозначения алгебраического выражения в x. Когда х в символ f (x) заменяется определенным значением, символ представляет значение выражения для этого значения x.

  2. Пересечение двух перпендикулярных осей в системе координат называется происхождение системы, и каждая из четырех областей, на которые делится плоскость называется квадрантом. Компоненты упорядоченной пары (x, y), связанной с точки на плоскости называются координатами точки; x называется абсциссой точки, а y называется ординатой точки.

  3. График уравнения первой степени с двумя переменными представляет собой прямую линию. То есть каждый упорядоченная пара, которая является решением уравнения, имеет график, лежащий на линии, и каждая точка в строке связана с упорядоченной парой, которая является решением уравнение.

    Графики любых двух решений уравнения с двумя переменными могут быть использованы для получить график уравнения. Однако два решения уравнения в двух переменные, которые обычно легче всего найти, - это те, в которых либо первая, либо второй компонент равен 0.Координата x точки, в которой линия пересекает ось x. называется пересечением по оси x линии, а координата y точки, в которой линия пересекает ось ординат и называется пересечением линии. Использование точек пересечения для построения графика уравнение называется методом построения графика с пересечением.

  4. Наклон линии, содержащей точки P 1 (x 1 , y 1 ) и P 2 (x 2 , y 2 ), определяется как

    Две прямые параллельны, если они имеют одинаковый наклон (m 1 = m 2 ).

    Две прямые перпендикулярны, если произведение их наклонов равно - l (m 1 * m 2 = -1).

  5. Форма точки-наклона прямой с уклоном m, проходящей через точку (x 1 , y 1 ) это

    y - y 1 - m (x - x 1 )

    Форма пересечения наклона линии с наклоном m и точкой пересечения оси y b равна

    у = mx + b

  6. Взаимосвязь, определяемая уравнением вида

    y = kx (k постоянная)

    называется прямой вариацией.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2015-2019 © Игровая комната «Волшебный лес», Челябинск
тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск