Архимед и его открытия – Архимед и его открытия | Личность

Содержание

Архимед и его открытия | Личность

Если бы… Ах, если бы великие государства древности уделяли чуть больше внимания своим славным изобретателям — хотя бы так же, как нынешние правительства не скупятся на финансирование высокотехнологичных военных программ, то — кто знает, на каком языке мы бы сейчас с вами разговаривали и в какой стране жили? Что было бы, если Леонардо да Винчи или Никола Тесла получили возможность развернуть свои таланты во всю ширь?

О Тесле и да Винчи мы уже писали. Настала пора отдать дань уважения еще одному, пожалуй, самому первому техническому гению человечества. Великий математик, физик, инженер и астроном, недооцененный при жизни и случайно погибший от руки безграмотного солдата — он мог ускорить научно-техническую революцию почти на две тысячи лет, если бы…

Архимед и его открытия 1

Архимед (художник Доменико Фетти, 17 век).

Любые рассказы о великих людях обычно начинаются с их биографии. Увы, в случае с Архимедом нам придется довольствоваться лишь набором неподтвержденных фактов. О жизни этого ученого ходит множество легенд, но достоверных сведений крайне мало.

Родиной изобретателя была Сицилия, город Сиракузы. Большую часть жизни он провел именно там. Дата его рождения — 287 год до нашей эры — установлена на основании свидетельства византийского историка Иоанна Цена (12 век), писавшего, что Архимед прожил 75 лет и погиб в 212 году до нашей эры.

В своих трудах изобретатель упоминал, что его отцом был астроном и математик Фидий, происходивший из знатного сиракузского рода. Судя по всему, в юном возрасте мальчик был послан на обучение в Александрию — крупнейший культурный центр того времени. В дальнейшем он активно общался с математиками александрийской школы (например, с Эрастофеном), и это наталкивает на мысль о том, что в качестве «учебников» Архимед использовал труды александрийца Евклида. Тематика его дальнейших исследований также совпадала с «евклидовой наукой» и значительно развивала ее — это, прежде всего, теория чисел, а также планиметрия и геометрия.

Выучившись в Александрии, Архимед вернулся домой и устроился «на работу» при дворе своего дальнего родственника — сиракузского тирана Герона II. Существует множество легенд о том, как Архимед выполнял самые хитроумные задачи Герона, однако в реальности правитель, скорее всего, не придавал особого практического значения его исследованиям и покровительствовал выдающемуся ученому лишь потому, что его присутствие в Сиракузах заметно повышало культурный статус города.

Находясь «под крылом» просвещенного монарха в течение большей части своей жизни, изобретатель мог спокойно работать — и работал, да так плодотворно, что в наши дни слово «Архимед» неизвестно лишь тем, кто живет в лесу, молится колесу и падает в обморок при виде самолета.

Сиракузы — один из самых влиятельных и красивых городов в античном Средиземноморье. Был основан в 8 веке до нашей эры под названием Сирако («болото», т.к. рядом с городом действительно находилось болото). Герон II мудро правил Сиракузами 50 лет: избегал крупных войн, развивал юриспруденцию, науки и искусства. Его наследник — юный Иероним — взошел на трон в 215 году и почти сразу же привел город к краху, поссорившись с Римом. Сиракузы пали из-за того, что некоторые горожане решили обсудить условия мирного договора и открыли римлянам небольшую дверь в стене, однако те ворвались внутрь и быстро подавили сопротивление.

Войска римского консула Марцелла очень долго (около 8 месяцев) осаждали Сиракузы. Причиной задержки якобы было то, что великий ученый перед угрозой вторжения перешел от чистой математики к механике и начал создавать удивительные боевые приспособления для защиты родного города. Более того — по некоторым свидетельствам, Архимед лично руководил обороной города и распоряжался его техническими ресурсами.

Римляне были не дураки. Оценив оборонительные новшества греков, Марцелл приказал своим солдатам не трогать гениального инженера при захвате города, планируя, видимо, переманить его к себе на службу. Нетрудно представить, какие военные механизмы мог бы изобрести Архимед, работая на практичных и жестоких римлян.

Однако история распорядилась иначе. По легенде, один из легионеров нашел ученого в саду его дома, когда тот изучал чертежи на песке, не обращая никакого внимания на уличные бои. То ли римлянин не узнал этого грека, то ли сознательно нарушил приказ командующего (говорят, что Архимед сказал солдату не трогать его рисунки — «круги», однако в каких именно выражениях он это сделал, остается неясным) — в любом случае величайший ум своего времени был попросту зарублен на месте.

Смерть Архимеда.

Смерть Архимеда. Гравюра из итальянской книги XVIII века.

Плутарх (45—120) сообщает, что по завещанию Архимеда на его могиле был установлен шар, заключенный в цилиндр, с указанием на то, что соотношение их объемов равно 2/3. В своем труде «О сфере и цилиндре» Архимед доказал такую же кратность соотношения площади поверхностей этих двух фигур.

Достаточно лишь мельком взглянуть на «ноу-хау» Архимеда, чтобы понять, насколько этот человек обогнал свое время и во что мог превратиться наш мир, если бы высокие технологии усваивались в античности так же быстро, как и сегодня. Архимед специализировался в математике и геометрии — двух важнейших науках, лежащих в основе технического прогресса. О революционности его исследований говорит тот факт, что историки считают Архимеда одним из трех величайших математиков человечества (другие два — Ньютон и Гаусс).

По части новшеств этот грек был на голову выше всех европейских математиков вплоть до эпохи Возрождения. В обществе, где применялась совершенно жуткая система исчисления, и в языке, где слово «мириад» (десять тысяч) было синонимом «бесконечности», он разработал четкую науку о цифрах и «сосчитал» их вплоть до 10

64.

Архимед заложил основы интегрального исчисления и теории сверхмалых чисел. Он доказал, что соотношение длины окружности к ее диаметру равно соотношению площади круга к квадрату его радиуса. Ученый, конечно, не назвал это соотношение «числом Пи», однако довольно точно определил ее значение в интервале от 3+10/71 (примерно 3,1408) до 3+1/7 (примерно 3,1429).

До нашего времени дошли лишь некоторые трактаты Архимеда. Большинство из них погибло в двух пожарах Александрийской библиотеки — сохранились лишь некоторые переводы на арабский и латынь. К примеру, в работе «О равновесии плоскостей» автор исследовал центры тяжести различных фигур. Существует легенда, согласно которой Герон попросил Архимеда наглядно проиллюстрировать «эффект» рычага, известный по его знаменитой фразе «Дайте мне точку опоры и я переверну весь мир!» (Плутарх цитирует ее иначе: «Если бы имелась иная Земля, я бы стал на нее и сдвинул эту»).

Изобретатель приказал вытащить на берег большое судно и наполнить его грузом, после чего встал около полиспаста (катушечного блока) и стал без каких-либо видимых усилий тянуть на себя канат, привязанный к кораблю. Последний, на удивление присутствующих, «поплыл» по суше, как по воде.

Не менее значительны и другие сочинения: «О коноидах и сфероидах», «О спиралях», «Измерение круга», «Квадратура параболы», «Псаммит» («Исчисление песчинок» — здесь ученый предлагал способ узнать количество песчинок, заключенное в объеме всего мира, то есть описывал систему записи сверхбольших чисел).

Отдельно следует сказать о его работах в области механики. Здесь он действительно был пионером, во многом напоминая Леонардо да Винчи.

По свидетельствам Диодора Сицилийского, римские рабы в Испании осушали целые реки при помощи устройства, которое разработал Архимед во время визита в Египет. Это был так называемый «Архимедов винт» — мощный и одновременно очень простой винтовой насос. Впрочем, некоторые свидетельства говорят о том, что похожее устройство было изобретено на 300 лет раньше для орошения висячих садов Вавилона (так называемых «Садов Семирамиды»).

Архимедов винт

Архимед якобы изобрел мозаичную игру — «стомахион» (из плоских костяных кусочков разной геометрической формы необходимо составить узнаваемые фигуры — человека, животного, и т. п.). Ему также приписывается создание одометра (прибора, измеряющего пройденное расстояние).

Во время осады Сиракуз Архимед построил множество удивительных приспособлений, из которых можно выделить два самых эффективных. Первое — это «Лапа Архимеда», уникальная подъемная машина и прообраз современного крана. Внешне она была похожа на рычаг, выступающий за городскую стену и оснащенный противовесом. Полибий во «Всемирной истории» писал, что если римский корабль пытался пристать к берегу около Сиракуз, этот «манипулятор» под управлением специально обученного машиниста захватывал его нос и переворачивал (вес римских трирем превышал 200 тонн, а у пентер мог достигать и всех 500), затапливая атакующих.

Осада Сиракуз

Подъёмный кран — тоже оружие!

Римляне были шокированы, увидев машины Архимеда в действии. Плутарх пишет, что иногда дело доходило до абсурда: увидев на стене Сиракуз какую-нибудь веревку или бревно, непобедимые римские легионеры в панике спасались бегством, думая, что сейчас против них будет применен очередной адский механизм.

Похожие машины сбивали со стен осадные лестницы римлян, а дальнобойные и невероятно точные катапульты Архимеда обстреливали их корабли камнями. Но еще удивительнее был второй «сюрприз» — лучевое оружие.

Осознав тщетность попыток взять город штурмом, римский флот (по разным источникам, около 60 кораблей) встал на якорь неподалеку от города. По легенде, Архимед сконструировал большое зеркало, либо раздал солдатам небольшие вогнутые зеркала (у историков нет единой точки зрения — иногда здесь даже фигурируют начищенные до блеска медные щиты), при помощи которых «сконцентрировал» солнечный свет на флоте противника и спалил его дотла.

Лучи Архимеда

Цицерон писал, что после того, как Сиракузы были разграблены, Марцелл вывез оттуда два прибора — «сферы», создание которых приписывается Архимеду. Первый был неким подобием планетария, а второй моделировал движение светил по небу, что предполагало наличие в нем сложного шестереночного механизма.

До недавнего времени это свидетельство считалось сомнительным, однако в 1900 году около греческого острова Антикитера на глубине 43 метра были найдены останки корабля, с которого подняли остатки некоего устройства — «продвинутой» системы бронзовых шестеренок, датируемой 87 годом до нашей эры. Это доказывает, что Архимед вполне мог создать сложный механизм — своеобразный «компьютер» античных времен.

Архимед и его открытия 3

Антикитера — возможно, самый древний шестереночный механизм на свете

Действительно ли хитроумный грек мог накормить рыб в море около Сиракуз жареными римлянами? Этот миф проверялся несколько раз — причем с неодинаковыми результатами. Наиболее интересным оказался эксперимент Массачусетского технологического института, проведенный в 2005 году.

Древние источники описывают конструкцию архимедова «гиперболоида» очень противоречиво — то ли это были бронзовые щиты, то ли гигантский отражатель. Исследователи предположили, что Архимед вряд ли мог изготовить огромный (а потому очень уязвимый) рефлектор, и выбрали вариант со щитами, заменив их на 127 зеркал размером примерно 30 на 30 сантиметров.

Экспериментаторы не ставили целью полностью воссоздать условия применения «гиперболоида». Макет корабля был сделан из твердого дуба, хотя для изготовления римских судов использовались более горючие сорта древесины — например, кипарис. Корабельные борта были сухими, хотя в реальности они открыты волнам. Расстояние до цели — 30 метров, но на самом деле оно было гораздо больше (как минимум — дистанция полета стрелы). Кроме того, макет оставался неподвижным, а римские корабли слегка перемещались, даже стоя на якоре в бухте Сиракуз.

Архимед и его открытия 4

Зеркала навели на корабль и закрыли завесами. Тут же появилась проблема — «оружие» находилось на подставках, а не в руках у греческих солдат. Прицел приходилось постоянно корректировать, так как из-за движения Солнца по небу лучи смещались на 1,5 метра каждые 10 минут. Облака также не облегчали работу — мощность «лазера» периодически падала.

Что из этого получилось? «Оружие возмездия» работало всего 10 минут, однако эффект превзошел все ожидания. Сразу после раскрытия зеркал древесина начала обугливаться, потом появился дым и почти сразу за ним — сгусток яркого пламени. Через 3 минуты пожар был потушен. В борту корабля появилось сквозное отверстие.

Архимед и его открытия 5

Подвижность реальных мишеней, большое расстояние до них, плохие отражающие качества бронзы — все это говорит против легенды об Архимеде. Однако в распоряжении изобретателя находилось множество отражателей (количество солдат с начищенными щитами на стенах города исчислялось сотнями) и он не был ограничен во времени. Архимед действительно мог бы добиться эффекта «лазера», но не качеством, а количеством.

В эксперименте зеркала были плоскими, чего нельзя сказать о щитах греков. Если те отражатели, которыми пользовались они, были вогнутыми, их «дальнобойность» превышала бы 30 метров.

Сохранилось слишком мало исторических сведений, позволяющих воссоздать оружие Архимеда таким, каким оно действительно могло быть. Разумно говорить не об опровержении мифа, а о теоретической возможности «солнечного лазера». Эксперимент показал, что физика не противоречит истории. Это внушает оптимизм, поэтому легенду о «лучах смерти» Архимеда можно признать условно верной.

Это интересно

  • Современные Сиракузы почти не сохранили следов былого величия. Туристов часто водят на так называемую «Могилу Архимеда» в некрополе Гроттичелли. На самом деле это римское захоронение не содержит останков знаменитого ученого.
  • «Палимпсест Архимеда» — христианская книга, составленная в 12 веке из «языческих» пергаментов 10 века. Для этого с них смыли прежние письмена, и на полученном материале написали церковный текст. К счастью, палимпсест (от греческого palin — снова и psatio — стираю) был сделан некачественно, поэтому на просвет (а еще лучше — под ультрафиолетом) оказались видны старые буквы. В 1906 году выяснилось, что это три неизвестных ранее труда Архимеда.
  • Существует легенда о том, как царь Герон поручил Архимеду проверить, не подмешал ли ювелир серебра в его золотую корону. Целостность изделия нарушать было нельзя. Архимед долго не мог выполнить эту задачу — решение пришло случайно, когда он лег в ванную и вдруг обратил внимание на эффект вытеснения жидкости (закричал: «Эврика!» — «Нашел!», и выбежал голым на улицу). Он понял, что объем тела, погруженного в воду, равен объему вытесненной воды, и это помогло ему разоблачить обманщика.
  • Один из крупных лунных кратеров (82 километра в ширину) был назван именем Архимеда.
Кратер Архимед

* * *

Архимед — самый подходящий кандидат для создания образа античного изобретателя, конструировавшего паровые танки и летательные машины за сотни лет до рождения Христа (этот жанр принято называть «сандалпанк» — по аналогии с «киберпанком» или «дизельпанком», где под словом «сандал» подразумевается сандаловое дерево, а также сандалии, в которых ходили древние греки). По нынешним меркам труды Архимеда — это уровень средней школы. Однако не стоит забывать, что они были сделаны свыше 2000 лет назад и опередили свое время как минимум на XVII веков. Благодаря этому героя нашей статьи можно с полным правом назвать одним из величайших гениев человечества.

www.mirf.ru

Что изобрёл Архимед — История изобретений

В предыдущей статье про Архимеда мы в общем обрисовали жизнь изобретателя, его научные и изобретательские достижения. В этой статье мы постараемся перечислить изобретения Архимеда с более детальными пояснением.

Представляем список изобретений Архимеда для быстрой навигации:

  1. Улучшение рычага
  2. Червячная передача
  3. Соединительный шкив
  4. Винт Архимеда
  5. Коготь Архимеда
  6. Улучшение катапульт, баллисты и скорпионов
  7. Поджигающие зеркала
  8. Одометр
  9. Планетарий

Улучшение рычага

«Будь в моем распоряжении другая земля, на которую
можно было бы встать, я сдвинул бы с места нашу.»
(с) Архимед

 

Архимед, конечно, не был тем, кто изобрёл рычаг, так как это достаточно простое приспособление, но он был тем, кто теоретически описал принципы его работы и, понимая эти принципы, смог его развить и усовершенствовать. Также он объяснил принцип многоступенчатой передачи.

В своей работе «О равновесии плоскостей или центрах тяжести плоскостей» Архимед пишет следующее:

Тела одинакового веса, которые равноудалены от центра, будут находиться в равновесии, но если расстояние у одного из них изменить, то равновесие нарушится в пользу того тела, которое находится на более удалённом расстоянии от центра.
Если взять два тела одинакового веса, которые равноудалены от центра, и добавить к одному из них дополнительный вес, то равновесие нарушится в пользу большего веса.

Принцип рычага и математическое соотношение

Сейчас рычаги используются повсеместно. Самые простые примеры — это строительный инструмент (лома, плоскогубцы, тачки для песка), менее очевидные примеры — это экскаватор или степлер. Кстати, прочтите нашу статью про изобретение степлера.

 

Червячная передача

Принцип работы червячной передачи

Многие исследователи-историки полагают, что Архимед также сумел изобрести червячную передачу. Учитывая, что Архимед изобрёл винт, поднимающий воду, стоит ли сомневаться, что он мог догадаться и до этого изобретения. Позже Герон Александрийский описывал винт со специальным полузнком, который скользил вдоль винта по его резьбе. Но для эпохи Герона этот механизм кажется устаревшим, так как в его время уже существовали винты и гайки. Возможно, что Герон описал именно изобретение Архимеда, прочтя какие-то из его сочинений, которые не дошли до нас.

Соединительный шкив

Пример простой системы из двух шкивов

Шкив — это колесо, вдоль которого может быть установлен канат или цепь. Человек, тянущий с одного конца верёвку, может поднять вес на другом конце верёвки. Колесо шкива выполняет роль точки опоры, уменьшая силу, необходимую для подъёма груза. Архимед изобрёл целую систему шкивов, чтобы поднимать и перемещать грузы

Систему шкивов можно продолжить усложнять, чтобы получить больший выигрыш в силе.

Последовательное усложнение системы шкивов и расчёты для них показывают, что можно достигать уменьшения необходимой силы в 4 раза.

Царь Хиерон, услышав о том, что Архимед может сдвигать любые тяжёлые предметы с места не поверил ему и попросил доказать. Время было удачным, так как в Сиракузах как раз имелась проблема с огромным кораблём (корабль звался в честь города), который не могли вывести из гавани. Надо отметить, что корабль был потрясающе красив и в длину достигал 55 метров. По словам Плутарха, Архимеду удалось вывести корабль из гавани Сиракуз, используя сложную систему рычагов и шкивов.

 

Винт Архимеда

«Эврика!»
(с) Архимед

Принцип работы винта Архимеда

Также это изобретение иногда называют «улиткой Архимеда» или водяным винтом. Устройство предназначено для подъёма воды, к примеру, для орошения полей. Винт Архимеда представляет из себя спираль, которая вращалась внутри трубы, перенося воду на винтовых лопастях вверх. Вращение спирали задавалось вращением специальной ручки сверху. Саму ручку мог вращать как человек, так и рогатый скот или лошади, а в более поздние времена можно было использовать водяное колесо или ветряную мельницу.. Помимо воды при помощи винта на верх можно транспортировать гранулированные материалы, такие как зола или песок.

Пожалуй, это одно из самых древнейших приспособлений, известных для подъёма воды. Винт до сих пор используется в небольших электростанциях и даже на фермах. Начиная с 1980 года в штате Техас в США используется восемь винтов Архимеда диаметром около 3.6 метра для борьбы с ливневым стоком. Винт приводится в действие двигателем мощностью 551 киловатт и может выкачать до 500 тысяч литров воды в минуту.

Винт Архимеда, использующийся в Техасе в США

Главным преимуществом винта Архимеда является то, что попадание мусора в механизм не приводит к нарушениям работы устройства. К примеру, при помощи винта можно даже поднимать рыбу вместе с водой, при этом винт будет продолжать работать.

Подробное объяснение принципа работы винта Архимеда:

Огромный винт Архимеда, установленный на гидроэлектростанции:

А на этом видео винт Архимеда изготовили из лего:

Железная рука или коготь Архимеда

Коготь Архимеда был оружием, которое изобретатель придумал во время осады его родного города Сиракуз. Город приходилось оборонять от флота Римской империи, поэтому необходимо было разработать эффективные методы для потопления флота прямо с крепостных стен.

Точный дизайн устройства нам не известен, но мы примерно понимаем принципы, на которых он был основан. Если вы внимательно прочли про изобретение шкивов и рычага, то понять принцип когтя будет несложно.

Принцип работы когтя Архимеда

Коготь Архимеда представлял из себя систему шкивов, верёвок и балок. На одном конце верёвки был крюк, который забрасывался на вражеский корабль и зацеплялся под брюхо корабля. На обратной стороне верёвки за стеной уже были наготове быки и люди, которые начинали тянуть верёвку. В результате многотонные корабли переворачивали или бросали на камни, рассеивая флот и экипаж противника вокруг стен.

Жалкий римский флот ничто против разума Архимеда!

В наше время целых две группы людей попробовали построить коготь Архимеда и затопить корабль. Предлагаем посмотреть обе попытки и убедиться, что устройство было работоспособным.


Катапульты, баллисты и скорпионы

Картина, изображающая осаду Сиракуз.

Во время осады Сиракуз Архимед построил артиллерию, которая могла охватить целый ряд диапазонов. Пока атакующие корабли находились на большом расстоянии, он стрелял из катапульт и баллист, забрасывая корабли противника огромными камнями и брёвнами. Если корабли приближались к крепостным стенам для штурма, то их встречал целый поток стрел из «скорпионов» (небольших катапульт, метающих стальные дротики). Кстати, стоит отметить, что именно Архимед предложил сделал бойницы, что было инновацией в фортификации того времени. Из небольших проёмов лучники успешно обстреливали наступающих римлян. Таким образом, подойти к стенам Сиракуз у римлян не удавалось, а если они и подходили, то несли огромные потери.

Правда с исторической точки зрения Архимед не был тем, кто первым изобрёл все эти сооружения, но он явно вносил в них свои модификации (например, улучшал точность) и успешно использовал для обороны.

Поджигающие зеркала

Ну вот это изобретение для своего времени точно поражает любую фантазию. Архимед догадался до того, чтобы сжигать вражеские корабли при помощи солнца. В некоторых статьях это изобретение даже называют «лучи смерти». Как это было организовано?

Архимед применят зеркало

Римляне встали недалеко от города со своими 60 квинкверемами. Архимед был достаточно образован в плане оптики, чтобы изготовить выпуклые зеркала. Предположительно это было не одно зеркало, а целая система зеркал, направляющиеся в одно место, чтобы фокусировать лучи. Система скорее всего состояла из 24 зеркал, которые были объединены в одну раму и вращались при помощи шарниров, меняя углы поворота.

Принцип работы зеркал

На самом деле до конца непонятно, для чего именно использовал зеркала Архимед. Вполне вероятно, что он не сжигал ими флот, а лишь ослеплял лучников на кораблях. Также существует версия, согласно которой при помощи катапульт на корабли забрасывались специальные снаряды, которые потом при помощи зеркал поджигались, так что можно было подумать, что это зеркала жгут корабли. И ещё есть версия, что зеркала использовались лишь для наведения катапульт.

В 1973 году греческий учёный Ионнис Саккас заинтересовался вопросом возможности сжигания флота при помощи зеркал, поэтому он поставил эксперимент. 60 греческих моряков держали 70 зеркал, каждое из которых имело медное покрытие и было размером 1.5 метра на 1 метр. Зеркала направлялись на фанерный макет корабля, удалённый на 50 метров. Зеркала спокойно подожгли макет, что доказало практическую возможность поджигания флота при помощи зеркал.

В 2005 году Разрушители мифов повторили опыт, правда несколько иначе. Они использовали выпуклые зеркала в количестве 500 штук и с меньшей площадью. Сжечь парус на макете им удалось лишь через 1 час, поэтому их эксперимент показал, что сжигание флота с зеркалами не очень убедительно.

 

Одометр

Одометр Архимеда

Аристотель создаёт одометр примерно в 330 г. до н.э. Это устройство позволяло измерять пройденное расстояние, что было незаменимо при создании карт или при строительстве больших сооружений.

Принцип работы одометра прост. Колёса вращаются и приводят в движение две шестерни. Через определённые расстояния шестерни высвобождают небольшой шарик, который падает в специальную ёмкость. В конце пути можно подсчитать шарики и узнать, какой путь ты проделал.

Кстати, достаточно интересно сравнить одометр Архимеда с одометром Герона Александрийского и одометром Леонардо да Винчи.

Планетарий Архимеда

В итоге римляне взяли Сиракузы при помощи подкупа. Предатели им открыли ворота, а Архимеда убили. Цицерон позже описывал возвращение римлян в Рим, говоря, что среди военных трофеев оказался и красивый механический планетарий, изобретённый Архимедом. Планетарий демонстрировал движение пяти планет и затмения. Эта реконструкция показывала ежедневное движение звёзд вокруг Земли, затмения Солнца и Луны и их движение по эклиптике.

kakizobreli.ru

Архимед

 

Архимед (около 287–212 до н. э.), древнегреческий ученый, математик и механик. Развил методы нахождения площадей поверхностей и объемов различных фигур и тел. Его математические работы намного опередили свое время и были правильно оценены только в эпоху создания дифференциального и интегрального исчислений. Архимед – пионер математической физики. Математика в его работах систематически применяется к исследованию задач естествознания и техники. Архимед – один из создателей механики как науки. Ему принадлежат различные технические изобретения. 


Архимед родился в Сиракузах (о. Сицилия) и жил в этом городе в эпоху 1-й и 2-й Пунических войн. Предполагают, что он был сыном астронома Фидия. Научную деятельность начал как механик и техник. Архимед совершил поездку в Египет и сблизился с александрийскими учеными, в том числе с Кононом и Эратосфеном. Это послужило толчком к развитию его выдающихся способностей. Архимед был близок к сиракузскому царю Гиерону II. Во время 2-й Пунической войны Архимед организовал инженерную оборону Сиракуз от римских войск. Его военные машины заставили римлян отказаться от попыток взять город штурмом и вынудили их перейти к длительной осаде. При взятии города войсками Марцелла был убит римским солдатом, которого, по преданию, встретил словами «не трогай моих чертежей». На могиле Архимеда был поставлен памятник с изображением шара и описанного около него цилиндра. Эпитафия указывала, что объемы этих тел относятся, как 2:3, – открытие Архимеда, которое он особенно ценил. 


Работы Архимеда показывают, что он был прекрасно знаком с математикой и астрономией своего времени, и поражают глубиной проникновения в существо рассматриваемых Архимедом задач. Ряд работ имеет вид посланий к друзьям и коллегам. Иногда Архимед предварительно сообщал им без доказательств свои открытия, с тонкой иронией добавляя несколько неверных предложений. 

 

«Архимед» (Доменико Фетти, 1620)


В IX—XI вв. работы Архимеда переводились на арабский язык, которые с XIII в. появляются в Западной Европе в латинском переводе. С XVI в. начинают выходить печатные издания Архимеда, в XVII–XIX вв. они переводятся на новые языки. Первое издание отдельных трудов Архимеда на русском языке относится к 1823 году. Некоторые работы Архимеда до нас не дошли или известны лишь в отрывках, а его «Послание к Эратосфену» было найдено лишь в 1906. 


Центральной темой математических работ Архимеда являются задачи на нахождение площадей поверхностей и объемов. Решение многих задач этого типа Архимед первоначально нашел, применяя механические соображения, по существу сводящиеся к методу «неделимых», а затем строго доказал методом исчерпывания, который он значительно развил. Рассмотрение Архимедом двусторонних оценок погрешности при проведении интеграционных процессов позволяет считать его предшественником не только И. Ньютона и Г. Лейбница, но и Г. Римана. Архимед вычислил площади эллипса, параболического сегмента, нашел площади поверхности конуса и шара, объемы шара и сферического сегмента, а также различных тел вращения и их сегментов.

 

Архимед исследовал свойства т. н. архимедовой спирали, дал построение касательной к этой спирали, нашел площадь ее витка. Здесь он выступает как предшественник методов дифференциального исчисления. Архимед рассмотрел также одну задачу изопериметрического типа. В ходе своих исследований он нашел сумму бесконечной геометрической прогрессии со знаменателем 1/4, что явилось первым примером появления в математике бесконечного ряда. При исследовании одной задачи, сводящейся к кубическому уравнению, Архимед выяснил роль характеристики, которая позже получила название дискриминанта. Архимеду принадлежит формула для определения площади треугольника через три его стороны (неправильно именуемая формулой Герона).

 

Архимед переворачивает планету Земля.

 

Архимед дал (не вполне исчерпывающую) теорию полуправильных выпуклых многогранников (архимедовы тела). Особое значение имеет «аксиома Архимеда»: из неравных отрезков меньший, будучи повторен достаточное число раз, превзойдет больший. Эта аксиома определяет т. н. архимедовскую упорядоченность, которая играет важную роль в современной математике. Архимед построил счисление, позволяющее записывать и называть весьма большие числа. Он с большой точностью вычислил значение числа π и указал пределы погрешности. 


Механика постоянно находилась в круге интересов Архимеда. В одной из своих первых работ он исследует распределение нагрузок между опорами балки. Архимеду принадлежит определение понятия центра тяжести тела. Применяя, в частности, интеграционные методы, он нашел положение центра тяжести различных фигур и тел. Архимед дал математический вывод законов рычага. Ему приписывают гордую фразу: «Дай мне, где стать, и я сдвину Землю». Архимед заложил основы гидростатики и сформулировал основные положения этой дисциплины, в том числе знаменитый закон Архимеда. Последняя работа Архимеда посвящена исследованию равновесия плавающих тел.

 

При этом он выделяет устойчивые положения равновесия. Архимед изобрел водоподъемный механизм, так называемый «архимедов винт», который явился прообразом корабельных, а также воздушных винтов. Рассказывают, что Архимед нашел решение задачи об определении количества золота и серебра в жертвенной короне Гиерона, когда садился в ванну, и нагим побежал домой с криком «Эврика!» («Нашел!»). Архимед занимался также астрономией. Он сконструировал прибор для определения видимого (углового) диаметра Солнца и нашел значение этого угла с поразительной точностью. При этом Архимед вводил поправку на размер зрачка. Он первым стал приводить наблюдения к центру Земли. Наконец, Архимед построил небесную сферу – механический прибор, на котором можно было наблюдать движения планет, фазы Луны, солнечные и лунные затмения. 

 

Осада Сиракуз, гравюра XVIII века

Греческий огонь 


Похоже, что история о том, как Архимед уничтожил древнеримскую эскадру, подступившую к Сиракузам, с помощью системы зеркал, является еще одним мифом о великом математике и механике. 


История гласит: в 121 году до н. э. римляне осадили с суши и моря греческий город Сиракузы. Руководить обороной города было решено поручить Архимеду, который специально для этой цели изобрел новейшие по тем временам средства борьбы с врагом. По свидетельствам Тита Ливия, Евтропия, Варрона и других историографов Древнего Рима, Архимед разработал систему зеркал, которая позволила с довольно большого расстояния сжечь весь римский флот. Возможно ли это, тем более в те стародавние времена? 


Опустим историю 2-й Пунической войны, когда не на жизнь, а на смерть боролись Рим и Карфаген. Начнем сразу с Сиракуз. Римский сенат направляет одного из самых жестоких и непреклонных военачальников республики на осаду города, имеющего ключевое значение. Тот принимает решение напасть на Сиракузы с моря, учитывая невысокие, выходящие на самый край защитные стены, что позволяло использовать излюбленную римлянами тактику: приблизившись вплотную к кораблю противника, взять его на абордаж. Взять на абордаж целый город? Почему бы и нет? 

 

Эдуар Вимон (1846—1930). Смерть Архимеда


В Сиракузах было достаточно сторонников Карфагена, а потому новые хозяева города — ставленники Ганнибала Гиппократ и Эпидикс — стараются убедить жителей в том, что от Рима можно ждать лишь порабощения. В этом им очень помог уважаемый гражданин Архимед. Этот старейшина, близкий по духу греческой культуре человек, органически не приемлющий жестокость и беспринципность римлян, стремящихся любой ценой установить свое господство над Средиземноморьем, дает согласие принять на себя руководство возведением укреплений. Город поддерживает Архимеда, а тот, не только гениальный математик, но и блестящий механик, немедленно приступает к разработке своих технических средств, и поныне удивляющих ученых. 


И вот триремы Римской республики подходят к Аркадине, крепостной стене, защищающей Сиракузы с моря. Надо, вероятно, пояснить, что такое эти суда. Трирема была быстроходным кораблем, но с немалыми недостатками, прежде всего ввиду малой парусности и недостаточной маневренности. Свое название она получила из-за того, что на каждое весло, которым были оснащены триремы, приходилось по три гребца, — вот откуда быстроходность. И вот в одно прекрасное утро римляне начали атаку. 


Но вдруг, когда римский флот был уже не более чем в трехстах метрах от берега, началось светопреставление: паруса трирем стали вспыхивать один за другим без всякой видимой причины, нестерпимо ослепительные лучи обрушились на окаменевших от ужаса воинов Клавдия Марцелла. Атакующие обратились в паническое бегство, а со стен укреплений Архимед невозмутимо наблюдал за результатами своей работы. 


Несколько лет назад группа итальянских ученых, усомнившихся в истории с парусами, подожженными солнечными лучами, провела такой опыт. 450 плоских зеркал, каждое в среднем имевшее размер в 445 квадратных сантиметров (то есть общей площадью около 20 квадратных метров), были направлены на парус, венчавший модель античной триремы длиной в несколько метров. Поскольку каждое из зеркал при помощи отраженного излучения могло поднять температуру паруса на 1,5 градуса, тот в конце концов действительно воспламенился. Количество зеркал, помноженное на вызываемое ими увеличение температуры, дает в результате 675 градусов по Цельсию. 

 

Римская гробница, построенная не менее чем через 2 века после гибели Архимеда в Сиракузахи которую принято называть «Гробницей Архимеда»


Этот опыт показал, что в действенности «зажигательных» зеркал Архимеда сомневаться не приходится. Но это лишь на первый взгляд. А если вдуматься: смогло бы подобное устройство поджечь настоящую большую трирему? При этом давайте учтем: во-первых, массы холодного воздуха между устройством и кораблем, находящимся к тому же на значительном удалении, помешали бы ему загореться. Во-вторых, опыт проводился на земле, расстояние не превышало 50 метров, но ученым пришлось ждать несколько минут, пока произошло загорание, а в истории об уничтожении флота говорится, что они вспыхивали мгновенно. Да и возможно ли было за 200 лет до н.э. с тогдашней примитивной техникой ориентировать в одном направлении 450 зеркал? Могли ли вообще зеркала, созданные тогда, отражать солнечный свет, не рассеивая его? Античные зеркала, найденные при раскопках, настолько несовершенны, что трудно поверить, что они были способны передавать какое бы то ни было точно отражение. 


Итальянские исследователи убеждены, что те существовали на самом деле, но скорее казались, чем действительно являлись грозным оружием. Поскольку исключено, что во времена Архимеда могло быть создано устройство, подобное тому, которое было сконструировано в наше время; поскольку исключено, что Архимед мог обладать представлением о взаимодействии материи и энергии на уровне современной квантовой механики; поскольку ни одному историческому источнику в данном случае доверять нельзя, остается предположить одно: хотя сами атакующие и поверили, что пожар вызван солнечными лучами, на самом деле они стали жертвами оптического обмана. 


Зеркала Архимеда действительно отбрасывали на триремы ослепительный свет и действительно парус судна тотчас вспыхивал. Но вот вопрос: именно ли этот свет вызывал огонь? Или же паруса загорались оттого, что в то же самое мгновение их поражали стрелы с горящими наконечниками или другого рода зажигательные снаряды, выпущенные греками? 


Здесь могут возразить: если пожар на триремах возникал от куска горящей смолы или от зажигательной стрелы, то при чем здесь зеркала? Значит, эти гигантские бронзовые диски диаметром 2-3 метра, ослеплявшие врага отраженным солнечным светом, выполняли иное, точно определенное назначение: служили инструментом наведения, оптическим прицелом. 

 


Чтобы поджечь корабли Клавдия Марцелла, Архимеду необходимо было знать три вещи: дальность полета стрелы, расстояние до триремы и максимальное расстояние, на котором человеческий глаз способен различать световой диск, отбрасываемый зеркалом на парус триремы. Дальность полета стрелы нетрудно установить на опыте, расстояние до триремы Архимед был способен определить математически, что же касается третьего элемента, то он, вероятно, тоже был определен экспериментальным путем. Скорее всего, Архимед испытывал свое изобретение в городе, наводя зеркала на различные объекты, удаленные на значительное расстояние. Но как применить изобретение на практике? 


Видимо, Архимед сконструировал метательный аппарат с двойным прицелом, рассчитанный на то, чтобы стрелок мог спустить тетиву, когда солнечный диск, отраженный зеркалом на парус триремы, окажется на одной прямой с прицельным устройством. Собственно говоря, изобретение это не что иное, как принцип действия фотокамеры. Совмещенный с солнечным «зайчиком» ствол арбалета или другого метательного устройства, при соблюдении нужного расстояния, посылал стрелу точно по этому лучу. Стреляя из аппарата Архимеда, промахнуться было невозможно, действие его было ограничено лишь дальностью полета стрелы. Вполне возможно, аппарат был снабжен гониометрической шкалой (известной уже во времена Архимеда) для переориентировки отражающего зеркала в зависимости от высоты солнца над горизонтом. 


Что происходило в это время на кораблях Клавдия Марцелла? В первое мгновение команда, ослепленная блеском гигантских бронзовых зеркал, ничего не замечала, а через несколько секунд моряки увидели, что их паруса в огне. Поскольку они не знали, какими свойствами обладает «греческий огонь» (зажигательная смесь из смолы, серы и селитры), как он невесом и сколь велика его воспламеняющая сила, им неизбежно должно было показаться, что пожары возникают именно от действия «солнечных зеркал». Отсюда, по мнению итальянских ученых, и возникла столь распространенная и так долго просуществовавшая легенда, согласно которой Архимед изобрел особые, вогнутые зеркала. Архимед погиб, а вместе с ним и секрет его изобретения: римляне, занявшие через некоторое время город, разрушили там буквально все и перебили почти всех жителей, в том числе был убит и Архимед. 

 

Изобретения Архимеда: «солнечные» зеркала

tunnel.ru

Тестовый МирФ | Зеркало Мира фантастики для разработок

Если бы… Ах, если бы великие государства древности уделяли чуть больше внимания своим славным изобретателям — хотя бы так же, как нынешние правительства не скупятся на финансирование высокотехнологичных военных программ, то — кто знает, на каком языке мы бы сейчас с вами разговаривали и в какой стране жили? Что было бы, если Леонардо да Винчи или Никола Тесла получили возможность развернуть свои таланты во всю ширь?

О Тесле и да Винчи мы уже писали. Настала пора отдать дань уважения еще одному, пожалуй, самому первому техническому гению человечества. Великий математик, физик, инженер и астроном, недооцененный при жизни и случайно погибший от руки безграмотного солдата — он мог ускорить научно-техническую революцию почти на две тысячи лет, если бы…

Архимед и его открытия 1

Архимед (художник Доменико Фетти, 17 век).

Любые рассказы о великих людях обычно начинаются с их биографии. Увы, в случае с Архимедом нам придется довольствоваться лишь набором неподтвержденных фактов. О жизни этого ученого ходит множество легенд, но достоверных сведений крайне мало.

Родиной изобретателя была Сицилия, город Сиракузы. Большую часть жизни он провел именно там. Дата его рождения — 287 год до нашей эры — установлена на основании свидетельства византийского историка Иоанна Цена (12 век), писавшего, что Архимед прожил 75 лет и погиб в 212 году до нашей эры.

В своих трудах изобретатель упоминал, что его отцом был астроном и математик Фидий, происходивший из знатного сиракузского рода. Судя по всему, в юном возрасте мальчик был послан на обучение в Александрию — крупнейший культурный центр того времени. В дальнейшем он активно общался с математиками александрийской школы (например, с Эрастофеном), и это наталкивает на мысль о том, что в качестве «учебников» Архимед использовал труды александрийца Евклида. Тематика его дальнейших исследований также совпадала с «евклидовой наукой» и значительно развивала ее — это, прежде всего, теория чисел, а также планиметрия и геометрия.

Выучившись в Александрии, Архимед вернулся домой и устроился «на работу» при дворе своего дальнего родственника — сиракузского тирана Герона II. Существует множество легенд о том, как Архимед выполнял самые хитроумные задачи Герона, однако в реальности правитель, скорее всего, не придавал особого практического значения его исследованиям и покровительствовал выдающемуся ученому лишь потому, что его присутствие в Сиракузах заметно повышало культурный статус города.

Находясь «под крылом» просвещенного монарха в течение большей части своей жизни, изобретатель мог спокойно работать — и работал, да так плодотворно, что в наши дни слово «Архимед» неизвестно лишь тем, кто живет в лесу, молится колесу и падает в обморок при виде самолета.

Сиракузы — один из самых влиятельных и красивых городов в античном Средиземноморье. Был основан в 8 веке до нашей эры под названием Сирако («болото», т.к. рядом с городом действительно находилось болото). Герон II мудро правил Сиракузами 50 лет: избегал крупных войн, развивал юриспруденцию, науки и искусства. Его наследник — юный Иероним — взошел на трон в 215 году и почти сразу же привел город к краху, поссорившись с Римом. Сиракузы пали из-за того, что некоторые горожане решили обсудить условия мирного договора и открыли римлянам небольшую дверь в стене, однако те ворвались внутрь и быстро подавили сопротивление.

Войска римского консула Марцелла очень долго (около 8 месяцев) осаждали Сиракузы. Причиной задержки якобы было то, что великий ученый перед угрозой вторжения перешел от чистой математики к механике и начал создавать удивительные боевые приспособления для защиты родного города. Более того — по некоторым свидетельствам, Архимед лично руководил обороной города и распоряжался его техническими ресурсами.

Римляне были не дураки. Оценив оборонительные новшества греков, Марцелл приказал своим солдатам не трогать гениального инженера при захвате города, планируя, видимо, переманить его к себе на службу. Нетрудно представить, какие военные механизмы мог бы изобрести Архимед, работая на практичных и жестоких римлян.

Однако история распорядилась иначе. По легенде, один из легионеров нашел ученого в саду его дома, когда тот изучал чертежи на песке, не обращая никакого внимания на уличные бои. То ли римлянин не узнал этого грека, то ли сознательно нарушил приказ командующего (говорят, что Архимед сказал солдату не трогать его рисунки — «круги», однако в каких именно выражениях он это сделал, остается неясным) — в любом случае величайший ум своего времени был попросту зарублен на месте.

Смерть Архимеда.

Смерть Архимеда. Гравюра из итальянской книги XVIII века.

Плутарх (45—120) сообщает, что по завещанию Архимеда на его могиле был установлен шар, заключенный в цилиндр, с указанием на то, что соотношение их объемов равно 2/3. В своем труде «О сфере и цилиндре» Архимед доказал такую же кратность соотношения площади поверхностей этих двух фигур.

Достаточно лишь мельком взглянуть на «ноу-хау» Архимеда, чтобы понять, насколько этот человек обогнал свое время и во что мог превратиться наш мир, если бы высокие технологии усваивались в античности так же быстро, как и сегодня. Архимед специализировался в математике и геометрии — двух важнейших науках, лежащих в основе технического прогресса. О революционности его исследований говорит тот факт, что историки считают Архимеда одним из трех величайших математиков человечества (другие два — Ньютон и Гаусс).

По части новшеств этот грек был на голову выше всех европейских математиков вплоть до эпохи Возрождения. В обществе, где применялась совершенно жуткая система исчисления, и в языке, где слово «мириад» (десять тысяч) было синонимом «бесконечности», он разработал четкую науку о цифрах и «сосчитал» их вплоть до 1064.

Архимед заложил основы интегрального исчисления и теории сверхмалых чисел. Он доказал, что соотношение длины окружности к ее диаметру равно соотношению площади круга к квадрату его радиуса. Ученый, конечно, не назвал это соотношение «числом Пи», однако довольно точно определил ее значение в интервале от 3+10/71 (примерно 3,1408) до 3+1/7 (примерно 3,1429).

До нашего времени дошли лишь некоторые трактаты Архимеда. Большинство из них погибло в двух пожарах Александрийской библиотеки — сохранились лишь некоторые переводы на арабский и латынь. К примеру, в работе «О равновесии плоскостей» автор исследовал центры тяжести различных фигур. Существует легенда, согласно которой Герон попросил Архимеда наглядно проиллюстрировать «эффект» рычага, известный по его знаменитой фразе «Дайте мне точку опоры и я переверну весь мир!» (Плутарх цитирует ее иначе: «Если бы имелась иная Земля, я бы стал на нее и сдвинул эту»).

Изобретатель приказал вытащить на берег большое судно и наполнить его грузом, после чего встал около полиспаста (катушечного блока) и стал без каких-либо видимых усилий тянуть на себя канат, привязанный к кораблю. Последний, на удивление присутствующих, «поплыл» по суше, как по воде.

Не менее значительны и другие сочинения: «О коноидах и сфероидах», «О спиралях», «Измерение круга», «Квадратура параболы», «Псаммит» («Исчисление песчинок» — здесь ученый предлагал способ узнать количество песчинок, заключенное в объеме всего мира, то есть описывал систему записи сверхбольших чисел).

Отдельно следует сказать о его работах в области механики. Здесь он действительно был пионером, во многом напоминая Леонардо да Винчи.

По свидетельствам Диодора Сицилийского, римские рабы в Испании осушали целые реки при помощи устройства, которое разработал Архимед во время визита в Египет. Это был так называемый «Архимедов винт» — мощный и одновременно очень простой винтовой насос. Впрочем, некоторые свидетельства говорят о том, что похожее устройство было изобретено на 300 лет раньше для орошения висячих садов Вавилона (так называемых «Садов Семирамиды»).

Архимедов винт

Архимед якобы изобрел мозаичную игру — «стомахион» (из плоских костяных кусочков разной геометрической формы необходимо составить узнаваемые фигуры — человека, животного, и т. п.). Ему также приписывается создание одометра (прибора, измеряющего пройденное расстояние).

Во время осады Сиракуз Архимед построил множество удивительных приспособлений, из которых можно выделить два самых эффективных. Первое — это «Лапа Архимеда», уникальная подъемная машина и прообраз современного крана. Внешне она была похожа на рычаг, выступающий за городскую стену и оснащенный противовесом. Полибий во «Всемирной истории» писал, что если римский корабль пытался пристать к берегу около Сиракуз, этот «манипулятор» под управлением специально обученного машиниста захватывал его нос и переворачивал (вес римских трирем превышал 200 тонн, а у пентер мог достигать и всех 500), затапливая атакующих.

Осада Сиракуз

Подъёмный кран — тоже оружие!

Римляне были шокированы, увидев машины Архимеда в действии. Плутарх пишет, что иногда дело доходило до абсурда: увидев на стене Сиракуз какую-нибудь веревку или бревно, непобедимые римские легионеры в панике спасались бегством, думая, что сейчас против них будет применен очередной адский механизм.

Похожие машины сбивали со стен осадные лестницы римлян, а дальнобойные и невероятно точные катапульты Архимеда обстреливали их корабли камнями. Но еще удивительнее был второй «сюрприз» — лучевое оружие.

Осознав тщетность попыток взять город штурмом, римский флот (по разным источникам, около 60 кораблей) встал на якорь неподалеку от города. По легенде, Архимед сконструировал большое зеркало, либо раздал солдатам небольшие вогнутые зеркала (у историков нет единой точки зрения — иногда здесь даже фигурируют начищенные до блеска медные щиты), при помощи которых «сконцентрировал» солнечный свет на флоте противника и спалил его дотла.

Лучи Архимеда

Цицерон писал, что после того, как Сиракузы были разграблены, Марцелл вывез оттуда два прибора — «сферы», создание которых приписывается Архимеду. Первый был неким подобием планетария, а второй моделировал движение светил по небу, что предполагало наличие в нем сложного шестереночного механизма.

До недавнего времени это свидетельство считалось сомнительным, однако в 1900 году около греческого острова Антикитера на глубине 43 метра были найдены останки корабля, с которого подняли остатки некоего устройства — «продвинутой» системы бронзовых шестеренок, датируемой 87 годом до нашей эры. Это доказывает, что Архимед вполне мог создать сложный механизм — своеобразный «компьютер» античных времен.

Архимед и его открытия 3

Антикитера — возможно, самый древний шестереночный механизм на свете

Действительно ли хитроумный грек мог накормить рыб в море около Сиракуз жареными римлянами? Этот миф проверялся несколько раз — причем с неодинаковыми результатами. Наиболее интересным оказался эксперимент Массачусетского технологического института, проведенный в 2005 году.

Древние источники описывают конструкцию архимедова «гиперболоида» очень противоречиво — то ли это были бронзовые щиты, то ли гигантский отражатель. Исследователи предположили, что Архимед вряд ли мог изготовить огромный (а потому очень уязвимый) рефлектор, и выбрали вариант со щитами, заменив их на 127 зеркал размером примерно 30 на 30 сантиметров.

Экспериментаторы не ставили целью полностью воссоздать условия применения «гиперболоида». Макет корабля был сделан из твердого дуба, хотя для изготовления римских судов использовались более горючие сорта древесины — например, кипарис. Корабельные борта были сухими, хотя в реальности они открыты волнам. Расстояние до цели — 30 метров, но на самом деле оно было гораздо больше (как минимум — дистанция полета стрелы). Кроме того, макет оставался неподвижным, а римские корабли слегка перемещались, даже стоя на якоре в бухте Сиракуз.

Архимед и его открытия 4

Зеркала навели на корабль и закрыли завесами. Тут же появилась проблема — «оружие» находилось на подставках, а не в руках у греческих солдат. Прицел приходилось постоянно корректировать, так как из-за движения Солнца по небу лучи смещались на 1,5 метра каждые 10 минут. Облака также не облегчали работу — мощность «лазера» периодически падала.

Что из этого получилось? «Оружие возмездия» работало всего 10 минут, однако эффект превзошел все ожидания. Сразу после раскрытия зеркал древесина начала обугливаться, потом появился дым и почти сразу за ним — сгусток яркого пламени. Через 3 минуты пожар был потушен. В борту корабля появилось сквозное отверстие.

Архимед и его открытия 5

Подвижность реальных мишеней, большое расстояние до них, плохие отражающие качества бронзы — все это говорит против легенды об Архимеде. Однако в распоряжении изобретателя находилось множество отражателей (количество солдат с начищенными щитами на стенах города исчислялось сотнями) и он не был ограничен во времени. Архимед действительно мог бы добиться эффекта «лазера», но не качеством, а количеством.

В эксперименте зеркала были плоскими, чего нельзя сказать о щитах греков. Если те отражатели, которыми пользовались они, были вогнутыми, их «дальнобойность» превышала бы 30 метров.

Сохранилось слишком мало исторических сведений, позволяющих воссоздать оружие Архимеда таким, каким оно действительно могло быть. Разумно говорить не об опровержении мифа, а о теоретической возможности «солнечного лазера». Эксперимент показал, что физика не противоречит истории. Это внушает оптимизм, поэтому легенду о «лучах смерти» Архимеда можно признать условно верной.

Это интересно

  • Современные Сиракузы почти не сохранили следов былого величия. Туристов часто водят на так называемую «Могилу Архимеда» в некрополе Гроттичелли. На самом деле это римское захоронение не содержит останков знаменитого ученого.
  • «Палимпсест Архимеда» — христианская книга, составленная в 12 веке из «языческих» пергаментов 10 века. Для этого с них смыли прежние письмена, и на полученном материале написали церковный текст. К счастью, палимпсест (от греческого palin — снова и psatio — стираю) был сделан некачественно, поэтому на просвет (а еще лучше — под ультрафиолетом) оказались видны старые буквы. В 1906 году выяснилось, что это три неизвестных ранее труда Архимеда.
  • Существует легенда о том, как царь Герон поручил Архимеду проверить, не подмешал ли ювелир серебра в его золотую корону. Целостность изделия нарушать было нельзя. Архимед долго не мог выполнить эту задачу — решение пришло случайно, когда он лег в ванную и вдруг обратил внимание на эффект вытеснения жидкости (закричал: «Эврика!» — «Нашел!», и выбежал голым на улицу). Он понял, что объем тела, погруженного в воду, равен объему вытесненной воды, и это помогло ему разоблачить обманщика.
  • Один из крупных лунных кратеров (82 километра в ширину) был назван именем Архимеда.

Кратер Архимед

* * *

Архимед — самый подходящий кандидат для создания образа античного изобретателя, конструировавшего паровые танки и летательные машины за сотни лет до рождения Христа (этот жанр принято называть «сандалпанк» — по аналогии с «киберпанком» или «дизельпанком», где под словом «сандал» подразумевается сандаловое дерево, а также сандалии, в которых ходили древние греки). По нынешним меркам труды Архимеда — это уровень средней школы. Однако не стоит забывать, что они были сделаны свыше 2000 лет назад и опередили свое время как минимум на XVII веков. Благодаря этому героя нашей статьи можно с полным правом назвать одним из величайших гениев человечества.

test.mirf.ru

​Архимед – древнегреческий изобретатель, математик, механик и инженер — Общенет

Друг Архимеда Гераклид написал биографию великого ученого, но она была утеряна и теперь о его жизни известно очень немного. О его жизни известно мало ещё и потому, что почти все авторы, передавшие его жизнеописание, сами жили значительно позже. Вследствие этого биография Архимеда переполнена легендами, некоторые из которых стали весьма популярными. Впрочем, легенды об Архимеде создавались еще при его жизни. О личной жизни ученого известно значительно меньше, чем о его науке.

Из биографии Архимеда:

Родился Архимед в городе Сиракузы на Сицилии. В то время это была одна из первых древнегреческих колоний на острове Сицилия и именовалась Великой Грецией. Она включала в себя территорию современной Южной Италии и Сицилию. + Родился Архимед в 287 году до н. э. Дата рождения известна со слов византийского историка Иоанна Цеца. Жил он в Константинополе в XII веке. То есть почти через полторы тысячи лет после Архимеда. Он также написал, что знаменитый древнегреческий математик прожил 75 лет. Столь точная информация вызывает определённые сомнения, но приходится верить древнему историку. Биография Архимеда известна из трудов Тита, Цицерона, Полибия, Ливия, Витрувия и других авторов, которые жили позже самого ученого. Оценить степень достоверности этих данных сложно.

Вероятно, детские годы Архимед провел в Сиракузах. Начальное образование ученый, вероятно, получил у отца. Его отцом, предположительно, стал астроном и математик Фидий. Плутарх также утверждал, что ученый был близким родственником правителя Сиракуз Гиерона II.

Состоя в родстве с такими знаменитостями, Архимед смог получить отличное образование: учился он в Александрии, которая в то время славилась как центр учёности. Александрия Египетская на протяжении нескольких столетий была культурным и научным центром цивилизованного Древнего Мира. Там Архимед познакомился и сдружился со многими другими великими научными деятелями своего времени.

Бюст Архимеда

Именно в Александрии стремящийся к знаниям молодой человек наладил дружеские связи с математиком и астрономом Кононом Самосским и астрономом, математиком и филологом Эрастофеном из Кирен – это были известные учёные того времени. С ними у Архимеда завязалась крепкая дружба. Она продолжалась всю жизнь, а выражалась в переписке.

Также в стенах Александрийской библиотеки Архимед ознакомился с работами таких известных геометров как Евдокс и Демокрит. Он также почерпнул много других полезных знаний. После обучения он вернулся на родину и мог полноценно заниматься наукой, так как не нуждался в средствах. На родине в Сиракузах Архимед быстро зарекомендовал себя умным и одарённым человеком, и прожил долгие годы, пользуясь уважением окружающих, и прожил там до конца жизни.

Ничего не известно о его жене и детях, зато не вызывает сомнение учёба в Александрии, где находилась знаменитая Александрийская библиотека.

Умер Архимед во время Второй Пунической войны, когда римские войска после 2-х лет осады захватили Сиракузы. Командовал римлянами Марк Клавдий Марцелл. Согласно Плутарху, он приказал найти Архимеда и доставить к нему. Римский солдат пришёл в дом к выдающемуся математику, когда тот размышлял над математическими формулами. Солдат потребовал немедленно отправляться с ним и встретиться с Марцеллом. Но математик отмахнулся от навязчивого римлянина, сказав, что вначале должен завершить работу. Солдат возмутился и заколол умнейшего жителя Сиракуз мечом.

Существует также версия, утверждающая, что Архимеда убили прямо на улице, когда он нёс в руках математические инструменты. Римские солдаты решили, что это ценные предметы, и зарезали математика. Но как бы там ни было, а смерть этого человека возмутила Марцелла, так как был нарушен его приказ. Есть еще варианты этой истории, однако они сходятся на том, что древнеримский политический деятель и военачальник Марцелл был крайне огорчен гибелью ученого и, объединившись и с гражданами Сиракуз, и с собственными поданными, устроил Архимеду пышные похороны.

Через 140 лет после этих событий в Сицилию прибыл известный римский оратор Цицерон. Он попытался найти могилу Архимеда, но никто из местных жителей не знал, где она находится. Наконец, могила была найдена в полуразрушенном состоянии в зарослях кустарника на окраине Сиракуз. На могильном камне были изображены шар и вписанный в него цилиндр. Под ними были выбиты стихи. Однако данная версия не имеет никаких документальных доказательств.

В начале 60-х годов XX века во дворе отеля «Панорама» в Сиракузах также была обнаружена древняя могила. Владельцы отеля стали утверждать, что это и есть место захоронения великого математика и изобретателя древности. Но опять же не представили никаких убедительных доказательств. Одним словом, и по сей день неизвестно, где похоронен Архимед, и в каком месте находится его могила.

Научная деятельность и изобретения Архимеда:

Древнегреческий физик, математик и инженер Архимед сделал множество геометрических открытий, заложил основы гидростатики и механики, создал изобретения, послужившие отправной точкой для дальнейшего развития науки. +Открытия в области математики были настоящей страстью ученого. Согласно утверждениям Плутарха, Архимед забывал о пище и уходе за собой, когда стоял на пороге очередного изобретения в этой сфере. Главным направлением его математических изысканий стали проблемы математического анализа.

Еще до Архимеда были изобретены формулы для вычисления площадей круга и многоугольников, объемов пирамиды, конуса и призмы. Но опыт ученого позволил ему разработать общие приемы для вычисления объемов и площадей. С этой целью он усовершенствовал метод исчерпывания, придуманный Евдоксом Книдским, и довел умение применять его до виртуозного уровня. Архимед не стал создателем теории интегрального исчисления, но его работы впоследствии стали основой для этой теории.

Также выдающийся математик заложил основы дифференциального исчисления. С геометрической точки зрения он изучал возможности определения касательной к кривой линии, с физической точки зрения – скорость тела в любой момент времени. Ученый исследовал плоскую кривую, известную как архимедова спираль. Он нашел первый обобщенный способ поиска касательных к гиперболе, параболе и эллипсу. Отсюда можно смело утверждать, что этот человек обогнал математическую науку на 2 тыс. лет. Только в семнадцатом веке ученые смогли в полной мере осознать и раскрыть все идеи Архимеда, которые дошли до тех времен в его сохранившихся трудах. Ученый часто отказывался описывать изобретения в книгах, из-за чего далеко не каждая написанная им формула дошла до наших дней.

Научный деятель также активно разрабатывал механические конструкции. Он разработал и изложил подробную теорию рычага и эффективно пользовался этой теорией на практике, хотя непосредственно само изобретение было известно еще до него. В порту Сиракуз были сделаны блочно-рычажные механизмы. Эти приспособления упрощали подъем и перемещение тяжелых грузов, позволяя ускорить и оптимизировать работу порта.

Он изобрёл также винт, с помощью которого вычерпывали воду. Его «архимедов винт» до сих пор применяется в Египте. Архимед создал теорию об уравновешивании равных тел. Доказал, что на тело, погружённое в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости. Эта идея пришла ему в голову в ванне. Она своей простотой так потрясла выдающегося математика и изобретателя, что он выскочил из ванны и в костюме Адама побежал по улицам Сиракуз с криком «эврика», что означает «нашёл». Впоследствии данное доказательство получило название закона Архимеда. +Большое значение имеют теоретические изыскания ученого в сфере механики. Опираясь на доказательство закона рычага, он начал писать труд «О равновесии плоских фигур». Доказательство базируется на аксиоме о том, что на равных плечах равные тела по необходимости уравновесятся. Такой же принцип построения книги – начинающийся с доказательства собственного закона – Архимед соблюдал и при написании произведения «О плавании тел». Эта книга начинается с описания хорошо известного закона Архимеда.

Достойным открытием ученый считал изобретение формул для вычисления площади поверхности и объема шара. Если в предыдущих из описанных случаев Архимед дорабатывал и усовершенствовал чужие теории, либо создавал быстрые методы расчета как альтернативу уже существующим формулам, то в случае с определением объема и поверхности шара он был первым. До него ни один ученый не справился с этой задачей. Поэтому математик попросил выбить на своем могильном камне шар, вписанный в цилиндр.

Есть легенда, связанная с законом Архимеда. Однажды к ученому якобы обратился Гиерон II, который засомневался в том, что вес изготовленной для него короны соответствует весу золота, которое было предоставлено для ее создания. Архимед сделал два слитка такого же веса, как и корона: серебряный и золотой. Далее он по очереди поместил эти слитки в сосуд с водой и отметил, насколько повысился ее уровень. Затем ученый положил в сосуд корону и обнаружил, что вода поднялась не до того уровня, до которого она поднималась при помещении в сосуд каждого из слитков. Таким образом, было обнаружено, что мастер оставил часть золота себе.

Архимед стал изобретателем первого планетария. При движении этого прибора наблюдают: восход Луны и Солнца; движение пяти планет; исчезновение Луны и Солнца за линией горизонта; фазы и затмения Луны.

Ученый также пытался создать формулы для вычисления расстояний до небесных тел. Современные исследователи предполагают, что Архимед считал центром мира Землю. Он считал, что Венера, Марс и Меркурий вращаются вокруг Солнца, и вся эта система вращается вокруг Земли.

Еще его современники сочиняли многочисленные легенды об одаренном математике, физике и инженере. Легенда рассказывает, что однажды Гиерон II решил преподнести в подарок Птолемею, царю Египта, многопалубный корабль. Водное судно было решено назвать «Сиракузия», однако его никак не получалось спустить на воду. В этой ситуации правитель вновь обратился к Архимеду. Из нескольких блоков он соорудил систему, при помощи которой спуск тяжелого судна удалось сделать при помощи одного движения руки. Если верить преданиям, во время этого движения Архимед сказал: «Дайте мне точку опоры, и я переверну мир».

Ученый помог своим соотечественникам и в морских сражениях. Разработанные им краны захватывали вражеские судна железными крюками, слегка приподнимали их, а затем резко бросали обратно. Из-за этого корабли переворачивались и терпели крушение. Долгое время эти краны считались чем-то вроде легенды, однако в 2005 году группа исследователей доказала работоспособность таких устройств, реконструировав их по сохранившимся описаниям.

В 212 году до нашей эры во время Второй Пунической войны Сиракузы стали штурмовать римляне. В это время Архимед был уже пожилым человеком, но его ум не потерял остроты. Архимед активно использовал инженерные знания, чтобы помочь своему народу одержать победу. Как писал Плутарх, под его руководством были построены метательные машины, с помощью которых воины Сиракуз забрасывали противников тяжелыми камнями. Когда римляне бросились к стенам города, надеясь, что там они не попадут под обстрел, другое изобретение Архимеда – легкие метательные устройства близкого действа – помогли грекам забросать их ядрами. Римские галеры, снующие в порту Сиракуз, подверглись атакам специальных кранов с захватывающими крюками (коготь Архимеда). С помощью этих крюков осаждённые поднимали корабли в воздух и бросали вниз с большой высоты. Суда, ударяясь о воду, разбивались и тонули. Все эти технические достижения напугали захватчиков. Так благодаря стараниям Архимеда надежда римлян на штурм города провалилась. Они отказались от штурма города и перешли к длительной осаде. Осенью 212 года до нашей эры колония была взята римлянами в результате измены. Архимед в ходе этого происшествия был убит. Согласно одной версии, его зарубил римский воин, на которого ученый набросился за то, что тот наступил на его чертеж.

Существует легенда, что Архимед распорядился отполировать щиты до зеркального блеска, а затем расположил их таким образом, что они, отражая солнечный цвет, фокусировали его в мощные лучи. Их направили на римские корабли, и те сгорели. Упоминания этого оружия – всего лишь легенды, однако в последние годы были проведены эксперименты, устанавливающие, могли ли существовать эти изобретения в действительности. В 2005 году учёные воспроизвели подъёмные краны, которые оказались вполне работоспособными. А в 1973 году греческий учёный Иоаннис Саккас поджёг с помощью комбинации зеркал фанерную модель римского корабля. Он создал каскад из 70 медных зеркал и с его помощью поджёг фанерный макет корабля, который находился на расстоянии 75 метров от зеркал. Так что данная легенда вполне могла иметь под собой практическую основу.

Тем не менее, учёные продолжают сомневаться в существовании «зеркального» оружия у Сиракуз, поскольку никто из античных авторов о нём не упоминает; информация о нём появилась лишь в раннем средневековье – у автора VI века Анфимия Траллийского. Несмотря на героическую – и гениальную – оборону, Сиракузы были в конце концом покорены.

Наследие Архимеда:

Свои работы Архимед писал на дорическом греческом языке – диалект, на котором говорили в Сиракузах. Но подлинники не сохранились. Они дошли до нас в пересказе других авторов. Всё это систематизировал и собрал в единый сборник византийский архитектор Исидор из Милета, живший в Константинополе в VI веке. Этот сборник в IX веке был переведён на арабский язык, а в XII веке его перевели на латынь.

В эпоху Возрождения труды греческого мыслителя были опубликованы в Базеле на латинском и греческом языках. На основе этих работ Галилео Галилей в конце XVI века изобрёл гидростатические весы.

Архимед является автором огромного количества механизмов, машин, он вывел множество геометрических теорем и изучил физические законы. Из широкого его наследия лишь некоторые:

*Архимедов винт, или шнек – служит для подъёма и транспортировки грузов, вычерпывания воды. Это устройство применяется до сих пор (например, в Египте).

*Различные типы подъёмных кранов, в основе которых лежали блоки и рычаги.

*«Небесная сфера» — первый в мире планетарий, с помощью которого можно было наблюдать движение солнца, луны и пяти известных тогда планет.

*Число, близкое к числу П, — так называемое «архимедово число»: 3 1/7; сам Архимед указал точность приближения этого числа. Чтобы решить эту задачу, он построил круг в вписанный и описанный вокруг него 96-угольники, стороны которых затем измерил.

*Открытие фундаментального закона физики в целом и гидростатики в частности. Этот закон назван его именем и состоит в соотношении выталкивающей силы, объёма и веса погружённого в жидкость тела.

*Являясь первым теоретиком механики, Архимед ввёл в неё мысленные эксперименты. Первыми такими экспериментами были его доказательства закона рычага и закона Архимеда.

*В 1906 году профессор из Дании Йохан Людвиг Хейберг обнаружил в Константинополе молитвенный сборник из 174 страниц, написанный в XIII веке. Учёный выяснил, что это был палимпсест, то есть текст, написанный поверх старого текста. В то время такое являлось обычной практикой, так как выделанная козлиная кожа, из которой делали страницы, стоила очень дорого. Старый текст соскабливали, а поверх него наносили новый. Выяснилось, что соскобленная работа являлась копией неизвестного трактата Архимеда. Написана копия была в X веке. С помощью ультрафиолетового и рентгеновского света этот неизвестный доселе труд был прочитан. Это были работы о равновесии, об измерении окружности сферы и цилиндра, о плавучих телах. В настоящее время данный документ хранится в музее города Балтимора (штат Мэриленд, США).

*Сочинения Архимеда: Квадратура параболы, О шаре и цилиндре, О спиралях, О коноидах и сфероидах, О равновесии плоских фигур, Послание к Эратосфену о методе, О плавающих телах, Измерение круга, Псаммит, Стомахион, Задача Архимеда о быках, Трактат о построении около шара телесной фигуры с четырнадцатью основаниями, Книга лемм, Книга о построении круга, разделенного на семь равных частей, Книга о касающихся кругах.

Архимед: интересные факты

1.После себя Архимед не оставил учеников, поскольку не пожелал создавать своей школы и готовить преемников.

2.Некоторые вычисления Архимеда были повторены только спустя полторы тысячи лет Ньютоном и Лейбницем.

3.Некоторые ученые утверждают, что Архимед был изобретателем пушки. Так, Леонардо да Винчи даже нарисовал эскиз паровой пушки, изобретение которой приписывал древнегреческому ученому. Плутарх написал, что во время осады Сиракуз римлян обстреливало некое устройство, которое напоминало длинную трубку и «выплевывало» ядра.

4.Друг Архимеда Гераклид написал биографию великого ученого, но она была утеряна и теперь о его жизни мало известно.

5.Некоторые современники считали Архимеда сумасшедшим. Чтобы продемонстрировать свои умения, ученый перед Гиероном вытаскивал триеры на берег с помощью системы блоков.

6.Римский полководец Марцелл, командующий осадой Сиракуз, сказал: «Придется нам прекратить войну против геометра».

7.Архимед считается одним из лучших математиков и изобретателей всех времен.

8.Он автор знаменитого изречения «Дайте мне точку опоры, и я сдвину Землю!».

9.По некоторым легендам, при захвате Сиракуз на поиски ученого был отправлен специальный отряд римлян, которые должны были захватить Архимеда и доставить к командованию. Ученый погиб лишь по нелепой случайности.

10.Метательные машины Архимеда могли запускать камни весом до 250 кг. На то время – уникальная боевая машина.

11.Архимед изготовил первый в мире планетарий.

12.Современники считали Архимеда чуть ли не полубогом, а его военные изобретения наводили ужас на римлян, ни с чем подобным ранее не сталкивавшимися.

13.Известная легенда о зеркалах, которые сжигали римские корабли, была неоднократно опровергнута. Скорее всего, зеркала применялись только для прицеливания баллист, которые обстреливали флот римлян зажигательными снарядами. Также существует мнение, что на ночной штурм города римляне были вынуждены согласиться именно из-за использования зеркал защитниками Сиракуз.

14.«Архимедов винт» был изобретен ученым еще в юношеские годы и предназначался для орошения полей. Сегодня шнеки используются во многих отраслях. А в Египте они до сих пор подают воду на поля.

15. Архимед считал математику своим лучшим другом.

Памятник Архимеду

фото из интернета

obshe.net

7 удивительных изобретений от Архимеда

Архимед — один из великих мыслителей истории. Он был проницателен как в философии, так и в искусстве, активно занимался математикой, физикой и был признан одним из величайших инженеров своего времени. Его наследие продолжает жить в современную эпоху через историю, а также благодаря его бесчисленным изобретениям и открытиям 2000 лет назад.

Давайте посмотрим на 7 изобретений, за которые отвечал Архимед.

Архимедов винт

Живя в эпоху 200-х годов до нашей эры, сельское хозяйство было ведущей культурной движущей силой в обществе, но промышленность столкнулась с аналогичными проблемами, с которыми сегодня сталкиваются фермеры. Бедные фермеры особенно сталкивались с проблемами орошения своих культур, поэтому Архимед изобрел решение.

Названный винтом Архимеда, это устройство вращалось с помощью ветряной мельницы или с помощью ручного труда. Как оказалось, он собирал воду и продвигал ее через корпус до тех пор, пока не достигал оросительных канав на полях.

Это вращающееся винтовое устройство для перемещения воды по-прежнему является конструкцией, которая сегодня используется в промышленности. На протяжении многих лет он также использовался для перемещения легких материалов, таких как зерно, в сельскохозяйственные бункеры и из них.

Принцип Архимеда

Архимеду приписывают роль человека, который открыл принцип плавучести, из которого он работал над развитием принципа Архимеда. Это означает, что плавучая сила погруженного объекта равна весу жидкости, вытесненной объектом.

После того, как царь поручил выяснить, является ли корона, сделанная для него , чистым золотом, он понял, что если он возьмет кусок золота весом с золотую корону, то два объекта должны вытеснить то же самое количество воды, независимо от формы.

Если бы ювелир, который сделал корону, заменил любое из золота серебром или более дешевым металлом, то корона вытеснила бы больше воды.

Согласно истории, Архимед использовал эту идею, чтобы доказать, что ювелир обманул короля из законного количества золота в короне.

Истории расходятся в том, как Архимед на самом деле смог обнаружить, что корона не была чистым золотом просто из-за их возраста, но одна вещь остается неизменной, принцип Архимеда является основой для законов физики сегодня.

Железный Коготь

Архимед известен тем, что проектировал военные машины для своего родного штата Сиракузы. Одно известное устройство называлось Железный Коготь.

Предполагалось, что эта машина была установлена ​​на стенах города Сиракузы, способная захватывать и опрокидывать приближающиеся к ней суда. Это устройство известно только через фрагменты исторического контекста, но считалось, что устройство когтя будет прикрепляться к нижней части корабля и подниматься вверх. Эта сила либо нанесет большой урон приближающимся кораблям, либо заставит их опрокинуться.

Одометр

В зависимости от того, кого вы спрашиваете, Архимеду также приписывают первую идею одометра или, по крайней мере, механический метод отслеживания пройденного расстояния.

Витрувий считал, что Архимед создает большое колесо известной окружности в маленькой раме, которая крепится к тачке или другому колесному устройству. Когда объект толкали вперед, устройство бросало камешки в контейнер, каждый из которых представлял собой заданное расстояние.

Согласно Британской энциклопедии, это был, по сути, первый одометр в истории.

Система шкивов

Архимед не изобрел шкив, но он изобрел составные шкивы, улучшая существующую форму технологии, которая существовала в то время. Он продемонстрировал, что колесо, опирающееся на веревку, может использоваться в качестве метода передачи энергии, обеспечивая оператору механическое преимущество в процессе.

Архимед усовершенствовал существующую технологию для создания первой системы блоков и захватов с использованием кранов и составных шкивов. История гласит, что он продемонстрировал мощь своей новой машины, двигая корабль своими силами, сидя на большом расстоянии.

Закон рычага

Архимед также считается изобретателем рычага. Великий изобретатель однажды сказал: «дайте мне точку опоры и переверну землю». На что ему было предложено доказать это.

Ему было поручено спустить на воду крупнейший в Сиракузах корабль, который город не смог запустить с помощью традиционной рабочей силы. Говорят, что Архимед принял задачу и разработал массивный рычажный механизм вместе с серией шкивов для запуска недавно построенного корабля.

Оглядываясь назад, мы видим, что изобретатель не был первым, кто задумал рычажный механизм, но он был первым, кто описал основную физику, а также улучшил дизайн. Он объяснил соотношение силы, нагрузки и как точка опоры взаимодействовала с возможностью рычага.

Геометрия форм

Плутарх пишет об Архимеде, заявляя, что он не высоко ценил свои собственные механические изобретения. Скорее Архимед гораздо больше гордился своими доказательствами и теориями в области физики и математики. Великий инженер считается первым, кто определил формулу для определения площади поверхности сферы заданного радиуса. Написано сегодня, эта формула S = 4π r ^ 2. Он также разработал формулу для объема сферы с использованием объема цилиндров, написанную V = 4 / 3π r ^3

Эти математические достижения были тем, что Архимед считал дорогим своему сердцу как часть своего долговременного наследия.

Как вы, вероятно, можете сказать из этого краткого списка, изобретатель приложил значительные усилия в открытии ранней физики, математики, механического дизайна и даже искусства. Он был, пожалуй, величайшим эрудитом, когда-либо жившим, и по праву заслуживает своего места в учебниках истории.

new-science.ru

Архимед

Максим Волчкевич
«Квантик» №3, 2019

Архимед. Рисунок Алексея Вайнера («Квантик» №3, 2019) Профиль Архимеда на медали Филдса («Квантик» №3, 2019)

Вы можете спросить: кто из древних учёных был самым гениальным? Трудно сказать — все они были гении. Но самым разносторонним из них был точно Архимед. Архимеда одинаково интересовали и математика, и физика, и астрономия. А ещё он был выдающимся инженером. Родился Архимед в городе Сиракузы на острове Сицилия — на карте этот остров напоминает «мяч», по которому носком ударил «сапог» Италии. Его отец Фидий был астрономом и, конечно, привил Архимеду любовь к математике и астрономии. Впрочем, настоящей наукой Архимед стал заниматься лишь в возрасте 40 лет. Лучше поздно, чем никогда — говорит известная всем пословица. За оставшиеся 35 лет жизни Архимед сделал больше, чем все его современники, вместе взятые!

С юности Архимеда интересовали всевозможные механизмы, и некоторые свои изобретения он сделал в молодости. Но известно, что примерно в 40 лет Архимед отправился в Александрию и познакомился там с Эратосфеном, астрономом Кононом и другими учёными мужами. Александрия тогда была главным научным центром античного мира. Незадолго до рождения Архимеда там работал Евклид, написавший «Начала» — знаменитую книгу, по которой весь мир потом изучал геометрию две тысячи лет. Эратосфен в Александрии вычислил размер земного шара, а Аристарх Самосский — расстояние до Луны и Солнца.

Архимед. Рисунок Алексея Вайнера («Квантик» №3, 2019)

А ещё там была величайшая в мире библиотека (в какой-то момент в ней хранилось примерно полмиллиона книг!). Эту библиотеку, как и саму Александрию, основал царь Птолемей — один из военачальников Александра Македонского. Из всех царей того времени он был самым умным, ценил литературу и науку, собирал книги со всего света и приглашал в Александрию известных учёных. Каждая книга представляла собой свиток — свёрнутую в трубку рукопись на длинной полосе папируса.

Параболоид («Квантик» №3, 2019)

Рассказывают, что однажды Птолемей решил изучить геометрию. Он позвал Евклида и попросил указать ему самый лёгкий для этого способ. Евклид ответил так: «В геометрии нет царской дороги!». С тех пор это высказывание стало афоризмом.

Проведя несколько лет в Александрии, Архимед вернулся в Сиракузы и стал писать в Александрию научные письма. Приходили они на имя одного из учеников Конона — Досифея, и каждое начиналось так: «Архимед приветствует Досифея». В этих письмах Архимед сообщал удивительные вещи: как можно вычислить площадь круга или найти центр тяжести параболоида, какую часть от объёма всего цилиндра занимает вписанный в этот цилиндр шар, и многое другое. Для всех этих фигур он получал абсолютно точные формулы, а ведь шар или параболоид — «кривые» тела, греки с ними работать тогда ещё не умели. Каждое письмо Архимеда было открытием, а его методы были совсем не «элементарны» — можно даже сказать, что за два века до нашей эры он первым открыл «высшую» математику!

Круг по площади равен треугольнику, высота которого — радиус, а основание — длина окружности («Квантик» №3, 2019) Объём шара составляет 2/3 от объёма цилиндра («Квантик» №3, 2019)

Архимед очень гордился тем, как он вычислил объём шара, и просил изобразить на его могильной плите шар внутри цилиндра, а рядом написать соотношение их объёмов. Об этом через 150 лет после его смерти вспомнил римский оратор Цицерон, поехал в Сиракузы и по данному чертежу нашёл могилу Архимеда. По его словам, вся она заросла терновником. Архимед много занимался элементарной геометрией геометрией — в школе проходят его знаменитую лемму об окружностях, иногда решают задачу об арбелосе — ноже, которым в Сиракузах разделывали кожи животных. Посмотрите на его чертежи: Архимед доказал, что две окружности, вписанные в части любого арбелоса, равны друг другу. Ни одному кожевеннику это не пришло бы в голову!

Лемма Архимеда об окружностях («Квантик» №3, 2019)

Но больше всего народ уважал Архимеда не за это: всеобщее восхищение вызывали его инженерные изобретения. Он придумал, как специальным винтом поднимать воду из реки в город, как с помощью блоков и верёвок переносить огромные тяжести. (Кстати, архимедов винт до сих пор используют в обычной мясорубке!) Однажды правитель Сиракуз Гиерон повелел построить корабль в подарок египетскому царю — внуку того Птолемея, который разговаривал с Евклидом. Корабль получился столь большим и тяжёлым, что его не могли сдвинуть с места все жители Сиракуз. Тогда Гиерон попросил помощи у Архимеда. Тот смастерил такую систему блоков и рычагов, что смог в одиночку спустить этот корабль на воду. Гиерон был в полном восторге. Архимед же сказал так: «Дай мне точку опоры, и я тебе сдвину Землю!».

Архимед. Рисунок Алексея Вайнера («Квантик» №3, 2019) Теорема об арбелосе («Квантик» №3, 2019)

Архимед был так поглощён наукой, что временами забывал есть и пить. Сидя перед очагом, он чертил круги и треугольники прутом на золе, а когда ходил в общественную баню — на своём намазанном маслом теле. Именно в бане он и сделал ещё одно выдающееся открытие. Дело было вот в чём. Как-то Гиерон приказал своему мастеру сделать золотой венец, отвесив для этого нужную меру золота. Венец он получил, но в то же время получил и донос, что мастер утаил часть золота и заменил его серебром. Проверить это не было никакой возможности — ведь венец был нужного веса, а его форма была слишком сложной для измерений. Гиерон опять обратился за помощью к Архимеду. Тот стал думать над этим вопросом и как раз отправился в баню. Принимая там ванну, он увидел, что чем больше погружается в ванну его тело, тем больше выливается из неё воды… Наверняка каждый в своей жизни наблюдал нечто подобное. Но Архимед выскочил из ванны и, не одеваясь, прямо по улице побежал домой, громко крича: «Эврика! Эврика!» — что означало: «Нашёл! Нашёл!». Дальше всё было просто: дома он сделал два слитка того же веса, что и у венца — один из золота, другой из серебра. Он погружал эти слитки в воду и смотрел, сколько они вытесняют воды. Оказалось, что серебряный слиток вытесняет воды больше, чем золотой. Тогда он погрузил в воду «золотой» венец и увидел, что он тоже вытесняет больше воды, чем нужно. Так Архимед установил, что мастер подмешал в венец серебро и даже определил, сколько именно он утаил золота. Но главное — Архимед открыл закон: при погружении в воду тело всегда вытесняет количество воды, равное объёму самого тела. Это наблюдение стало первым в его исследованиях свойств жидкостей.

Архимед. Рисунок Алексея Вайнера («Квантик» №3, 2019) Архимедов винт («Квантик» №3, 2019)

В его книге «О плавающих телах» им были впервые сформулированы законы гидростатики. Архимед мыслил жидкость не как сплошное единое вещество, но как бы состоящую из мельчайших частиц (на современном языке — молекул). Все эти частицы «давят» друг на друга, причём каждая испытывает давление частиц, находящихся сверху. «Более сдавленные» частицы вытесняют «менее сдавленные» и т. д. Из этого Архимед логически вывел, что на одной глубине все частицы должны испытывать равное давление друг на друга, а поверхность моря или любой другой свободной жидкости (даже в чашке или корыте!) должна быть частью сферы, центр которой находится в центре Земли. Почему тяжёлые корабли не тонут в воде, а держатся на её поверхности? А всё дело в том, что снизу на их днища действует выталкивающая сила, равная массе вытесненной этими кораблями воды! Этот знаменитый закон справедливо носит имя великого Архимеда.

Подъёмные краны с крючьями, которые цепляли римские корабли и топили их в гавани. Рисунок Алексея Вайнера («Квантик» №3, 2019)

Может быть, мы с вами и не узнали бы столько об Архимеде, если бы он не прославился при обороне своего родного города от римлян. Тогда Рим уже много лет воевал с Карфагеном, Сицилия долго была независима от них, но в 214 году до нашей эры Сиракузы решили принять сторону Карфагена. Римское войско осадило город. Во главе его стоял лучший полководец Марцелл. Он рассчитывал взять Сиракузы за неделю, но не мог ожидать, что участие одного человека может всё поменять. Просто этим человеком был великий Архимед. Для обороны своего города он создал небывалые военные машины: катапульты, метавшие камни на огромные расстояния; подъёмные краны с крючьями, которые цепляли римские корабли и топили их в гавани. Дошло до того, что солдаты Марцелла в ужасе разбегались, как только видели над крепостной стеной верёвку или бревно!

Параболоид собирает лучи солнца в одну точку («Квантик» №3, 2019)

Существует даже легенда о том, что Архимед установил на крепостных стенах множество зеркал и с помощью силы солнца поджигал ими римские корабли. Многие потом сомневались, что это было возможно в принципе. Однако к тому времени греки уже знали об удивительном свойстве зеркального параболоида собирать солнечный свет в одной точке — фокусе. Чем больше и шире параболоид, тем дальше находится от него его фокус и тем сильнее нагревается эта точка. Похожий опыт каждый из вас может провести с увеличительным стеклом — с его помощью легко зажечь бумагу или палку. Где же Архимед мог взять такой огромный параболоид, чтобы поджигать им на расстоянии целые корабли? Первым на этот вопрос ответил в 1747 году французский учёный Жорж-Луи де Бюффон. Он взял 128 небольших плоских зеркал, расположил их по параболе и с их помощью смог на расстоянии 50 метров не только зажечь дерево, но даже расплавить свинец и серебро. Тот же опыт повторили в 2005 году исследователи из Массачусетского технологического института — им удалось похожим способом поджечь корабль, стоящий в 50 метрах от берега.

Впрочем, сочинение Архимеда, посвящённое зеркалам, его знаменитая «Катоптрика», считается полностью утраченным. Хотя можем ли мы быть уверены в этом до конца? Ведь другой его важный труд «Метод механических теорем» тоже считали навсегда потерянным. А потом его случайно обнаружили в середине XIX века в подвале библиотеки Константинополя на стёртом пергаменте, поверх которого были написаны богослужебные тексты. Этот палимпсест снова потерялся, был найден только через 100 лет и полностью прочитан уже в XXI веке.

Планетарий Архимеда («Квантик» №3, 2019)Планетарий Архимеда («Квантик» №3, 2019)

Осада Сиракуз продолжалась почти два года. Наконец римляне взяли город с помощью хитрости и предательства. Как обычно, на улицах начались резня и грабёж. Римский легионер ворвался к Архимеду с приказом немедленно следовать за ним к Марцеллу. Но Архимед так был поглощён решением геометрической задачи, что не слышал шума в городе и сказал ему только: «Не наступи на мои чертежи!» Это были его последние слова — раздражённый солдат убил его. Историк Плутарх пишет, что Марцелл, узнав о смерти Архимеда, сильно опечалился, разыскал родственников Архимеда и «милостиво обошёлся с ними». Впрочем, вряд ли это было действительно так. В ту эпоху весь греческий мир был свидетелем того, как жестоко римляне расправлялись с побеждёнными. Известно, что на память о великом учёном Марцелл взял себе его «небесную сферу» — чудесный маленький планетарий, сделанный руками Архимеда. На нём можно было наблюдать движение пяти планет, восходы солнца и фазы Луны. «Небесную сферу» Архимеда потом несколько веков всем показывали в Риме — она всегда вызывала восхищение!

Архимед. Рисунок Алексея Вайнера («Квантик» №3, 2019)

По материалам учебника геометрии для 7 класса школ проекта «Математическая вертикаль» г. Москвы.

Художник Алексей Вайнер


 Эта лемма состоит в том, что если какая-то окружность касается одного сегмента круга в двух точках, то проходящая через них прямая всегда делит дугу другого сегмента пополам.

 Подробный рассказ об этом читайте в статье «Как железные чернила спасли рукопись Архимеда» в «Квантике» № 8 за 2014 год.

elementy.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *