Синус, косинус и тангенс угла. Основное тригонометрическое тождество
Как измерить высоту дерева ? Как найти расстояние до недоступной точки , вершины дерева (рис. 1)?
Рис. 1. Наглядный пример из 8 класса о введении тригонометрических функций острого угла
Рис. 2. Прямоугольный треугольник АВС
Пусть задан треугольник
Поместим единичную полуокружность в координатную плоскость (рис. 3).
1. Рассмотрим , в нем , где , т. е. это прямоугольный треугольник, угол – острый.
Рис. 3. Единичная окружность в координатной плоскости
Синусом угла называется отношение противолежащего катета
Но гипотенуза , поэтому:
– ордината точки
:но , значит:
– абсцисса точки единичной полуокружности.
Синус острого угла – это ордината, а косинус – это абсцисса точки первой четверти.
Точка имеет единственную пару координат , – это косинус , – синус .
Но абсциссу и ординату имеют все точки полуокружности.
2. Рассмотрим любой (рисунок 4), из отрезка .
Рис. 4. единичной окружности в координатной плоскости
Его луч определяет единственную точку
примем, что – это отношение к
:Дано:
Найти:
Решение
Рис. 5. Единичная окружность в координатной плоскости
(рис. 5)
По определению, точка
Примечание: т. к. есть 0, то не существует:
Ответ:
.Задача решена.
Дано:
Найти:
Решение
Рис. 6. Единичная окружность в координатной плоскости
(рис. 6)
Ответ:
Задача решена.
Рассмотрим некоторые свойства единичной полуокружности (рис. 7).
Она проецируется на ось в отрезок , а на ось в отрезок , отсюда вывод:
Рис. 7. Единичная полуокружность в координатной плоскости
В частности, косинус тупого угла отрицателен.
Уравнение единичной окружности с центром в точке и :
Для
interneturok.ru
Замечательные отношения в прямоугольном треугольнике
Категория: ПланиметрияСправочные материалы
Елена Репина 2013-05-22 2013-08-04На всякий случай, уточним, что гипотенузой называется та сторона треугольника, что лежит против угла в 90 градусов, две оставшиеся стороны называются катетами прямоугольного треугольника.
Подробнее про прямоугольный треугольник здесь.
Синусом угла в прямоугольном треугольнике называется отношение противолежащего катета к гипотенузе.
Косинусом угла в прямоугольном треугольнике называется отношение прилежащего катета к гипотенузе.
Тангенсом угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему.
Котангенсом угла в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.
Бывает (и на ЕГЭ, ГИА), что приходится иметь дело с косинусами, синусами и тангенсами внешних углов треугольника. Формулы приведения позволяют увидеть, что есть еще и вот такая связь между смежными углами (помимо того, что их сумма равна 180):
Смотрите подборку задач на применение указанных соотношений в статье «Прямоугольный треугольник. Вычисление длин и углов» часть I, часть II.
Автор: egeMax | комментариев 8 | Метки: шпаргалки-таблицыegemaximum.ru
Свойства синуса, косинуса, тангенса и котангенса
В этой статье будут рассмотрены три основных свойства тригонометрических функций: синуса, косинуса, тангенса и котангенса.
Первое свойство — знак функции в зависимости от того, какой четверти единичной окружности приналдежит угол α. Второе свойство — периодичность. Согласно этому свойству, тигонометрическая функция не меняет значения при изменении угла на целое число оборотов. Третье свойсто определяет, как меняются значения функций sin, cos, tg, ctg при противоположных углах α и -α.
Знаки тригонометрических функций по четвертям
Часто в математическом тексте или в контексте задачи можно встретить фразу: «угол первой, второй, третьей или четвертой координатной четверти». Что это такое?
Обратимся к единичной окружности. Она разделена на четыре четверти. Отметим на окружности начальную точку A0(1, 0) и, поворачивая ее вокруг точки O на угол α, попадем в точку A1(x, y). В зависимости от того, в какой четверти будет лежать точка A1(x, y), угол α будет называться углом первой, второй, третьей и четвертой четвети соответственно.
Для наглядности приведем иллюстрацию.
Угол α=30° лежит в первой четверти. Угол -210° является углом второй четверти. Угол 585° — угол третьей четверти. Угол -45° — это угол четвертой четверти.
При этом углы ±90°, ±180°, ±270°, ±360° не принадлежат ни одной четверти, так как лежат на координатных осях.
Теперь рассмотрим знаки, которые принимают синус, косинус, тангенс и котангенс в зависимости от того, в какой четверти лежит угол.
Чтобы определить знаки синуса по четвертям, вспомним опредение. Синус — это ордината точки A1(x, y). Из рисунка видно, что в первой и второй четвертях она положительна, а в третьей и четверной — отрицательна.
Косинус — это абсцисса точки A1(x, y). В соответсии с этим, определяем знаки косинуса на окружности. Косинус положителен в первой и четвертой четвертях, а отрицателен во второй и третьей четверти.
zaochnik.com
1.2.1 Синус, косинус, тангенс, котангенс произвольного угла
Видеоурок: Синус, косинус, тангенс и котангенс угла
Лекция: Синус, косинус, тангенс, котангенс произвольного угла
Синус, косинус произвольного угла
Чтобы понять, что такое тригонометрические функции, обратимся к окружности с единичным радиусом. Данная окружность имеет центр в начале координат на координатной плоскости. Для определения заданных функций будем использовать радиус-вектор ОР, который начинается в центре окружности, а точка Р является точкой окружности. Данный радиус-вектор образует угол альфа с осью ОХ. Так как окружность имеет радиус, равный единице, то ОР = R = 1.
Если с точки Р опустить перпендикуляр на ось ОХ, то получим прямоугольный треугольник с гипотенузой, равной единице.
Если радиус-вектор двигается по часовой стрелке, то данное направление называется отрицательным, если же он двигается против движения часовой стрелки — положительным.
Синусом угла данной окружности, образованного радиусом-вектором ОР, является ордината точки Р вектора на окружности.
То есть, для получения значения синуса данного угла альфа необходимо определиться с координатой У на плоскости.
Как данное значение было получено? Так как мы знаем, что синус произвольного угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе, получим, что
А так как R = 1, то sin(α) = y0.
В единичной окружности значение ординаты не может быть меньше -1 и больше 1, значит,
Синус принимает положительное значение в первой и второй четверти единичной окружности, а в третьей и четвертой — отрицательное.
Косинусом угла данной окружности, образованного радиусом-вектором ОР, является абсцисса точки Р вектора на окружности.
То есть, для получения значения косинуса данного угла альфа необходимо определиться с координатой Х на плоскости.
Косинус произвольного угла в прямоугольном треугольнике — это отношение прилежащего катета к гипотенузе, получим, что
А так как R = 1, то cos(α) = x0.
В единичной окружности значение абсциссы не может быть меньше -1 и больше 1, значит,
Косинус принимает положительное значение в первой и четвертой четверти единичной окружности, а во второй и в третьей — отрицательное.
Тангенсом произвольного угла считается отношение синуса к косинусу.
Если рассматривать прямоугольный треугольник, то это отношение противолежащего катета к прилежащему. Если же речь идет о единичной окружности, то это отношение ординаты к абсциссе.
Судя по данным отношениям, можно понять, что тангенс не может существовать, если значение абсциссы равно нулю, то есть при угле в 90 градусов. Все остальные значения тангенс принимать может.
Тангенс имеет положительное значение в первой и третьей четверти единичной окружности, а во второй и четвертой является отрицательным.
Котангенсом произвольного угла называется отношение косинуса к синусу.
Рассматривая прямоугольный треугольник — отношение прилежащего катета к противолежащему, то есть абсциссы к ординате.
Так как ордината находится в знаменателе дроби, то котангенс не может существовать при угле альфа, равном нулю градусов.
Котангенс принимает те же значения в четвертях единичной окружности, что и тангенс.
Все перечисленные функции являются периодичными. Косинус и синус имеют период 360 градусов, то есть 2Пи, а тангенс и котангенс 180 градусов, то есть Пи.
cknow.ru
1.2.3 Синус, косинус, тангенс и котангенс числа
Итак, напоминаем, что при рассмотрении тригонометрических функций мы рассматриваем окружность, которая имеет единичный радиус. Данное упрощение используется для удобства. Все отношения справедливы для произвольных окружностей, с произвольным радиусом.
Пример. Давайте построим точки на единичной окружности, которые будут соответствовать повороту радиус-вектора на угол
Решение. За начало отсчета принимаем точку Р0. Угол, равный нулю радиан совпадает с данной точкой.
Мы знаем, что граничными считаются углы 0, π/2, π, 3π/2, 2π. Если использовать угол π/2 и разделить первую четверть на 3 равных части, то первое от начала отсчета разделение будет соответствовать углу π/6. На графике данная точка имеет место Рπ/6.
Чтобы получить угол π/4, необходимо прямой угол разделить на две части. Если необходимо отметить угол с отрицательным аргументом, необходимо пойти по часовой стрелке от начальной точки. Например, точка — π/4 будет находиться симметрично относительно оси ОХ в 4 четверти.
Давайте теперь вспомним, каким образом исчисляются углы, выраженные в радианной мере. Чему, например, соответствует в радианах π/4? Чтобы это узнать, следует числовое значение числа π разделить на 4.
3,14 : 4 = 0,78, если углу π/2 соответствует 3,14 : 2 = 1,57. Следовательно, на окружности угол, равный единице будет лежать выше π/4, но ниже π/2. Отрицательное значение угла симметрично положительному относительно оси ОХ.
Таким же образом следует найти и местонахождение угла, равного 2. Так как граничному прямому углу соответствует значение 1,57, то угол, равный двум, будет находиться во второй четверти.
Можно убедиться, что каждому числу соответствует своя ордината и абсцисса на плоскости.
Отсюда можно сделать вывод, что:
Синус некоторого числа — это значение ординаты на плоскости, которая соответствует точке этого числа на единичной окружности.
Косинус некоторого числа — это значение абсциссы на плоскости, которая соответствует точке этого числа на единичной окружности.
Тангенс некоторого числа — это значение, полученное в результате отношения синуса к косинусу, иначе говоря, отношение ординаты к абсциссе.
Котангенс некоторого числа — это значение, полученное в результате отношения косинуса к синусу, иначе говоря, отношение абсциссы к ординате.
Синус и косинус имеют период, равный 6,28. Тангенс и котангенс имеет период, равный 3,14.
cknow.ru
Синус, косинус, тангенс, котангенс
В курсе геометрии 8 класса, мы с вами уже знакомились с понятиями синуса, косинуса, тангенса и котангенса для углов прямоугольного треугольника. Давайте вспомним их.
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
;
Еще мы с вами учили таблицу синусов, косинусов для углов в 30, 45 и 60 градусов. Давайте вспомним ее.
Сегодня на уроке мы познакомимся с понятиями синуса, косинуса, тангенса и котангенса произвольного угла из промежутка от 0 до 180º.
Построим в прямоугольной системе координат полуокружность радиус которой равен 1 так, чтобы центр этой полуокружности совпадал с началом координат.
Такую полуокружность мы назовем единичной полуокружностью. Из точки О давайте проведем произвольный луч h. Этот луч пересекает полуокружность с точке М (0;0). Угол между лучом h и положительным направлением оси Ox обозначим за α. Если луч h совпадает с положительным направлением оси Ox, то угол α равен 90º. Если луч h совпадает с осью Oy, то угол α= 90º. Если луч h совпадает с отрицательным направлением оси Ox, то угол α= 180º. Опустим из точки М перпендикуляр на ось Ox и рассмотрим прямоугольный треугольник ОМD.
Запишем элементы этого треугольника. Поскольку радиус полуокружности равен 1, значит, ОM=1. Так как координаты точки М равны x и y, то, очевидно, что МD=y, а ОD=x. Тогда , . Мы получили, что синус острого угла равен ординате точки М, а косинус угла α равен абсциссе точки М. По этим же формулам вычисляются синус и косинус для углов в 90º и 180º.
Для любого угла синусом угла называется ордината точки , а косинусом угла абсцисса точки
Поскольку речь у нас идет о единичной полуокружности, то ордината точки может изменятся от 0 до 1, значит, и синус угла α может принимать значения от 0 до 1. Абсцисса точки М может изменятся от -1 до 1, то есть и косинус угла α из промежутка от 0 до 180º может изменятся от -1 до 1.
Задача. Может ли:
а) абсцисса точки единичной полуокружности быть равна ?
б) ордината точки единичной полуокружности быть равна ?
Решение.
а) Поскольку полуокружность единичная, значит абсцисса точки должны принадлежать промежутку от -1 до 1, то есть абсцисса точки может быть равна , но не может быть равна 4 и 5.
б) Поскольку полуокружность располагается выше оси Ox, то ординаты точек могут быть только из промежутка от 0 до 1, то есть ордината точки может быть равна но не может быть равна .
Дополним известную нам таблицу синусов косинусов:
Для определения sin 0º и cos 0º давайте рассмотрим луч ОА. На единичной полуокружности точка А имеет координаты (1;0), значит , а .
Найдем теперь значение sin90 º и cos 90º. Этот угол задается лучом ОB. Координаты точки B равны (0;1), значит, , .
Проводя аналогичные рассуждения, получим , .
Задача. Определить координаты точки , если:
а) ; б) ; в) .
Решение.
а)
б)
в)
Ответ: ; ; .
Решим теперь обратную задачу.
Задача. Определить , , если:
а) ; б) ; в) .
Решение.
а)
б)
в)
Тангенсом острого угла мы называли отношение
. Эта же
формула справедлива для произвольного угла от 0º до 180º. Однако,
если угол равен 90º, то его cos 90º=0, а
значит, мы получим дробь, в знаменателе которой находится 0. Но на 0 делить
нельзя, поэтому для угла в 90º тангенс не существует. Таким образом, мы
немного уточнили определение тангенса.
Тангенсом угла , называется .
Котангенсом острого угла мы называли отношение . Эта же
формула справедлива для произвольного угла от 0º до 180º. Однако,
если угол равен 0º или 180º, то sin равен 0,
а значит, мы получим дробь, в знаменателе которой находится 0. Но на 0 делить
нельзя, поэтому
, – не существует. Таким образом, мы немного уточнили
определение котангенса.
Котангенсом угла , называется .
Задача. Определить , , если:
а) ; б) ; в) ; г) ; д) .
Решение.
а)
б)
в)
г)
д)
Давайте занесем полученные данные в таблицу и составим таблицу синусов, косинусов, тангенсов и котангенсов для углов 0º, 30º, 45º, 60º, 90º, 180º.
Подведем итоги урока. Сегодня на уроке мы определили, что Для любого угла синусом угла называется ордината точки , а косинусом угла абсцисса точки
Тангенсом угла , называется .
Котангенсом угла , называется .
Также мы дополнили известную нам таблицу значений синуса, косинуса и тангенсов для некоторых углов.
videouroki.net
Внеклассный урок — Синус, косинус, тангенс, котангенс
Синус, косинус, тангенс, котангенс
Прежде чем перейти к этому разделу, напомним определения синуса и косинуса, изложенные в учебнике геометрии 7-9 классов.
— Синус острого угла t прямоугольного треугольника равен отношению противолежащего катета к гипотенузе (рис.1):
sin t = b/c.
— Косинус острого угла t прямоугольного треугольника равен отношению прилежащего катета к гипотенузе (рис.1):
cos t = a/c.
Эти определения относятся к прямоугольному треугольнику и являются частными случаями тех определений, которые представлены в данном разделе.
Поместим тот же прямоугольный треугольник в числовую окружность (рис.2).
Мы видим, что катет b равен определенной величине y на оси Y (оси ординат), катет а равен определенной величине x на оси X (оси абсцисс). А гипотенуза с равна радиусу окружности (R).
Таким образом, наши формулы обретают иной вид.
Так как b = y, a = x, c = R, то:
y x
sin t = —— , cos t = ——.
R R
Кстати, тогда иной вид обретают, естественно, и формулы тангенса и котангенса.
Так как tg t = b/a, ctg t = a/b, то, верны и другие уравнения:
tg t = y/x,
ctg = x/y.
Но вернемся к синусу и косинусу. Мы имеем дело с числовой окружностью, в которой радиус равен 1. Значит, получается:
y
sin t = —— = y,
1
x
cos t = —— = x.
1
Так мы приходим к третьему, более простому виду тригонометрических формул.
Эти формулы применимы не только к острому, но и к любому другому углу (тупому или развернутому).
Определения и формулы cos t, sin t, tg t, ctg t.
Косинусом числа t числовой окружности называют абсциссу этого числа: cos t = x Синус числа t – это его ордината: sin t = y Тангенс числа t – это отношение синуса к косинусу: sin t π Котангенс числа t – это отношение косинуса к синусу: cos t |
Из формул тангенса и котангенса следует еще одна формула:
sin t cos t πk |
Уравнения числовой окружности.
Из предыдущего раздела мы знаем одно уравнение числовой окружности: x2 + y2 = 1 Но поскольку x = cos t, а y = sin t, то получается новое уравнение: cos2 t + sin2 t = 1 |
Знаки синуса, косинуса, тангенса и котангенса в четвертях окружности:
| 1-я четверть | 2-я четверть | 3-я четверть | 4-я четверть |
cos t | + | – | – | + |
sin t | + | + | – | – |
tg t, ctg t | + | – | + | – |
Косинус и синус основных точек числовой окружности:
Как запомнить значения косинусов и синусов основных точек числовой окружности.
Прежде всего надо знать, что в каждой паре чисел значения косинуса стоят первыми, значения синуса – вторыми.
1) Обратите внимание: при всем множестве точек числовой окружности мы имеем дело лишь с пятью числами (в модуле):
1 √2 √3
0; —; ——; ——; 1.
2 2 2
Сделайте для себя это «открытие» — и вы снимете психологический страх перед обилием чисел: их на самом деле всего-то пять.
2) Начнем с целых чисел 0 и 1. Они находятся только на осях координат.
Не надо учить наизусть, где, к примеру, косинус в модуле имеет единицу, а где 0.
На концах оси косинусов (оси х), разумеется, косинусы равны модулю 1, а синусы равны 0.
На концах оси синусов (оси у) синусы равны модулю 1, а косинусы равны 0.
Теперь о знаках. Ноль знака не имеет. Что касается 1 – тут просто надо вспомнить самую простую вещь: из курса 7 класса вы знаете, что на оси х справа от центра координатной плоскости – положительные числа, слева – отрицательные; на оси у вверх от центра идут положительные числа, вниз – отрицательные. И тогда вы не ошибетесь со знаком 1.
3) Теперь перейдем к дробным значениям.
— Во всех знаменателях дробей – одно и то же число 2. Уже не ошибемся, что писать в знаменателе.
— В серединах четвертей косинус и синус имеют абсолютно одинаковое значение по модулю: √2/2. В каком случае они со знаком плюс или минус – см.таблицу выше. Но вряд ли вам нужна такая таблица: вы знаете это из того же курса 7 класса.
— Все ближайшие к оси х точки имеют абсолютно одинаковые по модулю значения косинуса и синуса: (√3/2; 1/2).
— Значения всех ближайших к оси у точек тоже абсолютно идентичны по модулю – причем в них те же числа, только они «поменялись» местами: (1/2; √3/2).
Теперь о знаках – тут свое интересное чередование (хотя со знаками, полагаем, вы должны легко разобраться и так).
Если в первой четверти значения и косинуса, и синуса со знаком плюс, то в диаметрально противоположной (третьей) они со знаком минус.
Если во второй четверти со знаком минус только косинусы, то в диаметрально противоположной (четвертой) – только синусы.
Осталось только напомнить, что в каждом сочетании значений косинуса и синуса первое число – это значение косинуса, второе число – значение синуса.
— Обратите внимание еще на одну закономерность: синус и косинус всех диаметрально противоположных точек окружности абсолютно равны по модулю. Возьмем, к примеру, противоположные точки π/3 и 4π/3:
cos π/3 = 1/2, sin π/3 = √3/2
cos 4π/3 = -1/2, sin 4π/3 = -√3/2
Различаются значения косинусов и синусов двух противоположных точек только по знаку. Но и здесь есть своя закономерность: синусы и косинусы диаметрально противоположных точек всегда имеют противоположные знаки.
Важно знать:
Значения косинусов и синусов точек числовой окружности последовательно возрастают или убывают в строго определенном порядке: от самого малого значения до самого большого и наоборот (см. раздел «Возрастание и убывание тригонометрических функций» — впрочем, в этом легко убедиться, лишь просто посмотрев на числовую окружность выше).
В порядке убывания получается такое чередование значений:
√3 √2 1 1 √2 √3
1; ——; ——; —; 0; – —; – ——; – ——; –1
2 2 2 2 2 2
Возрастают они строго в обратном порядке.
Поняв эту простую закономерность, вы научитесь довольно легко определять значения синуса и косинуса.
Тангенс и котангенс основных точек числовой окружности.
Зная косинус и синус точек числовой окружности, легко можно вычислить их тангенс и котангенс. Делим синус на косинус — получаем тангенс. Делим косинус на синус — получаем котангенс. Результаты этого деления — на рисунке.
ПРИМЕЧАНИЕ: В некоторых таблицах значения тангенса и котангенса, равные модулю √3/3, указаны как 1/√3. Ошибки тут нет, так как это равнозначные числа. Если числитель и знаменатель числа 1/√3 умножить на √3, то получим √3/3.
Как запомнить значение тангенсов и котангенсов основных точек числовой окружности.
Здесь такие же закономерности, что и с синусами и косинусами. И чисел тут всего четыре (в модуле): 0, √3/3, 1, √3.
На концах осей координат – прочерки и нули. Прочерки означают, что в данных точках тангенс или котангенс не имеют смысла.
Как запомнить, где прочерки, а где нули? Поможет правило.
Тангенс – это отношение синуса к косинусу. На концах оси синусов (ось у) тангенс не существует.
Котангенс – это отношение косинуса к синусу. На концах оси косинусов (ось х) котангенс не существует.
В остальных точках идет чередование всего лишь трех чисел: 1, √3 и √3/3 со знаками плюс или минус. Как с ними разобраться? Запомните (а лучше представьте) три обстоятельства:
1) тангенсы и котангенсы всех середин четвертей имеют в модуле 1.
2) тангенсы и котангенсы ближайших к оси х точек имеют в модуле √3/3; √3.
3) тангенсы и котангенсы ближайших к оси у точек имеют в модуле √3; √3/3.
Не ошибитесь со знаками – и вы большой знаток.
Нелишне будет запомнить, как возрастают и убывают тангенс и котангенс на числовой окружности (см.числовую окружность выше или раздел «Возрастание и убывание тригонометрических функций»). Тогда еще лучше будет понятен и порядок чередования значений тангенса и котангенса.
Тригонометрические свойства чисел числовой окружности.
Представим, что определенная точка М имеет значение t.
Свойство 1:
| | | |
Пояснение. Пусть t = –60º и t = –210º.
cos –60º равен 1/2. Но cos 60º тоже равен 1/2. То есть косинусы –60º и 60º равны как по модулю, так и по знаку: cos –60º = cos 60º.
cos –210º равен –√3/2. Но cos 210º тоже равен –√3/2. То есть: cos –210º = cos 210º.
Таким образом, мы доказали, что cos (–t) = cos t.
sin –60º равен –√3/2. А sin 60º равен √3/2. То есть sin –60º и sin 60º равны по модулю, но противоположны по знаку.
sin –210º равен 1/2. А sin 210º равен –1/2. То есть sin –210º и sin 210º равны по модулю, но противоположны по знаку.
Таким образом, мы доказали, что sin (–t) = –sin t.
Посмотрите, что происходит с тангенсами и котангенсами этих углов – и вы сами легко докажете себе верность двух других тождеств, приведенных в таблице.
Вывод: косинус – четная функция, синус, тангенс и котангенс – нечетные функции.
Свойство 2: Так как t = t + 2πk, то:
| |
Пояснение: t и t + 2πk – это одна и та же точка на числовой окружности. Просто в случае с 2πk мы совершаем определенное количество полных оборотов по окружности, прежде чем приходим к точке t. Значит, и равенства, изложенные в этой таблице, очевидны.
Свойство 3: Если две точки окружности находятся друг против друга относительно центра О, то их синусы и косинусы равны по модулю, но противоположны по знаку, а их тангенсы и котангенсы одинаковы как по модулю, так и по знаку.
| | | |
Пояснение: Пусть точка М находится в первой четверти. Она имеет положительное значение синуса и косинуса. Проведем от этой точки диаметр – то есть отрезок, проходящий через центр оси координат и заканчивающийся в точке окружности напротив. Обозначим эту точку буквой N. Как видите, дуга MN равна половине окружности. Вы уже знаете, что половина окружности – это величина, равная π. Значит, точка N находится на расстоянии π от точки М. Говоря иначе, если к точке М прибавить расстояние π, то мы получим точку N, находящуюся напротив. Она находится в третьей четверти. Проверьте, и увидите: косинус и синус точки N – со знаком «минус» (x и y имеют отрицательные значения).
Тангенс и котангенс точки М имеют положительное значение. А тангенс и котангенс точки N? Ответ простой: ведь тангенс и котангенс – это отношение синуса и косинуса. В нашем примере синус и косинус точки N – со знаком «минус». Значит:
–sin t
tg (t + π) = ———— = tg t
–cos t
–cos t
ctg (t + π) = ———— = ctg t
–sin t
Мы доказали, что тангенс и котангенс диаметрально противоположных точек окружности имеют не только одинаковое значение, но и одинаковый знак.
Свойство 4: Если две точки окружности находятся в соседних четвертях, а расстояние между точками равно одной четверти окружности, то синус одной точки равен косинусу другой с тем же знаком, а косинус одной точки равен синусу второй с противоположным знаком.
π | π |
raal100.narod.ru