Что такое химические свойства вещества – ХИМИЯ. ФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА — это… Что такое ХИМИЯ. ФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА?

Содержание

ХИМИЯ. ФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА — это… Что такое ХИМИЯ. ФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА?


ХИМИЯ. ФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА

Рассмотрим некоторые физические свойства вещества: агрегатное состояние, температуры плавления и кипения, кристаллическую структуру, электропроводность. Агрегатное состояние вещества определяется силой притяжения между составляющими его молекулами и температурой. В твердом теле молекулы достаточно сильно сцеплены друг с другом и их движение ограничивается колебаниями относительно фиксированных положений. С повышением температуры энергия молекул увеличивается, колебания становятся все более интенсивными, и в конце концов молекулы приобретают достаточно энергии, чтобы совершать поступательные движения. При этом твердое вещество плавится (если межмолекулярное взаимодействие остается достаточно сильным) или, сублимируясь, превращается в газ, молекулы которого движутся хаотически. Температура плавления (затвердевания) — это температура, при которой твердое вещество превращается в жидкость (или жидкость превращается в твердое вещество). Температура плавления воды равна 0° С (по шкале Цельсия) или 32° F (по шкале Фаренгейта). Поскольку при плавлении объем тела меняется незначительно, давление мало влияет на температуру плавления. Однако именно под действием высокого давления, оказываемого полозом конька, лед расплавляется, и спортсмен легко скользит по нему. Температура кипения — это температура, при которой жидкость превращается в пар (газ). Она зависит от давления, поэтому в горах вода кипит при более низкой температуре, чем на уровне моря. Температура кипения воды при давлении 760 мм рт. ст. («стандартном» давлении, примерно равном давлению на уровне моря) составляет 100° С (или 212° F).
Кристаллические и аморфные вещества. Твердые вещества бывают аморфными и кристаллическими. У аморфных молекулы расположены случайным образом. В качестве примера аморфного вещества можно привести стекло. Как и другие подобные вещества, стекло не имеет определенной температуры плавления: при нагревании оно постепенно размягчается, пока, наконец, не становится жидким. Напротив, молекулы (или ионы) кристаллических веществ расположены строго упорядоченно. К кристаллическим веществам относятся песок, поваренная соль, сахар, алмаз, графит и т.п. Все они плавятся при определенной температуре (если только при нагревании не претерпевают никаких химических изменений, как это случается с сахаром). Многие ионные соединения (например, поваренная соль NaCl) образуют кристаллы, в которых каждый ион окружен противоположно заряженными ионами; в результате нельзя сказать, что какая-то конкретная пара ионов образует молекулу. Вследствие взаимного притяжения ионов в кристалле поваренной соли (NaCl) это вещество плавится при высокой температуре (801° С). Каждый ион NaCl окружен шестью ближайшими соседями, имеющими противоположный заряд. Элементарная ячейка кристалла поваренной соли — это куб, у которого по углам и в центре каждой грани расположены ионы натрия. Ячейка такого типа называется гранецентрированной кубической. Кубическую форму имеют и крупные кристаллы поваренной соли.
КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА ПОВАРЕННОЙ СОЛИ. Маленькие шарики - ионы натрия, большие - ионы хлора. Все кристаллы поваренной соли имеют одинаковую кубическую форму.
КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА ПОВАРЕННОЙ СОЛИ. Маленькие шарики — ионы натрия, большие — ионы хлора. Все кристаллы поваренной соли имеют одинаковую кубическую форму.
Кристаллическая решетка алмаза, в которой каждый атом углерода ковалентно связан с четырьмя соседними атомами, также характеризуется гранецентрированной кубической элементарной ячейкой. Алмаз — очень твердое вещество, имеющее высокую температуру перехода.
КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА АЛМАЗА. Атомы углерода заключены в жесткую кристаллическую решетку, что делает алмаз чрезвычайно твердым.

КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА АЛМАЗА. Атомы углерода заключены в жесткую кристаллическую решетку, что делает алмаз чрезвычайно твердым.
Совсем по-другому расположены атомы углерода в графите. Здесь они образуют слои, не очень прочно связанные друг с другом. Каждый слой «выстлан» шестиугольниками из углеродных атомов, аналогичными бензольному кольцу. Поскольку сцепление между слоями довольно слабое, графит мягкий. Слои легко скользят один относительно другого, благодаря чему графит является хорошим смазочным материалом. Разные кристаллические формы одного и того же элемента, такие, как графит и алмаз, называют аллотропами.
См. также АЛЛОТРОПИЯ.
КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА ГРАФИТА. Атомы углерода в графите образуют слои. Они связаны друг с другом не очень прочно и могут скользить один относительно другого.

КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА ГРАФИТА. Атомы углерода в графите образуют слои. Они связаны друг с другом не очень прочно и могут скользить один относительно другого.
Вещества, молекулы которых удерживаются вместе слабыми силами притяжения, а не ковалентными или ионными связями, плавятся при относительно низких температурах, редко превышающих 400° С. Таково большинство органических соединений, а также ковалентные неорганические. В качестве примеров можно привести воду и бензол: температура их плавления значительно ниже комнатной.
Электропроводность. Металлы — прекрасные проводники электричества. Носителями электрического тока в них являются электроны, свободно «плавающие» в кристаллической решетке между ионами металла, занимающими фиксированное положение в узлах решетки. Эти электроны компенсируют взаимное отталкивание положительных ионов и стабилизируют всю структуру. Если к металлу приложить разность потенциалов, то электроны будут перемещаться к положительному полюсу и возникнет электрический ток.

Энциклопедия Кольера. — Открытое общество. 2000.

  • ХИМИЧЕСКИЕ СВЯЗИ, ФОРМУЛЫ И УРАВНЕНИЯ
  • ХИМИЯ. НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Смотреть что такое «ХИМИЯ. ФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА» в других словарях:

  • Физические свойства — вещества свойства, присущие веществу вне химического взаимодействия: температура плавления, температура кипения, вязкость, плотность, диэлектрическая проницаемость, теплоёмкость, теплопроводность, электропроводность, абсорбция, цвет, концентрация …   Википедия

  • Физические свойства — – характеризуют какую либо особенность физического состояния или отношение материала к различным физическим процессам. Эта группа включает параметры состояния, гидрофизические и теплофизические свойства, радиационную стойкость. [ Косых, А.… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • ХИМИЯ — наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Она изучает, из каких веществ состоит тот или иной предмет; почему и как ржавеет железо, и почему олово не ржавеет; что происходит с пищей… …   Энциклопедия Кольера

  • ХИМИЯ — ХИМИЯ, отрасль науки, изучающая свойства, состав и структуру веществ и их взаимодействие друг с другом. В настоящее время химия представляет собой обширную область знаний и подразделяется прежде всего на органическую и неорганическую химию.… …   Научно-технический энциклопедический словарь

  • Химия — I Химия          I. Предмет и структура химии          Химия одна из отраслей естествознания, предметом изучения которой являются химические элементы (Атомы), образуемые ими простые и сложные вещества (молекулы (См. Молекула)), их превращения и… …   Большая советская энциклопедия

  • Химия — I Химия          I. Предмет и структура химии          Химия одна из отраслей естествознания, предметом изучения которой являются химические элементы (Атомы), образуемые ими простые и сложные вещества (молекулы (См. Молекула)), их превращения и… …   Большая советская энциклопедия

  • Химия — У этого термина существуют и другие значения, см. Химия (значения). Химия (от араб. کيمياء‎‎, произошедшего, предположительно, от египетского слова km.t (чёрный), откуда возникло также название Египта, чернозёма и свинца  «черная… …   Википедия

  • Химия — Первоначальное значение и происхождение этого слова неизвестно; возможно, что оно просто старое название северного Египта, и тогда наука Chemi значит египетская наука; но так как Chemi, кроме Египта, обозначало еще черный цвет, a μελάνοσις… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Химия природных соединений

    — (ХПС)  раздел органической химии, изучающий химические соединения, входящие в состав живых организмов, природные пути их превращений и методы искусственного получения. Как наука, химия природных соединений возникла одновременно с… …   Википедия

  • ХИМИЯ КОЛЛОИДНАЯ — раздел физической химии, занимающийся изучением коллоидных дисперсных систем (дисперсий), в которых одно мелкораздробленное вещество дисперсная фаза равномерно распределено (диспергировано) в другой фазе дисперсионной среде. В коллоидных системах …   Энциклопедия Кольера

Книги

  • Химия. 11 класс. Углубленный уровень. Тетрадь для практических работ. ФГОС, Новошинский И.И.. Тетрадь для практических занятий поможет учащимся успешно выполнять практические работы по химии, на которых они будут получать вещества, изучать их свойства физические и химические.… Подробнее  Купить за 124 грн (только Украина)
  • Химия. 10 класс. Углубленный уровень. Тетрадь для практических работ. ФГОС, Новошинский Иван Иванович, Новошинская Нина Степановна. Тетрадь для практических занятий поможет учащимся успешно выполнять практические работы по химии, на которых они будут получать вещества, изучать их свойства — физические и химические.… Подробнее  Купить за 124 грн (только Украина)
  • Химия. 10 (11) класс. Углублённый уровень. Тетрадь к учебнику И. И. Новошинского, Н. С. Новошинской, И. И. Новошинский, Н. С. Новошинская. Тетрадь для практических занятий поможет учащимся успешно выполнять практические работы по химии, на которых они будут получать вещества, изучать их свойства — физические и химические.… Подробнее  Купить за 97 руб
Другие книги по запросу «ХИМИЯ. ФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА» >>

dic.academic.ru

Основание (химия) — Википедия

У этого термина существуют и другие значения, см. Основание.

Основание — химическое соединение, способное образовывать ковалентную связь с протоном (основание Брёнстеда) либо с вакантной орбиталью другого химического соединения (основание Льюиса)[1]. В узком смысле под основаниями понимают осно́вные гидроксиды — сложные вещества, при диссоциации которых в водных растворах отщепляется только один вид анионов — гидроксид-ионы OH[2].

Частным случаем оснований являются щёлочи — гидроксиды щелочных, щелочноземельных металлов, а также некоторых других элементов, например, таллия. Реакции оснований с кислотами называют реакциями нейтрализации.

Понятие основания сформировалось в XVII веке и было впервые введено в химию французским химиком Гийомом Франсуа Руэлем в 1754 году. Он отметил, что кислоты, известные в те времена как летучие жидкости (например, уксусная или соляная кислоты), превращаются в кристаллические соли только в сочетании с конкретными веществами. Руэль предположил, что эти вещества служат «основаниями» для образования солей в твёрдой форме[3].

Единая теория кислот и оснований была впервые представлена шведским физикохимиком С. Аррениусом в 1887 году. В рамках своей теории Аррениус определял кислоту как вещество, при диссоциации которого образуются протоны H+, а основание — как вещество, дающее при диссоциации гидроксид-ионы OH[4]. Теория Аррениуса, однако, имела свои недостатки — например, она не учитывала влияние растворителя на кислотно-основное равновесие, а также была неприменима к неводным растворам[5].

В 1924 году Э. Франклином была создана сольвентная теория, согласно которой основание определялось как соединение, которое при диссоциации увеличивает число тех же анионов, которые образуются при диссоциации растворителя[4].

С 1923 года основание стали определять в рамках теорий Брёнстеда — Лоури и Льюиса, которые широко применяются и в настоящее время.

Основание в теории Брёнстеда — Лоури[править | править код]

В протонной теории кислот и оснований, выдвинутой в 1923 г. независимо датским учёным Й. Брёнстедом и английским учёным Т. Лоури, основанием Брёнстеда называется соединение или ион, способный принимать (отщеплять) протон от кислоты[6]. Соответственно, кислота Брёнстеда является донором протонов, а взаимодействие кислоты с основанием сводится к передаче протона. При реакции основания Брёнстеда B с кислотой, например, с водой, основание превращается в сопряжённую кислоту BH+, а кислота становится сопряжённым основанием[4]:

B+h3O⇌BH++OH−.{\displaystyle {\mathsf {B+H_{2}O}}\rightleftharpoons {\mathsf {BH^{+}+OH^{-}}}.}

Основание в теории Льюиса[править | править код]

{\mathsf  {B+H_{2}O}}\rightleftharpoons {\mathsf  {BH^{+}+OH^{-}}}.

Согласно электронной теории, предложенной в 1923 году американским физикохимиком Г. Льюисом, основание — это вещество, способное отдавать электронную пару на образование связи с кислотой Льюиса[7]. Основаниями Льюиса могут быть амины R3N, спирты ROH, простые эфиры ROR, тиолы RSH, тиоэфиры RSR, анионы, соединения с π-связями[8]. В зависимости от орбитали, на которой расположена участвующая в реакции пара электронов, основания Льюиса подразделяют на n-, σ- и π-типы — электронные пары для этих типов расположены соответственно на несвязывающих, σ- и π-орбиталях[4].

Понятия основания в теориях Льюиса и Брёнстеда — Лоури совпадают: согласно обеим теориям основания отдают пару электронов на образование связи. Разница заключается лишь в том, куда расходуется эта электронная пара. Основания Брёнстеда за её счёт образуют связь с протоном, а основания Льюиса — с любыми частицами, имеющими вакантную орбиталь. Таким образом, существенные различия этих теорий касаются понятия кислоты, а не основания[8][4].

AlCl3+Cl−⇌AlCl4−{\displaystyle {\mathsf {AlCl_{3}+Cl^{-}}}\rightleftharpoons {\mathsf {AlCl_{4}^{-}}}}

BF3+(C2H5)2O⇌BF3⋅(C2H5)2O{\displaystyle {\mathsf {BF_{3}+(C_{2}H_{5})_{2}O}}\rightleftharpoons {\mathsf {BF_{3}\cdot (C_{2}H_{5})_{2}O}}}

Теория Льюиса не предусматривает количественной оценки способности оснований реагировать с кислотами Льюиса. Однако, для качественной оценки широко применяется принцип жёстких и мягких кислот и оснований Пирсона (принцип ЖМКО), согласно которому жёсткие кислоты предпочтительно реагируют с жёсткими основаниями, а мягкие кислоты — с мягкими основаниями. По Пирсону, жёсткими основаниями являются основания, донорный центр которых обладает низкой поляризуемостью и высокой электроотрицательностью[9][10]. Напротив, мягкими основаниями являются донорные частицы с высокой поляризуемостью и низкой электроотрицательностью[10]. Жёсткие и мягкие кислоты обладают такими же свойствами как жёсткие и мягкие основания соответственно с той разницей, что они являются акцепторными частицами[11].

Классификация оснований и кислот в рамках принципа ЖМКО[8][12]
Жёсткие основанияПромежуточные основанияМягкие основания
OH, RO, F, Cl, RCOO, NO3, NH3, RNH2, H2O, ROH, SO42−, CO32−, R2O, NR2, NH2Br, C6H5NH2, NO2, C5H5NRS, RSH, I, H, R3C, алкены, C6H6, R3P, (RO)3P
Жёсткие кислотыПромежуточные кислотыМягкие кислоты
H+, Li+, Na+, K+, Mg2+, Ca2+, Al3+, Cr3+, Fe3+, BF3, B(OR)3, AlR3, AlCl3, SO3, BF3, RCO+, CO2, RSO2+Cu2+, Fe2+, Zn2+, SO2, R3C+, C6H5+, NO+Ag+, Cu+, Hg2+, RS+, I+, Br+, Pb2+, BH3, карбены

Критерий ЖМКО не имеет количественных параметров, однако основания Льюиса можно приблизительно расположить в ряды по их льюисовской основности. Например, мягкость оснований убывает в следующих рядах[8]:

I−>Br−>Cl−>F−,{\displaystyle {\mathsf {I^{-}>Br^{-}>Cl^{-}>F^{-}}},}

Ch4−>Nh3−>OH−>F−.{\displaystyle {\mathsf {CH_{3}^{-}>NH_{2}^{-}>OH^{-}>F^{-}}}.}

Основание в общей теории Усановича[править | править код]

В общей теории кислот и оснований, созданной М. И. Усановичем в 1939 году, основание определено как вещество, отдающее анионы (или электроны) и принимающие катионы. Таким образом, в рамках теории Усановича в понятие основания входят как основания Брёнстеда, так и основания Льюиса, а также восстановители[5]. Кроме того, само понятие основности, как и кислотности, в общей теории Усановича рассматривается как функция вещества, проявление которой зависит не от самого вещества, а от его партнёра по реакции[13].

Количественное описание силы оснований[править | править код]

Теория Брёнстеда — Лоури позволяет количественно оценить силу оснований, то есть их способность отщеплять протон от кислот. Это принято делать при помощи константы основности Kb — константы равновесия реакции основания с кислотой сравнения, в качестве которой выбрана вода. Чем выше константа основности, тем выше сила основания и тем больше его способность отщеплять протон[8]. Часто константу основности выражают в виде показателя константы основности pKb. Например, для аммиака как основания Брёнстеда можно записать[4][14]:

Nh4+h3O⇌Nh5++OH−{\displaystyle {\mathsf {NH_{3}+H_{2}O}}\rightleftharpoons {\mathsf {NH_{4}^{+}+OH^{-}}}}

Kb=[Nh5+]⋅[OH−][Nh4]=1,79⋅10−5;{\displaystyle K_{b}={\frac {[{\mathsf {NH_{4}^{+}}}]\cdot [{\mathsf {OH^{-}}}]}{[{\mathsf {NH_{3}}}]}}=1{,}79\cdot 10^{-5};}

 pKb=−log⁡Ka=4,75.{\displaystyle \ \mathrm {p} K_{b}=-\log K_{a}=4{,}75.}

Для многоосновных оснований используют несколько значений констант диссоциации Kb1, Kb2 и т. д. Например, фосфат-ион может протонироваться трижды:

PO43−+h3O⇌HPO42−+OH−;Kb1=[HPO42−]⋅[OH−][PO43−]=2,10⋅10−2;{\displaystyle {\mathsf {PO_{4}^{3-}+H_{2}O}}\rightleftharpoons {\mathsf {HPO_{4}^{2-}+OH^{-}}};K_{\mathrm {b1} }={\frac {[{\mathsf {HPO_{4}^{2-}}}]\cdot [{\mathsf {OH^{-}}}]}{[{\mathsf {PO_{4}^{3-}}}]}}=2{,}10\cdot 10^{-2};}

HPO42−+h3O⇌h3PO4−+OH−;Kb2=[h3PO4−]⋅[OH−][HPO42−]=1,58⋅10−7;{\displaystyle {\mathsf {HPO_{4}^{2-}+H_{2}O}}\rightleftharpoons {\mathsf {H_{2}PO_{4}^{-}+OH^{-}}};K_{\mathrm {b2} }={\frac {[{\mathsf {H_{2}PO_{4}^{-}}}]\cdot [{\mathsf {OH^{-}}}]}{[{\mathsf {HPO_{4}^{2-}}}]}}=1{,}58\cdot 10^{-7};}

h3PO4−+h3O⇌h4PO4+OH−;Kb3=[h4PO4]⋅[OH−][h3PO4−]=1,32⋅10−12.{\displaystyle {\mathsf {H_{2}PO_{4}^{-}+H_{2}O}}\rightleftharpoons {\mathsf {H_{3}PO_{4}+OH^{-}}};K_{\mathrm {b3} }={\frac {[{\mathsf {H_{3}PO_{4}}}]\cdot [{\mathsf {OH^{-}}}]}{[{\mathsf {H_{2}PO_{4}^{-}}}]}}=1{,}32\cdot 10^{-12}.}

Силу основания можно также охарактеризовать константой кислотности его сопряжённой кислоты Ka (BH+), причём произведение константы основности Kb на константу Ka (BH+) равно ионному произведению воды для водных растворов[14] и константе автопротолиза растворителя в общем случае[8].

Ka(Nh5+)=[Nh4]⋅[H+][Nh5+]=5,62⋅10−10;{\displaystyle K_{a}\mathrm {(NH_{4}^{+})} ={\frac {[{\mathsf {NH_{3}}}]\cdot [{\mathsf {H^{+}}}]}{[{\mathsf {NH_{4}^{+}}}]}}=5{,}62\cdot 10^{-10};}

Ka(Nh5+)⋅Kb(Nh4)=Kw=1⋅10−14;{\displaystyle {K_{a}\mathrm {(NH_{4}^{+})} }\cdot {K_{b}\mathrm {(NH_{3})} }=K_{w}=1\cdot 10^{-14};}

pKa(Nh5+)+pKb(Nh4)=pKw=14{\displaystyle {\mathrm {p} K_{a}\mathrm {(NH_{4}^{+})} }+{\mathrm {p} K_{b}\mathrm {(NH_{3})} }=\mathrm {p} K_{w}=14}

Из последнего уравнения также следует, что сила основания тем выше, чем ниже кислотность сопряжённой ему кислоты. Например, вода является слабой кислотой и при отщеплении протона превращается в сильное основание — гидроксид-ион OH[8].

Значения pKb некоторых оснований и pKa их сопряжённых кислот в разбавленных водных растворах[4]
Формула основанияФормула сопряжённой кислотыpKbpKa (BH+)Формула основанияФормула сопряжённой кислотыpKbpKa (BH+)
ClO4HClO419 ± 0,5−5 ± 0,5HPO42−H2PO46,807,20
HSO4H2SO416,8 ± 0,5−2,8 ± 0,5ClOHClO6,757,25
H2OH3O+15,74−1,74H2BO3H3BO34,769,24
NO3HNO315,32−1,32NH3NH4+4,759,25
HOOC-COO(COOH)212,741,26CNHCN4,789,22
HSO3H2SO312,081,92CO32−HCO33,6710,33
SO42−HSO412,041,96HOOH2O211,623,38
H2PO4H3PO411,882,12PO43−HPO42−1,6812,32
FHF10,863,14OHH2O−1,7415,74
NO2HNO210,653,35NH2NH3 (ж.)−1933
CH3COOCH3COOH9,244,76HH2−24,638,6
SHH2S6,957,05СH3СH4~−44~58

Влияние растворителя[править | править код]

На кислотно-основное равновесие значительное влияние оказывает растворитель. В частности, для водных растворов было обнаружено, что все основания с константами основности pKb < 0 имеют одинаковые свойства (например, pH растворов). Объясняется это тем, что такие основания в воде практически нацело превращаются в гидроксид-ион OH, который является единственным основанием в растворе. Так, все основания с pKb < 0 (амид натрия NaNH2, гидрид натрия NaH и др.) дают эквивалентное количество гидроксид-ионов в водных растворах, выравниваясь между собой по силе. Данное явление получило название нивелирующего эффекта растворителя. Аналогичным образом, в водных растворах выравниваются по силе и очень слабые основания с pKb > 14[15][16].

Основания с pKb от 0 до 14 в воде частично протонированы и находятся в равновесии с сопряжённой кислотой, а их свойства в растворе зависят от значения pKb. В этом случае говорят о дифференцирующем эффекте растворителя. Интервал pKb, в котором основания дифференцированы по силе, равен показателю константы автопротолиза растворителя. Для разных растворителей этот интервал различен (14 для воды, 19 для этанола, 33 для аммиака и т. д.), соответственно, и набор дифференцированных и нивелированных оснований для них разный[17].

В растворителях, обладающих выраженными кислотными свойствами, все основания становятся более сильными и большее число оснований нивелируется по силе. Например, уксусная кислота уравнивает большинство известных оснований по силе со своим сопряжённым основанием — ацетат-ионом CH3COO. Напротив, основные растворители (аммиак) служат дифференцирующими растворителями для оснований[18].

Влияние строения основания[править | править код]

Существует несколько факторов, которые определяют относительную силу органических и неорганических оснований и которые связаны с их строением. Часто несколько факторов действуют одновременно, поэтому трудно предсказать их суммарное влияние. Среди наиболее значимых можно выделить следующие факторы.

  • Индуктивный эффект (эффект поля). При повышении доступности электронной пары основания его сила возрастает. По этой причине введение электронодонорных заместителей в основание способствует проявлению им основных свойств. Например, введение алкильных заместителей в молекулу аммиака приводит к более сильным основаниям, чем сам аммиак[19]. Напротив, введение акцепторных заместителей в молекулу понижает силу основания[8].
  • Мезомерный эффект (резонансный эффект). Электронодонорные и электроноакцепторные заместители оказывают положительное и отрицательное влияние на силу основания соответственно также через систему сопряжения. В таком случае говорят о мезомерном эффекте. Данный эффект приводит к тем же последствиям, что и индуктивный: различается лишь механизм их действия. Так, пара-нитроанилин является более слабым основанием, чем анилин (pKb равны 12,89 и 9,40 соответственно) из-за акцепторного влияния нитрогруппы, которая снижает доступность электронной пары азота аминогруппы[20].
Эффект сопряжения проявляется также в том случае, если электронная пара основания находится в системе сопряжения, например, с ароматической системой или двойной связью. В таком случае основания имеют более низкую силу. Например, амиды и анилины являются гораздо более слабыми основаниями, чем амины[19].
  • Корреляция с расположением атомов в периодической системе. Чем выше электроотрицательность основного элемента, тем ниже основная сила основания. Так, сила основания понижается при движении по периоду периодической системы слева направо. Также основность понижается при переходе по группе сверху вниз, что связано с увеличением радиуса основного атома и, следовательно, меньшей плотностью отрицательного заряда на нём, что в итоге снижает силу связывания положительно заряженного протона[20].

Ch4−>Nh3−>OH−>F−;{\displaystyle {\mathsf {CH_{3}^{-}>NH_{2}^{-}>OH^{-}>F^{-};}}}

Nh4>Ph4>Ash4{\displaystyle {\mathsf {NH_{3}>PH_{3}>AsH_{3}}}}

  • Гибридизация. Сила органических оснований понижается, если основный атом связан с другим атомом кратными связями. Так, при переходе от аминов к иминам и нитрилам основность уменьшается. Это объясняется тем, что электронная пара в этих соединениях располагается на sp3-, sp2— и sp-гибридных орбиталях атома азота соответственно, то есть в данном ряду электронная пара приближается по характеру к s-электронам, приближаясь к атомному ядру и становясь менее доступной[19].

RCh3Nh3>RCH=NH>RC≡N{\displaystyle {\mathsf {RCH_{2}NH_{2}>RCH{=}NH>{RC}{\equiv }{N}}}}

Супероснования[править | править код]

  1. 1 2 С одной стороны, наличие третьей алкильной группы в триметиламине и триэтиламине должно увеличивать их основность. С другой стороны, с добавлением третьего заместителя резко уменьшается способность сопряжённых кислот (CH3)3NH+ и (C2H5)3NH+ к гидратации, что уменьшает их устойчивость и суммарно понижает основность аминов.
  1. ↑ IUPAC Gold Book — base (неопр.). Дата обращения 18 апреля 2013. Архивировано 30 апреля 2013 года.
  2. Рудзитис Г. Е., Фельдман Ф. Г. Химия. Неорганическая химия. Органическая химия. 9 класс. — 13-е изд. — М.: Просвещение, 2009. — С. 10. — ISBN 978-5-09-021-625-8.
  3. ↑ William B. Jensen, The Origin of the Term Base, Journal of Chemical Éducation • 1130 Vol. 83 No. 8 août 2006
  4. 1 2 3 4 5 6 7 Химическая энциклопедия / Под ред. И. Л. Кнунянца. — М: Большая Российская энциклопедия, 1992. — Т. 2. — С. 393—395. — ISBN 5-85270-039-8.
  5. 1 2 Золотов Ю. А., Дорохова Е. Н., Фадеева В. И. и др. Основы аналитической химии. Книга 1. Общие вопросы. Методы разделения / Под ред. Ю. А. Золотова. — 2-е изд., перераб. и доп. — М: Высшая школа, 1999. — С. 118. — ISBN 5-06-003558-1.
  6. ↑ IUPAC Gold Book — Brønsted base (неопр.). Дата обращения 18 апреля 2013. Архивировано 30 апреля 2013 года.
  7. ↑ IUPAC Gold Book — Lewis base (неопр.). Дата обращения 18 апреля 2013. Архивировано 30 апреля 2013 года.
  8. 1 2 3 4 5 6 7 8 Москва В. В. Понятие кислоты и основания в органической химии // Соросовский образовательный журнал. — 1996. — № 12. — С. 33—40.
  9. ↑ IUPAC Gold Book — hard base (неопр.). Дата обращения 18 апреля 2013. Архивировано 30 апреля 2013 года.
  10. 1 2 Химическая энциклопедия, 1992, т. 2, с. 145.
  11. ↑ IUPAC Gold Book — hard acid (неопр.). Дата обращения 18 апреля 2013. Архивировано 30 апреля 2013 года.
  12. ↑ Золотов и др., 1999, с. 152.
  13. Кусаинова К. М. Нет ни кислот, ни оснований! Об одной полузабытой теории и её творце // Химия и жизнь. — 2004. — № 6. — С. 40—44.
  14. 1 2 Рабинович В. А., Хавин З. Я. Краткий химический справочник. — Изд. 2-е, испр. и доп. — Ленинград: Химия, 1978. — С. 232—236.
  15. Реутов О. А., Курц А. Л., Бутин К. П. Органическая химия. — 3-е изд. — М: Бином. Лаборатория знаний, 2010. — Т. 1. — С. 40. — ISBN 978-5-94774-614-9.
  16. ↑ Неорганическая химия / Под ред. Ю. Д. Третьякова. — М: Академия, 2004. — Т. 1. — С. 89—94. — ISBN 5-7695-1446-9.
  17. ↑ Золотов и др., 1999, с. 123—125.
  18. Танганов Б. Б. Химические методы анализа. — Улан-Удэ: Издательство ВСГТУ, 2005. — С. 8—14. — ISBN 5-89230-037-4.
  19. 1 2 3 4 Сайкс П. Механизмы реакций в органической химии = A Guidebook to Mechanism in Organic Chemistry / Под ред. Я. М. Варшавского. — 3-е изд.. — М: Химия, 1977. — С. 82—91.
  20. 1 2 Марч Дж. Органическая химия. Реакции, механизмы и структура. Т. 1 / Пер. с англ. З. Е. Самойловой, под ред. И. П. Белецкой. — М: Мир, 1987. — С. 340—346.

ru.wikipedia.org

Железо — общая характеристика элемента, химические свойства железа и его соединений

Желе́зо — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1)     На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O2 + 6H2 O → 4Fe(OH)3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O2 → Fe3O4

3Fe+2O2→(Fe IIFe2III)O4   (160 °С)

2)     При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H2O  –→  Fe3O4 + 4H2­

 

3)     Железо реагирует с неметаллами при нагревании:

2Fe+3Cl2→2FeCl3   (200 °С)

2Fe + 3Br2  –→  2FeBr3

Fe + S  –→  FeS (600 °С)

Fe+2S → Fe+2(S2-1)   (700°С)

4)       В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н2SO4, при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl2 + H2­ (реакции проводятся без доступа воздуха, иначе Fe+2 постепенно переводится кислородом в Fe+3 )

Fe + H2SO4(разб.) → FeSO4 + H2­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе3+:

2Fe + 6H2SO4(конц.)  –→  Fe2(SO4)3 + 3SO2­ + 6H2O

Fe + 6HNO3(конц.)  –→  Fe(NO3)3 + 3NO2­ + 3H2O

(на холоде концентрированные азотная и серная кислоты пассивируют железо).

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5)     Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.

Fe + CuSO4 → FeSO4 + Cu

6)

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н2O= Nа2[Fе(ОН)4]↓+ Н2

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо — сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

                 Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд — перевод в оксидную руду:

FeS2→Fe2O3   (O2,800°С, -SO2)       FeCO3→Fe2O(O2,500-600°С, -CO2)

б)  сжигание кокса при горячем дутье:

С(кокс) + O2 (воздух) →СO2   (600—700°С)   СO2 + С(кокс) ⇌ 2СО   (700—1000    °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe2O3→(CO) (FeIIFe2III)O4→(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

)→(C(кокс) 900—1200°С)(ж)  (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe2С и графит.

                                Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО2, SО2), либо связываются в легко отделяемый шлак — смесь Са3(РO4)2 и СаSiO3. Для получения специальных сталей в печь вводят легирующие добавки других металлов.

    Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl2→ Fе↓ + Сl2↑ (90°С)  (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь — как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

       Оксид железа(II) FеО. Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе2+ O2-. При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(FeIIFe2 III) + Fе (560—700 °С , 900—1000°С)

FеО + 2НС1 (разб.) = FеС12 + Н2O

FеО + 4НNO3 (конц.) = Fе(NO3)3 +NO2↑  + 2Н2O

FеО + 4NаОН =2Н2O + Nа4FеO3(красн.)  триоксоферрат(II) (400—500 °С)

FеО + Н22O + Fе (особо чистое)    (350°С)

FеО + С(кокс) = Fе + СО  (выше 1000 °С)

FеО + СО = Fе + СO2    (900°С)

4FеО + 2Н2O(влага) + O2(воздух) →4FеО(ОН) (t)

6FеО + O2 = 2(FeIIFe2III )O4      (300—500°С)

Получение в лаборатории: термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН)2 = FеО + Н2O (150-200 °С)

FеСОз = FеО + СO2 (490-550 °С)

       Оксид дижелеза (III) – железа(II) (FeIIFe2III )O4 . Двойной оксид. Черный, имеет ионное строение Fe2+(Fе3+)2(O2-)4. Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe3O4 не рекомендуется. Уравнения важнейших реакций:

2(FeIIFe2 III )O4 = 6FеО + O2   (выше 1538 °С)

(FeIIFe2III )O4 + 8НС1 (разб.) = FеС12 + 2FеС13 + 4Н2O

(FeIIFe2III )O4 +10НNO3 (конц.) =3Fе(NO3)3 + NO2↑+ 5Н2O

(FeIIFe2III )O4 + O2 (воздух) = 6Fе2O3    (450-600°С)

(FeIIFe2III )O4 + 4Н2 = 4Н2O + 3Fе (особо чистое, 1000 °С)

(FeIIFe2III )O4 + СО =ЗFеО + СO2  (500—800°C)

(FeIIFe2 III )O4 + Fе  ⇌4FеО (900—1000 °С , 560—700 °С)

    Получение: сгорание железа (см.) на воздухе.

В природе — оксидная руда железа магнетит.

       Оксид железа(III) Fе2О3. Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+)2(O2-)3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе2O32О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе2O3 = 4(FeIIFe2III )O4 +O2            (1200—1300 °С)

2O3 + 6НС1 (разб.) →2FеС13 + ЗН2O (t)    (600°С,р)

2O3 + 2NaОН (конц.) →Н2O+ 2NаFеO2 (красн.)  диоксоферрат(III)

2О3 + МО=(МII2III)O4     (М=Сu, Мn, Fе, Ni, Zn)

2O3 + ЗН2 =ЗН2O+ 2Fе (особо чистое, 1050—1100 °С)

2O3 + Fе = ЗFеО    (900 °С)

3Fе2O3 + СО = 2(FeII2III)O4 + СO2  (400—600 °С)

     Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

2(SO4)3 = Fе2O3 + 3SO3    (500-700 °С)

4{Fе(NO3)3 9 Н2O} = 2FеaO3 + 12NO2+ 3O2 + 36Н2O   (600-700 °С)

В природе — оксидные руды железа гематит2O3 и лимонит2O32O

Гидроксид железа (II) Fе(ОН)2. Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН)2 = FеО + Н2O  (150-200 °С, в атм.N2)

Fе(ОН)2 + 2НС1 (разб.) =FеС12 + 2Н2O

Fе(ОН)2 + 2NаОН (> 50%) = Nа2[Fе(ОН)4] ↓(сине-зеленый) (кипячение)

4Fе(ОН)2 (суспензия) + O2 (воздух) →4FеО(ОН)↓ + 2Н2O  (t)

2Fе(ОН)2 (суспензия)2O2 (разб.) = 2FеО(ОН)↓ + 2Н2O

Fе(ОН)2 + КNO3(конц.) = FеО(ОН)↓ + NO↑+ КОН   (60 °С)

   Получение: осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

2+ + 2OH (разб.) = Fе(ОН)2

2+ + 2(NH3Н2O) = Fе(ОН)2+ 2NH4

     Метагидроксид железа FеО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе2O3  nН2O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН)2. Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН)3 не известно (не получено).

Уравнения важнейших реакций:

2O3.2O→(200-250 °С, —H2O) FеО(ОН)→( 560-700° С на воздухе , -h3O) →Fе2О3

FеО(ОН) + ЗНС1 (разб.) =FеС13 + 2Н2O

FeO(OH)→Fe2O3.nH2O -коллоид (NаОН (конц.))

FеО(ОН)→Nа3[Fе(ОН)6] белый , Nа5[Fе(OН)8желтоватый (75 °С, NаОН( т))

2FеО(ОН) + Fе(ОН)2=( FeIIFe2III )O4 + 2Н2O         (600—1000 °С)

2FеО(ОН) + ЗН2 = 4Н2O+ 2Fе (особо чистое, 500—600 °С)

2FеО(ОН) + ЗВr2 + 10КОН = 2К2FеO4 + 6Н2O + 6КВr

       Получение: осаждение из раствора солей железа(Ш) гидрата Fе2О32O и его частичное обезвоживание (см. выше).

В природе — оксидная руда железа лимонит2O32О и минерал гётит FеО(ОН).

Феррат калия К2FеО4. Оксосоль. Красно-фиолетовый, разлагается при сильном нагревании. Хорошо растворим в концентрированном растворе КОН, реагирует с кипящей водой, неустойчив в кислотной среде. Сильный окислитель.

Качественная реакция — образование красного осадка феррата бария. Применяется в синтезе ферритов — промышленно важных двойных оксидов железа (III) и других металлов.

Уравнения важнейших реакций:

2FеO4= 4КFеO2 + 3O2 + 2К2O         (700 °С)

2FеO4 + 6Н2O (гор.) =4FeО(ОН)↓ + 8КОН + 3O2

FеО42- + 2OН+(разб.) =4Fе3+ + 3O2↑+10Н2O

FеО42- + 2(NH3. Н2O)     →2FеО(ОН)↓ + N2↑+ 2Н2O+ 4OН

FеО42- + Ва2+ = ВаFеO4 (красн.)↓         (в конц. КОН)

   Получение: образуется при окислении соединений железа, например метагидроксида FеО(ОН), бромной водой, а также при действии сильных окислителей (при спекании) на железо

Fе + 2КОН + 2КNO3 = К2FеO4 + 3КNO2+ H2O (420 °С)

и электролизе в растворе:

электролиз

Fе + 2КОН (конц.) + 2Н2O→ЗН2↑ + К2FеO4 ( электролиз)

(феррат калия образуется на аноде).

      Качественные реакции на ионы Fе2+ и Fе3+

Обнаружение ионов Fе2+ и Fе3+в водном растворе проводят с помощью реактивов К3[Fе(СN)6] и К4[Fе(СN)6] соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFеIII[FеII (СN)6]. В лаборатории этот осадок называют берлинская лазурь, или турнбуллева синь:

2+ + К+ + [Fе(СN)6]3- = КFеIII[FеII (СN) 6]↓

3+ + К+ + [Fе(СN)6]4- = КFеIII[FеII (СN) 6]↓

Химические названия исходных реактивов и продукта реакций:

К3III[Fе(СN) 6]- гексацианоферрат (III) калия

К4III[Fе (СN) 6]- гексацианоферрат (II) калия

КFеIII[FеII (СN) 6]- гексацианоферрат (II) железа  (Ш) калия

Кроме того, хорошим реактивом на ионы Fе3+ является тиоцианат-ион NСS, железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

3+ + 6NСS= [Fе(NСS)6]3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.

 

himege.ru

Химические соединения — это… Характеристика, примеры и свойства

Большинство людей не задумывается о составе окружающих их предметов, веществ, материи. Атомы, молекулы, электроны, протоны — эти понятия кажутся не только непонятными, но и далекими от действительности. Однако такое мнение ошибочно. Практически все, что нас окружает, состоит из химических связей. Химические соединения — это достаточно сложные формы веществ. В окружающем нас мире великое множество таких связей. Однако и соединения, состоящие только из одного элемента химического, могут относиться к ним, например, кислород или хлор. Поэтому стоит подробнее разобрать вопрос: «Химические соединения — это что?»

химик за работой

Сложный «химический» мир

Мало кто задумывается о том, что окружающий нас мир состоит из сложных структур, макромолекул и крошечных частиц. Удивительно, насколько разнородны даже размеры атомов у разных элементов. Различия в величинах атомных масс тоже впечатляют — бериллий со своими 9 а. е. м. — «легковес» по сравнению с «тяжеловесом» астатом: его атомный вес составляет 210 а. е. м. (а. е. м. — атомные единицы массы — единица измерения массы атомов, молекул, ядер, которая равна 1/12 массы атома углерода, находящегося в основном состоянии).

Многообразие элементов обуславливает и наличие множества химических соединений (это, простыми словами, комбинация соединенных между собой атомов различных и, в некоторых случаях, одинаковых частей). Большинство предметов, веществ представляют собой именно такого рода соединения. Необходимый для жизни кислород, поваренная соль, ацетон… Можно еще очень долго перечислять примеры и всем известные, и понятные только узким специалистам. Что же такое эти химические соединения?

дымящиеся колбы

Определение, отличие от смесей

Химические соединения — это сложные вещества, которые состоят из соединенных между собой атомов разных химических элементов, однако существуют исключения: к химическим соединениям относятся и простые вещества (то есть состоят из атомов одного элемента), если атомы этих веществ соединены ковалентной связью (она образована общими для обоих атомов электронами). К таким веществам относятся азот, кислород, большинство галогенов (в таблице Менделеева элементы седьмой группы главной подгруппы; фтор, хлор, бром, йод, предположительно и астат).

Зачастую путают между собой понятия «химическое соединение» и «смесь простых веществ». Смесь веществ — это, как можно сделать вывод из названия, не самостоятельное вещество, а система двух и более компонентов. Сам состав этих двух единиц химических веществ является основным различием между ними. Как уже говорилось, соединение химических элементов и смесь простых (или сложных) веществ — это не одно и то же. Свойства, способы получения, методы разделения на компоненты также являются отличительными критериями смесей и соединений. Важно отметить, что ни получить, ни разделить химические соединения нельзя без проведения химических реакций, а смеси — можно.

колбы и скелет

Очень многие люди также путают между собой словосочетания «соединение химических веществ» и «соединение элементов». По непонятным причинам, но, скорее всего, в силу своей некомпетентности, большинство из них не видит разницы между первым и вторым научными понятиями. Стоит узнать и понимать, что не существует такой терминологии, как «соединение химических веществ». Не стоит повторять за другими ошибки этимологии тех или иных не только выражений, но и слов.

углеродный скелет

Как определить свойства соединений

Зачастую свойства химических соединений разительно отличаются от свойств элементов, из которых они состоят. Например, молекула этилового спирта состоит из двух атомов углерода, шести атомов водорода и одного атома кислорода, однако его свойства разительно отличаются от свойств всех элементов своего состава. В связи с тем, что существуют разные классы соединений, то и свойства у каждого из них свои. Большинство реакций, безусловно, являются характерными для многих соединений, однако механизмы их проявления разные.

колба в руках

На какие классы делятся химические соединения

В зависимости от своей природы, существуют такие классы химических соединений, как органические и неорганические. Стоит сказать, что органическими называют вещества (соединения), в составе которых присутствует углерод (исключения составляют некоторые соединения, содержащие углерод, но относящиеся к неорганическим, ниже они приводятся). Основными группами органических соединений являются углеводороды, спирты, альдегиды, кетоны, эфиры, карбоновые кислоты, амиды и амины. Неорганические вещества (соединения) в своем составе не содержат атомов углерода, однако среди них можно выделить карбиды, цианиды, карбонаты и оксиды углерода, так как они, наравне с органическими соединениями, в своем составе содержат его атомы. И те, и другие соединения имеют свои особенности, свои свойства, причем разные группы соединений одного класса могут иметь разные характеристики.

Неорганические соединения: основные свойства

Все неорганические соединения можно разбить на несколько групп. У каждого из данных видов соединений есть общие свойства, зачастую не совпадающие с другими группами этого же класса. Итак, ответ на вопросы, какие химические соединения относятся к неорганическими, какие группы образуют и какими свойствами обладают, можно представить следующим образом:

  1. Первая группа — простые неорганические соединения неметаллической природы. Данную категорию соединений объединяют такие свойства, как возможность находиться в газообразном состоянии. Твердые соединения неметаллического характера обладают немолекулярным строением, в связи с чем способны к образованию кристаллов.
  2. Вторая группа — сложные неорганические соединения. Их можно разделить на четыре подгруппы. колба и бюретка

Сложные неорганические соединения, их свойства

Как было сказано ранее, вторую группу неорганических соединений можно разделить на четыре подгруппы:

  • Оксиды. Для этой подгруппы неорганических соединений характерны реакции взаимодействия с водой, кислотами и кислотными оксидами (у них есть соответствующая кислородсодержащая кислота).
  • Кислоты. Эти соединения взаимодействуют с водой, щелочами и основными оксидами (у них есть соответствующее основание).
  • Амфотерные соединения — соединения, которые могут вести себя и как кислоты, и как основания (обладают и теми, и теми свойствами). Такие соединения реагируют и с кислотными оксидами, и с основаниями.
  • Гидроксиды. Эти вещества неограниченно растворяются в воде, изменяют окраску при воздействии на них щелочами.

Соединения органической природы

Большинство предметов, с которыми человек ежедневно сталкивается, изготовлены из органических соединений. Органические химические соединения представляют собой обширный класс связей, составы и свойства групп, при взаимодействии которых они отличаются завидной разнообразностью. Стоит подробнее рассмотреть группы этих соединений.

химические соединения

Группы органических соединений и их некоторые свойства

  1. Углеводороды. Они представляют собой соединения только атомов водорода и углерода. Можно выделить предельные и непредельные, линейные (ациклические) и карбоциклические, ароматические и не ароматические; алканы, алкены, алкины, диены, нафтены. Для всех перечисленных углеводородов является общим свойством их не смешиваемость с водой. Для предельных типичны реакции замещения, а для непредельных — присоединения.
  2. Спирты — соединения, содержащие в своем составе гидроксильную (-ОН) группу (конечно, органические соединения). Они обладают свойствами слабых кислот, для них характерны реакции нуклеофильного замещения и реакции окисления, а также спирты сами могут выступать в качестве нуклеофила.
  3. Простые и сложные эфиры. Простые эфиры малорастворимы в воде, обладают слабоосновными свойствами. Сложные эфиры выступают в качестве носителей электрофильных реагентов, вступают в реакции замещения.
  4. Альдегиды (содержат альдегидную -СНО группу). Они вступают в такие реакции, как присоединение, окисление, восстановление, сопряженного присоединения.
  5. Кетоны. Для них характерны гидрирование, конденсация, нуклеофильное замещение.
  6. Карбоновые кислоты. Они проявляют, конечно же, кислотные свойства. Восстановление, галогенирование, реакции нуклеофильного замещения у ацильного атома углерода, получение амидов и нитрилов, декарбоксилирование — основные характерные реакции.
  7. Амиды. Гидролизация, разложение, кислотность и основность — основные свойственные реакции для амидов.
  8. Амины. Являются основаниями; взаимодействуют с водой, с кислотами, с ангидридами, галогенами и галогеналканами.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *