Cos равен 0: Таблица косинусов углов от 0° — 360°. Углы с шагом в 1°. Таблица значений косинусов.

Содержание

Таблица косинусов углов от 0° — 360°. Углы с шагом в 1°. Таблица значений косинусов.

Таблица косинусов углов от 0° — 360°. Углы с шагом в 1°.
cos(0°)=cos(360°)=1; точная, но чуть более сложная таблица ( с точностью до 1″) здесь.

Углы
1° — 90°

Углы
91 ° — 180°

Углы
181° — 270°

Углы
271 ° — 360°

Угол

Cos

cos= 0.9998
cos= 0.9994
cos= 0.9986
cos= 0.9976
cos= 0.9962
cos= 0.9945
cos= 0.9925
cos= 0.9903
cos= 0.9877
10° cos= 0.9848
11° cos= 0.9816
12° cos= 0.9781
13° cos= 0.9744
14° cos= 0.9703
15° cos= 0.9659
16° cos= 0.9613
17° cos= 0.9563
18° cos= 0.9511
19° cos= 0.9455
20° cos= 0.9397
21° cos= 0.9336
22° cos= 0.9272
23°
cos= 0.9205
24° cos= 0.9135
25° cos= 0.9063
26° cos= 0.8988
27° cos= 0.891
28° cos= 0.8829
29° cos= 0.8746
30° cos= 0.866
31° cos= 0.8572
32° cos= 0.848
33°
cos= 0.8387
34° cos= 0.829
35° cos= 0.8192
36° cos= 0.809
37° cos= 0.7986
38° cos= 0.788
39° cos= 0.7771
40° cos= 0.766
41° cos= 0.7547
42° cos= 0.7431
43°
cos= 0.7314
44° cos= 0.7193
45° cos= 0.7071
46° cos= 0.6947
47° cos= 0.682
48° cos= 0.6691
49° cos= 0.6561
50° cos= 0.6428
51° cos= 0.6293
52° cos= 0.6157
53°
cos= 0.6018
54° cos= 0.5878
55° cos= 0.5736
56° cos= 0.5592
57° cos= 0.5446
58° cos= 0.5299
59° cos= 0.515
60° cos= 0.5
61° cos= 0.4848
62° cos= 0.4695
63°
cos= 0.454
64° cos= 0.4384
65° cos= 0.4226
66° cos= 0.4067
67° cos= 0.3907
68° cos= 0.3746
69° cos= 0.3584
70° cos= 0.342
71° cos= 0.3256
72° cos= 0.309
73° cos= 0.2924
74° cos= 0.2756
75° cos= 0.2588
76° cos= 0.2419
77° cos= 0.225
78° cos= 0.2079
79° cos= 0.1908
80° cos= 0.1736
81° cos= 0.1564
82° cos= 0.1392
83° cos= 0.1219
84° cos= 0.1045
85° cos= 0.0872
86° cos= 0.0698
87° cos= 0.0523
88° cos= 0.0349
89° cos= 0.0175
90° cos= 0

Угол

Cos

91°
cos= -0.0175
92° cos= -0.0349
93° cos= -0.0523
94° cos= -0.0698
95° cos= -0.0872
96° cos= -0.1045
97° cos= -0.1219
98° cos= -0.1392
99° cos= -0.1564
100° cos= -0.1736
101°
cos= -0.1908
102° cos= -0.2079
103° cos= -0.225
104° cos= -0.2419
105° cos= -0.2588
106° cos= -0.2756
107° cos= -0.2924
108° cos= -0.309
109° cos= -0.3256
110° cos= -0.342
111° cos= -0.3584
112° cos= -0.3746
113° cos= -0.3907
114° cos= -0.4067
115° cos= -0.4226
116° cos= -0.4384
117° cos= -0.454
118° cos= -0.4695
119° cos= -0.4848
120° cos= -0.5
121° cos= -0.515
122° cos= -0.5299
123° cos= -0.5446
124° cos= -0.5592
125° cos= -0.5736
126° cos= -0.5878
127° cos= -0.6018
128° cos= -0.6157
129° cos= -0.6293
130° cos= -0.6428
131° cos= -0.6561
132° cos= -0.6691
133° cos= -0.682
134° cos= -0.6947
135° cos= -0.7071
136° cos= -0.7193
137° cos= -0.7314
138° cos= -0.7431
139° cos= -0.7547
140° cos= -0.766
141° cos= -0.7771
142° cos= -0.788
143° cos= -0.7986
144° cos= -0.809
145° cos= -0.8192
146° cos= -0.829
147° cos= -0.8387
148° cos= -0.848
149° cos= -0.8572
150° cos= -0.866
151° cos= -0.8746
152° cos= -0.8829
153° cos= -0.891
154° cos= -0.8988
155° cos= -0.9063
156° cos= -0.9135
157° cos= -0.9205
158° cos= -0.9272
159° cos= -0.9336
160° cos= -0.9397
161° cos= -0.9455
162° cos= -0.9511
163° cos= -0.9563
164° cos= -0.9613
165° cos= -0.9659
166° cos= -0.9703
167° cos= -0.9744
168° cos= -0.9781
169° cos= -0.9816
170° cos= -0.9848
171° cos= -0.9877
172° cos= -0.9903
173° cos= -0.9925
174° cos= -0.9945
175° cos= -0.9962
176° cos= -0.9976
177° cos= -0.9986
178° cos= -0.9994
179° cos= -0.9998
180° cos= -1

Угол

Cos

181° cos=-0.9998
182° cos=-0.9994
183° cos=-0.9986
184° cos=-0.9976
185° cos=-0.9962
186° cos=-0.9945
187° cos=-0.9925
188° cos=-0.9903
189° cos=-0.9877
190° cos=-0.9848
191° cos=-0.9816
192° cos=-0.9781
193° cos=-0.9744
194° cos=-0.9703
195° cos=-0.9659
196° cos=-0.9613
197° cos=-0.9563
198° cos=-0.9511
199° cos=-0.9455
200° cos=-0.9397
201° cos=-0.9336
202° cos=-0.9272
203° cos=-0.9205
204° cos=-0.9135
205° cos=-0.9063
206° cos=-0.8988
207° cos=-0.891
208° cos=-0.8829
209° cos=-0.8746
210° cos=-0.866
211° cos=-0.8572
212° cos=-0.848
213° cos=-0.8387
214° cos=-0.829
215° cos=-0.8192
216° cos=-0.809
217° cos=-0.7986
218° cos=-0.788
219° cos=-0.7771
220° cos=-0.766
221° cos=-0.7547
222° cos=-0.7431
223° cos=-0.7314
224° cos=-0.7193
225° cos=-0.7071
226° cos=-0.6947
227° cos=-0.682
228° cos=-0.6691
229° cos=-0.6561
230° cos=-0.6428
231° cos=-0.6293
232° cos=-0.6157
233° cos=-0.6018
234° cos=-0.5878
235° cos=-0.5736
236° cos=-0.5592
237° cos=-0.5446
238° cos=-0.5299
239° cos=-0.515
240° cos=-0.5
241° cos=-0.4848
242° cos=-0.4695
243° cos=-0.454
244° cos=-0.4384
245° cos=-0.4226
246° cos=-0.4067
247° cos=-0.3907
248° cos=-0.3746
249° cos=-0.3584
250° cos=-0.342
251° cos=-0.3256
252° cos=-0.309
253° cos=-0.2924
254° cos=-0.2756
255° cos=-0.2588
256° cos=-0.2419
257° cos=-0.225
258° cos=-0.2079
259° cos=-0.1908
260° cos=-0.1736
261° cos=-0.1564
262° cos=-0.1392
263° cos=-0.1219
264° cos=-0.1045
265° cos=-0.0872
266° cos=-0.0698
267° cos=-0.0523
268° cos=-0.0349
269° cos=-0.0175
270° cos=0

Угол

Cos

271° cos=0.0175
272° cos=0.0349
273° cos=0.0523
274° cos=0.0698
275° cos=0.0872
276° cos=0.1045
277° cos=0.1219
278° cos=0.1392
279° cos=0.1564
280° cos=0.1736
281° cos=0.1908
282° cos=0.2079
283° cos=0.225
284° cos=0.2419
285° cos=0.2588
286° cos=0.2756
287° cos=0.2924
288° cos=0.309
289° cos=0.3256
290° cos=0.342
291° cos=0.3584
292° cos=0.3746
293° cos=0.3907
294° cos=0.4067
295° cos=0.4226
296° cos=0.4384
297° cos=0.454
298° cos=0.4695
299° cos=0.4848
300° cos=0.5
301° cos=0.515
302° cos=0.5299
303° cos=0.5446
304° cos=0.5592
305° cos=0.5736
306° cos=0.5878
307° cos=0.6018
308° cos=0.6157
309° cos=0.6293
310° cos=0.6428
311° cos=0.6561
312° cos=0.6691
313° cos=0.682
314° cos=0.6947
315° cos=0.7071
316° cos=0.7193
317° cos=0.7314
318° cos=0.7431
319° cos=0.7547
320° cos=0.766
321° cos=0.7771
322° cos=0.788
323° cos=0.7986
324° cos=0.809
325° cos=0.8192
326° cos=0.829
327° cos=0.8387
328° cos=0.848
329° cos=0.8572
330° cos=0.866
331° cos=0.8746
332° cos=0.8829
333° cos=0.891
334° cos=0.8988
335° cos=0.9063
336° cos=0.9135
337° cos=0.9205
338° cos=0.9272
339° cos=0.9336
340° cos=0.9397
341° cos=0.9455
342° cos=0.9511
343° cos=0.9563
344° cos=0.9613
345° cos=0.9659
346° cos=0.9703
347° cos=0.9744
348° cos=0.9781
349° cos=0.9816
350° cos=0.9848
351° cos=0.9877
352° cos=0.9903
353° cos=0.9925
354° cos=0.9945
355° cos=0.9962
356° cos=0.9976
357° cos=0.9986
358° cos=0.9994
359° cos=0.9998
360° cos=1
таблица косинусов, косинусы углов в угловых градусах ,cos α, cosinus, сколько составляет косинус?, узнать косинус, косинус градусов

Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π). Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций

Доп. Инфо:

  1. Таблица синусов углов от 0° — 360°. Углы с шагом в 1°. Таблица значений синусов.
  2. Таблица синусов, она-же косинусов точная.
  3. Таблица косинусов углов от 0° — 360°. Углы с шагом в 1°. Таблица значений косинусов.
  4. Таблица тангенсов углов углов от 0° — 360°. Углы с шагом в 1°. Таблица значений тангенса, tg
  5. Таблица котангенсов углов углов от 0° — 360°. Углы с шагом в 1°. Таблица значений котангенса, ctg
  6. Таблица тангенсов, она же котангенсов точная.
  7. Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π). Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций.
  8. Знаки тригонометрических функций синус, косинус, тангенс и котангенс по четвертям в тригонометрическом круге.
  9. Определение и численные соотношения между единицами измерения углов в РФ. Тысячные, угловые градусы, минуты, секунды, радианы, обороты.
  10. Таблица соответствия угловых градусов, радиан, оборотов, тысячных (артиллерийских РФ). 0-360 градусов, 0-2π радиан.

Таблица косинусов, полная таблица косинусов для студентов

Содержание:

Таблица косинусов — наровне с таблицей синусов изучается в самом начале тригонометрии (И вместе с таблицей синусов является основным материалом тригонометрии). Без понимания данного материала и без знания хотя бы части таблицы косинусов будет очень сложно изучать тригонометрию и применять тригонометричекие формулы. Даже в университетском курсе часто используется тригонометрия, при решении интегралов и производных. Пользуйте таблицей косинусов на здоровье.


Таблица косинусов 0° — 180°


Cos(1°) 0.9998
Cos(2°) 0.9994
Cos(3°) 0.9986
Cos(4°) 0.9976
Cos(5°) 0.9962
Cos(6°) 0.9945
Cos(7°) 0.9925
Cos(8°) 0.9903
Cos(9°) 0.9877
Cos(10°) 0.9848
Cos(11°) 0.9816
Cos(12°) 0.9781
Cos(13°) 0.9744
Cos(14°) 0.9703
Cos(15°) 0.9659
Cos(16°) 0.9613
Cos(17°) 0.9563
Cos(18°) 0.9511
Cos(19°) 0.9455
Cos(20°) 0.9397
Cos(21°) 0.9336
Cos(22°) 0.9272
Cos(23°) 0.9205
Cos(24°) 0.9135
Cos(25°) 0.9063
Cos(26°) 0.8988
Cos(27°) 0.891
Cos(28°) 0.8829
Cos(29°) 0.8746
Cos(30°) 0.866
Cos(31°) 0.8572
Cos(32°) 0.848
Cos(33°) 0.8387
Cos(34°) 0.829
Cos(35°) 0.8192
Cos(36°) 0.809
Cos(37°) 0.7986
Cos(38°) 0.788
Cos(39°) 0.7771
Cos(40°) 0.766
Cos(41°) 0.7547
Cos(42°) 0.7431
Cos(43°) 0.7314
Cos(44°) 0.7193
Cos(45°) 0.7071
Cos(46°) 0.6947
Cos(47°) 0.682
Cos(48°) 0.6691
Cos(49°) 0.6561
Cos(50°) 0.6428
Cos(51°) 0.6293
Cos(52°) 0.6157
Cos(53°) 0.6018
Cos(54°) 0.5878
Cos(55°) 0.5736
Cos(56°) 0.5592
Cos(57°) 0.5446
Cos(58°) 0.5299
Cos(59°) 0.515
Cos(60°) 0.5
Cos(61°) 0.4848
Cos(62°) 0.4695
Cos(63°) 0.454
Cos(64°) 0.4384
Cos(65°) 0.4226
Cos(66°) 0.4067
Cos(67°) 0.3907
Cos(68°) 0.3746
Cos(69°) 0.3584
Cos(70°) 0.342
Cos(71°) 0.3256
Cos(72°) 0.309
Cos(73°) 0.2924
Cos(74°) 0.2756
Cos(75°) 0.2588
Cos(76°) 0.2419
Cos(77°) 0.225
Cos(78°) 0.2079
Cos(79°) 0.1908
Cos(80°) 0.1736
Cos(81°) 0.1564
Cos(82°) 0.1392
Cos(83°) 0.1219
Cos(84°) 0.1045
Cos(85°) 0.0872
Cos(86°) 0.0698
Cos(87°) 0.0523
Cos(88°) 0.0349
Cos(89°) 0.0175
Cos(90°) 0
Cos(91°) -0.0175
Cos(92°) -0.0349
Cos(93°) -0.0523
Cos(94°) -0.0698
Cos(95°) -0.0872
Cos(96°) -0.1045
Cos(97°) -0.1219
Cos(98°) -0.1392
Cos(99°) -0.1564
Cos(100°) -0.1736
Cos(101°) -0.1908
Cos(102°) -0.2079
Cos(103°) -0.225
Cos(104°) -0.2419
Cos(105°) -0.2588
Cos(106°) -0.2756
Cos(107°) -0.2924
Cos(108°) -0.309
Cos(109°) -0.3256
Cos(110°) -0.342
Cos(111°) -0.3584
Cos(112°) -0.3746
Cos(113°) -0.3907
Cos(114°) -0.4067
Cos(115°) -0.4226
Cos(116°) -0.4384
Cos(117°) -0.454
Cos(118°) -0.4695
Cos(119°) -0.4848
Cos(120°) -0.5
Cos(121°) -0.515
Cos(122°) -0.5299
Cos(123°) -0.5446
Cos(124°) -0.5592
Cos(125°) -0.5736
Cos(126°) -0.5878
Cos(127°) -0.6018
Cos(128°) -0.6157
Cos(129°) -0.6293
Cos(130°) -0.6428
Cos(131°) -0.6561
Cos(132°) -0.6691
Cos(133°) -0.682
Cos(134°) -0.6947
Cos(135°) -0.7071
Cos(136°) -0.7193
Cos(137°) -0.7314
Cos(138°) -0.7431
Cos(139°) -0.7547
Cos(140°) -0.766
Cos(141°) -0.7771
Cos(142°) -0.788
Cos(143°) -0.7986
Cos(144°) -0.809
Cos(145°) -0.8192
Cos(146°) -0.829
Cos(147°) -0.8387
Cos(148°) -0.848
Cos(149°) -0.8572
Cos(150°) -0.866
Cos(151°) -0.8746
Cos(152°) -0.8829
Cos(153°) -0.891
Cos(154°) -0.8988
Cos(155°) -0.9063
Cos(156°) -0.9135
Cos(157°) -0.9205
Cos(158°) -0.9272
Cos(159°) -0.9336
Cos(160°) -0.9397
Cos(161°) -0.9455
Cos(162°) -0.9511
Cos(163°) -0.9563
Cos(164°) -0.9613
Cos(165°) -0.9659
Cos(166°) -0.9703
Cos(167°) -0.9744
Cos(168°) -0.9781
Cos(169°) -0.9816
Cos(170°) -0.9848
Cos(171°) -0.9877
Cos(172°) -0.9903
Cos(173°) -0.9925
Cos(174°) -0.9945
Cos(175°) -0.9962
Cos(176°) -0.9976
Cos(177°) -0.9986
Cos(178°) -0.9994
Cos(179°) -0.9998
Cos(180°) -1

Таблица косинусов 180° — 360°


Cos(181°) -0.9998
Cos(182°) -0.9994
Cos(183°) -0.9986
Cos(184°) -0.9976
Cos(185°) -0.9962
Cos(186°) -0.9945
Cos(187°) -0.9925
Cos(188°) -0.9903
Cos(189°) -0.9877
Cos(190°) -0.9848
Cos(191°) -0.9816
Cos(192°) -0.9781
Cos(193°) -0.9744
Cos(194°) -0.9703
Cos(195°) -0.9659
Cos(196°) -0.9613
Cos(197°) -0.9563
Cos(198°) -0.9511
Cos(199°) -0.9455
Cos(200°) -0.9397
Cos(201°) -0.9336
Cos(202°) -0.9272
Cos(203°) -0.9205
Cos(204°) -0.9135
Cos(205°) -0.9063
Cos(206°) -0.8988
Cos(207°) -0.891
Cos(208°) -0.8829
Cos(209°) -0.8746
Cos(210°) -0.866
Cos(211°) -0.8572
Cos(212°) -0.848
Cos(213°) -0.8387
Cos(214°) -0.829
Cos(215°) -0.8192
Cos(216°) -0.809
Cos(217°) -0.7986
Cos(218°) -0.788
Cos(219°) -0.7771
Cos(220°) -0.766
Cos(221°) -0.7547
Cos(222°) -0.7431
Cos(223°) -0.7314
Cos(224°) -0.7193
Cos(225°) -0.7071
Cos(226°) -0.6947
Cos(227°) -0.682
Cos(228°) -0.6691
Cos(229°) -0.6561
Cos(230°) -0.6428
Cos(231°) -0.6293
Cos(232°) -0.6157
Cos(233°) -0.6018
Cos(234°) -0.5878
Cos(235°) -0.5736
Cos(236°) -0.5592
Cos(237°) -0.5446
Cos(238°) -0.5299
Cos(239°) -0.515
Cos(240°) -0.5
Cos(241°) -0.4848
Cos(242°) -0.4695
Cos(243°) -0.454
Cos(244°) -0.4384
Cos(245°) -0.4226
Cos(246°) -0.4067
Cos(247°) -0.3907
Cos(248°) -0.3746
Cos(249°) -0.3584
Cos(250°) -0.342
Cos(251°) -0.3256
Cos(252°) -0.309
Cos(253°) -0.2924
Cos(254°) -0.2756
Cos(255°) -0.2588
Cos(256°) -0.2419
Cos(257°) -0.225
Cos(258°) -0.2079
Cos(259°) -0.1908
Cos(260°) -0.1736
Cos(261°) -0.1564
Cos(262°) -0.1392
Cos(263°) -0.1219
Cos(264°) -0.1045
Cos(265°) -0.0872
Cos(266°) -0.0698
Cos(267°) -0.0523
Cos(268°) -0.0349
Cos(269°) -0.0175
Cos(270°) -0
Cos(271°) 0.0175
Cos(272°) 0.0349
Cos(273°) 0.0523
Cos(274°) 0.0698
Cos(275°) 0.0872
Cos(276°) 0.1045
Cos(277°) 0.1219
Cos(278°) 0.1392
Cos(279°) 0.1564
Cos(280°) 0.1736
Cos(281°) 0.1908
Cos(282°) 0.2079
Cos(283°) 0.225
Cos(284°) 0.2419
Cos(285°) 0.2588
Cos(286°) 0.2756
Cos(287°) 0.2924
Cos(288°) 0.309
Cos(289°) 0.3256
Cos(290°) 0.342
Cos(291°) 0.3584
Cos(292°) 0.3746
Cos(293°) 0.3907
Cos(294°) 0.4067
Cos(295°) 0.4226
Cos(296°) 0.4384
Cos(297°) 0.454
Cos(298°) 0.4695
Cos(299°) 0.4848
Cos(300°) 0.5
Cos(301°) 0.515
Cos(302°) 0.5299
Cos(303°) 0.5446
Cos(304°) 0.5592
Cos(305°) 0.5736
Cos(306°) 0.5878
Cos(307°) 0.6018
Cos(308°) 0.6157
Cos(309°) 0.6293
Cos(310°) 0.6428
Cos(311°) 0.6561
Cos(312°) 0.6691
Cos(313°) 0.682
Cos(314°) 0.6947
Cos(315°) 0.7071
Cos(316°) 0.7193
Cos(317°) 0.7314
Cos(318°) 0.7431
Cos(319°) 0.7547
Cos(320°) 0.766
Cos(321°) 0.7771
Cos(322°) 0.788
Cos(323°) 0.7986
Cos(324°) 0.809
Cos(325°) 0.8192
Cos(326°) 0.829
Cos(327°) 0.8387
Cos(328°) 0.848
Cos(329°) 0.8572
Cos(330°) 0.866
Cos(331°) 0.8746
Cos(332°) 0.8829
Cos(333°) 0.891
Cos(334°) 0.8988
Cos(335°) 0.9063
Cos(336°) 0.9135
Cos(337°) 0.9205
Cos(338°) 0.9272
Cos(339°) 0.9336
Cos(340°) 0.9397
Cos(341°) 0.9455
Cos(342°) 0.9511
Cos(343°) 0.9563
Cos(344°) 0.9613
Cos(345°) 0.9659
Cos(346°) 0.9703
Cos(347°) 0.9744
Cos(348°) 0.9781
Cos(349°) 0.9816
Cos(350°) 0.9848
Cos(351°) 0.9877
Cos(352°) 0.9903
Cos(353°) 0.9925
Cos(354°) 0.9945
Cos(355°) 0.9962
Cos(356°) 0.9976
Cos(357°) 0.9986
Cos(358°) 0.9994
Cos(359°) 0.9998
Cos(360°) 1

На нашем сайте в основном автоматические находятся программы для решения задач по математике, но также мы собрали много теоретического материала по математике и в частности по тригонометрии. Здесь Вы можете найти таблицы тригонометрических функций: таблицу косинусов, таблицу синусов, таблицу котангенсов и таблицу тангенсов. Также для улучшения понимания материала по тригонометрии мы добавили тригонометрические формулы, чтобы вызывало меньше затруднений решение тригонометрических задач по математике. Пользуйтесь нашим сайтом и таблицей косинусов на здоровье.

Слишком сложно?

Таблица косинусов, таблица значений косинусов не по зубам? Тебе ответит эксперт через 10 минут!

0 25 cos

Вы искали 0 25 cos? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и 0 5 cos, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «0 25 cos».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как 0 25 cos,0 5 cos,0 6 cos,0 7 cos,1 5 косинус,100 cos,100 косинус,11 cos,11 косинус,12 cos,2 косинус 0,2 косинус равен,22 cos,24 cos,270 градусов косинус,28 cos,3 cos 0,32 cos,39 cos,4 cos 0,5 cos,55 cos,7 cos,8 cos,cos 0,cos 0 2,cos 0 25,cos 0 3,cos 0 4,cos 0 5,cos 0 6,cos 0 6 сколько градусов,cos 0 7,cos 0 8,cos 0 cos п,cos 0 градусов,cos 0 равен,cos 1 2 в градусах,cos 1 90,cos 1 п,cos 1 равен,cos 10 градусов 10,cos 10 градусов равен,cos 11,cos 12,cos 13,cos 18,cos 180 градусов,cos 2 3 в градусах,cos 20 градусов,cos 20 градусов равен,cos 22,cos 25,cos 25 градусов,cos 25 градусов равен,cos 27,cos 270 градусов равен,cos 28,cos 3 4,cos 30 градусов равен таблица,cos 35,cos 35 градусов равен,cos 39,cos 4 3,cos 40 градусов,cos 40 градусов равен таблица,cos 45 градусов равен таблица,cos 48,cos 50,cos 50 градусов,cos 55,cos 55 45,cos 55 градусов равен,cos 56,cos 56 пи,cos 63,cos 65,cos 7,cos 70 градусов равен,cos 8,cos 80,cos 9,cos a 0,cos корень из 3 на 3,cos равен 0,cos таблица,cos таблица значений,cos0,cos1,cos12,cos22,cos24,cos25,cos45 значение,cos5,cos56,cos56 пи,градусы в косинус,значения косинусов,кос 0,кос 0 равен,кос 1 равен,кос 180 градусов равен,кос 45 градусов равен таблица,косинус 0,косинус 0 2,косинус 0 5,косинус 0 5 в градусах,косинус 0 5 равен,косинус 0 6 сколько градусов,косинус 0 8,косинус 0 9,косинус 0 в пи,косинус 0 градусов,косинус 1,косинус 1 2,косинус 1 2 в градусах,косинус 1 2 в пи,косинус 1 2 корень из 2,косинус 1 2 равен,косинус 1 2 чему равен,косинус 1 3,косинус 1 3 в градусах,косинус 1 4,косинус 1 6,косинус 1 в градусах,косинус 1 в пи,косинус 1 корень из 3,косинус 10,косинус 110,косинус 110 градусов,косинус 12,косинус 120 градусов таблица,косинус 13,косинус 135 градусов таблица,косинус 14,косинус 140,косинус 145,косинус 15,косинус 15 градусов,косинус 16,косинус 160,косинус 18,косинус 18 градусов,косинус 180 градусов,косинус 180 градусов равен,косинус 2 0,косинус 2 3,косинус 2 чему равен,косинус 20,косинус 20 градусов,косинус 20 градусов равен,косинус 21,косинус 22,косинус 225 градусов,косинус 24,косинус 25,косинус 25 градусов,косинус 25 градусов равен,косинус 27,косинус 27 градусов,косинус 270 градусов,косинус 28,косинус 3,косинус 3 2,косинус 3 4,косинус 3 5,косинус 3 градусов,косинус 3 корень из 3,косинус 30 градусов равен таблица,косинус 30 градусов таблица,косинус 30 таблица,косинус 31,косинус 32,косинус 34,косинус 35 градусов,косинус 35 градусов равен,косинус 36,косинус 36 градусов,косинус 360,косинус 37,косинус 37 градусов,косинус 38,косинус 39,косинус 3п 4,косинус 4,косинус 4 3,косинус 4 п,косинус 40,косинус 40 градусов,косинус 40 градусов равен,косинус 42,косинус 45 градусов 45 минут,косинус 45 градусов равен таблица,косинус 5,косинус 5 3,косинус 5 градусов,косинус 50,косинус 50 градусов,косинус 50 градусов равен,косинус 52,косинус 53,косинус 54,косинус 54 градусов,косинус 55 градусов 45 минут равен,косинус 56 пи,косинус 6,косинус 60 градусов равен таблица,косинус 60 градусов таблица,косинус 65,косинус 65 градусов,косинус 7,косинус 70,косинус 70 градусов,косинус 70 градусов равен,косинус 72,косинус 72 градусов,косинус 8,косинус 80,косинус 85,косинус 87,косинус 9,косинус 90 градусов таблица,косинус 95,косинус градусов,косинус корень из 3 на 3,косинус корень из 3 на 3 в градусах,косинус корень из 5 на 5,косинус корень из 6 на 6,косинус минус 1 2,косинус о,косинус одной второй,косинус п 8,косинус п на 2,косинус равен 0,косинус равен 0 5,косинус равен 0 угол равен,косинус равен 0 чему равен угол,косинус равен 1,косинус равен 1 чему равен угол,косинус равен чему равен угол,косинус таблица,косинус таблица значений,косинус угла 3,косинус угла равен,косинус угла таблица,косинусы,косинусы таблица,косинусы углов,косинусы углов таблица,не табличное значение косинуса,полная таблица косинусов,равен косинус 180 градусов,синус 0 косинус 0,таблица cos,таблица градусов cos 120 градусов,таблица градусов косинусов,таблица значений cos,таблица значений косинуса,таблица значений косинусов,таблица и косинусов,таблица кос,таблица косинус 120 градусов,таблица косинус 135 градусов,таблица косинус угла,таблица косинус углов,таблица косинуса,таблица косинусов,таблица косинусов в градусах,таблица косинусов в радианах,таблица косинусов градусов,таблица косинусов и,таблица косинусов и синусов от 0 до 360,таблица косинусов полная,таблица косинусов углов,таблица косинусов углов от 0 до 90,таблица косинусы,таблица полная косинусов,таблица синусов и косинусов от 0 до 360,таблица углов косинусов,таблицы косинусов,таблиця косинусів,табличные значения косинуса,угол по косинусу,чему равен 2 косинус,чему равен cos 30 градусов таблица,чему равен косинус 1 2,чему равен косинус 2,чему равен косинус 20 градусов,чему равен косинус 3,чему равен косинус 30 градусов таблица,чему равен косинус пи. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и 0 25 cos. Просто введите задачу в окошко и нажмите «решить» здесь (например, 0 6 cos).

Где можно решить любую задачу по математике, а так же 0 25 cos Онлайн?

Решить задачу 0 25 cos вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Синус, косинус и тангенс ?

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин 🙂

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

  1. Сумма углов любого треугольника равна . Значит, сумма двух острых углов прямоугольного треугольника равнa .
  2. С одной стороны, как отношение противолежащего катета к гипотенузе. С другой стороны, , поскольку для угла  катет а будет прилежащим.Получаем, что . Иными словами, .
  3. Возьмем теорему Пифагора: . Поделим обе части на : Мы получили основное тригонометрическое тождество.
  4. Поделив обе части основного тригонометрического тождества на , получим: Это значит, что если нам дан тангенс острого угла , то мы сразу можем найти его косинус. Аналогично,

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от  до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Ты нашел то, что искал? Поделись с друзьями!

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол  равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , .

2. В треугольнике угол  равен , , . Найдите .

Имеем:

Отсюда

Найдем  по теореме Пифагора.

Задача решена.

Часто в задачах встречаются треугольники с углами  и  или с углами  и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами  и  катет, лежащий напротив угла в , равен половине гипотенузы.

Треугольник с углами  и  — равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Коэффициент мощности cos φ: определение, назначение, формула

Коэффициент мощности – это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.

В этой статье мы рассмотрим физическую сущность и основные методы определения cos φ.

Математически cos φ

Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).

Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 – потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем.

Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность.

Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

В энергетике для коэффициента мощности используются следующие обозначения cos φ либо λ. В случае если для определения коэффициента мощности используется λ, его значение выражают в %.

Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением. В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.

Короткое видео о кратким объяснением, что такое коэффициент мощности:

Повышение коэффициента мощности

Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.

Повышение cos φ преследует 3 основные задачи:

  1. снижение потерь электроэнергии;
  2. рациональное использование цветных металлов на создание электропроводящей аппаратуры;
  3. оптимальное использование установленной мощности трансформаторов, генератор и прочих машин переменного тока.

Технически коррекция реализуется в виде введения различных дополнительных схем на вход устройств. Эта техника требуется для равномерного использования мощности фазы, устранения перегрузок нулевого провода 3-х-фазной сети, и является обязательной для импульсных источников питания, установленной мощностью 100 Вт и более.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Помимо этого, компенсация позволяет обеспечить отсутствие всплесков потребляемого тока на пике синусоиды, равномерную нагрузку на питающую линию.

Основные способы коррекции cos φ

1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор.

2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности. Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.

3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.

Подробное видео с объяснением, что такое cosφ :

Cos 0 6 сколько градусов

В данной таблице представлены значения косинусов от 0° до 360°. Таблица косинусов нужна, чтобы узнать, чему равен косинус угла. Нужно только найти его в таблице. Для начала короткая версия таблицы.

Таблица косинусов для 0°-180°

cos(1°) 0.9998
cos(2°) 0.9994
cos(3°) 0.9986
cos(4°) 0.9976
cos(5°) 0.9962
cos(6°) 0.9945
cos(7°) 0.9925
cos(8°) 0.9903
cos(9°) 0.9877
cos(10°) 0.9848
cos(11°) 0.9816
cos(12°) 0.9781
cos(13°) 0.9744
cos(14°) 0.9703
cos(15°) 0.9659
cos(16°) 0.9613
cos(17°) 0.9563
cos(18°) 0.9511
cos(19°) 0.9455
cos(20°) 0.9397
cos(21°) 0.9336
cos(22°) 0.9272
cos(23°) 0.9205
cos(24°) 0.9135
cos(25°) 0.9063
cos(26°) 0.8988
cos(27°) 0.891
cos(28°) 0.8829
cos(29°) 0.8746
cos(30°) 0.866
cos(31°) 0.8572
cos(32°) 0.848
cos(33°) 0.8387
cos(34°) 0.829
cos(35°) 0.8192
cos(36°) 0.809
cos(37°) 0.7986
cos(38°) 0.788
cos(39°) 0.7771
cos(40°) 0.766
cos(41°) 0.7547
cos(42°) 0.7431
cos(43°) 0.7314
cos(44°) 0.7193
cos(45°) 0.7071
cos(46°) 0.6947
cos(47°) 0.682
cos(48°) 0.6691
cos(49°) 0.6561
cos(50°) 0.6428
cos(51°) 0.6293
cos(52°) 0.6157
cos(53°) 0.6018
cos(54°) 0.5878
cos(55°) 0.5736
cos(56°) 0.5592
cos(57°) 0.5446
cos(58°) 0.5299
cos(59°) 0.515
cos(60°) 0.5
cos(61°) 0.4848 cos(62°) 0.4695 cos(63°) 0.454 cos(64°) 0.4384 cos(65°) 0.4226 cos(66°) 0.4067 cos(67°) 0.3907 cos(68°) 0.3746 cos(69°) 0.3584 cos(70°) 0.342 cos(71°) 0.3256 cos(72°) 0.309 cos(73°) 0.2924 cos(74°) 0.2756 cos(75°) 0.2588 cos(76°) 0.2419 cos(77°) 0.225 cos(78°) 0.2079 cos(79°) 0.1908 cos(80°) 0.1736 cos(81°) 0.1564 cos(82°) 0.1392 cos(83°) 0.1219 cos(84°) 0.1045 cos(85°) 0.0872 cos(86°) 0.0698 cos(87°) 0.0523 cos(88°) 0.0349 cos(89°) 0.0175 cos(90°) cos(91°) -0.0175 cos(92°) -0.0349 cos(93°) -0.0523 cos(94°) -0.0698 cos(95°) -0.0872 cos(96°) -0.1045 cos(97°) -0.1219 cos(98°) -0.1392 cos(99°) -0.1564 cos(100°) -0.1736 cos(101°) -0.1908 cos(102°) -0.2079 cos(103°) -0.225 cos(104°) -0.2419 cos(105°) -0.2588 cos(106°) -0.2756 cos(107°) -0.2924 cos(108°) -0.309 cos(109°) -0.3256 cos(110°) -0.342 cos(111°) -0.3584 cos(112°) -0.3746 cos(113°) -0.3907 cos(114°) -0.4067 cos(115°) -0.4226 cos(116°) -0.4384 cos(117°) -0.454 cos(118°) -0.4695 cos(119°) -0.4848 cos(120°) -0.5 cos(121°) -0.515 cos(122°) -0.5299 cos(123°) -0.5446 cos(124°) -0.5592 cos(125°) -0.5736 cos(126°) -0.5878 cos(127°) -0.6018 cos(128°) -0.6157 cos(129°) -0.6293 cos(130°) -0.6428 cos(131°) -0.6561 cos(132°) -0.6691 cos(133°) -0.682 cos(134°) -0.6947 cos(135°) -0.7071 cos(136°) -0.7193 cos(137°) -0.7314 cos(138°) -0.7431 cos(139°) -0.7547 cos(140°) -0.766 cos(141°) -0.7771 cos(142°) -0.788 cos(143°) -0.7986 cos(144°) -0.809 cos(145°) -0.8192 cos(146°) -0.829 cos(147°) -0.8387 cos(148°) -0.848 cos(149°) -0.8572 cos(150°) -0.866 cos(151°) -0.8746 cos(152°) -0.8829 cos(153°) -0.891 cos(154°) -0.8988 cos(155°) -0.9063 cos(156°) -0.9135 cos(157°) -0.9205 cos(158°) -0.9272 cos(159°) -0.9336 cos(160°) -0.9397 cos(161°) -0.9455 cos(162°) -0.9511 cos(163°) -0.9563 cos(164°) -0.9613 cos(165°) -0.9659 cos(166°) -0.9703 cos(167°) -0.9744 cos(168°) -0.9781 cos(169°) -0.9816 cos(170°) -0.9848 cos(171°) -0.9877 cos(172°) -0.9903 cos(173°) -0.9925 cos(174°) -0.9945 cos(175°) -0.9962 cos(176°) -0.9976 cos(177°) -0.9986 cos(178°) -0.9994 cos(179°) -0.9998 cos(180°) -1

Таблица косинусов для 181°-360°

cos(181°) -0.9998
cos(182°) -0.9994
cos(183°) -0.9986
cos(184°) -0.9976
cos(185°) -0.9962
cos(186°) -0.9945
cos(187°) -0.9925
cos(188°) -0.9903
cos(189°) -0.9877
cos(190°) -0.9848
cos(191°) -0.9816
cos(192°) -0.9781
cos(193°) -0.9744
cos(194°) -0.9703
cos(195°) -0.9659
cos(196°) -0.9613
cos(197°) -0.9563
cos(198°) -0.9511
cos(199°) -0.9455
cos(200°) -0.9397
cos(201°) -0.9336
cos(202°) -0.9272
cos(203°) -0.9205
cos(204°) -0.9135
cos(205°) -0.9063
cos(206°) -0.8988
cos(207°) -0.891
cos(208°) -0.8829
cos(209°) -0.8746
cos(210°) -0.866
cos(211°) -0.8572
cos(212°) -0.848
cos(213°) -0.8387
cos(214°) -0.829
cos(215°) -0.8192
cos(216°) -0.809
cos(217°) -0.7986
cos(218°) -0.788
cos(219°) -0.7771
cos(220°) -0.766
cos(221°) -0.7547
cos(222°) -0.7431
cos(223°) -0.7314
cos(224°) -0.7193
cos(225°) -0.7071
cos(226°) -0.6947
cos(227°) -0.682
cos(228°) -0.6691
cos(229°) -0.6561
cos(230°) -0.6428
cos(231°) -0.6293
cos(232°) -0.6157
cos(233°) -0.6018
cos(234°) -0.5878
cos(235°) -0.5736
cos(236°) -0.5592
cos(237°) -0.5446
cos(238°) -0.5299
cos(239°) -0.515
cos(240°) -0.5
cos(241°) -0.4848 cos(242°) -0.4695 cos(243°) -0.454 cos(244°) -0.4384 cos(245°) -0.4226 cos(246°) -0.4067 cos(247°) -0.3907 cos(248°) -0.3746 cos(249°) -0.3584 cos(250°) -0.342 cos(251°) -0.3256 cos(252°) -0.309 cos(253°) -0.2924 cos(254°) -0.2756 cos(255°) -0.2588 cos(256°) -0.2419 cos(257°) -0.225 cos(258°) -0.2079 cos(259°) -0.1908 cos(260°) -0.1736 cos(261°) -0.1564 cos(262°) -0.1392 cos(263°) -0.1219 cos(264°) -0.1045 cos(265°) -0.0872 cos(266°) -0.0698 cos(267°) -0.0523 cos(268°) -0.0349 cos(269°) -0.0175 cos(270°) -0 cos(271°) 0.0175 cos(272°) 0.0349 cos(273°) 0.0523 cos(274°) 0.0698 cos(275°) 0.0872 cos(276°) 0.1045 cos(277°) 0.1219 cos(278°) 0.1392 cos(279°) 0.1564 cos(280°) 0.1736 cos(281°) 0.1908 cos(282°) 0.2079 cos(283°) 0.225 cos(284°) 0.2419 cos(285°) 0.2588 cos(286°) 0.2756 cos(287°) 0.2924 cos(288°) 0.309 cos(289°) 0.3256 cos(290°) 0.342 cos(291°) 0.3584 cos(292°) 0.3746 cos(293°) 0.3907 cos(294°) 0.4067 cos(295°) 0.4226 cos(296°) 0.4384 cos(297°) 0.454 cos(298°) 0.4695 cos(299°) 0.4848 cos(300°) 0.5 cos(301°) 0.515 cos(302°) 0.5299 cos(303°) 0.5446 cos(304°) 0.5592 cos(305°) 0.5736 cos(306°) 0.5878 cos(307°) 0.6018 cos(308°) 0.6157 cos(309°) 0.6293 cos(310°) 0.6428 cos(311°) 0.6561 cos(312°) 0.6691 cos(313°) 0.682 cos(314°) 0.6947 cos(315°) 0.7071 cos(316°) 0.7193 cos(317°) 0.7314 cos(318°) 0.7431 cos(319°) 0.7547 cos(320°) 0.766 cos(321°) 0.7771 cos(322°) 0.788 cos(323°) 0.7986 cos(324°) 0.809 cos(325°) 0.8192 cos(326°) 0.829 cos(327°) 0.8387 cos(328°) 0.848 cos(329°) 0.8572 cos(330°) 0.866 cos(331°) 0.8746 cos(332°) 0.8829 cos(333°) 0.891 cos(334°) 0.8988 cos(335°) 0.9063 cos(336°) 0.9135 cos(337°) 0.9205 cos(338°) 0.9272 cos(339°) 0.9336 cos(340°) 0.9397 cos(341°) 0.9455 cos(342°) 0.9511 cos(343°) 0.9563 cos(344°) 0.9613 cos(345°) 0.9659 cos(346°) 0.9703 cos(347°) 0.9744 cos(348°) 0.9781 cos(349°) 0.9816 cos(350°) 0.9848 cos(351°) 0.9877 cos(352°) 0.9903 cos(353°) 0.9925 cos(354°) 0.9945 cos(355°) 0.9962 cos(356°) 0.9976 cos(357°) 0.9986 cos(358°) 0.9994 cos(359°) 0.9998 cos(360°) 1

Как легко запомнить таблицу косинусов (видео)

Существуют также следующие таблицы тригонометрических функций: таблица синусов, таблица тангенсов и таблица котангенсов.

Всё для учебы » Математика в школе » Таблица косинусов (полная, градусы и значения)

Чтобы добавить страницу в закладки, нажмите Ctrl+D.

Если страница помогла, сохраните её и поделитесь ссылкой с друзьями:

Группа с кучей полезной информации (подпишитесь, если предстоит ЕГЭ или ОГЭ):

Таблица косинусов — это записанные в таблицу посчитанные значения косинусов углов от 0° до 360°. Используя таблицу косинусов Вы сможете провести расчеты даже если под руками не окажется инженерного калькулятора. Чтобы узнать значение косинуса от нужного Вам угла, достаточно найти его в таблице или вычислить с помощью калькулятора.

КОСИНУС (COS α) острого угла в прямоугольном треугольнике равен отношению прилежащего катета к его гипотенузе…

Малая таблица значений тригонометрических функций (в радианах и градусах)
α (радианы) π/6 π/4 π/3 π/2 π 3π/2
α (градусы) 30° 45° 60° 90° 180° 270° 360°
cos α (Косинус) 1 3/2 2/2 1/2 -1 1
Полная таблица косинусов для углов от 0° до 360°
Угол в градусах Cos (Косинус)
1
0.9998
0.9994
0.9986
0.9976
0.9962
0.9945
0.9925
0.9903
0.9877
10° 0.9848
11° 0.9816
12° 0.9781
13° 0.9744
14° 0.9703
15° 0.9659
16° 0.9613
17° 0.9563
18° 0.9511
19° 0.9455
20° 0.9397
21° 0.9336
22° 0.9272
23° 0.9205
24° 0.9135
25° 0.9063
26° 0.8988
27° 0.891
28° 0.8829
29° 0.8746
30° 0.866
31° 0.8572
32° 0.848
33° 0.8387
34° 0.829
35° 0.8192
36° 0.809
37° 0.7986
38° 0.788
39° 0.7771
40° 0.766
41° 0.7547
42° 0.7431
43° 0.7314
44° 0.7193
45° 0.7071
46° 0.6947
47° 0.682
48° 0.6691
49° 0.6561
50° 0.6428
51° 0.6293
52° 0.6157
53° 0.6018
54° 0.5878
55° 0.5736
56° 0.5592
57° 0.5446
58° 0.5299
59° 0.515
60° 0.5
61° 0.4848
62° 0.4695
63° 0.454
64° 0.4384
65° 0.4226
66° 0.4067
67° 0.3907
68° 0.3746
69° 0.3584
70° 0.342
71° 0.3256
72° 0.309
73° 0.2924
74° 0.2756
75° 0.2588
76° 0.2419
77° 0.225
78° 0.2079
79° 0.1908
80° 0.1736
81° 0.1564
82° 0.1392
83° 0.1219
84° 0.1045
85° 0.0872
86° 0.0698
87° 0.0523
88° 0.0349
89° 0.0175
90°
Таблица косинусов для углов от 91° до 180°
Угол cos (Косинус)
91° -0.0175
92° -0.0349
93° -0.0523
94° -0.0698
95° -0.0872
96° -0.1045
97° -0.1219
98° -0.1392
99° -0.1564
100° -0.1736
101° -0.1908
102° -0.2079
103° -0.225
104° -0.2419
105° -0.2588
106° -0.2756
107° -0.2924
108° -0.309
109° -0.3256
110° -0.342
111° -0.3584
112° -0.3746
113° -0.3907
114° -0.4067
115° -0.4226
116° -0.4384
117° -0.454
118° -0.4695
119° -0.4848
120° -0.5
121° -0.515
122° -0.5299
123° -0.5446
124° -0.5592
125° -0.5736
126° -0.5878
127° -0.6018
128° -0.6157
129° -0.6293
130° -0.6428
131° -0.6561
132° -0.6691
133° -0.682
134° -0.6947
135° -0.7071
136° -0.7193
137° -0.7314
138° -0.7431
139° -0.7547
140° -0.766
141° -0.7771
142° -0.788
143° -0.7986
144° -0.809
145° -0.8192
146° -0.829
147° -0.8387
148° -0.848
149° -0.8572
150° -0.866
151° -0.8746
152° -0.8829
153° -0.891
154° -0.8988
155° -0.9063
156° -0.9135
157° -0.9205
158° -0.9272
159° -0.9336
160° -0.9397
161° -0.9455
162° -0.9511
163° -0.9563
164° -0.9613
165° -0.9659
166° -0.9703
167° -0.9744
168° -0.9781
169° -0.9816
170° -0.9848
171° -0.9877
172° -0.9903
173° -0.9925
174° -0.9945
175° -0.9962
176° -0.9976
177° -0.9986
178° -0.9994
179° -0.9998
180° -1
Таблица косинусов для углов от 180° до 270°
Угол cos (косинус)
181° -0.9998
182° -0.9994
183° -0.9986
184° -0.9976
185° -0.9962
186° -0.9945
187° -0.9925
188° -0.9903
189° -0.9877
190° -0.9848
191° -0.9816
192° -0.9781
193° -0.9744
194° -0.9703
195° -0.9659
196° -0.9613
197° -0.9563
198° -0.9511
199° -0.9455
200° -0.9397
201° -0.9336
202° -0.9272
203° -0.9205
204° -0.9135
205° -0.9063
206° -0.8988
207° -0.891
208° -0.8829
209° -0.8746
210° -0.866
211° -0.8572
212° -0.848
213° -0.8387
214° -0.829
215° -0.8192
216° -0.809
217° -0.7986
218° -0.788
219° -0.7771
220° -0.766
221° -0.7547
222° -0.7431
223° -0.7314
224° -0.7193
225° -0.7071
226° -0.6947
227° -0.682
228° -0.6691
229° -0.6561
230° -0.6428
231° -0.6293
232° -0.6157
233° -0.6018
234° -0.5878
235° -0.5736
236° -0.5592
237° -0.5446
238° -0.5299
239° -0.515
240° -0.5
241° -0.4848
242° -0.4695
243° -0.454
244° -0.4384
245° -0.4226
246° -0.4067
247° -0.3907
248° -0.3746
249° -0.3584
250° -0.342
251° -0.3256
252° -0.309
253° -0.2924
254° -0.2756
255° -0.2588
256° -0.2419
257° -0.225
258° -0.2079
259° -0.1908
260° -0.1736
261° -0.1564
262° -0.1392
263° -0.1219
264° -0.1045
265° -0.0872
266° -0.0698
267° -0.0523
268° -0.0349
269° -0.0175
270°
Таблица косинусов для углов от 270° до 360°
Угол Cos (Косинус)
271° 0.0175
272° 0.0349
273° 0.0523
274° 0.0698
275° 0.0872
276° 0.1045
277° 0.1219
278° 0.1392
279° 0.1564
280° 0.1736
281° 0.1908
282° 0.2079
283° 0.225
284° 0.2419
285° 0.2588
286° 0.2756
287° 0.2924
288° 0.309
289° 0.3256
290° 0.342
291° 0.3584
292° 0.3746
293° 0.3907
294° 0.4067
295° 0.4226
296° 0.4384
297° 0.454
298° 0.4695
299° 0.4848
300° 0.5
301° 0.515
302° 0.5299
303° 0.5446
304° 0.5592
305° 0.5736
306° 0.5878
307° 0.6018
308° 0.6157
309° 0.6293
310° 0.6428
311° 0.6561
312° 0.6691
313° 0.682
314° 0.6947
315° 0.7071
316° 0.7193
317° 0.7314
318° 0.7431
319° 0.7547
320° 0.766
321° 0.7771
322° 0.788
323° 0.7986
324° 0.809
325° 0.8192
326° 0.829
327° 0.8387
328° 0.848
329° 0.8572
330° 0.866
331° 0.8746
332° 0.8829
333° 0.891
334° 0.8988
335° 0.9063
336° 0.9135
337° 0.9205
338° 0.9272
339° 0.9336
340° 0.9397
341° 0.9455
342° 0.9511
343° 0.9563
344° 0.9613
345° 0.9659
346° 0.9703
347° 0.9744
348° 0.9781
349° 0.9816
350° 0.9848
351° 0.9877
352° 0.9903
353° 0.9925
354° 0.9945
355° 0.9962
356° 0.9976
357° 0.9986
358° 0.9994
359° 0.9998
360° 1

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите нужную часть таблицы, на выделенном фоне нажмите правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Чему равен косинус 30? …

— Ищем в таблице соответствующее значение. Правильный ответ: 0.866

Рекомендуем к прочтению

косинусов

Затем рассмотрим углы 30 ° и 60 °. В прямоугольном треугольнике 30 ° -60 ° -90 ° отношения сторон равны 1: √3: 2. Отсюда следует, что sin 30 ° = cos 60 ° = 1/2, и sin 60 ° = cos 30 ° = √3 / 2.

Эти результаты занесены в эту таблицу.

Угол Градус Радианы косинус синус
90 ° π /2 0 1
60 ° π /3 1/2 √3 / 2
45 ° π /4 √2 / 2 √2 / 2
30 ° π /6 √3 / 2 1/2
0 ° 0 1 0
Упражнения
Все эти упражнения относятся к прямоугольным треугольникам со стандартной маркировкой.

30. b = 2,25 метра и cos A = 0,15. Найдите a и c.

33. b = 12 футов и cos B = 1/3. Найдите c и a.

35. b = 6,4, c = 7,8. Найдите A, и a.

36. A = 23 ° 15 ‘, c = 12.15. Найдите a, и b.

Подсказки

30. Косинус A связывает b с гипотенузой c, , так что вы можете сначала вычислить c. Как только вы узнаете b и c, , вы сможете найти a по теореме Пифагора.

33. Вы знаете b и cos B. К сожалению, cos B — это отношение двух сторон, которых вы не знаете, а именно a / c. Тем не менее, это дает вам уравнение, с которым можно работать: 1/3 = a / c. Тогда c = 3 a. Тогда из теоремы Пифагора следует, что a 2 + 144 = 9 a 2 . Вы можете решить это последнее уравнение для a , а затем найти c.

35. b и c дают A по косинусам и a по теореме Пифагора.

36. A и c дают a по синусам и b по косинусам.

Ответы

30. c = b / cos A = 2,25 / 0,15 = 15 метров; a = 14,83 метра.

33. 8 a 2 = 144, поэтому a 2 = 18. Следовательно, a составляет 4,24 ‘или 4’3 дюйма.
c = 3 a , что равно 12.73 ‘или 12’9 «.

35. cos A = b / c = 6,4 / 7,8 = 0,82. Следовательно, A = 34,86 ° = 34 ° 52 ‘, или около 35 °.
a 2 = 7,8 2 — 6,4 2 = 19,9, поэтому a составляет около 4,5.

36. a = c sin A = 12,15 sin 23 ° 15 ‘= 4,796.
b = c cos A = 12,15 cos 23 ° 15 ‘= 11.17.

Чему равен cos (0)?

Кредит: WikiCommons CC0 1.0

В математике функция косинуса (cos) — это функция, которая связывает внутренний угол треугольника с длиной его сторон. Функция косинуса, а также функция синуса и тангенса являются тремя основными тригонометрическими функциями. В прямоугольном треугольнике косинус угла равен отношению стороны, прилегающей к углу, к длине гипотенузы прямоугольного треугольника. Математически это:

cos (A) = смежный / гипотенуза

Функция косинуса принимает угловые измерения в качестве входных данных и возвращает отношение в качестве выходных данных.Когда угол A = 0 °, функция косинуса принимает значение:

cos (0) = 1

Косинус угла в ноль градусов равен 1. Чтобы понять, зачем рассматривать, что происходит с прямоугольным треугольником. когда один из его углов стремится к 0. По мере приближения угла к 0 противоположная сторона становится все меньше и меньше. По мере уменьшения этого угла длины гипотенузы и стороны, прилегающей к углу, становятся все ближе и ближе. Как только значение угла достигнет 0, гипотенуза и прилегающая сторона будут идеально лежать друг на друге, попадая в соотношение 1: 1.Таким образом, косинус 0 равен 1.

Основы триггерных функций

Три триггерные функции представляют собой общее соответствие между внутренними углами треугольника и длинами его сторон. Тот факт, что существует повторяющееся соотношение между сторонами и углами прямоугольного треугольника, является следствием того факта, что одинаковые треугольники поддерживают соотношение между своими сторонами. Прямоугольный треугольник 3-4-5 имеет те же пропорции, что и треугольник 6-8-10; последнее является целым кратным первому.Таким образом, любые соотношения между длинами сторон двух треугольников будут точно такими же.

Рассмотрим простой прямоугольный треугольник:

Фото: D Pape via Resumbrae CC-BY 2.0

Начиная с некоторого угла A, стороны треугольника помечены следующим образом:

Гипотенуза — это сторона, противоположная прямому углу. Гипотенуза всегда является самой длинной стороной треугольника.

Противоположная сторона — это сторона, находящаяся прямо напротив интересующего угла.

Смежная сторона — это сторона, непосредственно следующая за углом, который не является гипотенузой.

Следуя этим обозначениям, мы можем определить три основные триггерные функции следующим образом:

sin (A) = противоположный / гипотенуза

cos (A) = смежный / гипотенуза

tan (A) = противоположный / смежный

Поскольку одинаковые треугольники имеют одинаковые пропорции, значения этих функций не зависят от размера прямоугольного треугольника, а только от того, что угол оценки (A) равен.Хорошая мнемоника для запоминания определений триггерных функций — это аббревиатура SOH-CAH-TOA (произносится «со-ка-тоа»)

Давайте добавим числа к этим абстрактным формулам. Скажем, у нас есть прямоугольный треугольник со сторонами 3 и 4 и гипотенуза длиной 5:

Автор:

Мы можем вычислить значения триггерных функций относительно угла A следующим образом:

sin (A) = противоположное. / гипотенуза = 4/5 = 0,8

cos (A) = смежный / гипотенуза = 3/5 = 0,6

tan (A) = противоположный / смежный = 4/3 = 1.3

Обратите внимание, что функции синуса и косинуса эквивалентны с учетом разных углов. Установив угол B в качестве интересующего нас угла, мы можем вычислить триггерные функции следующим образом:

sin (B) = 3/5 = cos (A) = 0,6

cos (B) = 4/5 = sin (A) = 0,8

Это приводит нас к общему правилу, что для любого прямоугольного треугольника, где углы A и B не являются прямым углом:

sin (A) = cos (B) и sin (B) = cos (A)

В дополнение к 3 основным функциям триггера есть 3 взаимные триггерные функции.Обратные функции являются обратными базисным функциям и называются секансом, косекансом и котангенсом. Их можно определить как:

сек (A) = 1 / sin (A) = гипотенуза / противоположно

косекунды (A) = 1 / cos (A) = гипотенуза / смежный

котан (A) = 1 / tan (A) = смежный / противоположный

Числовые значения триггерных функций

Допустим, вам дано только измерение угла, и вас просят вычислить синус этого угла только из этого значения. К сожалению, для этого не существует простого алгоритма.Вычисление значений sin вручную под заданным углом требует много времени и сложных вычислений. Вместо этого большинство калькуляторов используют справочные таблицы, таблицы со списком измерений углов и соответствующих значений sin. Эти таблицы были рассчитаны с высочайшей точностью. Однако есть интересный способ концептуализации угловых измерений, который делает вычисление некоторых значений триггерных функций интуитивно понятным и простым.

Триггерные функции и единичная окружность

Внутреннюю работу триггерных функций можно понять по структуре единичной окружности на координатной плоскости.Единичный круг — это круг радиуса один, центр которого находится в начале координатной плоскости (0,0). Перетаскивание радиуса вокруг исходной точки приведет к появлению круга, длина окружности которого составляет ровно 2π единицы. По теореме Пифагора этот круг представляет собой набор всех точек (x, y), таких что x 2 + y 2 = 1

Углы могут быть измерены в терминах длины дуги на окружности, которую угол выводит наружу. Эти единицы называются радианами. Поскольку окружность единичной окружности равна точно 2π, угловая мера 2π в радианах соответствует 360 °.Аналогично, π / 2 радиан соответствует 90 °, π радиан — 180 °, π / 3 радиан — 60 ° и так далее.

Единичный круг и преобразования между радианами и градусами. Предоставлено: Густав B через WikiCommons CC BY-SA 3.0

Любая точка на единичной окружности может быть представлена ​​как конечная точка линии, идущей от центральной точки под углом θ с центром в начале координат. Значения x и y этой точки соответствуют сторонам прямоугольного треугольника. Это понимание приводит к некоторым интересным свойствам триггерных функций.Поскольку по определению единичный круг имеет радиус 1, sin (θ) = y и cos (θ) = x. Согласно теореме Пифагора и определению единичной окружности, верно, что cos 2 (θ) + sin 2 (θ) = 1.

Что произойдет с прямоугольным треугольником, если мы изменим угол луча от происхождения? Изменение угла, на который линия простирается от начала координат, приводит к соответствующему изменению других сторон треугольника. Чем меньше угол, тем меньше и сторона, противоположная углу.а соседняя сторона становится больше. По мере увеличения угла противоположная сторона становится больше, а соседняя — меньше. Таким образом, когда мы меняем угол, мы можем визуализировать, как изменяется соотношение сторон треугольника.

Анимация, показывающая, как стороны треугольника меняются в ответ на изменение угла. Предоставлено: WikiCommons CC0 1.0

Сразу обратите внимание на несколько вещей. Что происходит, когда угол равен 0? Какое соотношение сторон друг к другу? Когда угол приближается к 0, синус угла (противоположный / гипотенуза) становится все меньше и меньше.Когда угол достигает 0, длина противоположной стороны достигает 0, поэтому полное соотношение между противоположной стороной и гипотенузой равно 0. Итак, мы знаем, что sin (0) = 0.

Что насчет того, когда мы сделаем угол больше? По мере увеличения угла противоположная сторона увеличивается в длине, пока мы не дойдем до π / 2 рад (90 °), после чего противоположная сторона и гипотенуза станут равной длины. Если стороны равны по длине, то их отношение равно 1, поэтому мы знаем, что sin (π / 2) = 1.

Рассмотрим функцию косинуса.Что происходит со значением косинуса при уменьшении угла? По мере приближения к 0 отношение между соседней стороной и гипотенузой увеличивается, пока смежная сторона и гипотенуза не станут равными, когда угол равен 0. Итак, мы знаем, что cos (0) = 1. Аналогичным образом, когда угол приближается π / 2, соседняя сторона становится все меньше и меньше относительно гипотенузы, пока не станет равной 0; таким образом, cos (π / 2) = 0

А как насчет функции касательной? Когда угол равен 0, отношение противоположной стороны к соседней стороне также равно 0, поэтому мы можем определить, что tan (0) = 0. По мере увеличения угла противоположная сторона становится больше, а соседняя — меньше, пока не достигнет точки, в которой две стороны имеют одинаковую длину. Прямоугольный треугольник может иметь только две стороны равной длины, если оба непрямых угла равны 45 °. Это означает, что под углом 45 ° длины двух сторон равны, и поэтому их отношение равно 1. 45 ° равно π / 4 рад, поэтому мы знаем, что tan (π / 4) = 1

А как насчет значения tan (π / 2)? Обратите внимание, что по мере того, как угол увеличивается и приближается к π / 2 рад, противоположная сторона становится больше, а соседняя сторона сжимается до 0.Это означает, что tan (π / 2) равен выражению 1/0. Деление на 0 не определено, поэтому функция tan (π / 2) не определена и не имеет допустимого значения.

Осмысление угловых измерений в радианах единичной окружности также объясняет еще одно интересное свойство триггерной функции; их периодичность. Значения триггерных функций колеблются между фиксированными выходами от входов от 0 до 2π, потому что угловые измерения, превышающие 2π, могут быть представлены как кратные 2π. Графическое изображение выходных данных функций sin и косинуса дает красивый волнообразный узор:

Предоставлено: WikiCommons CC0 1.0

Пики и впадины на приведенных выше графиках представляют выходные значения 1 и -1 соответственно. Интересно отметить, что функции синуса и косинуса идентичны по форме, но функция косинуса смещена от функции синуса на половину длины волны. Периодичность триггерной функции (в частности, синуса и косинуса) делает их полезными в науке для моделирования периодических явлений, таких как механические или электромагнитные волны.

Была ли эта статья полезной?

😊 ☹️ Приятно слышать! Хотите больше научных тенденций? Подпишитесь на нашу рассылку новостей науки! Нам очень жаль это слышать! Мы любим отзывы 🙂 и хотим, чтобы вы внесли свой вклад в то, как сделать Science Trends еще лучше.Круговая диаграмма

единиц и калькулятор триггеров — Cos 0, Sin 0, Tan 0, Radians и др.

Круг единиц — полезный инструмент визуализации для изучения тригонометрических функций.

Ключ к полезности — простота. Это устраняет необходимость запоминания разных значений и позволяет пользователю просто получать разные результаты для разных случаев.

Давайте узнаем об этом больше и проверим наше понимание с помощью удобного тригонометрического калькулятора, который я создал в конце статьи.

Часть 1. Что такое единичный круг и как он используется?

Единичная окружность — это окружность с радиусом на одну единицу с центром в начале координат. Другими словами, центр помещается на график, где пересекаются оси X и Y .

Рис. 1 . График единичной окружности с радиусом = 1 и точками пересечения с осями X и Y

Имея радиус, равный 1 единице, мы можем создать опорных треугольников с гипотенузой, равной 1 единице.

Как мы вскоре увидим, это позволяет нам напрямую измерить синус , косинус и тангенс . Треугольник ниже напоминает нам, как мы определяем синус и косинус для некоторого угла альфа .

Рис 2 . Геометрическое определение синуса и косинуса для угла с гипотенузой, равным 1

Поскольку гипотенуза равна 1, а все, что делится на 1, равно самому себе, синус альфа равен длине BC. Или sin (α) = BC / 1 = BC .

Точно так же косинус будет равен длине переменного тока.Или cos (α) = AC / 1 = AC .

Теперь переместим этот треугольник в наш единичный круг, чтобы радиус круга мог служить гипотенузой.

Рис. 3 . Справочный треугольник внутри единичной окружности. Координата x = cos (α) и координата y = sin (α)

В результате координата y точки, где треугольник касается круга, равна sin (α), или y = sin (α) . Точно так же координата x будет равна cos (α), или x = cos (α) .

Таким образом, перемещаясь по окружности и изменяя угол, мы можем измерить синус и косинус этого угла, измерив координаты y и x соответственно.

Углы могут быть измерены в градусах и / или радианах . Точка с координатами (1, 0) соответствует 0 градусам (см. Рис. 1). Мера увеличивается против часовой стрелки, поэтому точка с координатами (0, 1) будет соответствовать 90 градусам. Полный круг — 360 градусов.

Часть 2. Важные углы и соответствующие им значения синуса, косинуса и тангенса

Поскольку имеет смысл начинать с 0 градусов, наш круг будет выглядеть так:

Рис. 4 . Единичный круг, показывающий cos (0) = 1 и sin (0) = 0

Поскольку тангенс равен синусу, деленному на косинус, tan (0) = sin (0) / cos (0) = 0/1 = 0 .

Теперь посмотрим, что происходит при 90 градусах. Координаты соответствующей точки: (0, 1). Таким образом, sin (90) = y = 1 и cos (90) = x = 0.Круг будет выглядеть так:

Рис. 5 . Единичная окружность, показывающая cos (90) = 0 и sin (90) = 1

А как насчет тангенса (90)? Когда косинусная мера приближается к 0 и оказывается знаменателем дроби, значение этой дроби увеличивается до бесконечности. Следовательно, tan (90) считается неопределенным .

Теперь вопрос, который вы можете задать: если грех переходит от 0 до 1, а косинус — от 1 до 0, равны ли они когда-нибудь? Ответ — да, и это происходит ровно на полпути при 45 градусах! Круг выглядит так:

Рис. 6 .Единичный круг, показывающий sin (45) = cos (45) = 1 / √2

В результате того, что числитель совпадает со знаменателем, tan (45) = 1 .

Наконец, общая ссылка Unit Circle. Он отражает как положительные, так и отрицательные значения для осей X и Y и показывает важные значения, которые вы должны запомнить.

Рис. 7 . Единичный круг, показывающий важные значения синуса и косинуса, которые необходимо запомнить

В качестве последнего примечания к этому разделу всегда полезно помнить следующее тригонометрическое тождество, основанное на теореме Пифагора: sin 2 (α) + cos 2 (α) = 1.

Часть 3. Тригонометрический калькулятор

В качестве полезного практического инструмента я добавил простой тригонометрический калькулятор. Он принимает входные данные для угловых измерений и выдает соответствующие значения для функций синус , косинус и тангенс .

В качестве меры угла можно выбрать градусов или радиан . У каждого из них есть свои преимущества и недостатки. Для количественных соотношений, поскольку π радиан = 180 °, 1 радиан будет 180 ° / π или примерно 57 ° .Его можно рассчитать с любой желаемой точностью.

Код калькулятора содержит некоторую базовую интерактивность и обработку ошибок в рамках ограничений редактора. Его строительные блоки отмечены и прокомментированы, поэтому любой желающий может легко это сделать.

Например, могут быть добавлены новые функции, такие как ctg , sec и т. Д., А также различные цветовые схемы и многое другое. Полный исходный код можно получить, щелкнув здесь.

Введите градус или радиан и нажмите «Отправить».

Надеюсь, статья вместе с исходным кодом калькулятора принесет вам пользу.Жду скорых доработок.

Калькулятор

— cos (0) — Solumaths

Описание:

Тригонометрическая функция cos вычисляет косинус угла в радианах, градусы или градианы.

потому что онлайн
Описание:

Калькулятор позволяет использовать большинство из тригонометрических функций , есть возможность вычислить косинус , синус и касательная угла через одноименные функции..

Тригонометрическая функция косинус отмечен cos , позволяет вычислить косинус угла онлайн , можно использовать разные угловые единицы: градусы, градианы и радианы, которые являются угловыми единицами по умолчанию.

  1. Расчет косинуса
  2. Косинус для вычисления угла в радианах

    Калькулятор косинуса позволяет через функцию cos вычислить онлайн косинус угла в радианах, сначала необходимо выберите желаемую единицу измерения, нажав кнопку параметров модуля расчета.После этого можно приступать к расчетам.

    Чтобы вычислить косинус онлайн «пи / 6», введите cos (`pi / 6`), после вычисления результат sqrt (3) / 2 возвращается.

    Обратите внимание, что функция косинуса способна распознавать некоторые особые углы и делать расчеты со специальными связанными значениями в точной форме.

    Вычислить косинус угла в градусах

    Чтобы вычислить косинус угла в градусах, необходимо сначала выбрать нужную единицу щелкнув по кнопке опций модуля расчета.После этого вы можете приступить к расчету.

    Чтобы вычислить косинус 90, введите cos (90), после вычисления restults 0 возвращается.

    Вычислить косинус угла в градусах

    Для вычисления косинуса угла в градусах необходимо сначала выбрать желаемую единицу измерения. щелкнув по кнопке опций модуля расчета. После этого вы можете приступить к расчету.

    Чтобы вычислить косинус 50, введите cos (50), после вычисления возвращается результат sqrt (2) / 2.

    Обратите внимание, что функция косинуса способна распознавать некоторые особые углы и выполнять исчисление со специальными связанными точными значениями.

  3. Специальные значения косинуса
  4. Косинус допускает некоторые особые значения, которые калькулятор может определять в точной форме. Вот список специальные значения косинуса :

  • Производная косинуса
  • Производная косинуса равна -sin (x).

  • Первообразная косинуса
  • Первообразная косинуса равна sin (x).

  • Свойства функции косинуса
  • Функция косинуса является четной функцией для каждого действительного x: `cos (-x) = cos (x)`. Следствием для кривой, представляющей функцию косинуса, является то, что она допускает ось ординат как ось симметрии.

  • Уравнение с косинусом
  • В калькуляторе есть решающая программа, позволяющая решать уравнение с косинусом имеет вид cos (x) = a .Расчеты для получения результата детализированы, поэтому можно будет решать уравнения вроде `cos (x) = 1 / 2` или же `2 * cos (x) = sqrt (2)` с шагами расчета.


    Тригонометрическая функция cos вычисляет косинус угла в радианах, градусы или градианы.
    Синтаксис:
    cos (x), где x — мера угла в градусах, радианах или градианах.
    Примеры:
    cos (`0`), возвращает 1
    Производный косинус:

    Чтобы дифференцировать функцию косинуса онлайн, можно использовать калькулятор производной, который позволяет вычислить производную функции косинуса

    Производная от cos (x) — это вычислитель_ производной (`cos (x)`) = `-sin (x)`


    Первоначальный косинус:

    Калькулятор первообразной функции косинуса.

    Первообразная от cos (x) — это первообразная_производной (`cos (x)`) = `sin (x)`


    Предельный косинус:

    Калькулятор пределов позволяет вычислить пределы функции косинуса.

    Предел для cos (x) — limit_calculator (`cos (x)`)


    Косинус обратной функции:

    Обратная функция от косинуса — это функция арккосинуса, отмеченная как arccos.



    Графический косинус:

    Графический калькулятор может строить функцию косинуса в интервале ее определения.



    Свойство функции косинус:
    Функция косинуса является четной функцией.
    Рассчитать онлайн с cos (косинусом)

    cos (0 °) Доказательство

    Согласно тригонометрической математике, cos нуля градусов равен единице.°)} \, = \, 1 $

    Косинус угла в ноль градусов может быть получен тремя математическими методами, но два метода относятся к геометрической системе, а оставшийся — к тригонометрии.

    Фундаментальный метод

    В этом методе мы рассматриваем свойство между сторонами треугольника для доказательства точного значения косинуса нулевого угла. Итак, представим прямоугольный треугольник с углом ноль градусов. Здесь $ \ Delta QPR $ — это пример прямоугольного треугольника с нулевым углом.°)} $ $ \, = \, $ 1 $

    Экспериментальная методика

    Cos нулевого угла можно также практически доказать, построив прямоугольный треугольник с нулевым углом. Это можно сделать с помощью геометрических инструментов. Итак, приступим к построению прямоугольного треугольника с углом ноль градусов.

    1. Проведите линию от точки $ D $ в горизонтальном направлении с помощью линейки.
    2. Совместите среднюю точку с точкой $ D $, а также совместите базовую линию правой стороны с горизонтальной линией.Теперь нарисуйте прямую линию с нулевым углом от точки $ D $, но на самом деле она проведена по горизонтальной линии.
    3. Установите любое расстояние между острием иглы и концом карандаша циркуля (например, 8 долларов сантиметров). Теперь нарисуйте дугу на линии с нулевым градусом, и она пересекает линию нулевого угла в точке $ E $.
    4. Проведите линейкой перпендикулярную линию к горизонтальной линии от точки $ E $, которая пересекает горизонтальную линию в точке $ F $ для завершения построения $ \ Delta EDF $.°)} \, = \, 1 $

      Это возможные способы доказательства cos нулевого угла в математике.

      6. Выражение в форме R sin (θ + α)

      М. Борна

      В электронике часто встречаются выражения включает сумму синусоидальных и косинусных членов. Так удобнее писать такие выражения, используя один-единственный термин.

      Наша проблема:

      Express a sin θ ± b cos θ в виде

      R sin ( θ ± α),

      где a , b , R и α — положительных констант.

      Решение:

      Сначала возьмем случай с плюсом ( θ + α), чтобы упростить задачу.

      Let

      a sin θ + b cos θ R sin ( θ + α)

      (Символ «≡» означает: «идентично равен»)

      Используя формулу составного угла из предыдущей (синус суммы углов),

      sin (A + B) = sin A cos B + cos A sin B,

      мы можем расширить R sin ( θ + α) следующим образом:

      R sin ( θ + α)

      R (sin θ cos α + cos θ sin α)

      R sin θ cos α + R cos θ sin α

      Так

      a sin θ + b cos θ R cos α sin θ + R sin α cos θ

      Приравнивая коэффициенты sin θ и cos θ в этом тождестве, у нас:

      Для sin θ :

      a = R cos α………. (1)
      (вверху зеленым)

      Для cos θ :

      b = R sin α ……… (2)
      (вверху красным)

      Ур. (2) ÷ Уравнение (1):

      `b / a = (R sin alpha) / (R cos alpha) = tan alpha`

      Так

      `alpha = arctan \ b / a`

      (α — положительный острый угол и a и b положительные .)

      Теперь возведем в квадрат каждое из ур. (1) и уравнение. (2) и сложите их, чтобы найти выражение для R . 2) = 13` и `alpha = arctan (5/12) = 0.39479`.

      Итак, `12 \ sin t + 5 \ cos t =` `13 \ sin (t + 0.39479)`

      Итак, мы видим, что амплитуда 13 А и это максимум значение.

      Чтобы узнать, когда это происходит впервые, нам нужно решить

      `13 \ sin (t + 0,39479) = 13`

      То есть

      `sin (t + 0,39479) = 1`

      Теперь sin θ = 1 впервые когда theta = pi / 2. Итак, нам нужно решить:

      `t + 0,39479 = pi / 2`

      `t = пи / 2-0.39479 = 1,176`

      Таким образом, максимальное значение 13 А будет сначала в момент времени t = 1,176 с.

      Мы видим, что это правильно из графика:

      `i = 12 \ sin t + 5 \ cos t`

      4. Решите 7 sin 3 θ — 6 cos 3 θ = 3,8 для 0 ° ≤ θ <360 °.

      Ответ

      Во-первых, представьте LHS в виде R sin (3 θ α ).

      (Обратите внимание на отрицательный знак и на `3θ`! Мы должны увеличить домен в 3 раза[email protected] `.

      5. Текущие и ампер в определенной цепи через т сек. предоставлено

      `i = 2 \ sin (t-pi / 3) -cos (t + pi / 2)`

      Найдите максимальный ток и самое раннее время имеет место.

      (Примечание: т > 0)

      Ответ

      Нам нужно получить это в более простой форме. В этом один, обратите внимание, что углы в скобках не совпадают !

      Мы должны сначала упростить их, чтобы углы в скобках были одно и тоже.2) = 2,646`

      `alpha = arctan (1.732 / 2) =` `0.714 \ text (радианы`

      Так

      `2 \ sin t — 1,732 \ cos t =` `2,646 \ грех (т — 0,714) `

      Таким образом, максимальное значение этого параметра — `2.646 \» A «.

      Чтобы определить, когда это происходит, нам нужно решить:

      `2,646 \ sin (t — 0,714) = 2,646`

      , т. Е. Sin (t — 0,714) = 1`

      `t — 0,714 = π / 2`

      `t = 2.29`

      Итак, `t = 2.29 \ «с» — это время, когда сначала достигается максимум.

      Косинусная форма

      Мы также можем выразить нашу сумму синусоидального члена и косинусного члена, используя косинус , а не синус . В некоторых ситуациях это может быть удобнее.

      Полученные выражения аналогичны тем, которые мы получили для случая синуса, но обратите внимание на различия в дальнейшем.

      Для a , b и R положительный и α острый, наше эквивалентное выражение дается следующим образом:

      a sin θ + b cos θ R cos ( θ — α)

      На этот раз есть разница в способе получения α по сравнению с предыдущим.

      Расширение R cos ( θ — α) с использованием нашего результата для разложения cos (A — B) дает нам:

      R cos ( θ — α) = R cos θ cos α + R sin θ sin α

      Перестановка и приравнивание коэффициентов дает нам

      a sin θ + b cos θ R cos α cos θ + R sin α sin θ

      Итак:

      a = R sin α.2) `

      Итак, сумма члена синуса и члена косинуса была объединена в один член косинуса:

      a sin θ + b cos θ R cos ( θ — α)

      Еще раз, a , b , R и α положительны константы и α — острый.

      Случай косинуса минус

      Если у нас есть a sin θ b cos θ , и нам нужно выразить это в терминах единственной функции косинуса, нам нужно использовать формулу:

      a sin θ b cos θ ≡ — R cos ( θ + α)

      Еще раз, a , b и R положительны.2`

      Косинусные упражнения

      1. Выразите 7 sin θ + 12 cos θ в виде R cos ( θ — α), где 0 ≤ α <π / 2.

      Ответ

      Находим α , используя

      `alpha = arctan \ a / b`

      α должно быть в радианах для этого примера, поскольку нам говорят «0 ≤ α <π / 2».

      Поскольку a = 7 и b = 12, имеем:

      `α = арктангенс (7/12) = 0.2) = 13,892`

      Следовательно, мы можем написать:

      7 sin θ + 12 cos θ = 13,892 cos ( θ — 0,528)

      Чтобы проверить наш ответ, мы рисуем графики y = 7 sin θ + 12 cos θ и y = 13,892 cos ( θ — 0,528). Мы видим, что они точно такие же. (Показан только один).

      Мы видим, что наш график косинуса имеет амплитуду «13,892» и сдвинут вправо на «0».528` радиан, что согласуется с полученным нами выражением: 13,892 cos ( θ — 0,528)

      2. Выразите 2,348 sin θ — 1,251 cos θ в виде −R cos ( θ + α), где 0 ≤ α <π / 2.

      Ответ

      Находим α, используя

      `a = текст (arctan) a / b`

      Еще раз, для этого примера `α` должен быть в радианах.

      Поскольку a = 2.348 и b = 1.251, имеем:

      `α = arctan (2.2) = 2,660`

      Итак, мы можем написать:

      2,340 sin θ — 1,251 cos θ = -2,660 cos ( θ + 1,081)

      Проверяя с помощью графика, мы получаем следующее для каждой стороны нашего ответа:

      Мы видим, что наша отрицательная косинусоидальная кривая имеет амплитуду 2,660 и сдвинута влево на 1,081 радиан, что согласуется с выражением −2,660 cos ( θ + 1,081).

      Сводка

      Вот краткое изложение выражений и условий, которые мы нашли в этом разделе.

      Оригинальное выражение Комбинированное выражение α
      a sin θ + b cos θ R sin ( θ + α ) `альфа =` `арктан (б / а)`
      a sin θ b cos θ R sin ( θ α ) `альфа =` `арктан (б / а)`
      a sin θ + b cos θ R cos ( θ α ) `alpha =` `arctan (a / b)`
      a sin θ b cos θ −R cos ( θ + α ) `alpha =` `arctan (a / b)`

      В каждом случае a , b и R положительны, а α — острый угол.2) `

      Таблица косинусов

      cos (0 °) = 1
      cos (1 °) = 0,999848
      cos (2 °) = 0,999391
      cos (3 °) = 0,99863
      cos (4 °) = 0,997564
      cos (5 °) = 0,996195
      cos (6 °) = 0,994522
      cos (7 °) = 0,992546
      cos (8 °) = 0,9


      cos (9 °) = 0,987688
      cos (10 °) = 0,984808
      cos (11 °) = 0,981627
      cos (12 °) = 0,978148
      cos (13 °) = 0,97437
      cos (14 °) = 0,970296
      cos (15 °) = 0,965926
      cos (16 °) = 0,961262
      cos (17 °) = 0,956305
      cos (18 °) = 0.951057
      cos (19 °) = 0,945519
      cos (20 °) = 0,939693
      cos (21 °) = 0,93358
      cos (22 °) = 0,927184
      cos (23 °) = 0,

      5
      cos (24 °) = 0,5
      cos (25 °) = 0,

      8
      cos (26 °) = 0,898794
      cos (27 °) = 0,8
      cos (28 °) = 0,882948
      cos (29 °) = 0,87462
      cos (30 °) = 0,866025
      cos ( 31 °) = 0,857167
      cos (32 °) = 0,848048
      cos (33 °) = 0,838671
      cos (34 °) = 0,829038
      cos (35 °) = 0,819152
      cos (36 °) = 0,809017
      cos (37 ° ) = 0,798636
      cos (38 °) = 0.788011
      cos (39 °) = 0,777146
      cos (40 °) = 0,766044
      cos (41 °) = 0,75471
      cos (42 °) = 0,743145
      cos (43 °) = 0,731354
      cos (44 °) = 0,71934
      cos (45 °) = 0,707107
      cos (46 °) = 0,694658
      cos (47 °) = 0,681998
      cos (48 °) = 0,669131
      cos (49 °) = 0,656059
      cos (50 °) = 0,642788
      cos (51 °) = 0,62932
      cos (52 °) = 0,615661
      cos (53 °) = 0,601815
      cos (54 °) = 0,587785
      cos (55 °) = 0,573576
      cos (56 °) = 0,559193
      cos ( 57 °) = 0.544639
      cos (58 °) = 0,529919
      cos (59 °) = 0,515038
      cos (60 °) = 0,5
      cos (61 °) = 0,48481
      cos (62 °) = 0,469472
      cos (63 °) = 0,45399
      cos (64 °) = 0,438371
      cos (65 °) = 0,422618
      cos (66 °) = 0,406737
      cos (67 °) = 0,3


      cos (68 °) = 0,374607
      cos (69 °) = 0,358368
      cos ( 70 °) = 0,34202
      cos (71 °) = 0,325568
      cos (72 °) = 0,309017
      cos (73 °) = 0,292372
      cos (74 °) = 0,275637
      cos (75 °) = 0,258819
      cos (76 ° ) = 0,241922
      cos (77 °) = 0.224951
      cos (78 °) = 0,207912
      cos (79 °) = 0,1


      cos (80 °) = 0,173648
      cos (81 °) = 0,156434
      cos (82 °) = 0,139173
      cos (83 °) = 0,121869
      cos (84 °) = 0,104528
      cos (85 °) = 0,087156
      cos (86 °) = 0,069756
      cos (87 °) = 0,052336
      cos (88 °) = 0,034899
      cos (89 °) = 0,017452
      cos ( 90 °) = 0

      cos (91 °) = -0,017452
      cos (92 °) = -0,034899
      cos (93 °) = -0,052336
      cos (94 °) = -0,069756
      cos (95 °) = -0,087156
      cos (96 °) = -0.104528
      cos (97 °) = -0,121869
      cos (98 °) = -0,139173
      cos (99 °) = -0,156434
      cos (100 °) = -0,173648
      cos (101 °) = -0,1


      cos (102 °) = -0,207912
      cos (103 °) = -0,224951
      cos (104 °) = -0,241922
      cos (105 °) = -0,258819
      cos (106 °) = -0,275637
      cos (107 °) = -0,292372
      cos (108 °) = -0,309017
      cos (109 °) = -0,325568
      cos (110 °) = -0,34202
      cos (111 °) = -0,358368
      cos (112 °) = -0,374607
      cos (113 ° ) = -0,3


      cos (114 °) = -0,406737
      cos (115 °) = -0.

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *

      2015-2019 © Игровая комната «Волшебный лес», Челябинск
      тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск