Cos х 1 – CGI script error

cosx = 1 решение

Доброй ночи!
Уравнения вида, которое вы предоставили, не такое трудное, как Вам могло показаться. Давайте попробуем решить Ваше уравнение cosх = 1. Но первым делом нам следует подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.
Вот так будет выглядеть Ваше условие на математическом языке: 

   

Да, я понимаю, что это Вам особо не помогло, так как вид особо не изменился. Но чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит так: 

   

 

   

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения: 

   

 

   

Значение  мы найдём при помощи таблицы. И исходя из этого получаем, что 
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение: 

   

 

   

А уже, учитывая всё выше написанное, приведём решение нашего уравнения к нормальному виду и получим такое: 

   

Ответ: 

ru.solverbook.com

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(60)
4 Найти точное значение sin(30 град. )
5 Найти точное значение sin(60 град. )
6 Найти точное значение tan(30 град. )
7 Найти точное значение arcsin(-1)
8 Найти точное значение sin(pi/6)
9 Найти точное значение cos(pi/4)
10 Найти точное значение sin(45 град. )
11 Найти точное значение sin(pi/3)
12 Найти точное значение arctan(-1)
13 Найти точное значение cos(45 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение tan(60)
16 Найти точное значение csc(45 град. )
17 Найти точное значение tan(60 град. )
18 Найти точное значение sec(30 град. )
19 Преобразовать из радианов в градусы (3pi)/4
20 График y=sin(x)
21 Преобразовать из радианов в градусы pi/6
22 Найти точное значение cos(60 град. )
23 Найти точное значение cos(150)
24 Найти точное значение tan(45)
25 Найти точное значение sin(30)
26 Найти точное значение sin(60)
27 Найти точное значение cos(pi/2)
28 Найти точное значение tan(45 град. )
29 График y=sin(x)
30 Найти точное значение arctan(- квадратный корень 3)
31 Найти точное значение csc(60 град. )
32 Найти точное значение sec(45 град. )
33 Найти точное значение csc(30 град. )
34 Найти точное значение sin(0)
35 Найти точное значение sin(120)
36 Найти точное значение cos(90)
37 Преобразовать из радианов в градусы pi/3
38 Найти точное значение sin(45)
39 Найти точное значение tan(30)
40 Преобразовать из градусов в радианы 45
41 Найти точное значение tan(60)
42 Упростить квадратный корень x^2
43 Найти точное значение cos(45)
44 Упростить sin(theta)^2+cos(theta)^2
45 Преобразовать из радианов в градусы pi/6
46 Найти точное значение cot(30 град. )
47 Найти точное значение arccos(-1)
48 Найти точное значение arctan(0)
49 График y=cos(x)
50 Найти точное значение cot(60 град. )
51 Преобразовать из градусов в радианы 30
52 Упростить ( квадратный корень x+ квадратный корень 2)^2
53 Преобразовать из радианов в градусы (2pi)/3
54 Найти точное значение sin((5pi)/3)
55 Упростить 1/( кубический корень от x^4)
56 Найти точное значение sin((3pi)/4)
57 Найти точное значение tan(pi/2)
58 Найти угол А tri{}{90}{}{}{}{}
59 Найти точное значение sin(300)
60 Найти точное значение cos(30)
61 Найти точное значение cos(60)
62 Найти точное значение cos(0)
63 Найти точное значение arctan( квадратный корень 3)
64 Найти точное значение cos(135)
65 Найти точное значение cos((5pi)/3)
66 Найти точное значение cos(210)
67 Найти точное значение sec(60 град. )
68 Найти точное значение sin(300 град. )
69 Преобразовать из градусов в радианы 135
70 Преобразовать из градусов в радианы 150
71 Преобразовать из радианов в градусы (5pi)/6
72 Преобразовать из радианов в градусы (5pi)/3
73 Преобразовать из градусов в радианы 89 град.
74 Преобразовать из градусов в радианы 60
75 Найти точное значение sin(135 град. )
76 Найти точное значение sin(150)
77 Найти точное значение sin(240 град. )
78 Найти точное значение cot(45 град. )
79 Преобразовать из радианов в градусы (5pi)/4
80 Упростить 1/( кубический корень от x^8)
81 Найти точное значение sin(225)
82 Найти точное значение sin(240)
83 Найти точное значение cos(150 град. )
84 Найти точное значение tan(45)
85 Вычислить sin(30 град. )
86 Найти точное значение sec(0)
87 Упростить arcsin(-( квадратный корень 2)/2)
88 Найти точное значение cos((5pi)/6)
89 Найти точное значение csc(30)
90 Найти точное значение arcsin(( квадратный корень 2)/2)
91 Найти точное значение tan((5pi)/3)
92 Найти точное значение tan(0)
93 Вычислить sin(60 град. )
94 Найти точное значение arctan(-( квадратный корень 3)/3)
95 Преобразовать из радианов в градусы (3pi)/4
96 Вычислить arcsin(-1)
97 Найти точное значение sin((7pi)/4)
98 Найти точное значение arcsin(-1/2)
99 Найти точное значение sin((4pi)/3)
100 Найти точное значение csc(45)

www.mathway.com

Уравнение cos x = а

Мы знаем, что значения косинуса заключены в промежутке [-1; 1], т.е. -1 ≤ cos α ≤ 1. Поэтому если |а| > 1, то уравнение cos x = а не имеет корней. Например, уравнение cos x = -1,5 корней не имеет.

Уравнение косинуса 1Рассмотрим несколько задач.

Задача 1.

Решить уравнение cos x = 1/2.

Решение.

Вспомним, что cos x – это абсцисса точки окружности с радиусом, равным 1, полученной в результате поворота точки Р (1; 0) на угол х вокруг начала координат.

Абсцисса 1/2 есть у двух точек окружности М1 и М2. Так как 1/2 = cos π/3, то точку М1 мы можем получить из точки Р (1; 0) путем поворота на угол х1 = π/3, а также на углы х = π/3 + 2πk, где k = +/-1, +/-2, … 

Точка М2 получается из точки Р (1; 0) поворотом на угол х2 = -π/3, а также на углы -π/3 + 2πk, где k = +/-1, +/-2, …

Итак, все корни уравнения cos x = 1/2 можно найти по формулам
х = π/3 + 2πk                      
х = -π/3 + 2πk,

где k € Z.

Две представленные формулы можно объединить в одну:

х = +/-π/3 + 2πk, k € Z.

Задача 2.

Решить уравнение cos x = -1/2 .

Решение.

Абсциссу, равную – 1/2 , имеют две точки окружности М1 и М2. Так как -1/2 =  cos 2π/3, то угол х1 = 2π/3, а потому угол х2 = -2π/3.

Следовательно, все корни уравнения cos x = -1/2 можно найти по формуле: х = +/-2π/3 + 2πk, k € Z.

Таким образом, каждое из уравнений cos x = 1/2 и cos x = -1/2 имеет бесконечное множество корней. На отрезке 0 ≤ х ≤ π каждое из этих уравнений имеет только один корень: х1 = π/3 – корень уравнения cos x = 1/2 и х1 = 2π/3 – корень уравнения cos x = -1/2.

Число π/3 называют арккосинусом числа 1/2 и записывают: arccos 1/2 = π/3, а число 2π/3 – арккосинусом числа (-1/2) и записывают: arccos (-1/2) = 2π/3.

Вообще уравнение cos x = а, где -1 ≤ а ≤ 1, имеет на отрезке 0 ≤ х ≤ π только один корень. Если а ≥ 0, то корень заключен в промежутке [0; π/2]; если а < 0, то в промежутке (π/2; π]. Этот корень называют арккосинусом числа а и обозначают: arccos а.

Таким образом, арккосинусом числа а € [-1; 1 ] называется такое число а € [0; π], косинус которого равен а:

arccos а = α, если cos α = а и 0 ≤ а ≤ π      (1).

Например, arccos √3/2 = π/6, так как cos π/6 = √3/2 и 0 ≤ π/6 ≤ π;
arccos (-√3/2) = 5π/6, так как cos 5π/6 = -√3/2 и 0 ≤ 5π/6 ≤ π.

Аналогично тому, как это сделано в процессе решения задач 1 и 2, можно показать, что все корни уравнения cos x = а, где |а| ≤ 1, выражаются формулой

х = +/-arccos а + 2 πn, n € Z         (2).

Задача 3.

Решить уравнение cos x = -0,75.

Решение.

По формуле (2) находим, х = +/-arccos (-0,75) + 2 πn, n € Z.

Значение arcos (-0,75) можно приближенно найти на рисунке, измерив угол при помощи транспортира. Приближенные значения арккосинуса также можно находить с помощью специальных таблиц (таблицы Брадиса) или микрокалькулятора. Например, значение arccos (-0,75) можно вычислить на микрокалькуляторе, получив приблизительное значение 2,4188583. Итак, arccos (-0,75) ≈ 2,42. Следовательно, arccos (-0,75) ≈ 139°.

Уравнение косинуса 2Ответ: arccos (-0,75) ≈ 139°.

Задача 4.

Решить уравнение (4cos x – 1)(2cos 2x + 1) = 0.

Решение.

1) 4cos x – 1 = 0, cos x = 1/4, х = +/-arcos 1/4 + 2 πn, n € Z.

2) 2cos 2x + 1 = 0, cos 2x = -1/2, 2х = +/-2π/3 + 2 πn, х = +/-π/3 + πn, n € Z.

Ответ. х = +/-arcos 1/4 + 2 πn, х = +/-π/3 + πn.

Можно доказать, что для любого а € [-1; 1] справедлива формула arccos (-а) = π – arccos а       (3).

Эта формула позволяет выражать значения арккосинусов отрицательных чисел через значения арккосинусов положительных чисел. Например:

arccos (-1/2) = π – arccos 1/2 = π – π/3 = 2π/3;

arccos (-√2/2) = π – arсcos √2/2 = π – π/4 = 3π/4

из формулы (2) следует, что корни уравнения, cos x = а при а = 0, а = 1 и а = -1 можно находить по более простым формулам:

cos х = 0           х = π/2 + πn, n € Z        (4)

cos х = 1           х = 2πn, n € Z                (5)

cos х = -1        х = π + 2πn, n € Z          (6).

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(60)
4 Найти точное значение sin(30 град. )
5 Найти точное значение sin(60 град. )
6 Найти точное значение tan(30 град. )
7 Найти точное значение arcsin(-1)
8 Найти точное значение
sin(pi/6)
9 Найти точное значение cos(pi/4)
10 Найти точное значение sin(45 град. )
11 Найти точное значение sin(pi/3)
12 Найти точное значение arctan(-1)
13 Найти точное значение cos(45 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение
tan(60)
16 Найти точное значение csc(45 град. )
17 Найти точное значение tan(60 град. )
18 Найти точное значение sec(30 град. )
19 Преобразовать из радианов в градусы (3pi)/4
20 График y=sin(x)
21 Преобразовать из радианов в градусы pi/6
22 Найти точное значение
cos(60 град. )
23 Найти точное значение cos(150)
24 Найти точное значение tan(45)
25 Найти точное значение sin(30)
26 Найти точное значение sin(60)
27 Найти точное значение cos(pi/2)
28 Найти точное значение tan(45 град. )
29 График y=sin(x)
30 Найти точное значение arctan(- квадратный корень 3)
31 Найти точное значение csc(60 град. )
32 Найти точное значение sec(45 град. )
33 Найти точное значение csc(30 град. )
34 Найти точное значение sin(0)
35 Найти точное значение sin(120)
36 Найти точное значение cos(90)
37 Преобразовать из радианов в градусы pi/3
38 Найти точное значение sin(45)
39 Найти точное значение tan(30)
40 Преобразовать из градусов в радианы 45
41 Найти точное значение tan(60)
42 Упростить квадратный корень x^2
43 Найти точное значение cos(45)
44 Упростить sin(theta)^2+cos(theta)^2
45 Преобразовать из радианов в градусы pi/6
46 Найти точное значение cot(30 град. )
47 Найти точное значение arccos(-1)
48 Найти точное значение arctan(0)
49 График y=cos(x)
50 Найти точное значение cot(60 град. )
51 Преобразовать из градусов в радианы 30
52 Упростить ( квадратный корень x+ квадратный корень 2)^2
53 Преобразовать из радианов в градусы (2pi)/3
54 Найти точное значение sin((5pi)/3)
55 Упростить 1/( кубический корень от x^4)
56 Найти точное значение sin((3pi)/4)
57 Найти точное значение tan(pi/2)
58 Найти угол А tri{}{90}{}{}{}{}
59 Найти точное значение sin(300)
60 Найти точное значение cos(30)
61 Найти точное значение cos(60)
62 Найти точное значение cos(0)
63 Найти точное значение arctan( квадратный корень 3)
64 Найти точное значение cos(135)
65 Найти точное значение cos((5pi)/3)
66 Найти точное значение cos(210)
67 Найти точное значение sec(60 град. )
68 Найти точное значение sin(300 град. )
69 Преобразовать из градусов в радианы 135
70 Преобразовать из градусов в радианы 150
71 Преобразовать из радианов в градусы (5pi)/6
72 Преобразовать из радианов в градусы (5pi)/3
73 Преобразовать из градусов в радианы 89 град.
74 Преобразовать из градусов в радианы 60
75 Найти точное значение sin(135 град. )
76 Найти точное значение sin(150)
77 Найти точное значение sin(240 град. )
78 Найти точное значение cot(45 град. )
79 Преобразовать из радианов в градусы (5pi)/4
80 Упростить 1/( кубический корень от x^8)
81 Найти точное значение sin(225)
82 Найти точное значение sin(240)
83 Найти точное значение cos(150 град. )
84 Найти точное значение tan(45)
85 Вычислить sin(30 град. )
86 Найти точное значение sec(0)
87 Упростить arcsin(-( квадратный корень 2)/2)
88 Найти точное значение cos((5pi)/6)
89 Найти точное значение csc(30)
90 Найти точное значение arcsin(( квадратный корень 2)/2)
91 Найти точное значение tan((5pi)/3)
92 Найти точное значение tan(0)
93 Вычислить sin(60 град. )
94 Найти точное значение arctan(-( квадратный корень 3)/3)
95 Преобразовать из радианов в градусы (3pi)/4
96 Вычислить arcsin(-1)
97 Найти точное значение sin((7pi)/4)
98 Найти точное значение arcsin(-1/2)
99 Найти точное значение sin((4pi)/3)
100 Найти точное значение csc(45)

www.mathway.com

1 cos x 0

Вы искали 1 cos x 0? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и 1 cosx 0, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «1 cos x 0».

1 cos x 0

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как 1 cos x 0,1 cosx 0,1 sin x cos x sin x cos x sin х,cos x 0 1,cos x 1 0,cosx 0 1,cosx 1 0,cosx 1 решение,cosx 1 решите уравнение,cosx o,sin 2 cos 2 0,sinx 2 x,sinx 2x,косинус х равен минус 1,решение cosx 0,у cosx 1. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и 1 cos x 0. Просто введите задачу в окошко и нажмите «решить» здесь (например, 1 sin x cos x sin x cos x sin х).

Где можно решить любую задачу по математике, а так же 1 cos x 0 Онлайн?

Решить задачу 1 cos x 0 вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

www.pocketteacher.ru

cos x = 1/2 решение

Доброй ночи!
Уравнения вида, которое вы нам предоставили — очень часто вызывает различные затруднение у учеников и студентов тоже. Но это, на самом деле, не так страшно и не так сложно, как может показаться на первый взгляд. Прежде, чем разобраться с Вашей уравнением cos x = 1/2, нужно подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.
Вот так будет выглядеть Ваше условие на математическом языке: 

   

Да, я понимаю, что это Вам особо не помогло, так как вид особо не изменился. Но чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит таким образом: 

   

 

   

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения: 

   

 

   

Значение  мы найдём при помощи таблицы. И исходя из этого получаем, что 
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение: 

   

 

   

А уже, учитывая всё выше написанное, приведём решение нашего уравнения к нормальному виду и получим такое: 

   

Ответ: 

ru.solverbook.com

Все формулы по тригонометрии

Все формулы по тригонометрии

Основные тригонометрические тождества

sin2x + cos2x = 1

tgx ctgx = 1

tg2x + 1

  =  

1

cos2x

ctg2x + 1

  =  

1

sin2x

Формулы двойного аргумента

sin2x = 2sinx cosx

sin2x

  =  

2tgx

  = 

2ctgx

  = 

2

1 + tg2x

1 + ctg2x

tgx + ctgx

cos2x = cos2 — sin2x = 2cos2x — 1 = 1 — 2sin2x

cos2x

  =  

1 — tg2x

  = 

ctg2x — 1

  = 

ctgx — tgx

1 + tg2x

ctg2x + 1

ctgx + tgx

tg2x

  =  

2tgx

  = 

2ctgx

  = 

2

1 — tg2x

ctg2x — 1

ctgx — tgx

ctg2x

  =  

ctg2x — 1

  = 

ctgx — tgx

2ctgx

2

Формулы тройного аргумента

sin3x = 3sinx — 4sin3x cos3x = 4cos3x — 3cosx

tg3x

  =  

3tgx — tg3x

1 — 3tg2x

ctg3x

  =  

ctg3x — 3ctgx

3ctg2x — 1

Формулы половинного аргумента

sin2

x

  =  

1 — cosx

2

2

cos2

x

  =  

1 + cosx

2

2

tg2

x

  =  

1 — cosx

2

1 + cosx

ctg2

x

  =  

1 + cosx

2

1 — cosx

tg

x

  =  

1 — cosx

  =  

sinx

2

sinx

1 + cosx

ctg

x

  =  

1 + cosx

  =  

sinx

2

sinx

1 — cosx

Формулы квадратов тригонометрических функций

sin2x

  =  

1 — cos2x

2

cos2x

  =  

1 + cos2x

2

tg2x

  =  

1 — cos2x

1 + cos2x

ctg2x

  =  

1 + cos2x

1 — cos2x

sin2

x

  =  

1 — cosx

2

2

cos2

x

  =  

1 + cosx

2

2

tg2

x

  =  

1 — cosx

2

1 + cosx

ctg2

x

  =  

1 + cosx

2

1 — cosx

Формулы кубов тригонометрических функций

sin3x

  =  

3sinx — sin3x

4

cos3x

  =  

3cosx + cos3x

4

tg3x

  =  

3sinx — sin3x

3cosx + cos3x

ctg3x

  =  

3cosx + cos3x

3sinx — sin3x

Формулы тригонометрических функций в четвертой степени

sin4x

  =  

3 — 4cos2x + cos4x

8

cos4x

  =  

3 + 4cos2x + cos4x

8

Формулы сложения аргументов

sin(α + β) = sinα cosβ + cosα sinβ cos(α + β) = cosα cosβ — sinα sinβ

tg(α + β)

  =  

tgα + tgβ

1 — tgα tgβ

ctg(α + β)

  =  

ctgα ctgβ — 1

ctgα + ctgβ

sin(α — β) = sinα cosβ — cosα sinβ cos(α — β) = cosα cosβ + sinα sinβ

tg(α — β)

  =  

tgα — tgβ

1 + tgα tgβ

ctg(α — β)

  =  

ctgα ctgβ + 1

ctgα — ctgβ

Формулы суммы тригонометрических функций

sinα + sinβ

  =  2sin

α + β

 ∙ cos

α — β

2

2

cosα + cosβ

  =  2cos

α + β

 ∙ cos

α — β

2

2

(sinα + cosα)2 = 1 + sin2α

tgα + tgβ

  =  

sin(α + β)

cosα cosβ

ctgα + ctgβ

  =  

sin(α + β)

sinα sinβ

Формулы разности тригонометрических функций

sinα — sinβ

  =  2sin

α — β

 ∙ cos

α + β

2

2

cosα — cosβ

  =  -2sin

α + β

 ∙ sin

α — β

2

2

(sinα — cosα)2 = 1 — sin2α

tgα — tgβ

  =  

sin(α — β)

cosα cosβ

ctgα — ctgβ

  =  – 

sin(α — β)

sinα sinβ

Формулы произведения тригонометрических функций

sinα ∙ sinβ

  =  

cos(α — β) — cos(α + β)

2

sinα ∙ cosβ

  =  

sin(α — β) + sin(α + β)

2

cosα ∙ cosβ

  =  

cos(α — β) + cos(α + β)

2

tgα ∙ tgβ

  =  

cos(α — β) — cos(α + β)

  =  

tgα + tgβ

cos(α — β) + cos(α + β)

ctgα + ctgβ

ctgα ∙ ctgβ

  =  

cos(α — β) + cos(α + β)

  =  

ctgα + ctgβ

cos(α — β) — cos(α + β)

tgα + tgβ

tgα ∙ ctgβ

  =  

sin(α — β) + sin(α + β)

sin(α + β) — sin(α — β)

studfile.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *