Проводники, полупроводники и диэлектрики в электрическом поле
В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.
Что такое проводник
Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.
G=1/R
Говоря простыми словами – проводник проводит ток.
К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.
Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.
Что такое диэлектрик
Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.
Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.
Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.
Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.
Что такое полупроводник
Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.
Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.
Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.
Зонная теория
Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).
На изображении ниже показаны три вида материалов с их энергетическими уровнями:
Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.
У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.
У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.
Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.
Напоследок рекомендуем просмотреть полезное видео по теме:
Наверняка вы не знаете:
Проводники и диэлектрики в электрическом поле
Одним из основных понятий электрики является электрическое поле. Благодаря ему, все электрические заряды способны взаимодействовать между собой. Оно образовано суммой электрических полей, существующих в каждом заряде. Все тела, помещенные в эту среду, разделяются, как проводники и диэлектрики в электрическом поле, выполняющие собственные функции, в зависимости от их физических свойств.
Проводники в электрическом поле
Проводники свободно пропускают через себя электрозаряды, поскольку содержат в себе заряженные свободные носители. Классические проводники представлены различными видами металлов и электролитами.
Когда проводник попадает в электрическое поле, в нем возникает движение свободных зарядов. Оно прекращается при нулевом значении напряженности. Разноименные заряды могут разделяться и тогда наблюдается явление электростатической индукции. В этом случае прекращается перемещение свободных зарядов вдоль поверхности проводника. Когда распределение достигает определенного значения, вектор напряженности в поле становится перпендикулярным проводнику.
Все эти свойства проводников, на которые воздействует поле используются на практике в различных приборах и устройствах.
Диэлектрики
Тела, которые состоят из веществ, не проводящих электроразряды, получили название диэлектриков. Это связано с тем, что в них отсутствуют свободные заряды. В электротехнике такие тела играют роль изоляторов.
При помещении диэлектрика в электрическое поле, в нем не будет происходить перераспределения зарядов. Сам диэлектрик будет нейтральным на обоих концах. Тем не менее, незаряженное диэлектрическое тело может притягиваться к заряженному объекту, поскольку поле создает поляризацию диэлектрика. При этом, разноименные заряды, связанные между собой и находящиеся в составе молекул и атомов, смещаются в противоположные стороны.
Диэлектрики могут быть полярными и неполярными. В первом случае распределение положительных и отрицательных зарядов в молекулах не совпадает. Эти нейтральные системы называются электрическими диполями. В неполярных диэлектриках центры положительных и отрицательных зарядов совпадают. Их типичными представителями являются водород, кислород, инертные газы.
Следует отметить, что разделение веществ на проводники и диэлектрики достаточно условно, поскольку свободные заряды в различных количествах содержатся в каждом диэлектрике.
Диэлектрик — это… Что такое Диэлектрик?
Диэлектрик (изолятор) — вещество, плохо проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.
Физические свойства
Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ < 10−5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10−8 Ом·м, а у лучших диэлектриков превосходить 10 16 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10−5—108 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причём двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Чёткую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбуждённым.
Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов.
Удельное сопротивление деионизированной воды (см. также: бидистиллят) — 10-20 МОм·см.
Параметры
Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию.
Примеры
К диэлектрикам относятся воздух и другие газы, стёкла, различные смолы, пластмассы, многие виды резины.
Ряд диэлектриков проявляют интересные физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики.
Использование
При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов.
Диэлектрики используются не только как изоляционные материалы.
Пассивные свойства диэлектриков
Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных ёмкостей. Если материал используется в качестве диэлектрика конденсатора определённой ёмкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.
Активные свойства диэлектриков
Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др.
См. также
Ссылки
Ответы@Mail.Ru: где применяются диэлектрики?
там, где не нужно пропускать ток 🙂 ИЗОЛЯТОР
в электротехнике
диэлектрик — защита от тока…. тоесть токо не проводящее вешество…. его применяют в изготовлении фаллоимитаторов для женщин и презервативов для мужчин…. а есче им менты пиздят нормальнх парней
В радио и электротехнике
Конденсаторы, транзисторы, микросхемы, печатные платы….
Иди в школу там узнаеш.
в конденсаторах
очен много где, ето изолятори на высоковолтних линийах, ето даже резиновийе перчатки електриков, там где надо чтоби изолироват от електро тока
Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, т. е. с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли) . В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материал используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость. Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др. В зависимости от влияния напряженности электрического поля на значение относительной диэлектрической проницаемости материала все диэлектрики подразделяют на линейные и нелинейные. Для линейных диэлектриков с малыми потерями энергии зависимость заряда конденсатора от напряжения (переменной полярности) имеет вид прямой; для нелинейных диэлектриков (сегнетоэлектриков) в этих условиях зависимость заряда от напряжения принимает форму петли гистерезиса (см. рис. далее) . Неполярными диэлектриками являются газы, жидкости и твердые вещества в кристаллическом и аморфном состояниях, обладающие в основном только электронной поляризацией. К ним относятся водород, бензол, парафин, сера, полиэтилен и др. Полярные (дипольные) диэлектрики — это органические жидкие, полужидкие и твердые вещества, имеющие одновременно дипольно-релаксационную и электронную поляризации. К ним относятся нитробензол, кремнийорганические соединения, фенолформальдегидные смолы, эпоксидные компаунды, хлорированные углеводороды, капрон и др.