Диэлектрики и проводники примеры: Attention Required! | Cloudflare – Проектируем электрику вместе: Проводники и диэлектрики. Полупроводники

Проектируем электрику вместе: Проводники и диэлектрики. Полупроводники

Сопротивление проводников. Проводимость. Диэлектрики. Применение проводников и изоляторов. Полупроводники.

Физические вещества многообразны по своим электрическим свойствам. Наиболее обширные классы вещества составляют проводники и диэлектрики.

Проводники

Основная особенность проводников – наличие свободных носителей зарядов, которые участвуют в тепловом движении и могут перемещаться по всему объему вещества.
Как правило, к таким веществам относятся растворы солей, расплавы, вода (кроме дистиллированной), влажная почва, тело человека и, конечно же, металлы.

Металлы считаются наиболее хорошими проводниками электрического заряда.
Есть также очень хорошие проводники, которые не являются металлами.
Среди таких проводников лучшим примером является углерод.

Все проводники обладают такими свойствами, как сопротивление и проводимость. Ввиду того, что электрические заряды, сталкиваясь с атомами или ионами вещества, преодолевают некоторое сопротивление своему движению в электрическом поле, принято говорить, что проводники обладают электрическим сопротивлением (
R
).
Величина, обратная сопротивлению, называется проводимостью (G).

G = 1/ R

То есть, проводимостьэто свойство или способность проводника проводить электрический ток.
Нужно понимать, что хорошие проводники представляют собой очень малое сопротивление потоку электрических зарядов и, соответственно, имеют высокую проводимость. Чем лучше проводник, тем больше его проводимость. Например, проводник из меди имеет большую проводимость, чем проводник из алюминия, а проводимость серебряного проводника выше, чем такого же проводника из меди.

Диэлектрики

В отличие от проводников, в диэлектриках при низких температурах нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

К диэлектрикам относятся

, в первую очередь, газы, которые проводят электрические заряды очень плохо. А также стекло, фарфор, керамика, резина, картон, сухая древесина, различные пластмассы и смолы.

Предметы, изготовленные из диэлектриков, называют изоляторами. Надо отметить, что диэлектрические свойства изоляторов во многом зависят от состояния окружающей среды. Так, в условиях повышенной влажности (вода является хорошим проводником) некоторые диэлектрики могут частично терять свои диэлектрические свойства.

О применении проводников и изоляторов

Как проводники, так и изоляторы широко применяются в технике для решения различных технических задач.

К примеру, все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А оболочка этих проводов или вилка, которая включается в розетку, обязательно выполняются из различных полимеров, которые являются хорошими изоляторами и не пропускают электрические заряды.

Нужно отметить, что понятия «проводник» или «изолятор» не отражают качественных характеристик: характеристики этих материалов в действительности находятся в широком диапазоне – от очень хорошего до очень плохого.

Серебро, золото, платина являются очень хорошими проводниками, но это дорогие металлы, поэтому они используются только там, где цена менее важна по сравнению с функцией изделия (космос, оборонка).
Медь и алюминий также являются хорошими проводниками и в то же время недорогими, что и предопределило их повсеместное применение.
Вольфрам и молибден, напротив,  являются плохими проводниками и по этой причине не могут использоваться в электрических схемах (будут нарушать работу схемы), но высокое сопротивление этих металлов в сочетании с тугоплавкостью предопределило их применение в лампах накаливания и высокотемпературных нагревательных элементах.

Изоляторы также есть очень хорошие, просто хорошие  и плохие. Связано это с  тем, что в реальных диэлектриках также есть свободные электроны, хотя их очень мало. Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры некоторым электронам все-таки удается оторваться от ядра и изоляционные свойства диэлектрика при этом ухудшаются. В некоторых диэлектриках свободных электронов больше и качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и картон.

Самым лучшим изолятором является идеальный вакуум, но он практически не достижим на Земле. Абсолютно чистая вода также будет отличным изолятором, но кто-нибудь видел ее в реальности? А вода с наличием каких-либо примесей уже является достаточно хорошим проводником.
Критерием качества изолятора является соответствие его функциям, которые он должен выполнять в данной схеме. Если диэлектрические свойства материала таковы, что любая утечка через него ничтожно мала (не влияет на работу схемы), то такой материал считается хорошим изолятором.
 
Полупроводники

Существуют вещества, которые по своей проводимости занимают промежуточное место между проводниками и диэлектриками.
Такие вещества называют полупроводниками. Они отличаются от проводников сильной зависимостью проводимости электрических зарядов от температуры, а также от концентрации примесей и могут иметь свойства, как проводников, так и диэлектриков.

В отличие от металлических проводников, у которых с ростом температуры проводимость уменьшается, у полупроводников проводимость растет  с увеличением температуры, а сопротивление, как величина обратная проводимости - уменьшается.

При низких температурах сопротивление полупроводников, как видно из  рис. 1, стремится к бесконечности.
Это значит, что при температуре абсолютного нуля полупроводник не имеет свободных носителей в зоне проводимости и в отличие от проводников ведёт себя, как диэлектрик.
При увеличении температуры, а также при добавлении примесей (легировании) проводимость полупроводника растет и он приобретает свойства проводника. 

Рис. 1. Зависимость сопротивлений проводников и полупроводников от температуры

Примерами классических полупроводников являются такие химические элементы, как кремний (Si) и германий (Ge). Более подробно об этих элементах читайте в статье «О проводимости полупроводников».

Статьи по теме: 1. Что такое электрический ток?
                            2. Постоянный и переменный ток
                            3.

Взаимодействие электрических зарядов. Закон Кулона
                            4. Направление электрического тока
                            5. О скорости распространения электрического тока
                            6. Электрический ток в жидкостях 
                            7. Проводимость в газах
                            8. Электрический ток в вакууме
                            9. О проводимости полупроводников

Внимание!
Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Сайт посвящен основам электротехники и электричества с акцентом на домашние электрические установки и процессы, в них происходящие.

Проводники и диэлектрики | Практическая электроника

Проводники – это вещества, которые отлично проводят электрический ток, а диэлектрики – это вещества, которые не проводят электрический ток.

Строение вещества

Как вы все знаете, любое вещество состоит из атомов. Атомы в свою очередь состоят из электронов и ядер

Проводники и диэлектрики

Если вы вспомните статью про электрический ток, в ней говорилось про пастуха и стадо овец:

Проводники и диэлектрики

Пастух – это ядро атома, а овцы – это электроны.

Дело все в том, что некоторые овцы, которые находятся очень далеко от пастуха, могут от него сбежать и стать свободными. То же самое можно сказать и про атомы и электроны. Электроны, которые находятся на самой дальней орбите от ядра менее зависимы, чем те, которые расположены ближе к ядру. В результате, такие электроны могут “оторваться” от ядра и начать самостоятельное путешествие по веществу.

свободные электроны

Такие электроны мы называли свободными.

Проводники и диэлектрики

Вещества в которых очень много свободных электронов называются проводниками, а вещества в которых очень мало свободных электронов –

диэлектриками. Свободные электроны есть в каждом веществе!  Их количество определяет проводимость вещества. Между проводниками и диэлектриками располагаются полупроводники. То есть это вещества, которые проводят электрический ток, но очень плохо.

Поэтому, проводниками в основном называют металлы, которые используются в электронной и электрической промышленности для передачи электрического тока. Это в основном медь и алюминий. Но всех лучше электрический ток проводит серебро, так как оно имеет в своем составе очень много свободных электронов

проводники серебро

Диэлектриками являются изоляционные материалы, так как термоусадочная трубка

термоусадочная трубка

изолента

изолента

фарфоровые и стекло-изоляторы

электроизоляторы

Ионы

Думаю, можно сказать пару слов и об ионах. Каждый атом вещества содержит электроны, которые вращаются вокруг ядра.  Если атом теряет один электрон, он стает положительно-заряженной частицей, или катионом, если присоединяет “левый” электрон, стает отрицательно-заряженной частицей – анионом. А раз есть свободные отрицательно-заряженные частицы, значит есть и движуха для электрического тока 🙂 Поэтому многие жидкости и газы являются проводниками для электрического тока. Из жидкостей это может быть вода (но не дистиллированная), а из газов – плазма.

Сверхпроводимость

Также в природе существует и такой эффект, как сверхпроводимость. Сверхпроводимость – это когда некоторые материалы и их сплавы вообще не обладают сопротивлением. То есть их сопротивление очень и очень близко к нулю. Но, спешу вас разочаровать, в простых условиях это получить невозможно, так как это достигается только при критических температурах.

Если желаете больше узнать про материалы, которые используются в электронике и электротехнике,  скачайте эту книгу.

Проводники и диэлектрики

Электроскоп. Проводники и непроводники электричества. Видеоурок. Физика 8 Класс

Тема: Электрические явления

Урок: Электроскоп. Проводники и непроводники электричества

На данном уроке мы продолжим знакомиться с темой «Электрические явления», и рассмотрим вопросы, касающиеся проводимости и непроводимости материалами электрического заряда, а также познакомимся с первыми простейшими приборами для измерения и регистрации зарядов – электрометром и электроскопом.

На предыдущем уроке мы выяснили, что электрические явления существуют, что их можно пронаблюдать и что связаны они со взаимодействием различных зарядов. Также мы выяснили, что эти взаимодействия определяются по действию силы, и, соответственно, величина взаимодействия определяется величиной электрического заряда. Мы также узнали, что одноимённые заряды отталкиваются, а разноимённые заряды, наоборот, притягиваются.

Теперь нам предстоит познакомиться с тем, как эти электрические заряды могут двигаться и переходить от одного тела к другому.

Первые систематические исследования электрических явлений относятся к XVII веку и связаны с именем немецкого учёного Отто фон Герике (Рис. 1).

Рис. 1. Отто фон Герике (Источник)

Отто фон Герике провёл огромное количество экспериментов и определил, что электричество может быть «двух родов». Одно он назвал «стеклянным», а другое – «смоляным». Разница, как мы понимаем, состоит в знаке приобретаемого материалом заряда. Как уже было рассмотрено на предыдущем уроке, если мы потрём стеклянную палочку о бумагу, то получим на палочке положительный заряд. Если же потереть о мех эбонитовую палочку или янтарь, то получим отрицательный заряд. И Отто фон Герике первым установил, как эти заряды между собой взаимодействуют: одноимённые заряды отталкиваются, а разноимённые притягиваются.

Следующий шаг в исследовании электрических явлений сделал американский учёный Франклин (Рис. 2).

Рис. 2. Бенджамин Франклин (Источник)

Франклин ввёл понятие электрического заряда и первым определил действие электричества, то есть электрическую силу.

Но прежде, чем говорить об электрической силе (взаимодействии зарядов), конечно, необходимо было научиться каким-то образом фиксировать и измерять величину заряда. Для этого необходимы были соответствующие приборы.

Самым первым прибором, который послужил людям для того, чтобы зафиксировать наличие электрического заряда и каким-то образом оценить величину электрического заряда, был прибор, который называется электроскоп («электро» – электрический, «скопио» – наблюдаю). С небольшими изменениями электроскоп дошёл и до наших дней.

Электроскоп представляет собой очень несложную конструкцию. Как правило, это стеклянная банка, внутри которой через стеклянную или пластмассовую пробку продевается стержень, а на конце стержня укрепляются два лёгких бумажных лепестка (Рис. 3).

Если мы прикоснёмся к стержню наэлектризованной палочкой (стеклянной или эбонитовой), то лепестки, получая одноимённый заряд, отталкиваются, и тем самым мы видим наличие этих зарядов в электроскопе.

Рис. 3. Электроскоп (Источник)

В XVIII веке также появился несколько усовершенствованный прибор, созданием которого занимался Михайло Васильевич Ломоносов (Рис. 4). Этот прибор называется электрометр(«электро» – электрический, «метриум» – измеряю).

Рис. 4. М. В. Ломоносов (Источник)

На рис. 5. изображены электрометры.

Рис. 5. Электрометры (Источник)

Как же устроен электрометр? Практически так же, как и электроскоп.

В верхней части электроскопа располагается шар (специально делается таким образом, чтобы можно было на нём разместить как можно большее количество зарядов). Металлический стержень проходит через пластмассовую пробку внутри металлического корпуса, который с двух сторон защищён стёклами. В нижней части стержня укреплена стрелка.

Стрелка, получая заряд от металлического стержня, знак которого совпадает с зарядом стержня, отталкивается, и по отклонению этой стрелки от вертикали можно судить о величине электрического заряда. Как видно на рисунке, в электрометре есть некая шкала, которая позволяет по углу отклонения стрелки судить о величине электрического заряда.

Рассмотрим действие электрометра.

Возьмём стеклянную палочку, потрём её о бумагу, чтобы в результате трения она стала наэлектризованной. Поднесём теперь палочку к шару электрометра, в результате заряд палочки передаётся шару электрометра, от которого получает заряд металлический стержень и стрелка электрометра. Поскольку стержень и стрелка обладают одноимённым зарядом, то стрелка отклоняется от стержня, тем самым демонстрируя нам наличие электрического заряда (Рис. 6).

Рис. 6. Принцип работы электрометра (Источник)

Итак, мы рассмотрели устройство электрометра и электроскопа – простейшие приборы, которые можно использовать для регистрации и оценки величины электрического заряда. Обратите внимание, что по отклонению стрелки можно судить о величине электрического заряда. Грубо говоря, электрометр – это электроскоп со шкалой. Именно благодаря этому усовершенствованию Ломоносов и использовал электрометр для изучения электрических явлений.

Рассмотрим теперь способность материалов пропускать электрический заряд.

Когда мы говорили о тепловых явлениях, то обсуждали этот вопрос: есть вещества, которые очень быстро и хорошо передают тепло, а есть вещества, которые очень плохо передают тепло.

То же самое можно сказать об электрических свойствах. Есть вещества, которые пропускают электрические заряды достаточно хорошо, и такие вещества называются проводниками. Как правило, к этим веществам относятся растворы, расплавы, жидкости, и, конечно же, металлы. Металлы считаются наиболее хорошими проводниками электрического заряда.

Вместе с тем, есть вещества, которые достаточно плохо проводят электрические заряды. Это, в первую очередь, газы, которые проводят электрические заряды очень плохо. А также различные пластмассы, смолы, стекло. Хотя надо отметить, что свойство проводимости, которое мы сейчас обсуждаем, во многом зависит от состояния окружающей среды.

Вещества, которые плохо пропускают электрические заряды, называются диэлектриками, или изоляторами(от итальянского «изоляре»).

Кроме того, как вы, наверное, знаете, существуют вещества, у которых меняются свойства по пропусканию электрических зарядов; такие вещества называют полупроводниками, и более детально мы их будем рассматривать в старших классах.

Все перечисленные вещества применяются в технике для решения различных технических задач. К примеру, все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А, например, облицовка этих проводов или вилка, которая включается в розетку, обязательно должна быть очень хорошо изолирована, поэтому ее выполняют из различных полимеров, которые являются изоляторами и не пропускают электрические заряды.

Рассмотрим три опыта, которые продемонстрируют нам то, как различные вещества могут по-разному пропускать электрические заряды.

Первый эксперимент

Возьмём два электрометра. Один из них зарядим, а второй, наоборот, разрядим. Разрядить электрометр с небольшим зарядом просто – достаточно прикоснуться к нему рукой: наша кожа является неплохим проводником, поэтому заряд с шара электрометра перейдёт к нам. Однако будьте ОСТОРОЖНЫ! Благодаря тому, что кожа является хорошим проводником, человек подвержен опасности при контакте с носителями большого электрического заряда.

Теперь возьмём провод на изолированной пластмассовой ручке (изолирует руку от металлической проволоки) – и прикоснёмся к шарам этих электрометров. При этом стрелка второго электрометра практически моментально отклонится от вертикального положения. Обратим внимание на то, как быстро произошло протекание заряда от одного электрометра к другому. Это говорит о том, что металлы – очень хорошие проводники. Необходимо отметить тот факт, что металлы тоже обладают разной проводимостью. Наиболее хорошо проводят электрические заряды такие металлы, как серебро, медь и алюминий.

Второй эксперимент

Сообщим дополнительный заряд первому электрометру и разрядим второй электрометр.

Теперь возьмём деревянную линейку и положим её на два электрометра. Что при этом произойдёт? Для чистоты эксперимента изолируем линейку от руки с помощью, к примеру, листа бумаги.

Мы видим, что стрелка второго электрометра отклоняется не так резко, как в первом эксперименте, а постепенно. Это означает, что электрические заряды по дереву тоже проходят, то есть дерево можно считать проводником. Но, естественно, его свойства проводимости отличаются от свойств металлов. Следовательно, можно говорить о том, что такие вещества, как дерево и металл, существенно отличаются своей проводимостью.

Третий эксперимент

В третьем эксперименте мы пронаблюдаем за тем, как ведут себя диэлектрики.

Для этого повторим эксперимент следующим образом: разрядим второй электрометр и сообщим дополнительный заряд первому электрометру.

Затем возьмём стеклянную палочку и потрём её о бумагу. В результате взаимодействия происходит разделение электрического заряда, то есть электризация. При этом само стекло не является проводником, то есть стекло плохо пропускает электрический заряд. Теперь приложим палочку к обоим электрометрам.

В данном случае мы наблюдаем следующее: после прикосновения палочки к шарам электрометров совершенно ничего не происходит. То есть второй электрометр остаётся незаряженным. Это означает, что стекло у нас не пропускает электрические заряды.

Немаловажным является тот факт, что важное значение для проводимости некоторых веществ имеет состояние окружающей среды. Например, если повышается влажность воздуха (о которой мы говорили в предыдущей теме), то в этом случае многие вещества будут вести себя, как проводники.

Наглядной демонстрацией этого может служить молния. Ведь молния обычно наблюдается тогда, когда идёт дождь, то есть влажность максимальна. Соответственно, во влажном воздухе начинает проходить электрический заряд, то есть электрический заряд идёт по воздуху (газу). Хотя в обычной ситуации воздух не проводит электрический заряд. То есть воздух становится проводником именно в том случае, когда изменилась влажность. Можно и привести и другие примеры, подтверждающие влияние влажности на проводимость материалов.

На следующем уроке мы познакомимся с вопросами, связанными с зарядами: какие заряды существуют и существует ли минимальный электрический заряд.

 

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
  2. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Фестиваль педагогических идей «открытый урок» (Источник).
  2. Интернет-портал Works.tarefer.ru (Источник).
  3. Уроки (Источник).

 

Домашнее задание

  1. П. 27, вопросы 1–4. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  2. Каким свойством должны обладать нити, на которых подвешиваются заряженные тела при экспериментах по электричеству?
  3. Почему стрелка электроскопа отклоняется, когда электроскоп заряжают? Зависит ли отклонение от знака заряда?
  4. Как можно опытным путём отличить проводник от диэлектрика?

Электрическое поле. Проводники и диэлектрики

«Электрическое поле. Проводники и диэлектрики»



Электрическое взаимодействие отличается от взаимодействия тел, изучаемого механикой, прежде всего тем, что заряженные тела взаимодействуют, находясь на некотором расстоянии друг от друга. Это взаимодействие наблюдается как в вещественной среде, так и в безвоздушном пространстве. Согласно утверждению английских учёных М. Фарадея и Д. Максвелла, в пространстве, в котором находится заряженное тело, существует электрическое поле. Посредством этого поля одно заряженное тело действует на другое.

Электрическое поле. Свойства

Электрическое поле материально, наряду с веществом оно представляет собой вид материи. Это означает, что электрическое поле реально, оно существует независимо от нас. Убедиться в реальности электрического поля заряженного тела можно, наблюдая его действие на другие тела.

Электрическая сила

Силу, с которой поле действует на внесённый в него электрический заряд, называют электрической силой. Предположим, что в электрическое поле, существующее вокруг некоторого заряженного тела, вносят электрический заряд. Значение силы, с которой это поле действует на заряд, зависит от расстояния между зарядами и от значения этих зарядов.

Одним из способов электризации тел является электризация через влияние. Предположим, что к шару электрометра поднесли, не касаясь его, отрицательно заряженную палочку. Электрическое поле этой палочки будет действовать на заряды, содержащиеся в электрометре. При этом свободные электроны будут отталкиваться и соберутся на конце стержня и на стрелке, отклонение стрелки покажет наличие заряда. На шаре электрометра при этом будет избыточный положительный заряд. Если палочку убрать, то стрелка электрометра вернётся в ноль.

электрическая сила

Для того чтобы на электрометре остался заряд, его нужно заземлить, т.е. соединить с Землёй. Это можно сделать, если коснуться шара электрометра рукой. Тогда электроны, стремясь уйти как можно дальше, переместятся с электрометра в землю. Если теперь убрать руку и палочку, то стрелка покажет, что электрометр заряжен. На нём останется избыточный положительный заряд. Аналогично электрометр может приобрести отрицательный заряд, если поднести к нему положительно заряженную палочку. В этом случае при заземлении на электрометре будет избыток электронов.

Проводники и диэлектрики

В рассмотренном выше опыте электрические заряды перемещались по электрометру. По эбонитовой палочке они не перемещались, в противном случае при касании её рукой она бы разряжалась. Из этого следует, что существуют вещества, по которым заряды могут перемещаться, и вещества, по которым заряды не могут перемещаться.

Проводники и диэлектрики. Сравнение

Первый класс веществ называют проводниками. Хорошими проводниками являются металлы. Это связано с тем, что в металлах существуют электроны, слабо связанные с ядром атома и имеющие возможность свободно перемещаться. Если поместить проводник в электрическое поле так, как это было в рассмотренном опыте с электрометром, то произойдёт разделение зарядов. Электрическое поле в проводниках создаётся и поддерживается источником тока.

Второй класс веществ называют диэлектриками. К ним относятся эбонит, стекло, пластмассы и пр. В диэлектрике нет свободных зарядов. Если внести диэлектрик в электрическое поле, то нейтральный атом в нём примет определённую ориентацию, однако никакого перемещения зарядов не произойдет.



Схема «Проводники и диэлектрики»

Строение атома

Строение атома

Проводники и диэлектрики


Конспект урока «Электрическое поле. Проводники и диэлектрики».

Следующая тема: «Постоянный электрический ток».

 

Что является примером проводника электричества. и диэлектрика. приведите примеры например

К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Проводниками являются металлы, вода и др. главное отличие, это степень носителей свободного заряда.

диэлектрик - керосин проводник - морская вода

лучший проводник-серебро. ну и вобще практически все металлы. Диэлектрики-воздух, пластмасса, керамика, резина.

Обычный простой карандаш. Стержень, графит-проводник, вокруг стержня дерево-диэлектрик.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2015-2019 © Игровая комната «Волшебный лес», Челябинск
тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск