Энергия механическая и внутренняя энергия – Внутренняя энергия

Внутренняя энергия

Наряду с механической энергией тел и её разновидностями – кинетической и потенциальной энергией, в физике изучают и так называемую внутреннюю энергию тел.

_?_

Вы видите взлетающую ракету. Она совершает работу – поднимает космонавтов и груз. Кинетическая энергия ракеты возрастает, так как по мере подъёма ракета приобретает всё большую скорость. Потенциальная энергия ракеты также возрастает, так как она всё выше поднимается над Землёй. Следовательно, сумма этих энергий, то есть механическая энергия ракеты, тоже увеличивается.

Мы помним, что при совершении телом работы его энергия уменьшается. Однако ракета совершает работу, но её энергия не уменьшается, а увеличивается! В чём же разгадка противоречия? Оказывается, что кроме механической энергии существует ещё один вид энергии – внутренняя энергия. Именно за счёт уменьшения внутренней энергии сгорающего топлива ракета совершает механическую работу и, кроме того, увеличивает свою механическую энергию.

_?_

Не только горючие, но и горячие тела обладают внутренней энергией, которую легко превратить в механическую работу. Проделаем опыт. Нагреем в кипятке гирю и поставим на жестяную коробочку, присоединённую к манометру. По мере того как воздух в коробочке будет прогреваться, жидкость в манометре начнёт двигаться (см. рисунок).

Расширяющийся воздух совершает над жидкостью работу. За счёт какой энергии это происходит? Разумеется, за счёт внутренней энергии гири. Следовательно, в этом опыте мы наблюдаем превращение внутренней энергии тела в механическую работу. Заметим, что механическая энергия гири в этом опыте не меняется – она всё время равна нулю.

Итак, внутренняя энергия – это такая энергия тела, за счёт которой может совершаться механическая работа, при этом не вызывая убыли механической энергии этого тела.

Внутренняя энергия любого тела зависит от множества причин: рода и состояния его вещества, массы и температуры тела и других. Внутренней энергией обладают все тела: большие и маленькие, горячие и холодные, твёрдые, жидкие и газообразные.

Наиболее легко на нужды человека может быть использована внутренняя энергия лишь, образно говоря, горячих и горючих веществ и тел. Это нефть, газ, уголь, геотермальные источники вблизи вулканов и так далее. Кроме того, в XX веке человек научился использовать и внутреннюю энергию так называемых радиоактивных веществ. Это, например, уран, плутоний и другие.

_?_

Взгляните на правую часть схемы. В популярной литературе нередко упоминаются тепловая, химическая, электрическая, атомная (ядерная) и другие виды энергии. Все они, как правило, являются разновидностями внутренней энергии, так как за счёт них может совершаться механическая работа, не вызывая при этом убыли механической энергии. Понятие внутренней энергии мы рассмотрим более подробно при дальнейшем изучении физики.

questions-physics.ru

Механическая энергия

Механической энергией тела в физике называют сумму кинетической и потенциальной энергий этого тела. Познакомимся с этими видами энергии на конкретных примерах. Обратимся к рисункам.

_?_

Взгляните: катящийся по дорожке шар сбивает кегли, и они разлетаются по сторонам. Только что выключенный вентилятор ещё некоторое время продолжает вращаться, создавая поток воздуха. Обладают ли эти тела энергией?

Заметим: шар и вентилятор совершают механическую работу, значит, обладают энергией. Они обладают энергией потому, что движутся. Энергию движущихся тел в физике называют кинетической энергией (от греч. «кинема» – движение).

Кинетическая энергия зависит от массы тела и скорости его движения (перемещения в пространстве или вращения). Например, чем больше масса шара, тем больше энергии он передаст кеглям при ударе, тем дальше они разлетятся. Например, чем больше скорость вращения лопастей, тем дальше вентилятор переместит поток воздуха.

_?_

Кинетическая энергия одного и того же тела может быть различной с точек зрения различных наблюдателей. Например, с нашей точки зрения как читателей этой книги, кинетическая энергия пня на дороге равна нулю, так как пень не движется. Однако по отношению к велосипедисту пень обладает кинетической энергией, поскольку стремительно приближается, и при столкновении совершит очень неприятную механическую работу – погнёт детали велосипеда.

Энергию, которой тела или части одного тела обладают потому, что взаимодействуют с другими телами (или частями тела), в физике называют потенциальной энергией (от лат. «потенциа» – сила).

      _?_

Обратимся к рисунку. При всплытии мяч может совершить механическую работу, например, вытолкнуть нашу ладонь из воды на поверхность. Расположенная на некоторой высоте гиря может совершить работу – расколоть орех. Натянутая тетива лука может вытолкнуть стрелу. Следовательно, рассмотренные тела обладают потенциальной энергией, так как взаимодействуют с другими телами (или частями тела). Например, мяч взаимодействует с водой – архимедова сила выталкивает его на поверхность. Гиря взаимодействует с Землёй – сила тяжести тянет гирю вниз. Тетива взаимодействует с другими частями лука – её натягивает сила упругости изогнутого древка лука.

      _?_

Потенциальная энергия тела зависит от силы взаимодействия тел (или частей тела) и расстояния между ними. Например, чем больше архимедова сила и глубже мяч погружён в воду, чем больше сила тяжести и дальше гиря от Земли, чем больше сила упругости и дальше оттянута тетива, – тем больше потенциальные энергии тел: мяча, гири, лука (соответственно).

Потенциальная энергия одного и того же тела может быть различной по отношению к различным телам. Взгляните на рисунок. При падении гири на каждый из орехов обнаружится, что осколки второго ореха разлетятся намного дальше, чем осколки первого. Следовательно, по отношению к ореху 1 гиря обладает меньшей потенциальной энергией, чем по отношению к ореху 2. Важно: в отличие от кинетической энергии, потенциальная энергия не зависит от положения и движения наблюдателя, а зависит от выбора нами «нулевого уровня» энергии.

questions-physics.ru

Внутренняя энергия — Класс!ная физика

Внутренняя энергия

«Физика — 10 класс»

Тепловые явления можно описывать с помощью величин (макроскопических параметров), измеряемых такими приборами, как манометр и термометр. Эти приборы не реагируют на воздействие отдельных молекул. Теория тепловых процессов, в которой не учитывается молекулярное строение тел, называется термодинамикой. В термодинамике рассматриваются процессы с точки зрения превращения теплоты в другие виды энергии.

Что такое внутренняя энергия.
Какие способы изменения внутренней энергии вы знаете?

Термодинамика была создана в середине XIX в. после открытия закона сохранения энергии. В её основе лежит понятие внутренняя энергия. Само название «внутренняя» предполагает рассмотрение системы как ансамбля движущихся и взаимодействующих молекул. Остановимся на вопросе о том, какая связь существует между термодинамикой и молекулярно-кинетической теорией.

Термодинамика и статистическая механика.

Первой научной теорией тепловых процессов была не молекулярно-кинетическая теория, а термодинамика.

Термодинамика возникла при изучении оптимальных условий использования теплоты для совершения работы. Это произошло в середине XIX в., задолго до того, как молекулярно-кинетическая теория получила всеобщее признание. Тогда же было доказано, что наряду с механической энергией макроскопические тела обладают ещё и энергией, заключённой внутри самих тел.

Сейчас в науке и технике при изучении тепловых явлений используется как термодинамика, так и молекулярно-кинетическая теория. В теоретической физике молекулярно-кинетическую теорию называют статистической механикой


Термодинамика и статистическая механика изучают различными методами одни и те же явления и взаимно дополняют друг друга.

Термодинамической системой называют совокупность взаимодействующих тел, обменивающихся энергией и веществом.

Главное содержание термодинамики состоит в двух основных её законах, касающихся преобразования энергии. Эти законы установлены опытным путём. Они справедливы для всех веществ независимо от их внутреннего строения.

Внутренняя энергия в молекулярно-кинетической теории.

Основным понятием в термодинамике является понятие внутренней энергии.

Внутренняя энергия тела (системы) — это сумма кинетической энергии хаотичного теплового движения молекул и потенциальной энергии их взаимодействия.

Механическая энергия тела (системы) как целого не входит во внутреннюю энергию. Например, внутренняя энергия газов в двух одинаковых сосудах при равных условиях одинакова независимо от движения сосудов и их расположения относительно друг друга.

Вычислить внутреннюю энергию тела (или её изменение), учитывая движение отдельных молекул и их положения относительно друг друга, практически невозможно из-за огромного числа молекул в макроскопических телах. Поэтому необходимо уметь определять значение внутренней энергии (или её изменение) в зависимости от макроскопических параметров, которые можно непосредственно измерить.

Внутренняя энергия идеального одноатомного газа.

Вычислим внутреннюю энергию идеального одноатомного газа.

Согласно модели молекулы идеального газа не взаимодействуют друг с другом, следовательно, потенциальная энергия их взаимодействия равна нулю. Вся внутренняя энергия идеального газа определяется кинетической энергией беспорядочного движения его молекул.

Для вычисления внутренней энергии идеального одноатомного газа массой т нужно умножить среднюю кинетическую энергию одного атома на число атомов. Учитывая, что kNA = R, получим формулу для внутренней энергии идеального газа:

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре.

Она не зависит от объёма и других макроскопических параметров системы.

Изменение внутренней энергии идеального газа

т. е. определяется температурами начального и конечного состояний газа и не зависит от процесса.

Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия также пропорциональна абсолютной температуре, но коэффициент пропорциональности между U и Т другой. Объясняется это тем, что сложные молекулы не только движутся поступательно, но ещё и вращаются и колеблются относительно своих положений равновесия. Внутренняя энергия таких газов равна сумме энергий поступательного, вращательного и колебательного движений молекул. Следовательно, внутренняя энергия многоатомного газа больше энергии одноатомного газа при той же температуре.

Зависимость внутренней энергии от макроскопических параметров.

Мы установили, что внутренняя энергия идеального газа зависит от одного параметра — температуры.

У реальных газов, жидкостей и твёрдых тел средняя потенциальная энергия взаимодействия молекул не равна нулю. Правда, для газов она много меньше средней кинетической энергии молекул, но для твёрдых и жидких тел сравнима с ней.

Средняя потенциальная энергия взаимодействия молекул газа зависит от объёма вещества, так как при изменении объёма меняется среднее расстояние между молекулами. Следовательно, внутренняя энергия реального газа в термодинамике в общем случае зависит наряду с температурой T и от объёма V.

Можно ли утверждать, что внутренняя энергия реального газа зависит от давления, основываясь на том, что давление можно выразить через температуру и объём газа.

Значения макроскопических параметров (температуры Т, объёма V и др.) однозначно определяют состояние тел. Поэтому они определяют и внутреннюю энергию макроскопических тел.

Внутренняя энергия U макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объёмом.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский



Основы термодинамики. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Насыщенный пар — Давление насыщенного пара — Влажность воздуха — Примеры решения задач по теме «Насыщенный пар. Влажность воздуха» — Кристаллические тела — Аморфные тела — Внутренняя энергия — Работа в термодинамике — Примеры решения задач по теме «Внутренняя энергия. Работа» — Количество теплоты. Уравнение теплового баланса — Примеры решения задач по теме: «Количество теплоты. Уравнение теплового баланса» — Первый закон термодинамики — Применение первого закона термодинамики к различным процессам — Примеры решения задач по теме: «Первый закон термодинамики» — Второй закон термодинамики — Статистический характер второго закона термодинамики — Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей — Примеры решения задач по теме: «КПД тепловых двигателей»

class-fizika.ru

Внутренняя энергия системы

Важнейшей характеристикой термодинамической системы является величина ее внутренней энергии.

Все термодинамические системы представляют собой совокупность какого-то числа различных частиц: молекул, атомов, ионов и т.д. Частицы эти находятся в состоянии движения (поступательного, колебательного или вращательного) и, следовательно, обладают некоторым количеством кинетической энергии. Кроме того, они взаимодействуют друг с другом, т.е. обладают определенным запасом потенциальной энергии.

В самом общем виде можно определить внутреннюю энергию системы как сумму потенциальной и кинетической энергии всех составляющих ее частиц.

Это определение не позволяет, однако, дать однозначный ответ на вопрос о том, чему равна энергия конкретной системы, состоящей из определенного числа структурных единиц, например, молекул. На первый взгляд кажется, что данная задача решается достаточно просто. Для этого необходимо учесть кинетическую энергию движения молекул и потенциальную энергию их взаимодействия между собой. Но энергией молекулы не исчерпывается энергия системы. Существует потенциальная и кинетическая энергия атомов, входящих в состав каждой молекулы. Если учесть и эту энергию, то возникает вопрос, учитывать ли энергию электронов, принадлежащих атомам, и надо ли учитывать энергию атомных ядер? А так как сложность элементарных частиц неисчерпаема, то ни на каком уровне этой сложности нет оснований останавливаться.

Таким образом, в рамках термодинамики задача определения абсолютного значения внутренней энергии системы не имеет решения и в связи с этим не рассматривается. Первостепенное значение приобретает другой вопрос: как изменится энергия системы в результате осуществления термодинамического процесса.

Если мы обозначим энергию системы в каком-нибудь исходном состоянии символом U1, а в любом другом состоянии символомU2, то задача сводится к вычислению разности:

U=U2–U1

В такой постановке она сразу приобретает четкость и допускает строгий ответ.

Величина Uсчитается положительной, если внутренняя энергия системы при протекании процесса возрастает, и отрицательной – если убывает.

Внутренняя энергия не включает в себя кинетическую энергию системы (ЕК

), которая присуща ей в результате движения как единого целого во внешней среде, и потенциальную энергию (ЕП), обусловленную действием на систему внешних силовых полей: гравитационного, электромагнитного и пр.

Таким образом, внутренняя энергия системы является составной частью полной или общей энергии системы Е:

Е = ЕК+ ЕП+U

Первые два слагаемых данного равенства составляют предмет рассмотрения в механике.

Величина внутренней энергии системы определяется лишь ее состоянием, но не зависит от способа достижения данного состояния (рис. 5), поэтому U принадлежит к термодинамическим параметрам, которые называются иначефункциями состояния.

Рис. 5. Схема, иллюстрирующая независимость изменения внутренней энергии системы от пути протекающего в ней процесса

Форма обмена энергии с окружающей средой

При протекании термодинамических процессов внутренняя энергия системы может увеличиваться или уменьшаться. В первом случае говорят, что система поглотила часть энергии из внешней среды, во втором случае, наоборот – передала часть своей энергии в окружающую среду. Существуют две основные формы (способа) обмена энергией между системой и внешней средой: теплота и работа.

Теплота– это процесс обмена энергией через неупорядоченное хаотическое движение структурных единиц вещества: молекул, ионов.

Из данных частиц состоит как сама система, так и ее граница раздела (стенки системы), а также окружающий систему внешний мир. В результате столкновения частиц системы и внешнего мира с частицами, образующими стенки, энергия одного коллектива частиц (например, частиц системы), может возрасти, а другого коллектива (расположенного во внешнем мире), соответственно, уменьшиться. Микроскопический механизм этого процесса состоит в обмене энергией при каждом единичном столкновении частиц. Пользуясь макроскопическими понятиями, говорят, что какая-то порция энергии перешла в систему из окружающей среды в форме теплоты.

Система может обмениваться энергией с окружающей средой в форме теплоты и без столкновения молекул, путем поглощения или излучения лучистой энергии. В этом случае излучение или поглощение единичного кванта есть аналог единичного столкновения частиц. Обмен макроскопическими порциями энергии есть результат излучения либо поглощения огромного числа квантов.

Под термином «теплота» часто понимают не сам процесс, а количество передаваемой таким способом энергии (Q).

Если система получает из внешнего мира некоторое количество энергии в форме теплоты, то Qсчитают положительной величиной. При переходе энергии в противоположном направлении величинуQсчитают отрицательной (рис. 6).

Работа – это процесс обмена энергией в результате организованного макроскопического перемещения частей системы друг относительно друга или макроскопического изменения свойств системы либо ее частей.Работа может бытьмеханической, электрической, химической.

Примером механической работыявляется расширение или сжатие системы, примеромэлектрической работыявляется перенос заряда в электрическом поле.

Мерой количества механической работы служит произведение действующей силы (точнее, проекции силы на направление движения) на величину перемещения (l). Если действующая сила (F) при этом перемещении остается постоянной, то работа (А) определяется следующим образом:

А = F·l

Работа может совершаться внутренними силами системы против внешних сил, т.е. над окружающей средой (расширение системы) или, наоборот, внешними силами против внутренних (сжатие системы).

В первом случае она считается положительной величиной (при этом энергия переходит из системы во внешнюю среду). Во втором – отрицательной (энергия переходит из внешней среды в систему) (рис. 6).

Рис. 6. Соглашение о знаках работы и теплоты

Следует учитывать, что энергия открытых систем может изменяться не только за счет совершения работы или передачи теплоты, но еще и третьим способом – за счет перехода в систему из окружающей среды (или наоборот) некоторого количества вещества. В результате этого число молекул того или иного вида в системе изменяется, а, следовательно, изменяется сумма кинетической и потенциальной энергии частиц, т.е. изменяется общий запас энергии в системе.

Процесс обмена энергией системы и окружающей среды только в форме теплоты, т.е. через хаотическое движение частиц вполне реален.Для этого достаточно окружить систему, заключенную в жесткую (непроницаемую для вещества) оболочку, средой с более высокой или более низкой температурой.

В тоже время, невозможно реализовать ни один процесс, в котором обмен энергией совершался бы только в форме работы.Тепловое движение частиц в любой системе существует, и поэтому неизбежен обмен энергией также и в форме теплоты. Кроме того, всякое механическое перемещение частей системы обязательно сопровождается трением, а это тоже означает участие тепловой формы обмена энергией при механических процессах.

В термодинамике часто вводится представление о том, что система может быть окружена идеально нетеплопроводными стенками, непрозрачными также и для лучистой энергии. В этом случае обмен энергией с окружающей средой в форме теплоты невозможен, но совершение работы над системой возможно. Такие системы называются адиабатными системами, а процесс их перехода из одного состояния в другое называют адиабатным процессом.

В отличие от внутренней энергии, теплота и работа зависят от пути или способа совершения процесса и поэтому функциями состояния не являются. В связи с этим определяют абсолютные значения Qи А, а не их изменения.

studfile.net

Внутренняя энергия

Любая термодинамическая система состоит из атомов и молекул, находящихся в непрерывном движении. Количественной характеристикой движения является энергия.

Внутренняя энергия (U) характеризует общий запас энергии системы. Она включает все виды движения и взаимодействия частиц, составляющих систему: кинетическую энергию молекулярного движения, межмолекулярную энергию притяжения и отталкивания частиц, внутримолекулярную или химическую энергию, энергию электронного возбуждения, внутриядерную и лучистую энергию.

Величина внутренней энергии зависит от природы вещества, его массы и параметров состояния системы.

Определение полного запаса внутренней энергии вещества невозможно, т.к. нельзя перевести систему в состояние, лишенное внутренней энергии. Поэтому в термодинамике рассматривают изменение внутренней энергии (∆U), которое представляет собой разность величин внутренней энергии системы в конечном и начальном состояниях:

∆U = Ukoh. – Uнач.

Бесконечно малое изменение внутренней энергии обозначают через du т.к. внутренняя энергия является функцией состояния и ее изменение не зависит от пути процесса, а определяется только начальным и конечным состоянием системы, то du будет полным дифференциалом. Величины ∆U и du считают положительными, если внутренняя энергия при протекании процесса возрастает, а отрицательными если убывает.

Теплота и работа

Передача энергии от системы к окружающей среде и наоборот осуществляется в виде теплоты (Q) и работы (А).

Система

-Q

+Q

Окружающая среда

Форма передачи энергии от одной части системы к другой вследствие неупорядоченного движения молекул, зависящая лишь от температуры частей системы и не связанная с перекосом вещества в системе называется теплотой.

Теплота связана с процессом, а не с состоянием системы, т.е. теплота является функцией состояния она зависит от пути процесса поэтому бесконечно малое количество теплоты обозначается δQ и не является полным дифференциалом. Теплота, подводимая к системе, считается положительной, а отданная ею — отрицательной.

Работа процесса — это энергия, передаваемая одним телом другому при их взаимодействии, не зависящая от температуры этих тел и не связанная с переносом вещества от одного тела к другому.

Работа, как и теплота, связана с процессом и не является свойством системы, т.е. функцией состояния. Paбoту, совершаемую системой против внешних сил. принято считать положительной, а совершаемую над системой — отрицательной.

Первый закон термодинамики

Первый закон имеет несколько формулировок:

  1. Внутренняя энергия изолированной системы постоянна.

  2. Работа и теплота эквивалентны.

  3. Вечный двигатель I рода невозможен. (Двигатель I рода дает работу без затраты энергии из окружающей среды.)

Математическое выражение I закона:

Q = ∆U + A, (1)

где Q — количество сообщенной системе теплоты;

∆U — изменение внутренней энергии;

А — суммарная работа, совершаемая системой.

Для бесконечно малых элементарных процессов уравнение (1) имеет вид:

δQ = du – δА = du — pdV + δА,

где pdV — работа расширения;

δА — сумма всех остальных видов элементарных работ (магнитная, электрическая и др.).

Величину δА называют полезной работой. В химической термодинамике принимают во внимание только работу расширения, а работу δА считают равной 0. Поэтому

δА = pdV, тогда δQ= du + pdV (2)

Из уравнений (1.2) следует, что количество, теплоты подведенное к системе или отведенное от нее идет на изменение внутренней энергии и на работу, совершаемую системой или совершаемую над системой.

studfile.net

Тема. Внутренняя энергия. Два способа изменения внутренней энергии тела: теплопередача и работа

Урок 2 (8 класс)

1. Введение

С понятием энергия мы столкнулись еще в 7 классе. Давайте вспомним определение этого понятия.

Определение. Энергия – физическая величина, которая характеризует способность тела или системы тел выполнить определенную работу.

Само понятие работа является знакомым и привычным из повседневной жизни. Она делится на множество видов, мы же пока изучили только понятие механической работы. Если вспомнить, то механическая работа – это величина, с помощью которой возможно описывать процессы перемещения тела при приложении определенной силы. Например, можно оценить работу, которую необходимо выполнить, чтобы перевезти тяжелый груз с одного места на другое (см. Рис. 1). Так вот, именно способность тела к выполнению механической работы характеризуется механической энергией тела.

Рис. 1.

Мы знаем, что существуют два вида механической энергии: кинетическая и потенциальная. Кинетической энергией тела обладают вследствие своего движения, потенциальной — вследствие своего взаимодействия с другими телами.

Изучая механические явления, мы узнали, что кинетическая и потенциальная энергии могут превращаться друг в друга.

Рассмотрим еще один пример. Предположим, что на свинцовой плите лежит свинцовый шар. Поднимем его вверх и отпустим (рис. 59, а). Когда мы подняли шар, то сообщили ему потенциальную энергию. При падении шара она уменьшается, так как шар опускается все ниже и ниже. Но с увеличением скорости постепенно увеличивается кинетическая энергия шара. Происходит превращение потенциальной энергии тела в кинетическую. Но вот шар ударился о свинцовую плиту и остановился (рис. 59, б). И кинетическая, и потенциальная энергии его относительно плиты в этот момент стали равными нулю.

Означает ли это, что энергия, которой обладал до этого шар, бесследно исчезла? Нет, не означает. Рассматривая шар и плиту после удара, мы увидим, что их состояние изменилось: шар немного сплющился и на плите образовалась небольшая вмятина; измерив же их температуру, мы обнаружим, что они нагрелись.

Но мы уже знаем, что при нагревании происходит увеличение средней кинетической энергии молекул тела. Молекулы обладают также и потенциальной энергией: ведь они взаимодействуют друг с другом — притягиваются, а при очень тесном сближении отталкиваются друг от друга. При деформации изменяется взаимное расположение частиц тела, поэтому изменяется и их потенциальная энергия.

Таким образом, мы можем утверждать, что в результате удара шара о плиту происходит изменение как кинетической, так и потенциальной энергии частиц этих тел. Это означает, что механическая энергия, которой обладал в начале опыта шар, не исчезла бесследно: она перешла в энергию молекул.

Энергию движения и взаимодействия частиц, из которых состоит тело, называют внутренней энергией тела.
U — внутренняя энергия.

Тепловое движение молекул никогда не прекращается. Поэтому любое тело всегда обладает какой-то внутренней энергией.

Изучение тепловых явлений показывает, что на сколько в них уменьшается механическая энергия тел, на столько же увеличивается их внутренняя энергия. Полная же энергия тел, равная сумме их механической и внутренней энергий, при любых процессах остается неизменной. В этом заключается закон сохранения энергии, распространенный на тепловые явления.

Энергия не возникает из ничего и не исчезает бесследно. Она может лишь переходить из одного вида в другой, сохраняя свое полное (общее) значение.

Так, например, при взлете ракеты происходит превращение внутренней энергии сгорающего топлива в механическую энергию оболочки ракеты; при возникновении ветра внутренняя энергия нагретого воздуха превращается в кинетическую энергию движущихся воздушных масс и т. д.

Одним из первых, кто обратил внимание на взаимопревращаемость различных видов энергии, был немецкий ученый Юлиус Роберт Майер (1814-1878). В 1838 г. он защитил диссертацию на степень доктора медицины и через два года в качестве корабельного врача отправился в плавание на остров Яву. Во время плавания он задумался над тем, почему после сильной бури вода в море всегда оказывается теплее, чем до нее. А прибыв на остров, Майер обратил внимание на непривычно яркий цвет крови у матросов, которых он лечил. В северных широтах кровь у людей имела иной, более темный оттенок. Возникал вопрос: почему? Эта проблема настолько увлекла Майера. что больше он ни о чем не думал. В письме своему другу он потом написал: «Я с такой любовью ухватился за работу, что мало интересовался — над чем иной может посмеяться — той далекой частью света; охотнее всего я оставался на борту, где я мог беспрепятственно отдаваться своей работе и где я в некоторые часы чувствовал себя как бы вдохновленным и ни раньше, ни позже ничего подобного, насколько помню, не переживал».

Размышляя о процессах, происходящих в человеческом организме (в зависимости от температурных условий, в которых находится человек), и энергии, выделяющейся в нем при «сгорании» пищи, Майер в конце концов открыл один из самых фундаментальных законов физики — закон сохранения и превращения энергии.

2. Виды механической энергии

Виды механической энергии удобно изобразить с помощью схемы

 
 

 

Кинетическая энергия – часть механической энергии, которая определяет движение тела.

Потенциальная энергия – энергия, которую имеют тела или части одного тела из-за того, что взаимодействуют с другими телами (или частями тел).

Обозначения в приведенных формулах:

– масса тела, кг,

– скорость движения тела, м/с,

– ускорение свободного падения, Н/кг (м/с2),

– высота тела над поверхностью, м,

– жесткость пружины, Н/м,

– растяжение пружины, м.

3. Взаимные превращения механической энергии

Кроме упомянутых понятий следует вспомнить и то, что два типа механической энергии могут превращаться (переходить) друг в друга, например, при падении тела (см. Рис. 2). Рассмотрим свободно падающий шарик. Очевидно, что при падении его высота над поверхностью уменьшается, а скорость увеличивается, это означает, что уменьшается его потенциальная энергия, а кинетическая увеличивается. Следует понимать, что эти два процесса не происходят отдельно, они взаимосвязаны, и говорят, что потенциальная энергия переходит в кинетическую.

Рис. 2.

Представлять себе процессы превращения механических энергий при падении тела удобно следующим образом: сумму всех энергий (полную механическую энергию) представить как полное ведро воды с надписью «потенциальная энергия», из которого начинают переливать воду в ведро с надписью «кинетическая энергия». Получается, что ведро «с потенциальной энергией» мельчает, а «с кинетической» наполняется, общий объем воды при этом не меняется – этим уже поясняется закон сохранения механической энергии.

Из приведенного примера становится ясно, что в мгновение непосредственно перед падением тела на поверхность (высота равна нулю) вся потенциальная энергия переходит в кинетическую (одно ведро перелито в другое). Возникает вопрос, что же происходит с кинетической энергией тела после удара о поверхность, ведь тело останавливается, и его высота над поверхностью становится равной нулю. Куда же перешла вся энергия? Она преобразуется в новый для нас тип энергии, о котором мы поговорим позже.

Можно рассмотреть и другой пример превращения энергии: колебания груза на пружине (см. Рис. 3). В данном случае наблюдается похожая ситуация – превращение потенциальной энергии в кинетическую, и наоборот. Этот случай отличается от процесса падения тела тем, что в нижней точке колебания груза пружина сжимается обратно, тем самым позволяя происходить превращениям энергий периодично из потенциальной в кинетическую, снова в потенциальную и т. д., пока не прекратятся колебания. Если разобраться подробнее, то в данном процессе превращения энергий происходят сложнее, например, при движении груза с нижней точки деформированной пружины происходит переход потенциальной энергии пружины в потенциальную энергию груза (он поднимается) и его кинетическую энергию (он разгоняется). Т. е. на этом примере мы видим, что в превращениях могут участвовать сразу несколько видов энергий, которые могут относиться к разным телам (пружина и груз).

Рис. 3.

4. Введение понятия внутренняя энергия тела

Вернемся к вопросу о том, во что превращается кинетическая энергия тела сразу после падения на поверхность. Она превращается во внутреннюю энергию, что и является основным объектом изучения данного урока.

Чтобы понять, что такое внутренняя энергия, следует обратить внимание на микромир частиц вещества (атомы и молекулы) и вспомнить, что они находятся в непрерывном движении, это уже подсказывает о наличии у них кинетической энергии, кроме того, частицы взаимодействуют друг с другом, что приводит к возникновению у них потенциальной энергии.

Определение. Кинетическая энергия движения частиц и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела. Внутреннюю энергию обозначают и измеряется она, как и все другие виды энергии, в Дж (джоулях).

Следовательно, имеем формулу для внутренней энергии тела: . Где под понимается кинетическая энергия частиц тела, а под – их потенциальная энергия.

Вспомним предыдущий урок, на нем мы говорили о том, что движение частиц тела характеризует его температура, с другой стороны, внутренняя энергия тела связана с характером (активностью) движения частиц. Следовательно, внутренняя энергия и температура – взаимосвязанные понятия. При повышении температуры тела его внутренняя энергия тоже повышается, при понижении – уменьшается.

5. Связь между внутренней энергией тела и температурой

Следует особое внимание обратить на то, что внутренняя энергия тела не зависит от потенциальной и кинетической энергии самого тела, а только от потенциальной и кинетической энергии его частиц. Эти понятия важно не путать.

6. Взаимосвязь внутренней энергии с различными типами процессов

Взаимосвязь между внутренней энергией и различными видами процессов можно изобразить на схеме:

 

Если сравнивать внутреннюю энергию с другими видами энергий, то она как понятие существует отдельно и имеет особое свойство: любое тело при любых условиях всегда имеет некий запас внутренней энергии.

 

Читайте также:


Рекомендуемые страницы:

Поиск по сайту

poisk-ru.ru

Приведите примеры превращения механической энергии во внутреннюю и обратно в технике и быту

Внутренняя энергия системы может переходить, в частности, в кинетическую или потенциальную энергию. Поднимаешь домкратом или краном груз, повышается его внутренняя (потенциальная) энергия В двигателе внутреннего сгорания внутренняя (тепловая) энергия топлива переходит в кинетическую энергию поршня (он движется) Стреляя из рогатки камнем, мы повышаем его кинетическую энергию Сжимая пружину, повышаем ее внутреннюю энергию Сжимая жидкость или газ в сосуде, мы повышаем их внутреннюю энергию Газ, расширяясь, совершает работу, тем самым понижается его внутренняя энергия

когда пуля попадает в мишень — кинетическая энергия превращается в тепловую (внутреннюю) а при выстреле химическая (внутренняя) энергия превращается в кинетическую энергию пули. Если не хочется идти в школу берешь градусник трешь его о руку, внутренняя энергия градусника подымается и он показывает температуру. Показываешь маме, она оставляет тебя дома. А если ставишь кастрюлю на газовую комфорку, после того как вода закипит крышка начинает подскакивать и дребезжать это как раз обратное явление. (Переход внутренней энергии в кинетическую)

какое-либо тело падает с большой высоты и ударяется о землю. и оно нагревается, т. е. механическая энергия падения превращается во внутеннюю

эжсек555555555555555555555888888888888888888888кннннннннннннннннннннннннннннннншаааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааарооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооол л л л л лллл л л ллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллллл

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован.