Дана функция у = 2х² — х⁴.
1.Область определения функции: x ∈ R, или -∞ < x < ∞.
2. Нули функции. Точки пересечения графика функции с осью ОХ.
2х² — х⁴ = 0, х²(2 — х²) = 0. Тогда х² = 0 и (или) 2 — х² = 0.
x₁ = 0.
x₂ = √2.
х₃ = -√2.
Точки пересечения графика функции с осью ОУ при х = 0 ⇒ у = 0.
3. Промежутки знакопостоянства функции.
Для нахождения промежутков знакопостоянства функции y=f(x) надо решить неравенства f(x)>0, f(x)<0.
По пункту 2 имеем 4 промежутка значений аргумента, в которых функция сохраняет знак:
(−∞;−√2), (−√2;0), (0;√2), (√2;+∞).Для того, чтобы определить знак функции на каждом из этих промежутков, надо найти значение функции в произвольной точке из каждого промежутка. Точки выбираются из соображений удобства вычислений.
x = -2 -1 1 2
y = -8 1 1 -8.
В промежутках (−∞;−√2) и (√2;+∞) функция принимает отрицательные значения, в промежутках (−√2;0) и (0;√2) функция принимает положительные значения.{2}
Значит, функция является чётной.
5. Периодичность графика — нет.
6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты — нет.
7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.
Находим производную заданной функции:
y’ = 4x — 4x³.
Приравниваем производную нулю: 4x — 4x³ = 4x(1 — x²) = 0,
4x = 0, x = 0.
x² = 1, х = 1, x = -1.
Критических точек три: х = 0, х = 1, x = -1.
Находим значения производной левее и правее от критических.
x = -2 -1 -0.5 0 0.5 1 2
y’ = 24 0 -1.5 0 1.5 0 -24.
Где производная положительна — функция возрастает, где отрицательна — там убывает.
Убывает на промежутках (-oo, -1] U [0, oo).
Возрастает на промежутках (-oo, 0] U [1, oo).
8. Интервалы выпуклости, точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.{2} + 1\right) = 0.
Решаем это уравнение.
Корни этого уравнения:
x_{1} = — \frac{\sqrt{3}}{3}
x_{2} = \frac{\sqrt{3}}{3}
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-sqrt(3)/3, sqrt(3)/3].
Выпуклая на промежутках (-oo, -sqrt(3)/3] U [sqrt(3)/3, oo).
9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты — нет.
10. Дополнительные точки, позволяющие более точно построить график.
11. Построение графика функции — дан в приложении.заказ решений на аукционе за минимальную цену с максимальным качеством
Предлагаю идею сайта-аукциона по выполнению домашних заданий. Он будет включать:
- решение задач по математике (сейчас доступен решебник Филиппова), физике, химии, экономике
- написание лабораторных, рефератов и курсовых
- выполнение заданий по литературе, русскому или иностранному языку.
Основное отличие от большинства сайтов, предлагающих выполнение работ на заказ – сайт рассчитан на две категории пользователей: заказчиков и решающих задания. Причем, по желанию (чтобы заработать, увеличить свой рейтинг, получить решение сложной задачи) пользователи могут играть любую из этих ролей.
Объединение сервисов в одну систему
Основой для идеи послужили несколько работающих систем, объединение которых позволит сделать сервис для решения задач на заказ. Эти системы:
- Форум, где посетители обмениваются идеями и помогают друг другу
- Система bugtracking, где обнаруженные проблемы проходят путь от публикации до принятия в исполнение и решения
- Аукцион, где цена за товар или услугу определяется в результате торгов
- Система рейтингов, где участники могут оценивать ответы друг друга. Причем, чем больше рейтинг пользователя, тем более значимым становится его голос
Принцип работы
Для удобства и проведения аналогий с реальной жизнью назовем заказчиков студентами, а решающих задания – репетиторами.
Итак, студенту необходимо решить несколько задач. Он заходит на сайт, выбирает раздел с соответствующей дисциплиной и создает новую тему (аналогия с форумом). Но при создании темы он также указывает стартовую (максимальную) цену, которую он готов заплатить за решение задач и крайний срок исполнения задания. Можно будет назначить и нулевую цену – если студенту нужно только бесплатное решение.
Как только тема создана, все пожелавшие подписаться на раздел репетиторы получают уведомление. Причем, условие получения уведомлений можно настроить. Например, уведомлять только о заказах со стартовой ценой более 500 р. и сроком решения не менее недели.
Заинтересовавшиеся репетиторы делают ставки. Причем студент (автор темы) видит ставки и может посмотреть информацию по каждому репетитору (его решения, рейтинг, дату начала участия в проекте). Когда студент посчитает нужным, он может остановить аукцион и назначить задание одному из репетиторов, сделавшему ставку (не обязательно самую низкую, т.к. можно учитывать и другие факторы – см. выше).
Деньги блокируются на счете студента, и репетитор начинает решать задание. Он должен представить его к сроку, заданному изначально. Выполненное решение публикуется в свободном доступе и его может оценить как заказчик, так и другие репетиторы. На этих оценках и строится рейтинг. Если к решению нет претензий – деньги окончательно переводятся со счета студента на счет репетитора.
За счет чего будет развиваться сервис
Первое – положительная обратная связь. Чем больше условий задач и решений будет опубликовано на сайте, тем чаще его будут находить пользователи через поисковики, будет больше ссылок на готовые решения. Именно поэтому важно размещать решенные задачи в свободном доступе. Знаю это по опыту своего сайта exir.ru (ex irodov.nm.ru) – большая ссылочная база получена исключительно за счет благодарных пользователей.
Второе – удобный сервис для заказчиков и для желающих заработать на решениях.
Преимущества для заказчиков
Студентам и школьникам не нужно перебирать десятки сайтов для сравнения цен, а потом надеяться, что после оплаты они получат качественное решение (и, вообще, все не закончится перечислением денег). Заказчики создают аукцион на понижение цены и могут смотреть на рейтинги желающих решить задачи и ранее выполненные ими решения. Кроме того, деньги окончательно перечисляются исполнителю только после полного решения.
Преимущества для решающих задания
Не нужно создавать и продвигать свой сайт, размещать множество объявлений во всех доступных источниках информации. Заказчики сами придут к вам. Не нужно решать все присланные задания с целью поддержания репутации – можно выбирать те, которые будут интересны по уровню сложности, цене и срокам решения.
Преимущества для владельца сервиса
В будущем возможен вариант и с получением некоторого небольшого процента от оплаты заказов. Но процент этот должен быть минимален и на начальном этапе он взиматься точно не будет.
Что необходимо для создания сервиса
- Самым важное сейчас – собрать команду, готовую принять участие в выполнении заданий. Если покупатели заходят в пустой магазин – они надолго забывают в него дорогу.
Поэтому я собираю предварительные заявки от посетителей, готовых заниматься решениями. Не нужно подписания никаких договоров о намерениях. Просто сообщите, на какие темы вы готовы решать задания, какой у вас опыт подобной работы (e-mail: [email protected]). Когда сервис заработает – я пришлю приглашение на регистрацию.
- Выбрать платежную систему.
- Сделать подходящий движок для сайта. Нужно решить – создавать его с нуля или изменить какой-нибудь существующий движок (например, форумный) с открытой лицензией.
- Привлечь посетителей. Учитывая посещаемость exir.ru и число публикуемых на форуме вопросов, думаю, это не будет большой проблемой.
Формула вершины параболы
☰
Обычно формулу координаты x вершины параболы используют, когда имеют дело с квадратичной функцией.
Квадратичная функция имеет вид: y = ax2 + bx + c.
Ее график — это парабола с вершиной, координаты которой определяются по формулам:
Однако формулу координаты y знать и использовать не обязательно. Обычно проще подставить найденное значение
Например, если дана функция y = 2x2 – 4x + 5, то координата x ее вершины будет равна:
x = –(–4 / (2 × 2)) = 1
Координату же y вычислим, подставив найденный x в саму функцию:
y = 2 × 12 – 4 × 1 + 5 = 3
Таким образом, вершина графика функции y = 2x2 – 4x + 5 находится в точке с координатами (1; 3).
В остальном парабола квадратичной функции вида y = ax2 + bx + c такая же как функции вида y = ax2. Отличие лишь в сдвиге вершины по сравнению с функцией y = ax2. Так в приведенном выше примере (y = 2x2 – 4x + 5) парабола будет по форме и направлению ветвей такой же, как для функции y = 2x2. Разница лишь в координатах вершин парабол.
Формулы вершины параболы получаются при преобразовании квадратичной функции к виду y = f(x + l) + m. Делается это методом выделения полного квадрата. Как известно функции вида y = f(x + l) + m отличаются от функций y = f(x) сдвигом из графиков по оси x на –l и по оси y на m. Именно l в преобразованной квадратичной функции оказывается равным –b/2a, а m = (4ac – b 2) / 4a. То есть l и m — это координаты x0 и y0 соответственно.
Доказывается это применением метода выделения полного квадрата к квадратному трехчлену общего вида ax2 + bx + c. При этом выполняются следующие преобразования:
- Объединим первые два члена многочлена: y = (ax2 + bx) + c
Вынесем коэффициент a за скобку, при этом b разделится на a:
Представим, что у нас есть квадрат суммы, в котором x одно из слагаемых, а из выражения в скобках надо получить его полный квадрат суммы. Одночлен (b/a)x умножим на 2 и разделим на 2 одновременно. Также прибавим и вычтем квадрат второго слагаемого квадрата суммы. Получим:
Выделим квадрат суммы:
Умножим на a:
Приведем к общему знаменателю свободные члены:
Поменяем знак:
Таким образом, мы привели функцию y = ax2 + bx + c к виду y = a(x + l)2 + m, что соответствует функции y = f(x + l) + m, где f(x) = ax2. А как строить графики последней известно.
2 + bx + c #, где# цвет (зеленый) (a = 2; b = -1 и c = 1) #
Чтобы найти Вершину, , мы можем использовать формулу #color (red) ([- b / (2a)] #
Следовательно,
Вершина = # цвет (красный) ([- b / (2a)] #
Вершина = # цвет (красный) ([- {(- 1) / (2 * 2)}] #
Vertex = #color (красный) (1/4 или 0,25} #
Это значение координаты x нашей вершины
Чтобы найти значение координаты Y нашей вершины ,
заменить # цвет (синий) (x = 0.2 — (4 * 2 * 1)]] / (2 * 2) #
Упростите, чтобы получить
#x = 1 + -sqrt (-7) / 4 #
Мы наблюдаем отсутствие реальных решений
Следовательно, функция не имеет пересечений по оси x .
Дополнительная информация:
# цвет (синий) (x = 0,25 # известен как ось симметрии
Что такое ось симметрии ?
Две стороны графика по обе стороны от оси симметрии выглядят как зеркальные отражения друг друга.
Затем проанализируйте график ниже, чтобы изучить поведение #f (x) #
.квадратичных функций
квадратичных функцийСодержание : Эта страница соответствует § 3.1 (стр. 244) текста.
Предлагаемые задачи из текста:
с. 251 # 1-8, 10, 11, 15, 16, 18, 19, 21, 23, 24, 30, 33, 37, 38, 75
Графики
Стандартная форма
Приложения
Графики
Квадратичная функция имеет вид f (x) = ax 2 + bx + c , где a , b и c — числа, где a не равны нулю.
График квадратичной функции — это кривая, называемая параболой . Параболы могут открываться вверх или вниз и различаются по «ширине» или «крутизне», но все они имеют одинаковую базовую U-образную форму. В На рисунке ниже показаны три графика, и все они являются параболами.
Все параболы симметричны относительно линии, называемой осью симметрии . Парабола пересекает его ось симметрии находится в точке, называемой вершиной параболы.
Вы знаете, что две точки определяют линию. Это означает, что если вам даны любые две точки на плоскости, то есть одна и только одна линия, содержащая обе точки. Аналогичное утверждение можно сделать относительно точек и квадратичных функции.
Учитывая три точки на плоскости, которые имеют разные первые координаты и не лежат на одной прямой, существует ровно одна квадратичная функция f, график которой содержит все три точки. Апплет ниже иллюстрирует этот факт.График содержит три точки и параболу, проходящую через все три. Соответствующая функция показана в тексте поле под графиком. Если вы перетащите любую из точек, функция и парабола обновятся.
Многие квадратичные функции можно легко изобразить вручную, используя методы растяжения / сжатия и сдвига. 2-5.Начнем с графика y = x 2 , сдвинем на 4 единицы вправо, затем На 5 единиц меньше.
Упражнение 1 :
(a) Нарисуйте график y = (x + 2) 2 — 3. Ответ
(b) Нарисуйте график y = — (x — 5) 2 + 3. Ответ
Вернуться к содержанию
Стандартная форма
Функции в частях (a) и (b) упражнения 1 являются примерами квадратичных функций в стандартной форме .Когда квадратичная функция имеет стандартную форму, ее график легко построить, отражая, сдвигая и растяжение / сжатие параболы y = x 2 .
Квадратичная функция f (x) = a (x — h) 2 + k, не равная нулю, называется стандартной формой . Если а положительно, график открывается вверх, а если отрицательно, то открывается вниз. Линия симметрии — это вертикальная линия x = h, а вершина — это точка (h, k).
Любую квадратичную функцию можно переписать в стандартной форме, завершив квадратом . (См. Раздел о решая уравнения алгебраически, чтобы просмотреть завершение квадрата.) Шаги, которые мы используем в этом разделе для завершения квадрата, будут выглядеть немного иначе, потому что наш главный цель здесь не в решении уравнения.
Обратите внимание, что когда квадратичная функция имеет стандартную форму, ее нули также легко найти с помощью квадратного корня. принцип.
Пример 3 .
Запишите функцию f (x) = x 2 — 6x + 7 в стандартной форме. Нарисуйте график функции f и найдите его нули и вершина.
f (x) = x 2 — 6x + 7.
= (x 2 — 6x) + 7. Сгруппируйте члены x 2 и x и затем заполните квадрат на этих условиях.
= (x 2 — 6x + 9 — 9) + 7.
Нам нужно добавить 9, потому что это квадрат половины коэффициента при x, (-6/2) 2 = 9. Когда мы решая уравнение, мы просто добавляли 9 к обеим частям уравнения. В этой настройке мы добавляем и вычитаем 9 так что мы не меняем функцию.
= (x 2 — 6x + 9) — 9 + 7. Мы видим, что x 2 — 6x + 9 — это полный квадрат, а именно (x — 3) 2 .
f (x) = (x — 3) 2 — 2.Это стандартная форма .
Из этого результата легко найти, что вершина графа f равна (3, -2).
Чтобы найти нули f, мы устанавливаем f равным 0 и решаем относительно x.
(x — 3) 2 — 2 = 0.
(x — 3) 2 = 2.
(x — 3) = ± sqrt (2).
х = 3 ± sqrt (2).
Чтобы нарисовать график f, сдвинем график y = x 2 на три единицы вправо и на две единицы вниз.
Если коэффициент при x 2 не равен 1, то мы должны вынести этот коэффициент из x 2 и x, прежде чем продолжить.
Пример 4 .
Запишите f (x) = -2x 2 + 2x + 3 в стандартной форме и найдите вершину графика f.
f (x) = -2x 2 + 2x + 3.
= (-2x 2 + 2x) + 3.
= -2 (х 2 — х) + 3.
= -2 (x 2 — x + 1/4 — 1/4) + 3.
Мы складываем и вычитаем 1/4, потому что (-1/2) 2 = 1/4, а -1 — коэффициент при x.
= -2 (x 2 — x + 1/4) -2 (-1/4) + 3.
Обратите внимание, что все в круглых скобках умножается на -2, поэтому, когда мы убираем -1/4 из круглых скобок, мы необходимо умножить на -2.
= -2 (x — 1/2) 2 + 1/2 + 3.
= -2 (х — 1/2) 2 + 7/2.
Вершина — это точка (1/2, 7/2). Поскольку граф открывается вниз (-2 <0), вершина является высшей точкой на графике.
Упражнение 2 :
Запишите f (x) = 3x 2 + 12x + 8 в стандартной форме.Нарисуйте график функции f, найдите его вершину и найдите нули f. Ответ
Альтернативный метод поиска вершины
В некоторых случаях завершение квадрата — не самый простой способ найти вершину параболы. Если график квадратичная функция имеет два пересечения по оси x, тогда линия симметрии — это вертикальная линия, проходящая через среднюю точку х-перехватчиков.
Х-точки пересечения графика выше находятся в точках -5 и 3.Линия симметрии проходит через -1, что является средним -5 и 3. (-5 + 3) / 2 = -2/2 = -1. Как только мы узнаем, что линия симметрии x = -1, мы узнаем первую координату вершины -1. Вторую координату вершины можно найти, вычислив функцию при x = -1.
Пример 5 .
Найдите вершину графика функции f (x) = (x + 9) (x — 5).
Поскольку формула для f разложена на множители, легко найти нули: -9 и 5.
Среднее значение нулей (-9 + 5) / 2 = -4/2 = -2. Итак, линия симметрии x = -2, а первая координата вершины -2.
Вторая координата вершины: f (-2) = (-2 + 9) (- 2-5) = 7 * (- 7) = -49.
Следовательно, вершина графика f равна (-2, -49).
Вернуться к содержанию
Приложения
Пример 6 .
У владельца ранчо есть 600 метров ограды, чтобы ограждать прямоугольный загон с другим забором, разделяющим его посередине. как на схеме ниже.
Как показано на схеме, каждая из четырех горизонтальных секций забора будет иметь длину х метров, а три каждая вертикальная секция будет иметь длину y метров.
Цель владельца ранчо — использовать весь забор и оградить как можно большую площадь .
Каждый из двух прямоугольников имеет площадь xy, поэтому мы имеем
Общая площадь: A = 2xy.
Мы мало что можем сделать с величиной A, если она выражается как произведение двух переменных. Тем не мение, Тот факт, что у нас есть только 1200 метров забора, приводит к уравнению, которому должны удовлетворять x и y.
3г + 4х = 1200.
3y = 1200 — 4x.
у = 400 — 4х / 3.
Теперь у нас есть y, выраженный как функция от x, и мы можем заменить это выражение на y в формуле для общего площадь А.
A = 2xy = 2x (400 -4x / 3).
Нам нужно найти значение x, которое делает A как можно большим. A — квадратичная функция от x, а график открывается вниз, поэтому наивысшая точка на графике A — вершина. Поскольку A разложено на множители, самый простой способ найти вершина — найти пересечения по оси x и усреднить.
2x (400 -4x / 3) = 0.
2x = 0 или 400 -4x / 3 = 0.
x = 0 или 400 = 4x / 3.
x = 0 или 1200 = 4x.
х = 0 или 300 = х.
Следовательно, линия симметрии графика A равна x = 150, среднему от 0 до 300.
Теперь, когда мы знаем значение x, соответствующее наибольшей площади, мы можем найти значение y, вернувшись назад. уравнению, связывающему x и y.
y = 400 — 4x / 3 = 400-4 (150) / 3 = 200.
Вернуться к содержанию
Находка Обратная функция (стр. 5 из 7) Разделы: Определение / Обращение графика, является ли обратным функция ?, Поиск обратных, Доказательство обратных
Ограничение на домен исходит из того факта, что я не могу делить на ноль, поэтому x не может быть равным 2.Обычно я бы не стал записывать ограничение, но это полезно здесь, потому что мне нужно знать домен и диапазон обратного. Примечание с картинки (и вспоминая концепцию горизонтального асимптоты), что y никогда не будет равным 1. Тогда домен будет « x не равно 2 «и диапазон « y не равно 1 «.Для наоборот, они поменяются местами: домен будет « x не равно 1 «и диапазон будет « y не равно 2 «. Вот алгебра:
Затем обратное — y = (2 x 2) / ( x 1) , и обратное тоже функция, с областью всех x не равно на номер 1 и диапазон всех y не равно на номер 2 .
Эта половина параболы проходит тест горизонтальной линии, поэтому (ограниченная) функция обратима. Но как найти обратное? Авторские права Элизабет Стапель 2000-2011 Все права защищены
<< Предыдущая Вверх | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Вернуться к указателю Далее >>
|
Как найти решение системы уравнений
Пояснение:Сначала нам нужно найти точки A и B, которые, как нам сказали, образуют точки пересечения между графиками y = 9 — x 2 и y = 3 — x .Чтобы решить эти два уравнения, мы можем установить значение y в первом уравнении равным значению y во втором, а затем решить для x .
9 — x 2 = 3 — x
Добавьте x 2 с обеих сторон.
9 = 3 — x + x 2
Вычтем 9 с обеих сторон. Затем переставьте так, чтобы степени x были в порядке убывания.
-6 — x + x 2 = x 2 — x — 6 = 0
Разложите на множитель x 2 — x — 6, думая о двух числах, которые умножаются, чтобы получить –6, и складывать, чтобы получить –1. Эти два числа — –3 и 2.
x 2 — x — 6 = ( x — 3) ( x + 2) = 0
Установите каждый коэффициент равным нулю и решите.
x — 3 = 0
х = 3
х + 2 = 0
x = –2
Таким образом, возникают точки пересечения, где x = –2 и 3.Мы можем найти значения y точек пересечения, подставив –2 и 3 в любое уравнение. Воспользуемся уравнением y = 3 — x .
Когда x = –2, y = 3 — (–2) = 5. Одна точка пересечения равна (–2,5).
Когда x = 3, y = 3 — 3 = 0. Другой точкой пересечения является (3,0).
Предположим, что точка A находится в точке (–2,5), а точка B находится в точке (3,0). Нам говорят, что C находится в ( p , 0), где p <0.Давайте нарисуем треугольник ABC с информацией, которая у нас есть.
На рисунке выше оранжевая линия представляет высоту от стороны BC до A .
Площадь любого треугольника равна (1/2) bh , где b — длина основания, а h — длина высоты. Мы будем использовать BC для обозначения основания и оранжевую линию для обозначения высоты.
Длина BC будет равна 3 — p , поскольку обе точки лежат на оси x .Длина оранжевой линии — это расстояние от CB до точки A , то есть 5. Теперь мы можем найти формулу для площади и установить ее равной 50.
Площадь ABC = (1/2) (3 — p ) (5) = 50
Умножьте обе стороны на 2.
(3 — п ) (5) = 100
Разделить на 5.
3 — р = 20
Вычтем 3 с обеих сторон.
–p = 17
Умножьте обе стороны на –1.
p = –17.
Ответ: –17.
Математическая сцена — Уравнения III — Урок 3
Математическая сцена — Уравнения III — Урок 3 — Квадратные уравнения2008 Rasmus ehf и Jhann sak | Уравнения III |
Урок 3 Пересечение точек графиков
Как приступить к поиску точек, в которых два графика y = f (x) и y = g (x) пересекаются?
Мы уже знаем, где найти график
f (x) пересекает ось x.Здесь y = 0. Мы вычисляем его, решая
уравнение f (x) = 0.
Когда графики y = f (x) и y =
g (x) пересекаются, оба графа имеют
точно такие же значения x и y. Итак, мы можем найти точку или точки
пересечения путем решения уравнения f (x)
= g (x). Решение этого уравнения даст нам значение (я) x
точка (и) пересечения. Затем мы можем найти значение y, поместив значение для
x, который мы нашли в одном из исходных уравнений.То есть путем расчета
либо f (x), либо g (x).
Пример 1
Рассчитать точку пересечение двух прямых f (x) = 2x — 1 и g (x) = x + 1. Сначала давайте посмотрим на график двух функций. Мы видим смысл пересечение есть (2, 3).
Рассчитываем точку пересечения по решение уравнения f (x) = g (x). То есть:
2х — 1 = х + 1
2х — х = 1 + 1
х = 2
Координата Y теперь может быть найдена вычисление f (2):
f (2) = 2 × 2 — 1 = 3
Точка пересечения — (2, 3) .
Пример показывает, что мы можем найти точку
пересечения двумя способами.
Либо графически, нарисовав два графика в одной системе координат, либо
алгебраически, решив уравнение, подобное тому, которое приведено в приведенном выше примере.
Некоторые уравнения нельзя решить алгебраически, но мы можем найти решения, которые исправляем до любого количества значащих цифр, используя компьютеры и калькуляторы.
Пример 2
Решите уравнение x 2 — 2x — 3 = 2x — 3 сначала графически, а затем алгебраически.
Рисуем графики f (x) = x 2 — 2x — 3 и g (x) = 2x — 3, составив таблицу значений и построив график точки. Как из графика, так и из таблицы значений видно, что графики пересекаются при x = 0 и x = 4 .
Решает алгебраически:
x 2 — 2x — 3 = 2x — 3
x 2 — 4x = 0
х (х — 4) = 0
Получение решений x = 0 и x = 4 .
Пример 3
Решите уравнение x 2 — 1 = 2x — 3
Сначала переместите все термины перейдите к левой части уравнения и упростите.
Это дает x 2 — 2x + 2 = 0
Используем формулу корней квадратного уравнения с a = 1, b = −2 и c = 2.
Число под знаком квадратного корня:
отрицательный, что означает, что это уравнение не имеет решения.
Чтобы понять, почему это так, мы рисуем графики левой части оригинала.
уравнение
f (x) = x 2 — 1 и правая часть g (x) = 2x — 3.
Мы видим, что парабола f (x) и прямая g (x) не пересекаются.Легко видеть, что мы не может вычислить точку пересечения просто потому, что такой точки нет.
Пример 4
Решите уравнение x 3 — 3x + 2 = x 2 — 2x + 1
Как и в предыдущем примере, мы перемещаем все слагаемые в левую часть уравнения.
х 3 — 3х + 2 = х 2 — 2х + 1
х 3 — х 2 — х + 1 = 0
(x 3 — x 2 ) — (x — 1) = 0
x 2 (x — 1) — (x — 1) = 0
(х — 1) (х 2 — 1) = 0
(х — 1) (х — 1) (х + 1) = 0
Расчеты показывают, что их всего два решений, x = 1 и x = −1, но кубическое уравнение может иметь три решения.График показывает нам, что происходит.
Графики f (x) = x 2 — 2x + 1 и g (x) = x 3 — 3x + 2 пересекаются только в двух местах, где x = −1 и x = 1, которые были решениями уравнение.
Пример 5
Решите уравнение x 2 = x
Легко видеть, что x = 0 и x = 1 являются решения уравнения, но есть ли еще решения? Это не очень вероятно, но давайте посмотрим на графики.
Назовите левую часть f (x) = x 2 и правую часть g (x) = x. Помните, что g (x) не может принимать отрицательные значения x, поэтому не может быть никаких отрицательные точки пересечения.
На графике видно, что точек всего две
пересечения и, следовательно, только два решения уравнения. х = 0 и х =
1.
Вот как решить уравнение расчетом:
x 2 = x х 4 = х х 4 — х = 0 х (х 3 — 1) = 0 | Квадрат обе части уравнения, чтобы избавиться от квадратного корня . |
Это дает решение x = 0 и x = 1 .
Пример 6
Решите уравнение ln x = x 2 — 1
Это уравнение не так-то просто решить. Если мы вспомните определение логарифма, мы видим, что x = 1 делает обе стороны уравнение равно 0 и, следовательно, является одним решением уравнения. Мы рисуем графики, чтобы увидеть, есть ли другие решения.
График показывает нам, что есть два решения. Одно решение — это ровно x = 1, поскольку e 0 = 1.
Обратите внимание, что мы выбираем значения x так, чтобы значения y становятся все ближе и ближе друг к другу в таблице значений. Таким образом мы можем выбрать значение x, чтобы получить желаемую точность.Пример 7 | EXCEL |
Если мы воспользуемся графическим калькулятором, то сможем найти решение уравнения ln x = x 2 — 1 намного проще. 2 − ln (B2)
Теперь выберите Инструменты а затем «Поиск цели» в строке меню.В на экране появляется следующее:
Пишем D2, 1 и B2 в промежутках, как показано. Мы просим Excel сделать значение ячейки D2 равным к значению 1, изменив значение в B2.
Когда нажимаем ОК, появляется следующая информация.
Это говорит нам о том, что приближение x ≈ 0,45, которое мы нашли графически в примере 6, довольно хорошо, решение x ≈ 0.4500289, найденный с помощью EXCEL, не намного лучше.
Попробуйте пройти тест 3 по уравнениям III.
Не забудьте использовать контрольный список для следите за своей работой.
Инверсия функции — объяснение и примеры
Что такое обратная функция?
В математике обратная функция — это функция, отменяющая действие другой функции.
Например, , сложение и умножение являются инверсией соответственно вычитания и деления.
Обратную функцию можно рассматривать как отражение исходной функции по линии y = x. Проще говоря, обратная функция получается заменой (x, y) исходной функции на (y, x).
Мы используем символ f — 1 для обозначения обратной функции. Например, если f (x) и g (x) противоположны друг другу, то мы можем символически представить это утверждение как:
g (x) = f — 1 (x) или f (x) = g −1 (x)
Об обратной функции следует отметить то, что обратная функция — это не то же самое, что и обратная функция, т.е.е., f — 1 (x) ≠ 1 / f (x). В этой статье мы обсудим, как найти обратную функцию.
Поскольку не все функции имеют инверсию, важно проверить, есть ли у функции инверсия, прежде чем приступать к определению инверсии.
Мы проверяем, есть ли у функции инверсия, чтобы не тратить время на поиск чего-то, чего не существует.
Индивидуальные функции
Итак, как мы можем доказать, что данная функция имеет обратную? Функции, у которых есть обратные, называются взаимно однозначными функциями.
Функция называется взаимно однозначной, если для каждого числа y в диапазоне f существует ровно одно число x в области определения f такое, что f (x) = y.
Другими словами, домен и диапазон однозначной функции имеют следующие отношения:
- Область f −1 = Диапазон f.
- Диапазон f -1 = Область f.
Например, чтобы проверить, является ли функция f (x) = 3x + 5 взаимно однозначной заданной, f (a) = 3a + 5 и f (b) = 3b + 5.
⟹ 3a + 5 = 3b + 5
⟹ 3a = 3b
⟹ а = б.
Следовательно, f (x) является взаимно однозначной функцией, потому что a = b.
Рассмотрим другой случай, когда функция f задается формулой f = {(7, 3), (8, –5), (–2, 11), (–6, 4)}. Эта функция взаимно однозначна, потому что ни одно из ее значений y не встречается более одного раза.
А как насчет этой другой функции h = {(–3, 8), (–11, –9), (5, 4), (6, –9)}? Функция h не является взаимно однозначной, потому что значение y, равное –9, встречается более одного раза.
Вы также можете графически проверить взаимно однозначную функцию, проведя вертикальную и горизонтальную линии через график функции. Функция взаимно однозначна, если и горизонтальная, и вертикальная линии проходят через график один раз.
Как найти обратную функцию?
Найти инверсию функции — несложный процесс, хотя нам действительно нужно быть осторожными с парой шагов. В этой статье мы будем предполагать, что все функции, с которыми мы будем иметь дело, относятся друг к другу.
Вот процедура нахождения обратной функции f (x):
- Заменить обозначение функции f (x) на y.
- Поменять местами x на y и наоборот.
- Начиная с шага 2, решите уравнение относительно y. Будьте осторожны с этим шагом.
- Наконец, измените y на f −1 (x). Это обратная функция.
- Вы можете проверить свой ответ, проверив, верны ли следующие два утверждения:
⟹ (f ∘ f −1 ) (x) = x
⟹ (f −1 ∘ f) (x) = x
Давайте поработаем пару примеров.
Пример 1
Дана функция f (x) = 3x — 2, найти обратную ей функцию.
Раствор
f (x) = 3x — 2
Заменить f (x) на y.
⟹ у = 3х — 2
Поменять местами x на y
⟹ x = 3y — 2
Решить для y
х + 2 = 3 года
Разделим на 3, чтобы получить;
1/3 (х + 2) = у
х / 3 + 2/3 = у
Наконец, заменим y на f −1 (x).
f −1 (x) = x / 3 + 2/3
Проверить (f ∘ f −1 ) (x) = x
(f ∘ f −1 ) (x) = f [f −1 (x)]
= е (х / 3 + 2/3)
⟹ 3 (х / 3 + 2/3) — 2
⟹ х + 2 — 2
= х
Следовательно, f −1 (x) = x / 3 + 2/3 — правильный ответ.
Пример 2
Дано f (x) = 2x + 3, найдите f −1 (x).
Раствор
f (x) = y = 2x + 3
2x + 3 = y
Поменять местами x и y
⟹2y + 3 = х
Теперь решите для
у.⟹2y = х — 3
⟹ у = х / 2 — 3/2
Наконец, заменим y на f −1 (x)
⟹ f −1 (x) = (x– 3) / 2
Пример 3
Задайте функцию f (x) = log 10 (x), найдите f −1 (x).
Раствор
f (x) = log₁₀ (x)
Заменено f (x) на y
⟹ y = журнал 10 (x) ⟹ 10 y = x
Теперь поменяйте местами x на y, чтобы получить;
⟹ у = 10 х
Наконец, заменим y на f −1 (x).
f -1 (x) = 10 x
Следовательно, обратное значение f (x) = log 10 (x) равно f -1 (x) = 10 x
Пример 4
Найдите обратную функцию к следующей функции g (x) = (x + 4) / (2x -5)
Раствор
г (x) = (x + 4) / (2x -5) ⟹ y = (x + 4) / (2x -5)
Обмен y с x и наоборот
y = (x + 4) / (2x -5) ⟹ x = (y + 4) / (2y -5)
⟹ х (2у − 5) = у + 4
⟹ 2xy — 5x = y + 4
⟹ 2xy — y = 4 + 5x
⟹ (2x — 1) y = 4 + 5x
Разделите обе части уравнения на (2x — 1).
⟹ у = (4 + 5x) / (2x — 1)
Заменить y на g -1 (x)
= г — 1 (x) = (4 + 5x) / (2x — 1)
Проба:
(г г -1 ) (x) = г [г -1 (x)]
= г [(4 + 5x) / (2x — 1)]
= [(4 + 5x) / (2x — 1) + 4] / [2 (4 + 5x) / (2x — 1) — 5]
Умножьте числитель и знаменатель на (2x — 1).
⟹ (2x — 1) [(4 + 5x) / (2x — 1) + 4] / [2 (4 + 5x) / (2x — 1) — 5] (2x — 1).
⟹ [4 + 5x + 4 (2x — 1)] / [2 (4 + 5x) — 5 (2x — 1)]
⟹ [4 + 5x + 8x − 4] / [8 + 10x — 10x + 5]
⟹13x / 13 = x
Следовательно, g — 1 (x) = (4 + 5x) / (2x — 1)
Пример 5
Определите значение, обратное следующей функции f (x) = 2x — 5
Раствор
Заменить f (x) на y.
f (x) = 2x — 5⟹ y = 2x — 5
Переключите x и y, чтобы получить;
⟹ х = 2у — 5
Изолировать переменную y.
2у = х + 5
⟹ у = х / 2 + 5/2
Измените y обратно на f –1 (x).
⟹ f –1 (x) = (x + 5) / 2
Пример 6
Найти обратную функцию к функции h (x) = (x — 2) 3 .
Раствор
Измените h (x) на y, чтобы получить;
h (x) = (x — 2) 3 ⟹ y = (x — 2) 3
Поменять местами x и y
⟹ х = (у — 2) 3
Изолятор ул.
y 3 = x + 2 3
Найдите кубический корень из обеих частей уравнения.
3 √y 3 = 3 √x 3 + 3 √2 3
y = 3 √ (2 3 ) + 2
Заменить y на h -1 (x)
ч — 1 (x) = 3 √ (2 3 ) + 2
Пример 7
Найти обратную величину к h (x) = (4x + 3) / (2x + 5)
Раствор
Заменить h (x) на y.
h (x) = (4x + 3) / (2x + 5) ⟹ y = (4x + 3) / (2x + 5)
Поменять местами x и y.
⟹ х = (4у + 3) / (2у + 5).
Решите относительно y в приведенном выше уравнении следующим образом:
⟹ х = (4у + 3) / (2у + 5)
Умножить обе стороны на (2y + 5)
⟹ х (2у + 5) = 4у + 3
Распределить x
⟹ 2xy + 5x = 4y + 3
Изолятор ул.
⟹ 2xy — 4y = 3 — 5x
⟹ y (2x — 4) = 3-5x
Разделим на 2x — 4, чтобы получить;
⟹ у = (3-5x) / (2x — 4)
Наконец, замените y на h -1 (x).
⟹ в — 1 (x) = (3 — 5x) / (2x — 4)
Практические вопросыНайдите обратное значение для следующих функций:
- г (x) = (2x — 5) / 3.
- h (x) = –3x + 11.
- г (x) = — (x + 2) 2 — 1.
- г (х) = (5/6) х — 3/4
- f (x) = 3 x — 2.
- h (x) = x 2 + 1.
- г (x) = 2 (x — 3) 2 -5
- f (x) = x 2 / (x 2 + 1)
- h (x) = √x — 3.2-х-6
Уравнение y = 2x 2 — x — 6
a) Чтобы найти точку пересечения y, подставьте x = 0 в y = 2x 2 — x — 6.
у = 2 (0) 2 -0-6
y перехват — 6.
b) Чтобы найти точку пересечения с x, подставьте y = 0 в y = 2x 2 — x — 6
2x 2 — x — 6 = 0
2x 2 — 4x + 3x — 6 = 0
2x (x — 2) + 3 (x — 2) = 0
(х — 2) (2x + 3) = 0
х — 2 = 0 и 2x = — 3
х = 2 и х = — 3/2
х перехватов 2 и -3/2.
в) y = 2x 2 — x — 6
Сравните это с y = ax 2 + bx + c
а = 2, б = — 1, в = — 6
Найти вершину оси симметрии x = — b / 2a
х = — (- 1) / 2 (2)
х = 1/4
Чтобы найти координату y вершины, подставьте x = 1/4 в y = 2x 2 — x — 6.
у = 2 (1/4) 2 — (1/4) — 6
у = 1/8 — 1/4 — 6
у = (1-2-48) / 8
у = — 49/8
Вершина равна (x, y) = (1/4, -49/8) или (0.25, — 6,125).
График
Выберите случайные значения для y и найдите соответствующие значения для x .
х
y = 2x 2 — x — 6
(х, у)
1
у = 2 (1) 2 -1-6
(1, — 5)
— 1
у = 2 (-1) 2 + 1-6
(-1, — 3)
— 2
у = 2 (-2) 2 + 2-6
(-2, 4)
2.5
у = 2 (2,5) 2 — 2,5 — 6
(7, — 3)
1. Нарисуйте координатную плоскость.
2. Постройте пересечения осей симметрии x, y и координаты точек, найденных в таблице.