Формула закон сохранения и превращения энергии – 2.9. Закон сохранения и превращения энергии в механике. @

Содержание

2.9. Закон сохранения и превращения энергии в механике. @

В 1748 г. М.В.Ломоносов сформулировал закон сохранения материи и движе­ния. Через 100 лет Р.Майер и Г.Гельмгольц дали количественную формулировку за­кона сохранения и превращения энергии.

В замкнутой системе энергия может пе­реходить из одних видов в другие и передаваться от одного тела другому, но об­щее количество энергии остается неизменным. В природе и технике постоян­но имеют место превращения одних видов энергии в другие. Например, в электро­двига­телях электрическая энергия переходит в механическую, в ядерном реакторе ядерная энергия переходит в тепловую, затем в механическую и электромагнитную, при фо­тоэффекте — электромагнитная в электрическую и т.д. Однако следует иметь в виду, что одновременно может происходить несколько типов превращений энергии, например, обычно некоторая часть энергии непременно пре­вращается во внутреннюю (тепловую) энергию вещества (в энергию теплового движения молекул). Но всегда общий запас энергии системы в любой момент времени оста­ется неизменным. Закон сохранения и взаимопревращения энергии является всеобщим законом природы, не имеющим исключений; если он как бы нарушается в эксперименте, значит что-то не учтено.

Закон сохранения механической энергииформулируется следующим об­ра­зом: Если в замкнутой системе действуют консервативные силы, то механи­ческая энергия не переходит в другие виды и остается постоянной во времени (при этом возможен переход потенциальной энергии в кинетическую и наоборот).

Продемонстрируем действие этого закона на примере свободного падения тела.

П

Рис.2.12. Используемые в примере, направления для координат, скорости и ускорения свободного падения.

ример:
Пусть тело массой m начинает падать вниз с высоты h.

Рассчитаем его механическую энергию в различные моменты времени. В начальный момент времени, в верхней точке его механическая энергия равна mgh (Ек =0 так как начальная скорость равна нулю).

Если не учитывать силы трения о воздух, то в любой следующий момент времени t координату и скорость тела можно рассчитать с помощью законов кинематики для равноускоренного движения с ускорением свободного падения g (см. рис.2.12): z = h  ‑ gt2/2, v  = ‑ gt.

Механическая энергия в этот момент времени будет равна

Ем = Еп + Ек = mgz + mv2/2 = mg(h – gt2/2) + m(gt)2/2 = mgh, т.е. равна энергии в начальный момент времени. Отсюда видно, что механическая энергия не меняется со временем. Если же рассматривать и действие сил трения, то окажется, что механическая энергия тела при движении уменьшается. Это объясняется частичным превращением ее во внутреннюю (тепловую) энергию воздуха и самого тела.

3. Динамика вращательного движения. @

3.1. Основные характеристики динамики вращательного движения. @

Для описания вращательного движения используются следующие па­раметры : момент инерции J, момент силы , момент импульса тела. Ана­ло­гами их в поступательном движении являются масса m, сила , импульс тела.

Момент инерции материальной точки относительно некоторой оси есть ска­лярная физическая величина равная произведению массы этой точки на квадрат кратчайшего рас­стояния от нее до оси вращения

.

Ч

Рис.3.1.Иллюстрация к теореме Штейнера.

тобы рассчитать момент инерции твердого тела, его мысленно разбивают наn материальных точек с массами m1, m2,…, mn, находящихся на расстояниях r1, r2,…, rn от оси вращения. Момент инерции твердого тела J, вращающегося вокруг неподвижной оси ра­вен алгебраической сумме моментов инерции всех точек, из которых состоит тело . При непрерывном распределении масс тела эта сумма сводится к интегралу
, гдеV — объем тела, r – кратчайшее расстояние от точки до оси вращения. На основании этой формулы рассчитываются моменты инерции тел различной формы. Например: 1) полый тонкостенный цилиндр или обруч радиуса R, массой m и осью вра­ще­ния, совпадающей с осью симметрии ; 2) сплошной цилиндр или диск радиусаR, массой m и осью вращения, совпа­дающей с осью симметрии ; 3) шар радиусаR, массой m и осью вращения, проходящей через его центр . Приведенные примеры показывают, что момент инерции тела зависит от его массы, формы, геометрических размеров, его расположения относительно оси вра­щения, распределения массы по объему тела.

Расчет моментов инерции тел относительно осей, не совпадающих с осью сим­метрии более сложен. В таких случаях применяется теорема Штейнера: мо­мент инерции любого тела относительно произвольной оси ОО равен сумме момента инерции этого тела JO относительно оси АА , параллельной данной и проходящей через центр масс тела С, и произведения массы тела на квадрат расстояния между осями (рис.3.1) .

Моментом силы относительно неподвижной точки О называется вектор­ная физическая величина, равная векторному произведению радиуса-вектора, про­веденного из точки О в точку приложения силы, на век­тор силы:

.

Рис.3.2. Момент силы относительно непод­вижной точки.

Направление перпендикулярно плоскости, в которой лежат вектораи. Его направление совпада­ет с направлением поступательного движения правого винта при его вращении отк (рис.3.2). Модуль момента силы

, — плечо силы — кратчайшее расстояние между линией действия силы и точкой О. Если к точке А приложено несколько сил, то результирующийбудет равен векторной сумме моментов слагаемых сил:

Момент силы, действующей на тело относительно неподвижной оси z, есть ска­лярная величина Mz, равная проекции на эту ось вектора момента силы, опреде­ленно­го относительно произвольной точки О данной оси z (рис.3.3) .

Рис.3.3. Момент силы относительно непод­вижной оси.

Значение момента Mz не зависит от положения точки О на оси z. Если ось  z совпа­дает с направлением вектора , то момент силы равен.

Момент импульса (количества движения) матери­альной точки А относительно неподвижной точки О есть векторная физическая величина, определяемая векторным произведением двух векторов: радиуса-вектора, прове­денного из точки О в точку А, и импульса материальной точки                

        

.

Направление вектора совпадает с направлением посту­па­тельного движения правого винта при его вращении отк(рис.3.4).

Рис.3.4. Момент им­пульса относительно неподвижной точки.

Модуль вектора , — угол между векторами и
,l — плечо вектора (или) относительно точки О.

Моментом импульса точки относительно неподвиж­ной оси z называется скалярная величина Lz равная проек­ции на эту ось вектора мо­мента импульса, определенного относительно произволь­ной точки О данной оси , гдеугол между вектороми осьюz.

Момент импульса твердого тела есть векторная сумма мо­ментов импульса всех точек, из которых состоит тело. Если число точек системы равно n, тогда .

При вращательном движении твердого тела вокруг неподвижной оси угловые скорости  всех его точек равны, угол между векторами иравени все векторана­правлены по оси вращения в одну сторону. Отсюда модуль векторатела равен,,

.

Момент импульса твердого тела, вращающегося вокруг неподвижной оси, равен произведению момента инерции этого тела относительно той же оси на угловую скорость. Направления векторов исовпадают и.

studfile.net

Закон сохранения механической энергии: определение, формулы

Майер предположил, что кровь не меняет цвет, поскольку организму в тропическом климате нет необходимости тратить кислород на поддержание

температуры тела. Вернувшись на родину, перед тем как сформулировать закон сохранения механической энергии, Майер продолжил опыты с открытыми на то время разновидностями энергии:
  • кинетической,
  • потенциальной,
  • внутренней,
  • механической;

…и смог определить, в чем заключается закон сохранения механической энергии.

«Тепло, электричество и перемещение представляют собою феномены, которые могут быть сведены к одной силе, измеряются друг другом и переходят друг в друга по определенным законам» — излагал в своей научной работе Майер.

Английский физик Джеймс Джоуль, чье имя носит единица измерения энергии, и германский естествоиспытатель Герман Гельмгольц несколькими годами позже также
описали закон сохранения энергии. Физика. 8 класс. Учебник.

Физика. 8 класс. Учебник.

Учебник соответствует Федеральному государственному образовательному стандарту основного общего образования. Большое количество красочных иллюстраций, разнообразные вопросы и задания, а также дополнительные сведения и любопытные факты способствуют эффективному усвоению учебного материала.

Купить

Кинетическая и потенциальная энергия

Энергия тела — физическая величина, определяющая работу наблюдаемого тела или системы тел за бесконечно долгое время.

В изучении механических явлений рассматривают потенциальную и кинетическую энергии.

  • Единица энергии в СИ 1 Джоуль (Дж).

Кинетическая энергия — энергия, которой обладает тело в движении (вращении, перемещении в пространстве).

Футбольный мяч, летящий в ворота, летящая в цель стрела, выпущенная метким лучником, едущие с горы сани с сидящим в них хохочущим ребенком — все они во время движения характеризуются кинетической энергией.

Кинетическая энергия напрямую зависит от массы тела и скорости перемещения.

Формула кинетической энергии Ек = mv2/2

Где где m — масса объекта;

v  — скорость перемещения объекта в конкретной точке.

Потенциальная энергия. Само по себе тело потенциальной энергией не обладает.  Этот вид энергии характеризует взаимосвязь элементов объекта или двух отдельных тел в пространстве.

Стоящие на вершине холма санки, стрела, вложенная лучником в натянутую тетиву, ядро в стволе средневековой пушки — пример объекта, обладающего потенциальной энергией.

Потенциальная энергия бывает положительной или отрицательной относительно определенного условного нулевого уровня, принятого для системы координат:

  • сила тяжести,
  • сила упругости,
  • архимедова сила

Потенциальная энергия объекта зависит от приложенных к нему сил.

Если оценивать расположение объекта в отношении уровня Земли, то потенциальная энергия объекта на поверхности планеты принимается за ноль.

Уравнение Еп = mɡh поможет рассчитать потенциальную энергию на высоте h:
где m — масса тела;
ɡ — ускорение свободного падения;
h — высота центров масс объектов относительно поверхности планеты;
ɡ = 9,8 м/с2

Потенциальная энергия упруго деформированного объекта (пружины) рассчитывается согласно уравнению:
Еп = k·(∆x)2/2,
где k — коэффициент жёсткости,
∆x — изменение длины объекта вследствие его сжатия или растяжения.

Подробно различные виды потенциальной энергии разбираются на странице 131 учебника «Физика 10 кл. под редакцией Касьянова В. А.»

Физика. 9 класс. Учебник.

Физика. 9 класс. Учебник.

Учебник отличаются качественным современным оформлением, в нём приводятся многочисленные слайды и микрофотографии. Выполняя проблемные, поисковые и исследовательские задания, школьники не только активно усваивают материал, но и учатся мыслить, искать и анализировать информацию из разных источников, в том числе из интернета. Особое внимание уделяется практическим заданиям: ученикам предлагается проводить опыты, конструировать модели, разрабатывать проекты.

Купить Закон превращения и сохранения энергии

Суммарное число значений потенциальной и кинетической энергий объекта обозначают как механическая энергия. Для каждого конкретного объекта механическая энергия определяется не выбором системы отсчета, в которой рассчитывают скорость движения исследуемого объекта, а установлением уровня условного нуля для всех видов потенциальных энергий, определенных у данного объекта.

Механическая энергия определяет свойство объекта (системы объектов) совершать работу за счет изменения скорости перемещения объекта или изменения расположения взаимодействующих объектов относительно друг друга.

Что ещё почитать?

Сформулируем закон сохранения механической энергии с помощью математического уравнения:

Еk1 + Еп1 = Еk2 + Еп2

Глядя на представленную формулу видно, что энергия не появляется из ниоткуда и не исчезает в неизвестном направлении; лишь происходит преобразование одной разновидности в другую или переход между взаимодействующими объектами.

В изолированной или закрытой системе, т.е. системе, на которую не оказывают влияния силы извне или их возможно игнорировать, энергетический обмен с внешней средой не происходит, и внутренняя энергия объекта не изменяется. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот. В учебнике «Физика. 10 класс» под редакцией В. А. Касьянова на портале LECTA разобраны примеры задач на закон сохранения энергии.

#ADVERTISING_INSERT#

rosuchebnik.ru

Конспект «Механическая энергия. Закон сохранения энергии»

Механическая энергия.
Закон сохранения энергии

Раздел ОГЭ по физике: 1.18. Механическая энергия. Закон сохранения механической энергии. Формула для закона сохранения механической энергии в отсутствие сил трения. Превращение механической энергии при наличии силы трения.



1. Энергия тела – физическая величина, показывающая работу, которую может совершить рассматриваемое тело (за любое, в том числе неограниченное время наблюдения). Тело, совершающее положительную работу, теряет часть своей энергии. Если же положительная работа совершается над телом, энергия тела увеличивается. Для отрицательной работы – наоборот.

  • Энергией называют физическую величину, которая характеризует способность тела или системы взаимодействующих тел совершить работу.
  • Единица энергии в СИ 1 Джоуль (Дж).

2. Кинетической энергией называется энеpгия движущихся тел. Под движением тела следует понимать не только перемещение в пространстве, но и вращение тела. Кинетическая энергия тем больше, чем больше масса тела и скорость его движения (перемещения в пространстве и/или вращения). Кинетическая энеpгия зависит от тела, по отношению к которому измеряют скорость рассматриваемого тела.

  • Кинетическая энергия Ек тела массой m, движущегося со скоростью v, определяется по формуле Ек =mv2/2

3. Потенциальной энергией называется энергия взаимодействующих тел или частей тела. Различают потенциальную энергию тел, находящихся под действием силы тяжести, силы упругости, архимедовой силы. Любая потенциальная энергия зависит от силы взаимодействия и расстояния между взаимодействующими телами (или частями тела). Потенциальная энергия отсчитывается от условного нулевого уровня.

  • Потенциальной энергией обладают, например, груз, поднятый над поверхностью Земли, и сжатая пружина.
  • Потенциальная энергия поднятого груза Еп = mgh.
  • Кинетическая энергия может превращаться в потенциальную, и обратно.

4. Механической энергией тела называют сумму его кинетической и потенциальной энергий. Поэтому механическая энеpгия любого тела зависит от выбора тела, по отношению к которому измеряют скорость рассматриваемого тела, а также от выбора условных нулевых уровней для всех разновидностей имеющихся у тела потенциальных энергий.

  • Механическая энергия характеризует способность тела или системы тел совершить работу вследствие изменения скорости тела или взаимного положения взаимодействующих тел.

5. Внутренней энергией называется такая энергия тела, за счёт которой может совершаться механическая работа, не вызывая убыли механической энергии этого тела. Внутренняя энеpгия не зависит от механической энергии тела и зависит от строения тела и его состояния.

6. Закон сохранения и превращения энергии гласит, что энеpгия ниоткуда не возникает и никуда не исчезает; она лишь переходит из одного вида в другой или от одного тела к другому.

  • Закон сохранения механической энергии: если между телами системы действуют только силы тяготения и силы упругости, то сумма кинетической и потенциальной энергии остается неизменной, то есть механическая энергия сохраняется.

Таблица «Механическая энергия. Закон сохранения энергии».

"Механическая энергия. Закон сохранения энергии".

7. Изменение механической энергии системы тел в общем случае равно сумме работы внешних по отношению к системе тел и работы внутренних сил трения и сопротивления: ΔW = Авнешн + Адиссип

Если система тел замкнутавнешн = 0), то ΔW = Адиссип, то есть полная механическая энергия системы тел меняется только за счёт работы внутренних диссипативных сил системы (сил трения).

Если система тел консервативна (то есть отсутствуют силы трения и сопротивления Атр = 0), то ΔW = Авнешн, то есть полная механическая энергия системы тел меняется только за счёт работы внешних по отношению к системе сил.

8. Закон сохранения механической энергии: В замкнутой и консервативной системе тел полная механическая энергия сохраняется: ΔW = 0 или Wп1 + Wк1 = Wп2 + Wк2 . Применим законы сохранения импульса и энергии к основным моделям столкновений тел.

  • Абсолютно неупругий удар (удар, при котором тела движутся после столкновения вместе, с одинаковой скоростью). Импульс системы тел сохраняется, а полная механическая энергия не сохраняется:

"Механическая энергия. Закон сохранения энергии".

  •  Абсолютно упругий удар (удар, при котором сохраняется механическая энергия системы). Сохраняются и импульс системы тел, и полная механическая энергия:

"Механическая энергия. Закон сохранения энергии".

Удар, при котором тела до соударения движутся по прямой, проходящей через их центры масс, называется центральным ударом.

 


Схема «Механическая энергия.
Закон сохранения энергии. Углубленный уровень«

Механическая энергия.

Закон сохранения энергии


Конспект урока по физике «Механическая энергия. Закон сохранения энергии». Выберите дальнейшие действия:

 

uchitel.pro

Закон сохранения и превращение энергии. Формулировка и определение закона сохранения и превращения энергии

Закон сохранения и превращение энергии является одним из важнейших постулатов физики. Рассмотрим историю его появления, а также основные области применения.

Страницы истории

Для начала выясним, кто открыл закон сохранения и превращения энергии. В 1841 году английским физиком Джоулем и русским ученым Ленцем параллельно были проведены эксперименты, в результате которых ученым удалось на практике выяснить связь между механической работой и теплотой.

Многочисленные исследования, проводимые физиками в разных уголках нашей планеты, предопределили открытие закона сохранения и превращения энергии. В середине девятнадцатого века немецким ученым Майером была дана его формулировка. Ученый попробовал обобщить всю информацию об электричестве, механическом движении, магнетизме, физиологии человека, существовавшую в тот промежуток времени.

Примерно в этот же период аналогичные мысли были высказаны учеными в Дании, Англии, Германии.

закон сохранения и превращения энергии

Эксперименты с теплотой

Несмотря на многообразие идей, касающихся теплоты, полное представление о ней было дано только русским ученым Михаилом Васильевичем Ломоносовым. Современники не поддержали его идеи, считали, что теплота не связана с движением мельчайшим частиц, из которых состоит вещество.

Закон сохранения и превращения механической энергии, предложенный Ломоносовым, был поддержан только после того, как в ходе экспериментов Румфорду удалось доказать наличие движения частиц внутри вещества.

Для получения теплоты физик Дэви пытался плавить лед, осуществлял трение друг о друга двух кусков льда. Он выдвинул гипотезу, согласно которой теплота рассматривалась в качестве колебательного движения частиц материи.

Закон сохранения и превращение энергии по Майеру предполагал неизменность сил, вызывающих появление теплоты. Подобная идея была раскритикована другими учеными, которые напоминали о том, что сила связана со скоростью и массой, следовательно, ее значение не могло оставаться неизменной величиной.

В конце девятнадцатого века Майер обобщил свои идеи в брошюре и попытался разрешить актуальную проблему теплоты. Как использовался в то время закон сохранения и превращения энергии? В механике не было единого мнения относительно способов получения, превращения энергии, поэтому до конца девятнадцатого века этот вопрос оставался открытым.

как читается закон сохранения и превращения энергии

Особенность закона

Закон сохранения и превращение энергии является одним из фундаментальных, позволяющих при определенных условиях измерять физические величины. Его называют первым началом термодинамики, основным объектом которого является сохранение этой величины в условиях изолированной системы.

Закон сохранения и превращения энергии устанавливает зависимость количества теплоты от разных факторов. В ходе экспериментальных исследований, проводимых Майером, Гельмгольцем, Джоулем, были выделены различные виды энергии: потенциальная, кинетическая. Совокупность этих видов была названа механической, химической, электрической, тепловой.

Закон сохранения и превращение энергии имел следующую формулировку: «Изменение кинетической энергии равно изменению потенциальной энергии».

Майер пришел к выводу, что все разновидности этой величины способны превращаться друг в друга в случае, если остается неизменным общее количество теплоты.

закон сохранения и превращения энергии устаналивает

Математическое выражение

К примеру, в качестве количественного выражения закона, в химической промышленности выступает энергетический баланс.

Закон сохранения и превращения энергии устанавливает связь между величиной тепловой энергии, которая попадает в зону взаимодействия различных веществ, с тем ее количеством, которое уходит из данной зоны.

Переход одного вида энергии в другой не означает, что она исчезает. Нет, наблюдается лишь ее превращение в иную форму.

При этом наблюдается взаимосвязь: работа – энергия. Закон сохранения и превращения энергии предполагает постоянство этой величины (полное ее количество) при любых процессах, протекающих в изолированной системе. Это свидетельствует о том, что в процессе перехода одного вида в другой, соблюдается количественная эквивалентность. Для того чтобы дать количественную характеристику разных видов движения, в физике введена ядерная, химическая, электромагнитная, тепловая энергия.

Современная формулировка

Как читается закон сохранения и превращения энергии в наши дни? Классическая физика предлагает математическую запись данного постулата в виде обобщенного уравнения состояния термодинамической замкнутой системы:

W = Wk + Wp + U

Это уравнение показывает, что полная механическая энергия замкнутой системы определяется в виде суммы кинетической, потенциальной, внутренней энергий.

Закон сохранения и превращения энергии, формула которого была представлена выше, объясняет неизменность этой физической величины в замкнутой системы.

Основным недостатком математической записи является ее актуальность только для замкнутой термодинамической системы.

закон сохранения и превращения механической энергии

Незамкнутые системы

Если учитывать принцип приращений, вполне можно распространить закон сохранения энергии и на незамкнутые физические системы. Данный принцип рекомендует записывать математические уравнения, связанные с описанием состояния системы, не в абсолютных показателях, а в их числовых приращениях.

Чтобы в полной мере учитывались все формы энергии, предлагалось добавлять в классическое уравнение идеальной системы сумму приращений энергий, которые вызваны изменениями состояния анализируемой системы под воздействием различных форм поля.

В обобщенном варианте уравнение состояния имеет следующий вид:

dW = Σi Ui dqi + Σj Uj dqj

Именно это уравнение считается самым полным в современной физике. Именно оно стало основой закона сохранения и превращения энергии.

работа энергия закон сохранения и превращения энергии

Значение

В науке нет исключений из данного закона, он управляет всеми природными явлениями. Именно на основании данного постулата можно выдвигать гипотезы о различных двигателях, включая и опровержения реальности разработки вечного механизма. Его можно применять во всех случаях, когда необходимо объяснять переходы одного вида энергии в другой.

открытие закона сохранения и превращения энергии

Применение в механике

Как читается закон сохранения и превращения энергии в настоящее время? Его суть заключается в переходе одного вида этой величины в другой, но при этом ее общее значение остается неизменным. Те системы, в которых осуществляются механические процессы, именую консервативными. Такие системы являются идеализированными, то есть, в них не учитываются силы трения, иные виды сопротивлений, вызывающих рассеивание механической энергии.

В консервативной системе протекают только взаимные переходы потенциальной энергии в кинетическую.

Работа сил, которые действуют в подобной системе на тело, не связана с формой пути. Ее величина зависит от конечного и начального положения тела. В качестве примера сил такого рода в физике рассматривают силу тяжести. В консервативной системе величина работы силы на замкнутом участке равна нулю, а закон сохранения энергии будет справедлив в следующем виде: «В консервативной замкнутой системе сумма потенциальной и кинетической энергии тел, которые составляют системы, сохраняется неизменной».

К примеру, в случае свободного падения тела происходит переход потенциальной энергии в кинетическую форму, при этом суммарное значение этих видов не изменяется.

закон сохранения и превращения энергии в механике

В заключение

Механическую работу можно рассматривать в качестве единственного способа взаимного перехода механического движения в иные формы материи.

Данный закон нашел применение в технике. После выключения двигателя автомобиля, происходит постепенная потеря кинетической энергии, последующая остановка транспортного средства. Исследования показали, что при этом наблюдается выделение определенного количества теплоты, следовательно, трущиеся тела нагреваются, увеличивая свою внутреннюю энергию. В случае трения либо любого сопротивления движению наблюдается переход механической энергии во внутреннюю величину, что свидетельствует о правильности закона.

Его современная формулировка имеет вид: «Энергия изолированной системы не исчезает в никуда, не появляется из ниоткуда. В любых явлениях, существующих внутри системы, наблюдается переход одного вида энергии в иной, передача от одного тела к другому, без количественного изменения».

После открытия данного закона физики не оставляют идею о создании вечного двигателя, в котором бы при замкнутом цикле не происходило изменения величины передаваемого системой тепла окружающему миру, в сравнении с получаемым извне теплом. Такая машина смогла бы стать неисчерпаемым источником тепла, способом решения энергетической проблемы человечества.

fb.ru

2.9. Закон сохранения и превращения энергии в механике. @

В 1748 г. М.В.Ломоносов сформулировал закон сохранения материи и движе­ния. Через 100 лет Р.Майер и Г.Гельмгольц дали количественную формулировку за­кона сохранения и превращения энергии.

В замкнутой системе энергия может пе­реходить из одних видов в другие и передаваться от одного тела другому, но об­щее количество энергии остается неизменным. В природе и технике постоян­но имеют место превращения одних видов энергии в другие. Например, в электро­двига­телях электрическая энергия переходит в механическую, в ядерном реакторе ядерная энергия переходит в тепловую, затем в механическую и электромагнитную, при фо­тоэффекте — электромагнитная в электрическую и т.д. Однако следует иметь в виду, что одновременно может происходить несколько типов превращений энергии, например, обычно некоторая часть энергии непременно пре­вращается во внутреннюю (тепловую) энергию вещества (в энергию теплового движения молекул). Но всегда общий запас энергии системы в любой момент времени оста­ется неизменным. Закон сохранения и взаимопревращения энергии является всеобщим законом природы, не имеющим исключений; если он как бы нарушается в эксперименте, значит что-то не учтено.

Закон сохранения механической энергииформулируется следующим об­ра­зом: Если в замкнутой системе действуют консервативные силы, то механи­ческая энергия не переходит в другие виды и остается постоянной во времени (при этом возможен переход потенциальной энергии в кинетическую и наоборот).

Продемонстрируем действие этого закона на примере свободного падения тела.

П

Рис.2.12. Используемые в примере, направления для координат, скорости и ускорения свободного падения.

ример: Пусть тело массой m начинает падать вниз с высоты h.

Рассчитаем его механическую энергию в различные моменты времени. В начальный момент времени, в верхней точке его механическая энергия равна mgh (Ек =0 так как начальная скорость равна нулю).

Если не учитывать силы трения о воздух, то в любой следующий момент времени t координату и скорость тела можно рассчитать с помощью законов кинематики для равноускоренного движения с ускорением свободного падения g (см. рис.2.12): z = h  ‑ gt2/2, v  = ‑ gt.

Механическая энергия в этот момент времени будет равна

Ем = Еп + Ек = mgz + mv2/2 = mg(h – gt2/2) + m(gt)2/2 = mgh, т.е. равна энергии в начальный момент времени. Отсюда видно, что механическая энергия не меняется со временем. Если же рассматривать и действие сил трения, то окажется, что механическая энергия тела при движении уменьшается. Это объясняется частичным превращением ее во внутреннюю (тепловую) энергию воздуха и самого тела.

3. Динамика вращательного движения. @

3.1. Основные характеристики динамики вращательного движения. @

Для описания вращательного движения используются следующие па­раметры : момент инерции J, момент силы , момент импульса тела. Ана­ло­гами их в поступательном движении являются масса m, сила , импульс тела.

Момент инерции материальной точки относительно некоторой оси есть ска­лярная физическая величина равная произведению массы этой точки на квадрат кратчайшего рас­стояния от нее до оси вращения .

Ч

Рис.3.1.Иллюстрация к теореме Штейнера.

тобы рассчитать момент инерции твердого тела, его мысленно разбивают наn материальных точек с массами m1, m2,…, mn, находящихся на расстояниях r1, r2,…, rn от оси вращения. Момент инерции твердого тела J, вращающегося вокруг неподвижной оси ра­вен алгебраической сумме моментов инерции всех точек, из которых состоит тело . При непрерывном распределении масс тела эта сумма сводится к интегралу , гдеV — объем тела, r – кратчайшее расстояние от точки до оси вращения. На основании этой формулы рассчитываются моменты инерции тел различной формы. Например: 1) полый тонкостенный цилиндр или обруч радиуса R, массой m и осью вра­ще­ния, совпадающей с осью симметрии ; 2) сплошной цилиндр или диск радиусаR, массой m и осью вращения, совпа­дающей с осью симметрии ; 3) шар радиусаR, массой m и осью вращения, проходящей через его центр . Приведенные примеры показывают, что момент инерции тела зависит от его массы, формы, геометрических размеров, его расположения относительно оси вра­щения, распределения массы по объему тела.

Расчет моментов инерции тел относительно осей, не совпадающих с осью сим­метрии более сложен. В таких случаях применяется теорема Штейнера: мо­мент инерции любого тела относительно произвольной оси ОО равен сумме момента инерции этого тела JO относительно оси АА , параллельной данной и проходящей через центр масс тела С, и произведения массы тела на квадрат расстояния между осями (рис.3.1) .

Моментом силы относительно неподвижной точки О называется вектор­ная физическая величина, равная векторному произведению радиуса-вектора, про­веденного из точки О в точку приложения силы, на век­тор силы:.

Рис.3.2. Момент силы относительно непод­вижной точки.

Направление перпендикулярно плоскости, в которой лежат вектораи. Его направление совпада­ет с направлением поступательного движения правого винта при его вращении отк (рис.3.2). Модуль момента силы

, — плечо силы — кратчайшее расстояние между линией действия силы и точкой О. Если к точке А приложено несколько сил, то результирующийбудет равен векторной сумме моментов слагаемых сил:

Момент силы, действующей на тело относительно неподвижной оси z, есть ска­лярная величина Mz, равная проекции на эту ось вектора момента силы, опреде­ленно­го относительно произвольной точки О данной оси z (рис.3.3) .

Рис.3.3. Момент силы относительно непод­вижной оси.

Значение момента Mz не зависит от положения точки О на оси z. Если ось  z совпа­дает с направлением вектора , то момент силы равен.

Момент импульса (количества движения) матери­альной точки А относительно неподвижной точки О есть векторная физическая величина, определяемая векторным произведением двух векторов: радиуса-вектора, прове­денного из точки О в точку А, и импульса материальной точки                

        .

Направление вектора совпадает с направлением посту­па­тельного движения правого винта при его вращении отк(рис.3.4).

Рис.3.4. Момент им­пульса относительно неподвижной точки.

Модуль вектора , — угол между векторами и,l — плечо вектора (или) относительно точки О.

Моментом импульса точки относительно неподвиж­ной оси z называется скалярная величина Lz равная проек­ции на эту ось вектора мо­мента импульса, определенного относительно произволь­ной точки О данной оси , гдеугол между вектороми осьюz.

Момент импульса твердого тела есть векторная сумма мо­ментов импульса всех точек, из которых состоит тело. Если число точек системы равно n, тогда .

При вращательном движении твердого тела вокруг неподвижной оси угловые скорости  всех его точек равны, угол между векторами иравени все векторана­правлены по оси вращения в одну сторону. Отсюда модуль векторатела равен,,

.

Момент импульса твердого тела, вращающегося вокруг неподвижной оси, равен произведению момента инерции этого тела относительно той же оси на угловую скорость. Направления векторов исовпадают и.

studfile.net

Закон сохранения и превращения энергии

при любых физических взаимодействиях энергия превращается из одной формы в другую.

Иногда угол между силой трения Ftr и элементарным перемещением Δr равен нулю и работа силы трения положительна:

 Atr=Ftrs12 ,

Пример 1. Пусть, внешняя сила F действует на брусок В, который может скользить по тележке D (рис. 5). Если тележка перемещается вправо, то работа силы трения скольжения Ftr2, действующей на тележку со стороны бруска, положительна:

Рис. 5

Пример 2. При качении колеса его сила трения качения направлена вдоль движения, так как точка соприкосновения колеса с горизонтальной поверхностью двигается в направлении, противоположном направлению движения колеса, и работа силы трения положительна (рис. 6):

Рис. 6

13) Кинет. Энерг. Системы материальных точек. Теорема о кинет. Энергии. Кинетическая энергия

Напишем уравнение движения материальной точки (частицы) массы m, движущейся под действием сил, результирующая которых равна :.

Умножим скалярно правую и левую часть этого равенства на элементарное перемещение точки, тогда

. (1)

Так как , то легко показать, чтоИспользуя последнее равенство и то обстоятельство, что масса материальной точки постоянная величина, преобразуем (1) к виду.

Проинтегрировав части этого равенства вдоль траектории частицы от точки 1 до точки 2, имеем:

.

Согласно определению первообразной и формуле (4.3) для работы переменной силы, получим соотношение: .

Величина

 (2)

называется кинетической энергией материальной точки.

Таким образом мы приходим к формуле

, (3)

из которой следует, что работа результирующей всех сил, действующих на материальную точку, расходуется на приращение кинетической энергии этой частицы.

Полученный результат без труда обобщается на случай произвольной системы материальных точек.

Кинетической энергией системы называется сумма кинетических энергий материальных точек, из которых эта система состоит или на которые ее можно мысленно разделить: .

Напишем соотношение (3) для каждой материальной точки системы, а затем все такие соотношения сложим. В результате снова получим формулу, аналогичную (3), но для системы материальных точек.

, (4)

где и— кинетические энергии системы, а поднеобходимо понимать сумму работ всех сил, действующих на материальные точки системы.

Таким образом мы доказали теорему (4): работа всех сил, действующих на систему материальных точек, равна приращению кинетической энергии этой системы.

Теорема о кинетической энергии

A=Ek2−Ek1 . (3)

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой m равна нулю и тело увеличивает свою скорость до значения υ, то работа силы равна конечному значению кинетической энергии тела:

 A=Ek2−Ek1=mυ22−0=mυ22 . (4)

Теорема о кинетической энергии.

 

Пусть в выбранной ИСО частица массы m движется под действием силы F. определим элементарную работу силы на элементарное перемещение частицы dr. Учитывая, что

 

,                                               (7.1)

 

Получим

 

.                                          (7.2)

 

Так как проекция вектора на направлениеравна приращению модуля вектора скорости, то

 

.                                            (7.3)

 

Элементарная работа равнодействующей силы равна приращению величины

 

,                                                       (7.4)

 

которая называется кинетической энергией. Значит, работа равнодействующей силы на элементарное перемещение частицы ведет к приращению ее кинетической энергии (теорема о кинетической энергии):

 

.                                                       (7.5)

 

В случае конечного перемещения частицы, будем иметь

 

,                                                      (7.6)

 

то есть работа равнодействующей силы, действующей на частицу, независимо от природы этой силы, равна приращению кинетической энергии частицы. Если работа положительна, то кинетическая энергия частицы возрастает. Силы сопротивления уменьшают кинетическую энергию частицы.

Рассмотрим механическую систему, состоящую из n частиц, которые имеют кинетические энергии . Согласно (7.5), приращение кинетической энергииi-той частицы равно работе равнодействующей силы, действующей на эту частицу: . Полная работа сил, действующих на систему, будет

 

,                                  (7.7)

 

где величина

 

                                               (7.8)

 

есть сумма кинетических энергий составляющих систему частиц, и называется кинетической энергией системы. Следовательно, кинетическая энергия – величина аддитивная.

Полученный результат (7.8) – полная работа сил, действующих в системе, равна приращению ее кинетической энергии – известна как теорема о кинетической энергии.

Так как кинетическая энергия – квадратичная функция скорости, то ее значение зависит от выбранной системы отсчета. Получим закон преобразования кинетической энергии при переходе от одной системы отсчета к другой. Для этого рассмотрим кинетическую энергию системы в ИСО К и :

 

.                                    (7.9)

 

Если движется относительно К со скоростью u , то согласно преобразованиям Галилеяvi = vi´+ u, так что

 

                             (7.10)

 

Здесь – полная масса системы, а– полный импульс в, который можно представить через скорость центра инерции:

 

.                                    (7.11)

 

Если центр инерции системы в неподвижен, т.е.является С системой (движется со скоростью), то в этом случаеи из (7.11) получим

 

.                                                (7.12)

 

Это теорема Кенига. Первый член правой части (7.12) – это кинетическая энергия в С системе. Значит, (7.12) представляет собой формулу перехода из лабораторной СО в систему С, а (7.11) – из К в произвольную систему .

studfile.net

14. Полная механическая энергия и закон ее изменения. Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии.

Полной механической энергией системы тел называется сумма кинетической и потенциальной энергий:

E = Eк + Eп.

Существует 2 причины изменения энергии системы: действие внешних и действие внутренних непотенциальных сил.

Очевидно, что полная механическая энергия замкнутой системы, в которой действуют только потенциальные(силы, работа которых зависит только от начального и конечного положения точек их приложения и не зависит ни от вида траекторий, ни от закона движения этих точек.) силы, не изменяется при любых перемещениях тел. Это утверждение называется законом сохранения механической энергии.

Общефизический закон сохранения энергии: В системе, в которой действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, в этих случаях закон сохранения механической энергии несправедлив. Однако при «исчезнове­нии» механической энергии всегда возникает эквивалентное количество энергии друго­го вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом и заключается физическая сущность закона сохранения и превращения энергии — сущность неуничтожимости материи и ее движения.

15. Механический принцип относительности и преобразования Галилея. Классический закон сложения скоростей.

В классической механике справедлив механический принцип относительности (принцип относительности Галилея): законы динамики одинаковы во всех инерциальных систе­мах отсчета.

Рассмотрим две системы отсчета: неподвижную (К) и движущуюся относительно первой вдоль оси Х с постоянной Х с постоянной скоростью (K’). Координаты тела М в системе К x:y:z , а в системе К’ — x’:y’:z’. Эти координаты связаны между собой соотношениями, которые называются преообразованием Галилея Отсчет времени начат с момента, когда начало координат обеих систем совпадают. Продифференцировав по времени t, получим выражение правила сложения скоростей в классической механике: υ=υ’+υ0Классический закон сложения скоростей формулируется следующим образом: скорость движения материальной точки по отношению к системе отсчета, принимаемой за неподвижную, равна векторной сумме скоростей движения точки в подвижной системе и скорости движения подвижной системы относительно неподвижной.

16. Постулаты специальной теории относительности (сто). Относительность понятия одновременности. Преобразования Лоренца.

В основе специальной теории относительности лежат два принципа или постулата, сформулированные Эйнштейном в 1905 г.

1) Принцип относительности: все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна.

2) Принцип постоянства скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.

Постулаты Эйнштейна находятся в противоречии не друг с другом, а с формулами преобразования Галилея. Поэтому на смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую – так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивисткие эффекты, а при малых скоростях (υ << c) переходят в формулы преобразования Галилея. Таким образом, новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия.

Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики.

Одним из важнейших следствий из преобразований Лоренца является вывод об относительности одновременности. Пусть, например, в двух разных точках системы отсчета K’ (x’1 ≠ x’2) одновременно с точки зрения наблюдателя в K’ (t’1 = t’2 = t’) происходят два события. Согласно преобразованиям Лоренца, наблюдатель в системе K будет иметь

studfile.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *