Физика 9 класс. Законы, правила, формулы
Кинематика
Динамика
- Силы трения
- Трение покоя
Максимальная сила трения покоя (Fтр)max пропорциональна силе нормального давления (N) и зависит от характера взаимодействия соприкасающихся поверхностей тел, определяемого коэффициентом трения (μ)
(Fтр)max=μ×N
СИ: Н - Трение скольжения
Сила трения скольжения (Fтр) пропорциональна силе давления (N), коэффициенту трения (μ) и направлена противоположно направлению движения тела.
Fтр=μ×N
СИ: Н - Коэффициент трения
Коэффициент трения (μ) вычисляют как отношение модулей силы трения (Fтр) и силы давления (N).
μ=Fтр/N - Движение тела под действием силы трения
1) Путь (l), пройденный движущимся телом под действием силы трения до полной остановки (тормозной путь), прямо пропорционален квадрату начальной скорости (
2) Время (t) движения тела под действием силы трения до момента полной остановки (время торможения) прямо пропорционально начальной скорости (v0) и обратно пропорционально коэффициенту трения (μ):
СИ: м, с
- Движение тела под действием нескольких сил
- Условие равновесия тела (как материальной точки).
Тело находится в равновесии (в покое или движется равномерно и прямолинейно), если сумма проекций всех сил (), действующих на тело, на любую ось (ОХ, ОY, O, …) равна нулю.
;
;
СИ: Н - Движение тела по наклонной плоскости
Ускорение тела, скользящего вниз по наклонной плоскости с углом наклона (α ) и коэффициентом трения тела о плоскость (μ), не зависит от массы тела и равно: , (g — ускорение свободного падения)
СИ: м/с2 - Движение связанных тел через неподвижный блок
Ускорение двух тел, массами m1 и m2, связанных нитью, перекинутой через неподвижный блок, равно:
, (g — ускорение свободного падения)
СИ: м/с2
- Законы сохранения в механике
- Импульс тела
Импульс тела () — векторная величина, равная произведению массы (m) тела на его скорость ().
СИ: (кг×м)/с - Импульс силы
Импульс силы ( — произведение силы на время t её действия) равен изменению импульса тела.
СИ: Н×с - Закон сохранения импульса
Геометрическая сумма импульсов тел (), составляющих замкнутую систему, остается постоянной при любых движениях и взаимодействиях тел системы.
СИ: Н×с - Механическая работа силы
Работа (А) постоянной силы равна произведению модулей векторов силы () и перемещения () на косинус угла между этими векторами.
СИ: Дж - Теорема о кинетической энергии
Работа (А) силы (или равнодействующей сил) равна изменению кинетической энергии (Ek1 и Ek2) движущегося тела.
,
где m — масса тела, v1, v2 — начальная и конечная скорости тела
СИ: Дж - Потенциальная энергия поднятого тела
Потенциальная энергия (ЕП) тела, поднятого на некоторую высоту (h) над нулевым уровнем, равна работе (А) силы тяжести (m×g) при падении тела с этой высоты до нулевого уровня.
A=ЕП=m×g×h
СИ: Дж - Работа силы тяжести
Работа (А ) силы тяжести (mg) не зависит от пути, пройденного телом, а определяется разностью высот (Δh=h2-h1) положения тела в конце и в начале пути и равна разности его потенциальных энергий (EП2 и EП1).
A=-(EП2-EП1)=-m×g×Δh
СИ: Дж - Потенциальная энергия деформированного тела
Потенциальная энергия (ЕП) деформированного тела (пружины) равна работе силы упругости при переходе тела (пружины) в состояние, в котором его деформация равна нулю.
ЕП = ,
где k — жесткость; х — деформация пружины.
СИ: Дж - Закон сохранения полной механической энергии
Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения или силами упругости, остается неизменной при любых движениях тел системы.
ЕК2+ЕП2=ЕК1+ЕП1=const
СИ: Дж
- Движение жидкостей и газов по трубам
- Закон Бернулли
Давление жидкости, текущей в трубе, больше в тех частях трубы, где скорость её движения меньше, и наоборот, в тех частях, где скорость больше, давление меньше.
,
где p1, v1, h1 — давление, скорость и вертикальная координата жидкости в одном сечении трубы; p2, v2, h2 — давление, скорость и вертикальная координата жидкости в другом сечении трубы;
ρ — плотность жидкости; g — ускорение свободного падения.
СИ: Па
Поделитесь с друзьями:
zadachi-po-fizike.electrichelp.ru
ЗАКОНЫ ВЗАИМОДЕЙСТВИЯ И ДВИЖЕНИЯ ТЕЛ | |||
Вычисление перемещения | АВ2 = АС2 + ВС2 | Перемещение – вектор, соединяющий начальную точку движения тела с его конечной точкой. | |
Проекция вектора перемещения | Sx = x2 – x1 | x1 – начальная координата, [м] x2 – конечная координата, [м] Sx – перемещение, [м] | |
Формула расчета скорости движения тела | v = s/t | Скорость – физическая величина, равная отношению перемещения к промежутку времени, за которое это перемещение произошло. | v – скорость, [м/с] s – путь, [м] t – время, [c] |
Уравнение движения | x = x0 + vxt | x0 – начальная координата, [м] x – конечная координата, [м] v – скорость, [м/с] t – время, [c] | |
Формула для вычисления ускорения движения тела | a = v — v0⃗/t | a – ускорение, [м/с2] v – конечная скорость, [м/с] v0 – начальная скорость, [м/с] t – время, [c] | |
Уравнение скорости | v = v0⃗+ at | v – конечная скорость, [м/с] v0 – начальная скорость, [м/с] a – ускорение, [м/с2] t – время, [c] | |
Уравнение Галилея | S = v0t + at2/2 | S – перемещение, [м] v – конечная скорость, [м/с] v0 – начальная скорость, [м/с] a – ускорение, [м/с2] t – время, [c] | |
Закон изменения координаты тела при прямолинейном равноускоренном движении | x = x0 + v0t + at2/2 | x0 – начальная координата, [м] x – конечная координата, [м] v – конечная скорость, [м/с] v0 – начальная скорость, [м/с] a – ускорение, [м/с 2] t – время, [c] | |
Первый закон Ньютона | Если на тело не действуют никакие тела либо их действие скомпенсировано, то это тело будет находиться в состоянии покоя или двигаться равномерно и прямолинейно. | ||
Второй закон Ньютона | a = F ⃗/m | Ускорение, приобретаемое телом под действием силы, прямо пропорционально величине этой силы и обратно пропорционально массе тела. | a – ускорение, [м/с2] F – сила, [Н] m – масса, [кг] |
Третий закон Ньютона | |F1⃗ |=|F2⃗| F11 ⃗ = -F2⃗ | Сила, с которой первое тело действует на второе, равна по модулю и противоположна по направлению силе, с которой второе тело действует на первое | F – сила, [Н] |
Формула для вычисления высоты, с которой падает тело | H=gt2/2 | t – время, [c] g ≈ 9,81 м/с2 – ускорение свободного падения | |
Формула для вычисления высоты при движении вертикально вверх | h=v0t — gt2/2 | h – высота, [м] v0 – начальная скорость, [м/с] t – время, [c] g ≈ 9,81 м/с2 – ускорение свободного падения | |
Формула для вычисления веса тела при движении вверх с ускорением | P = m (g + a) | P – вес тела, [Н] m – масса тела, [кг] g ≈ 9,81 м/с2 – ускорение свободного падения a – ускорение тела, [м/с2] | |
Формула для вычисления веса тела при движении вниз с ускорением | P = m (g – a) | P – вес тела, [Н] m – масса тела, [кг] g ≈ 9,81 м/с2 – ускорение свободного падения a – ускорение тела, [м/с2] | |
Формула закона | F = Gm 1m2/r2 | Закон всемирного тяготения: два тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. | F – сила, [Н] G = 6,67 · 10-11 [Н·м2/кг2] – гравитационная постоянная m – масса тела, [кг] r – расстояние между телами, [м] |
Формула расчета ускорения свободного падения на разных планетах | g = G Mпл/Rпл2 | g – ускорение свободного падения, [м/с2] G = 6,67 · 10-11 [Н·м2/кг2 – гравитационная постоянная M – масса планеты, [кг] R – радиус планеты, [м] | |
Формула расчета ускорения свободного падения | g = GM3/(R3+H)2 | g – ускорение свободного падения, [м/с2] G = 6,67 · 10-11 M – масса Земли, [кг] R – радиус Земли, [м] Н – высота тела над Землей, [м] | |
Формула расчета центростремительного ускорения | а=υ2/r | a – центростремительное ускорение, [м/с2] v – скорость, [м/с] r – радиус окружности, [м] | |
Формула периода движения по окружности | T = 1/ν = (2πr)/υ = t/N | Т – период, [с] ν – частота вращения, [с-1] t – время, [с] N – число оборотов | |
Формула расчета угловой скорости | ω = 2π/T = 2πν = υr | ω – угловая скорость, [рад/с] υ – линейная скорость, [м/с] Т – период, [с] ν – частота вращения, [с-1] r – радиус окружности, [м] | |
Формула импульса тела | p = mv | Импульсом называют произведение массы тела на его скорость. | p – импульс тела, [кг·м/с] m – масса тела, [кг] υ – скорость, [м/с] |
Формула закона сохранения импульса | p1 + p2 = p1’ + p2’ m1v + m2u = m1v’ + m2u’ | Закон сохранения импульса: в замкнутой системе импульс всех тел остается величиной постоянной. | p – импульс тела, [кг·м/с] m – масса тела, [кг] υ – скорость 1-го тела, [м/с] u – скорость 2-го тела, [м/с] |
Формула импульса силы | P = Ft | p – импульс тела, [кг·м/с] F – сила, [Н] t – время, [c] | |
Формула механической работы | A = Fs | Механическая работа – физическая величина, равная произведению модуля силы на величину перемещения тела в направлении действия силы | A – работа, [Дж] F – сила, [Н] s – пройденный путь, [м] |
Формула расчета мощности | N = A/t | Мощность – физическая величина, характеризующая быстроту совершения механической работы. | N – мощность, [Вт] A – работа, [Дж] t – время, [c] |
Формула для нахождения коэффициента полезного действия (КПД) | η = Aп/Aз∙100 | КПД – отношение полезной работы к затраченной работе. | Aп – полезная работа, [Дж] Aз – затраченная работа, [Дж] |
Формула расчета потенциальной энергии | Ek = mv2/2 | Кинетическая энергия – энергия, которой обладает тело вследствие своего движения. | Ek – кинетическая энергия тела, [Дж] m – масса тела, [кг] v – скорость движения тела, [м/с] |
Формула закона сохранения полной механической энергии | mv12/2 + mgh1 = mv22/2 + mgh2 | Закон сохранения полной механической энергии: полная механическая энергия тела, на которое не действуют силы трения и сопротивления, в процессе его движения остается неизменной. | m – масса тела, [кг] g ≈ 9,81 м/с2 – ускорение свободного падения v1 – скорость тела в начальный момент времени, [м/с] v2 – скорость тела в конечный момент времени, [м/с] h1 – начальная высота, [м] h2 – конечная высота, [м] |
Формула силы трения | Fтр = μmg | Сила трения – сила, возникающая при соприкосновении двух тел и препятствующая их относительному движению. | Fтр – сила трения, [Н] μ – коэффициент трения m – масса тела, [кг] g ≈ 9,81 м/с2 – ускорение свободного падения |
Уравнение колебаний | x = A cos (ωt + φ0) | А – амплитуда колебаний, [м] х – смещение, [м] t – время, [c] ω – циклическая частота, [рад/с] φ0 – начальная фаза, [рад] | |
Формула периода | T = 1/ν = 2πr/υ = t/N | Т – период, [с] ν – частота колебании, [с-1] t – время колебании, [с] N – число колебаний | |
Формула периода для математического маятника | T= 2π √L/g | Т – период, [с] g ≈ 9,81 м/с2 – ускорение свободного падения L – длина нити, [м] | |
Формула периода для пружинного маятника | T = 2π √m/K | Т – период, [с] m – масса груза, [кг] К – жесткость пружины, [Н/м] | |
Формула длины волны | λ = υТ = υ/ν | λ – длина волны, [м] Т – период, [с] ν – частота, [с-1] υ – скорость волны, [м/с] | |
Формула расчета плотности тела | ρ=m/V | Плотность вещества – показывает, чему равна масса вещества в единице объема. | ρ – плотность, [кг/м3] m – масса, [кг] V – объем тела, [м3] |
Формула гидростатического давления жидкости | p = ρgh | p – давление, [Па], [Н/м] ρ – плотность жидкости, [кг/м3] g ≈ 9,81 м/с2 – ускорение свободного падения h – высота столба жидкости, [м] | |
Формула силы Архимеда | FA = ρgV | Закон Архимеда: на всякое тело, погруженное в жидкость (газ(, действует выталкивающая сила, равная весу вытесненной жидкости (газа). | FА – сила Архимеда, [Н] ρ – плотность жидкости или газа [кг/м3] g ≈ 9,81 м/с2 – ускорение свободного падения V – объем тела, [м3] |
ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ | |||
Формула расчета силы Ампера | FA = BIL sinα | Закон Ампера: сила действия однородного магнитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником. | FA – сила Ампера, [Н] В – магнитная индукция, [Тл] I – сила тока, [А] L – длина проводника, [м] |
Формула расчета силы Лоренца | Fл = q B υ sinα | Сила Лоренца – сила, действующая на точечную заряженную частицу, движущуюся в магнитном поле. Она равна произведению заряда, модуля скорости частицы, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и скоростью движения частицы. | Fл – сила Лоренца, [Н] q – заряд, [Кл] В – магнитная индукция, [Тл] υ – скорость движения заряда, [м/с] |
Формула радиуса движения частицы в магнитном поле | r = mυ/qB | r – радиус окружности, по которой движется частица в магнитном поле, [м] m – масса частицы, [кг] q – заряд, [Кл] В – магнитная индукция, [Тл] υ – скорость движения заряда, [м/с] | |
Формула для вычисления магнитного потока | Ф = B S cosα | Ф – магнитный поток, [Вб] В – магнитная индукция, [Тл] S – площадь контура, [м2] | |
Формула для вычисления величины заряда | q = It | Заряд – это есть произведение силы тока на время, в течение которого этот заряд протекает по проводнику. | q – заряд, [Кл] I – сила тока, [А] t – время, [c] |
Закон Ома для участка цепи | I=U/R | Закон Ома: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. | I – сила тока, [А] U – напряжение, [В] R – сопротивление, [Ом] |
Формула для вычисления удельного сопротивления проводника | R = ρ * L/S ρ = R * S/L | Удельное сопротивление – величина, характеризующая электрические свойства вещества, из которого изготовлен проводник. | ρ – удельное сопротивление вещества, [Ом·мм2/м] R – сопротивление, [Ом] S – площадь поперечного сечения проводника, [мм2] L – длина проводника, [м] |
Законы последовательного соединения проводников | I = I1 = I2 U = U1 + U2 Rобщ = R1 + R2 | Последовательным соединением называется соединение, когда элементы идут друг за другом. | I – сила тока, [А] U – напряжение, [В] R – сопротивление, [Ом] |
Законы параллельного соединения проводников | U = U1 = U2 I = I1 + I2 1/Rобщ = 1/R1 +1/R2 | Параллельным соединением проводников называется такое соединение, при котором начала и концы проводников соединяются вместе. | I – сила тока, [А] U – напряжение, [В] R – сопротивление, [Ом] |
Формула для вычисления величины заряда. | q = It | Заряд – это есть произведение силы тока на время, в течение которого этот заряд протекает по проводнику. | q – заряд, [Кл] I – сила тока, [А] t – время, [c] |
Формула для нахождения работы электрического тока | A = Uq A = UIt | Работа – это величина, которая характеризует превращение энергии из одного вида в другой, т.е. показывает, как энергия электрического тока, будет превращаться в другие виды энергии – механическую, тепловую и т. д. Работа электрического поля – это произведение электрического напряжения на заряд, протекающий по проводнику. Работа, совершаемая для перемещения электрического заряда в электрическом поле. | A – работа электрического тока, [Дж] U – напряжение на концах участка, [В] q – заряд, [Кл] I – сила тока, [А] t – время, [c] |
Формула электрической мощности | P = A/t P = UI P = U2/R | Мощность – работа, выполненная в единицу времени. | P – электрическая мощность, [Вт] A – работа электрического тока, [Дж] t – время, [c] U – напряжение на концах участка, [В] I – сила тока, [А] R – сопротивление, [Ом] |
Формула закона Джоуля-Ленца | Q = I2Rt | Закон Джоуля-Ленца: при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику. | Q – количество теплоты, [Дж] I – сила тока, [А]; t – время, [с]. R – сопротивление, [Ом]. |
Закон отражения света | Луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, при этом угол падения луча равен углу отражения луча. | ||
Закон преломления | sinα/sinγ = n2/n1 | При увеличении угла падения увеличивается и угол преломления, то есть при угле падения, близком к 90°, преломлённый луч практически исчезает, а вся энергия падающего луча переходит в энергию отражённого. | n – показатель преломления одного вещества относительно другого |
Формула вычисления абсолютного показателя преломления вещества | n = c/v | Абсолютный показатель преломления вещества – величина, равная отношению скорости света в вакууме к скорости света в данной среде. | n – абсолютный показатель преломления вещества c – скорость света в вакууме, [м/с] v – скорость света в данной среде, [м/с] |
Закон Снеллиуса | sinα/sinγ = v1/v2 = n | Закон Снеллиуса (закон преломления света): отношение синуса угла падения к синусу угла преломления есть величина постоянная. | n – показатель преломления одного вещества относительно другого v – скорость света в данной среде, [м/с] |
Показатель преломления среды | sinα/sinγ = n | Отношение синуса угла падения к синусу угла преломления есть величина постоянная. | n – показатель преломления среды |
Формула оптической силы линзы | D = 1/F | Оптическая сила линзы – способность линзы преломлять лучи. | D – оптическая сила линзы, [дптр] F – фокусное расстояние линзы, [м] |
Формула тонкой линзы | 1/F = 1/d + 1/f | F – фокусное расстояние линзы, [м] d – расстояние от предмета до линзы, [м] f – расстояние от линзы до изображения, [м] | |
СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА | |||
Массовое число | M = Z + N | M – массовое число Z – число протонов (электронов), зарядовое число N – число нейтронов | |
Формула массы ядра | Мя = МА – Zme | Mя – масса ядра, [кг] МА – масса изотопа , [кг] me – масса электрона, [кг] | |
Формула дефекта масс | ∆m = Zmp+ Nmn – MЯ | Дефект масс – разность между суммой масс покоя нуклонов, составляющих ядро данного нуклида, и массой покоя атомного ядра этого нуклида. | ∆m – дефект масс, [кг] mp – масса протона, [кг] mn – масса нейтрона, [кг] |
Формула энергии связи | Есвязи = ∆m c2 | Энергия связи ядра – минимальная энергия, необходимая для того, чтобы разделить ядро на составляющие его нуклоны (протоны и нейтроны). | Есвязи – энергия связи, [Дж] m – масса, [кг] с = 3·108м/с – скорость света |
Альфа распад | M/Z * X → 4/2 * α + M/Z — 4/2 * Y |
zakon-oma.ru
Равномерное движение |
||
Путь |
S=Vt |
метр |
Скорость |
V=S/t |
метр/секунда |
Ускорение |
a=0 |
метр/сек2 |
Координата |
x = x0+vt |
|
Равноускоренное движение |
||
Ускорение |
а=V-V0/t |
метр/сек2 |
Координата |
x=x0+V0t+at2/2 |
|
Путь |
S=V0t+at2/2= V2-V02/2a |
метр |
Криволинейное движение по окружности |
||
Ускорение |
aцс=v2/r= w2r |
метр/сек2 |
Угловая скорость |
w= 2π/T |
радиан/cекунда |
Вещество |
||
Масса |
m=pv |
килограмм |
Силы |
|
|
Равнодействующая сила |
F=ma |
Ньютон |
Сила тяжести, вес |
F=mg |
Ньютон |
Сила трения |
F=мN |
Ньютон |
Сила упругости |
Fупр=-kx |
Ньютон |
Закон Архимеда |
F=pжVтg |
Ньютон |
Закон всемирного тяготения |
F=Gm1m2/R2 |
Ньютон |
Момент силы |
M=Fl |
Ньютон*метр |
Давление |
|
|
Давление твердых тел |
p=F/S |
Паскаль |
Давление в жидкостях |
p=pgh |
Паскаль |
Гидравлический пресс |
F1/F2=S2/S1 |
|
Работа, энергия, мощность |
|
|
Механическая работа |
A=FScosa |
Джоуль |
Мощность |
N=A/t |
Ватт |
КПД |
КПД=Ап/Aз100%=Qп/Qз100% |
% |
Кинетическая энергия |
E=mv2/2 |
Джоуль |
Потенциальная энергия |
E=mgh |
Джоуль |
Количество теплоты |
Q=cm(t2-t1 ) |
Джоуль |
Теплота сгорания |
Q=qm |
Джоуль |
Теплота парообразования |
Q=Lm |
Джоуль |
Тепловое действие тока |
Q=I2Rt |
Джоуль |
Работа тока |
A=IUt |
Джоуль |
Мощность тока |
P=A/t=UI |
Ватт |
Энергия пружины |
E=kx2/2 |
Джоуль |
Закон сохранения энергии |
Econst=Eкин + Eпот + Eвнутр |
Джоуль |
Импульс |
||
Импульс |
p=mv |
кг*метр/сек2 |
Закон сохранения импульса |
mv1+mv2=mv1«=+mv2« |
кг*метр/сек2 |
Ток |
|
|
Закон Ома |
I=U/R |
Ампер |
Сопротивление проводника |
R=pl/s |
Ом |
Последовательное соединение проводников |
||
Сила тока |
I=I1=I1 |
Ампер |
Напряжение |
U=U1+U2 |
Вольт |
Сопротивление |
R=R1+R2 |
Ом |
Параллельное соединение проводников |
||
Сила тока |
I=I1+I2 |
Ампер |
Напряжение |
U=U1=U2 |
Вольт |
Сопротивление |
1/R=1/R1+1/R2 |
Ом |
fizikahelp.ru
9 класс Формула | Обозначения | Ед .изм. |
ах= х- х0 ау = у- у0 х = х0+ах у= у0+ ау а= √ ах2 + ау2 | а-длина вектора ах-проекция вектора на ось ОХ ау— проекция вектора на ось Оу х0,у0— начальные координаты х,у- конечные координаты | м (метр) |
Прямолинейное равномерное движение | ||
s = υ t х = х0 + υх t — уравнение движения | s- перемещение t-время υ- скорость | м(метр) с(секунда) м /с |
υсредняя== | ||
Прямолинейное равноускоренное движение | ||
a = υ = υ0 + a t s= υ0t + s= х= х0+ υ0t + уравнение движения | а- ускорение υ- конечная скорость υ0— начальная скорость s- перемещение t- время | м/с2 м/с м/с м с |
SI : SII: SIII: SIV:SV=1:3:5:7:9 S1:S2:S3:S4:S5 = 1:4:9:16:25 | SI-перемещение за первую сек. SII— перемещение за вторую сек. SIII— перемещение за третью сек. S1— перемещение за 1сек. S2— перемещение за первые две секунды S3— перемещение за первые три секунды | |
Динамика. Законы Ньютона | ||
1.Если на тело не действуют тела или их действия компенсируются , то тело либо покоится либо движется прямолинейно и равномерно а=0 2. F= m a F1 + F2+…..= ma F ↑↑ a 3. F1= — F2 | F- сила Сумма всех действующих сил равна произведению массы на ускорение Тела действуют друг на друга с силами равными по модулю и противоположными по направлению. | Н (Ньютон) |
Свободное падение ( вниз) | ||
υ0= 0 υ =g t h = | υ- конечная скорость h- высота с которой упало тело g = 10 м/с2 — ускорение свободного падения | м/с м |
Движение вертикально вверх | ||
υ = υ0 – g t h= υ0t — | υ –конечная скорость ( в точке максимального подъема =0) υ0— начал.скорость h- высота подъема | м/с м |
Закон всемирного тяготения | ||
F= F= mg | G=6,67*10-11 Нм2/ кг2 | |
F= | R пл— радиус планеты М пл— масса планеты h-высота спутника над планетой | м кг м |
g = υспутника= | м/с2 м/с | |
Движение по окружности | ||
а= | a- центростремительное ускорение r- радиус окружности | м/с2 м |
Т= n= T= T= n = | Т- период n- частота вращения N-число колебаний за время t | с с-1 ( Гц) |
a= 4 π2 n2 r a= a=ω2 r | ||
ω = ω=2π n ω = υ r | ω-угловая скорость υ- линейная скорость | рад/с |
Импульс. Законы сохранения. Работа сил. Мощность | ||
p = mυ | p-импульс тела m- масса тела υ- скорость | кг м/с кг м/с |
I = F t | I-импульс силы F- сила t- время действия силы | Н с Н с |
I = p2— p1 = ∆p | ∆p- изменение импульса тела | |
p 1 + p 2 = p’1+ p’2 m1υ1 + m2υ2 = m1υ’1+ m2υ’2 | — закон сохранения импульса | |
A= Fs | А-работа F- сила s-путь | Дж (Джоуль) Н м |
N= | N- мощность | Вт (Ватт) |
Еп1+ Ек1= Еп2+ Ек2 | — закон сохранения энергии Е п — потенциальная энергия Е к — кинетическая энергия | Дж |
А= ∆Ек= Ек2— Ек1 А= — ∆Еп= Еп1— Еп2 | ||
АТЯЖ = mgh1— mgh2 Аупр= ATP = (Ек2— Ек1) +(Еп2-Еп1)= = — FTP s | АТЯЖ— работа силы тяжести Aупр— работа силы упругости ATP— работа силы трения FTP= μ mg -сила трения | Дж |
η = | η- коэффициент полезного действия | |
Механические колебания | ||
x= A cos (ωt+φ0) уравнение колебаний | А – амплитуда колебаний х — смещение | м |
Т= ν = | ν-частота колебаний | Гц |
T= 2π T= 2π | -для математического маятника L- длина нити -для пружинного маятника m- масса груза К— жесткость пружины | м кг Н/м |
Еп мах = Еп + Ек = Ек мах = | ||
Волны. | ||
λ = υ Т λ = | λ- длина волны Т- период ν- частота υ- скорость волны | м с |
Электромагнитные явления | ||
FA= B I L sinα | FA-сила Ампера В – магнитная индукция I-сила тока L- длина проводника | Н Тл (Тесла) А (Ампер) м |
Fл= q B υ sinα | Fл— сила Лоренца q- заряд υ- скорость движения заряда | Н Кл (Кулон) м/с |
r = | r-радиус окружности по ко-ой движется частица в магнитном поле | |
Ф= B S cosα | Ф- магнитный поток S-площадь контура | Вб (Вебер) м2 |
Радиоактивные превращения ядер | ||
M = Z+ N | M- массовое число Z- число протонов(электронов), зарядовое число N- число нейтронов | |
МЯ = МА — Z me | MЯ— масса ядра МА— масса изотопа ( табл) me=0,00055 а е м — масса электрона | 1 а.е.м= 1,67*10-27 кг |
∆m=Zmp+ Nmn — MЯ | ∆m- дефект масс mp=1,0073 а.е.м — масса протона mn= 1,0087 а.е.м. — масса нейтрона | |
Есвязи= ∆m c2 | Есвязи — энергия связи ( Дж) с=3*108 м/с скорость света | 1эВ = 1,6*10-19 Дж 1а.е.м.= 931,5 МэВ |
Альфа распад | ||
Бета распад |
infourok.ru
Физика, 9 класс: уроки, тесты, задания
Законы взаимодействия и движения тел: основы кинематики
-
Материальная точка (Система отсчёта)
-
Перемещение. Скорость прямолинейного равномерного движения
-
Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение
-
Скорость прямолинейного равноускоренного движения. График скорости
-
Графики зависимости кинематических величин от времени при равноускоренном движении
Законы взаимодействия и движения тел: основы динамики
-
Относительность механического движения
-
Первый закон Ньютона
-
Второй закон Ньютона
-
Третий закон Ньютона
-
Свободное падение
-
Невесомость
-
Закон всемирного тяготения
Законы сохранения в механике
-
Импульс тела
-
Закон сохранения импульса
-
Реактивное движение. Ракеты
Механические колебания и волны. Звук
-
Колебательное движение. Свободные колебания. Амплитуда, частота, период колебаний
-
Колебательная система. Колебания груза на пружине. Математический маятник
-
Превращение энергии при колебательном движении
-
Затухающие колебания. Вынужденные колебания. Резонанс
-
Поперечные и продольные волны. Длина волны
-
Звуковые волны. Скорость звука
-
Высота, тембр и громкость звука. Звуковой резонанс
Электромагнитное поле
-
Электромагнитная индукция
-
Направление индукционного тока. Правило Ленца. Самоиндукция
-
Трансформатор. Передача электрической энергии на расстояние
-
Конденсатор. Колебательный контур. Получение электромагнитных колебаний
-
Электромагнитная природа света
Строение атома и атомного ядра
-
Радиоактивность как доказательство сложного строения атома. Опыты Резерфорда. Ядерная модель
-
Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел
-
Радиоактивные превращения атомных ядер
-
Методы наблюдения и регистрации частиц в ядерной физике
-
Деление ядер урана. Цепная реакция
В дальнейшем в этом классе появятся…
www.yaklass.ru
ФИЗИКА. Опорные конспекты на сайте УЧИТЕЛЬ.ПРО
Конспекты по предмету «ФИЗИКА»
Изучение Физики шаг за шагом. Онлайн-учебник и сборник задач.
Кодификатор ОГЭ-2019 Проверить свои знания Разбор заданий ОГЭ
Физика — наука о простейших и, вместе с тем, наиболее общих законах природы, о материи, её структуре и движении. Законы физики лежат в основе всего естествознания.
Часть 1. Физические методы. Строение вещества. Движение и взаимодействие тел. Силы вокруг нас. Давление тел. Работа, мощность, энергия.
(обычно изучается в 7 классе)
В конспектах использованы ВИДЕОУРОКИ от YouTube-канала ВЕБ-ШКОЛА
Ещё 45 конспектов для 7 класса
Часть 2. Тепловые явления. Электрические явления. Электромагнитные явления. Световые явления.
(обычно изучается в 8 классе)
Ещё 50 конспектов для 8 класса
Часть 3. Законы взаимодействия и движения тел. Механические колебания. Звук. Электромагнитное поле. Строение атома и атомного ядра. ОГЭ
(обычно изучается в 9 классе)
Часть 4. Кинематика. Динамика. Статика. Законы сохранения в механике. Основы МКТ. Свойства газов. Основы термодинамики. Свойства твёрдых тел и жидкостей. Электростатика. Электрический ток. Магнитное поле. Электромагнитная индукция. Механические и электромагнитные колебания и волны. Оптика. Атомное ядро, фотоны. Строение Вселенной. ЕГЭ
(обычно изучается в 10-11 классах)
Кодификатор ОГЭ-2019 Проверить свои знания Подобрать репетитора
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
Источники идей и источники цитат для конспектов по «Физике»:
- ОГЭ Физика. Справочник с комментариями ведущих экспертов / Г.Н. Степанова, И.Ю. Лебедева — М.: Просвещение (В помощь выпускнику)
- Наталия Пурышева: ОГЭ. Физика. Новый полный справочник М.: АСТ — 2017
- учебники физики Перышкина А.В. (Дрофа, 2013) для 7, 8, 9 классов,
- учебники физики Белага В.В. (Просвещение, 2013) для 7, 8, 9 классов,
- Гайкова И.И. — Физика. Учимся решать задачи. 7-8 класс (БХВ-Петербург, 2016),
- Гайкова И.И. — Физика. Учимся решать задачи. 9 класс (БХВ-Петербург, 2018),
- Генденштейн Л.Э и др. — Решения ключевых задач по физике для основной школы (Илекса, 2017)
- Лукашик В.И., Иванова Е.В. — Сборник задач по физике. 7-9 классы (М.: Просвещение, 2011)
- Янчевская О.В. — Физика в таблицах и схемах (Литра, 2016).
- Марон А.Е, Марон Е.А. — Опорные конспекты и разноуровневые задания (Виктория плюс, 2009)
- Попов А.В. — Физика. Справочник школьника. Все темы ОГЭ и ЕГЭ (Эксмо-Пресс, 2017)
(с) Цитаты из вышеуказанных учебных пособий использованы на сайте в незначительных объемах, исключительно в учебных и информационных целях (пп. 1 п. 1 ст. 1274 ГК РФ).
uchitel.pro