Внутреннее строение Земли
В строении Земли три основные оболочки: земная кора, мантия и ядро.
Схема внутреннего строения Земли
Поверхность Земли покрывает каменная оболочка — земная кора. Ее толщина под океанами составляет всего 3–15 км, а на материках доходит до 75 км. Получается, что по отношению ко всей планете земная кора тоньше, чем кожура у персика. Верхний слой коры образован осадочными горными породами, под ним находятся «гранитный» и «базальтовый» слои, которые названы так условно.
Под земной корой располагается мантия. Мантия — внутренняя оболочка, покрывающая ядро Земли. С греческого языка «мантия» переводится как «покрывало». Ученые предполагают, что верхняя часть мантии состоит из плотных пород, то есть она твердая. Однако в ней на глубине 50—250 км от поверхности Земли размещается частично расплавленный слой, который называется
Под мантией, на глубине около 2900 км от поверхности, скрыто ядро Земли. Оно имеет форму шара радиусом почти 3500 км. В ядре выделяют внешнюю и внутреннюю часть, которые отличаются по составу, температуре и плотности. Внутреннее ядро — самая горячая и плотная часть нашей планеты, состоящая, как полагают ученые, в основном из железа и никеля. Во внутреннем ядре давление столь велико, что оно, несмотря на огромную температуру (+6000…+10 000 °С), представляет собой твердое тело. Внешнее ядро находится в жидком состоянии, его температура — 4300 °С.
Строение земной коры
Большая часть коры снаружи покрыта гидросферой, а меньшая граничит с атмосферой. В соответствии с этим различают земную кору океанического и материкового типов, причем они имеют различное строение.Материковая (континентальная) земная кора занимает меньшую площадь (около 40 % от всей поверхности Земли), но имеет более сложное строение. Под высокими горами ее толщина достигает 60—70 км. Состоит континентальная кора из 3 слоев — базальтового, гранитного и осадочного. Океаническая земная кора более тонкая — всего 5—7 км. Состоит она из двух слоев: нижнего — базальтового и верхнего — осадочного.
Земная кора наиболее изучена на глубину до 20 км. По результатам анализа многочисленных образцов горных пород и минералов, выходящих на поверхность земли при горообразовательных процессах, а также взятых из горных выработок и глубоких буровых скважин, был вычислен средний состав химических элементов земной коры.
Пограничный слой, разделяющий мантию и кору Земли, называют границей Мохо-ровичича, или поверхностью Мохо, в честь хорватского ученого А. Мохоровичича. Он первым в 1909 г. указал на характерное повеление сейсмических волн при переходе границы, которая прослеживается по всему земному шару на глубине от 5 до 70 км.
Как изучают мантию?
Мантия находится глубоко под Землей, и даже самые глубокие буровые скважины не доходят до нее. Но иногда при прорыве газов через земную кору образуются так называемые кимберлитовые трубки. Через них на поверхность поступают мантийные породы и минералы. Самый знаменитый из них — это алмаз, самый глубокорасположенный фрагмент нашей планеты, который мы можем изучать. Благодаря таким трубкам мы можем судить о строении мантии.
Кимберлитовая трубка в Якутии, где добываются алмазы, уже давно разрабатывается. На месте подобных трубок устроены огромные карьеры. Само же название их произошло от города Кимберли в Южной Африке
Поделиться ссылкой
sitekid.ru
Строение земной коры и рельеф — урок. География, 7 класс.
В основании большей части материка лежит древняя Африканская платформа. Рельеф Африки представлен преимущественно возвышенными равнинами: плоскогорьями и плато.
Осадочный чехол наиболее развит в Северной Африке, в пределах Сахарской плиты. В её центральной части находятся нагорья Ахаггар и Тибести, приуроченные к щитам — выходам кристаллического фундамента. Прогибы кристаллического фундамента лежат в основании впадин Конго, Калахари, Кару.
У берегов Гвинейского залива находится вулканический массив Камерун (\(4100\) м) с пологими склонами и многочисленными боковыми конусами и кратерами.
На севере и юге материка к Африканской платформе примыкают складчатые области, образовавшиеся в разные геологические периоды. На севере это молодые складчатые Атласские горы (часть Альпийско-Гималайского пояса), на юге — более древние полуразрушенные Капские горы. Глыбовые плосковершинные Драконовы горы образовались в эпоху последнего горообразования в результате поднятия окраинных частей материка.
Значительную часть материка занимают Восточно-Африканское плоскогорье и Эфиопское нагорье. Они образовались под влиянием внутренних процессов (поднятия и раздвижения).
Нагорье — обширный высокоподнятый участок поверхности, на котором чередуются плоскогорья, горные хребты и котловины.
Движения сопровождались разломами земной коры с образованием горстов и грабенов, землетрясениями и извержениями вулканов. В результате сформировалась величайшая на Земле система континентальных рифтов — Восточно-Африканская, которая протянулась вдоль Красного моря через Эфиопское нагорье до реки Замбези.
Рифт — крупный линейно вытянутый тектонический разлом, образующийся при растяжении земной коры.
При раздвижении земной коры от Африканской литосферной плиты отделилась Аравийская и продолжает отделяться Сомалийская. Отдельные трещины постепенно расширились и заполнились водой, образовались глубокие и вытянутые озёра: Танганьика, Ньяса, Рудольф, Эдуард, Альберт. В пределах Восточно-Африканской рифтовой зоны находятся самая высокая вершина Африки — вулкан Килиманджаро (\(5895\) м) — и самое низкое место на материке — котловина озера Ассаль (\(-157\) м).
www.yaklass.ru
Строение земной коры и рельефа в России и мире
Земная кора – это структурный элемент строения Земли, представляет собой твердую внешнюю оболочку планеты. Большая ее часть покрыта водами Мирового океана, а меньшая – это континенты, которые подвергаются атмосферным воздействиям. Остальные части структуры планеты – верхняя и нижняя мантия, внешнее и внутренне ядро, находятся под корой. Все эти слои отличаются друг от друга по составу и свойствам. Между корой и мантией находится своеобразное деление – граница Мохоровичича (или сокращенно «граница Мохо»), где наблюдается движение и ускорение сейсмических волн.
Состав и особенности земной коры
Кора Земли достаточно схожа с корой Венеры и Марса, а также Луны и некоторых иных спутников планет. Уникальность верхнего слоя литосферы состоит в том, что кора есть двух типов:
- континентальная – 21%;
- океаническая – 79%.
Между ними существуют переходные подтипы – субконтинентальый и субокеанический.
Ученые характеризируют земную кору, как тонкий и хрупкий слой, который содержит в своем составе свыше девяноста химических элементов, которые неравномерно распределяются по всей поверхности. Большую часть (98%) составляют базальты, а именно следующие породы:- железо;
- алюминий;
- натрий;
- магний;
- кислород;
- калий;
- кальций.
Различные горные породы, минералы, а также осадочный слой составляют остальные 2%. Породы бывают нескольких видов. Магматические образовываются в толще земли. Осадочные происходят в процессе переотложения продуктов выветривания и разрушения других пород, выпадания осадка из воды, а также на их образование влияют различные организмы. Породы осадочного типа залегают пластами, что позволяет узнать о природных условиях ранних периодов существования планеты. Осадочные и магматические породы под воздействием высоких температур и давления, по мере залегания в земле, превращаются в метаморфические породы.
Температурный режим земной коры
Самый верхний слой литосферы – гелиометрический имеет такую температуру, на которую влияет тепло, излучаемое солнечными лучами. Оно имеет приблизительную толщину 30 метров. Далее располагается относительно стабильный по температуре слой. После него идет геотермический слой, который нагревается от внутреннего тепла Земли, и чем глубже, тем температура повышается.
Таким образом, земная кора – это часть структуры планеты, которая имеет свое строение. На материке и под водой кора отличается по составу и температуре, имеет свои особенности. Состоит верхний слой литосферы из минералов и горных пород, которые люди используют как полезные ископаемые.
ecoportal.info
Строение Земли
У земного шара есть несколько оболочек: атмосфера — воздушная оболочка, гидросфера — водная оболочка, литосфера — твердая оболочка.
Третья за отдаленностью от Солнца планета— Земля имеет радиус 6370 км, среднюю плотность— 5,5 г/см2. Во внутреннем строении Земли принято различать следующие слои:
земная кора — верхний слой Земли, в котором могут существовать живые организмы. Толщина земной коры может быть от 5 до 75 км.
мантия — твердый слой, который находится ниже земной коры. Его температура достаточно высока, однако вещество находится в твердом состоянии. Толщина мантии порядка 3 000 км.
ядро — центральная часть земного шара. Его радиус приблизительно 3 500 км. Температура внутри ядра очень высока. Считается, что ядро состоит в основном из расплавленного металла,
предположительно — железа.
Земная кора
Выделяют два основных типа земной коры — континентальный и океанический, плюс промежуточный, субконтинентальный.
Земная кора тоньше под океанами (около 5 км) и толще — под материками (до 75 км.). Она неоднородна, различают три слоя: базальтовый (залегает ниже всего), гранитный и осадочный (верхний). Континентальная кора состоит из трех слоев, тогда как в океанической гранитный слой отсутствует. Земная кора формировалась постепенно: сначала был сформирован базальтовый слой, затем — гранитный, осадочный слой продолжает формироваться и в настоящее время.
Горные породы — вещество, из которого состоит земная кора. Горные породы подразделяются на следующие группы:
2. Осадочные горные породы. Они образуются на поверхности, формируются из продуктов разрушения или изменения других пород, биологических организмов.
3. Метаморфические горные породы. Они образуются в толще земной коры из других горных пород под действием определенных факторов: температуры, давления.
geographyofrussia.com
Тектоническое строение земной коры
Тектоника — наука о строении, движениях земной коры в связи с геологическим развитием Земли в целом. В пределах материков выделяют крупные тектонические структуры, которые отчетливо выражены в современном рельефе. — платформу и складчатые области. Строение земной коры, ее основные тектонические структуры, их типы и возраст, этапы горообразования, а также современные тектонические явления отражаются на тектонических картах.
Платформы и их строение
Платформа — это крупный, относительно устойчивый и тектонически спокойный участок земной коры, имеющий двухъярусное строение. Нижний ярус платформы — кристаллический фундамент, верхний — осадочный чехол (рис. 5). Кристаллический фундамент — древнее основание платформы, сложенное магматическими и метаморфическими породами. Осадочный чехол — верхний ярус платформы, сложен обычно более молодыми осадочными горными породами. Средняя мощность чехла на платформе составляет 5—6 км, максимальная достигает более 10 км (Прикаспийская низменность).
Платформы — это основные элементы тектонической структуры материков. Платформы характеризуются равнинным рельефом. Для них характерны отсутствие или редкие проявления вулканической деятельности, очень слабая сейсмичность.
В пределах платформ выделяют плиты и щиты. Платформенные плиты — крупные (сотни и даже тысячи километров в поперечнике) части платформы, перекрытые осадочным чехлом. Плиты занимают основную площадь древних и молодых платформ, для них характерен мощный сформировавшийся чехол (например, Северо-Американская и Восточно-Европейская плиты). В рельефе платформенным плитам соответствуют равнины.
Щиты — это участки платформ, на которых кристаллический фундамент выходит на поверхность Земли, обнажается. Это части древних платформ, которые в течение длительного геологического времени поднимались, подвергаясь разрушению. Примерами таких образований являются Балтийский (равнины Скандинавии), Украинский (Подольская возвышенность) щиты в пределах Восточно-Европейской платформы, Канадский щит (Лаврентийская возвышенность) на Северо-Американской платформе.
В пределах щитов выявлены крупные месторождения рудных полезных ископаемых: золота, марганцевых, урановых и железных руд, алмазов. С осадочным чехлом в пределах плит связаны месторождения осадочных полезных ископаемых: нефти, природного газа, каменного угля, калийных солей и др.
По времени образования кристаллического фундамента платформы делятся на древние и молодые. Древние платформы занимают до 40 % площади материков.
Древние платформы подразделяются на 3 типа: лавразийский, гондванский и переходный. К первому типу относятся Северо-Американская, Восточно-Европейская и Сибирская платформы, образованные в результате распада суперконтинента Лавразия. Они преимущественно погружаются, и для них характерны шельфовые моря. Ко второму типу относятся Южно-Американская, Африкано-Аравийская, Индийская, Австралийская и Антарктическая платформы, бывшие в составе Гондваны. В них поднятия преобладают над погружениями, в результате чего осадочный чехол еще не сформировался и распространен ограниченно. К третьему переходному типу относится Китайская платформа, разделенная на отдельные блоки и отличающаяся молодостью, неустойчивостью и повышенной сейсмичностью.
К древним платформам примыкают молодые: Западно-Сибирская, Патагонская, Туранская платформы. Фундамент их образован на более поздних стадиях развития земной коры и имеет складчатое строение. Он сложен в основном осадочно-вулканическими породами. Молодые платформы занимают лишь 5 % всей площади континентов. (Покажите на карте «Строение земной коры» расположение платформ на Земле.)
Складчатые области
Кроме платформ, в пределах материков выделяют также складчатые области — отдельные крупные части складчатых поясов, тектонические подвижные участки земной коры, в пределах которых слои горных пород смяты в складки. Они отличаются интенсивными тектоническими поднятиями и опусканиями, формированием магматических отложений при извержении вулканов и накоплением осадочных пород в понижениях. Протяженность складчатых областей составляет тысячи километров. Образование большей части складчатых областей является закономерным этапом развития подвижных зон земной коры.
Процесс формирования складчатых областей начинается с погружения (прогибания) земной коры. Погружение сопровождается накоплением в прогибе мощных осадочных отложений. Далее процессы погружения сменяются поднятием. Осадочные породы сжимаются и сминаются в складки, а по образующимся трещинам в них внедряется и застывает магма. Формируются складчатые области. В рельефе они выражены горами. Образование складок происходило на разных геологических этапах развития земной коры, поэтому горы имеют разный возраст. Горы, в свою очередь, постепенно разрушаются. На месте складчатых областей со временем формируются более устойчивые тектонические структуры — платформы.
Современный рельеф планеты формировался в течение длительного времени под воздействием внутренних и внешних сил и продолжает формироваться в наше время (рис. 6).
Внутренние силы, действующие в недрах Земли (горообразовательные движения, деятельность вулканов, землетрясений), играют главную роль при образовании крупных форм рельефа. Внешние силы вызывают процессы, происходящие на поверхности Земли (выветривание, эрозия, деятельность ледников и др.). Рельеф воздействует на формирование климата, характер течения рек, распространение животных и растений, условия жизни людей. Рельеф является той основой, на которой живет и занимается хозяйственной деятельностью человек.
Основными тектоническими структурами земной коры являются платформы и складчатые области. Платформы имеют двухъярусное строение (нижний ярус — кристаллический фундамент, верхний — осадочный чехол), в их пределах выделяют платформенные плиты и щиты. Платформам в рельефе, как правило, соответствуют равнины, а складчатым областям — горы.
geographyofrussia.com
Строение земной коры
Типы коры. В разных регионах соотношение между различными горными породами в земной коре различно, причем обнаруживается зависимость состава коры от характера рельефа и внутреннего строения территории. Результаты геофизических исследований и глубоко бурения позволили выделить два основных и два переходных типа земной коры. Основные типы маркируют такие глобальные структурные элементы коры как континенты и океаны. Эти структуры прекрасно выражены в рельефе Земли, и им свойственны континентальныйи океанический типы коры.
Континентальная кора развита под континентами и, как уже говорилось, имеет разную мощность. В пределах платформенных областей, соответствующих континентальным равнинам, это 35-40 км, в молодых горных сооружениях — 55-70 км. Максимальная мощность земной коры — 70-75 км — установлена под Гималаями и Андами. В континентальной коре выделяются две толщи: верхняя — осадочная и нижняя — консолидированная кора. В консолидированной коре присутствуют два разноскоростных слоя: верхний гранито-метаморфический, сложенный гранитами и гнейсами, и нижний гранулитово-базитовый, сложенный высокометаморфизированными основными породами типа габбро или ультраосновными магматическими породами. Гранито-метаморфический слой изучен по кернам сверхглубоких скважин; гранулитово-базитовый — по геофизическим данным и результатам драгирования, что все еще делает его существование гипотетическим.
В нижней части верхнего слоя обнаруживается зона ослабленных пород, по составу и сейсмическим характеристикам мало чем отличающаяся от него. Причина ее возникновения — метаморфизм пород и их разуплотнение за счет потери конституционной воды. Вполне вероятно, что породы гранулитово-базитового слоя — это все те же породы, но еще более высоко метаморфизированные.
Океанская кора характерна для Мирового океана. Она отличается от континентальной по мощности и составу. Мощность ее колеблется от 5 до 12 км, составляя в среднем 6-7 км. Сверху вниз в океанской коре выделяются три слоя: верхний слой рыхлых морских осадочных пород до 1 км мощностью; средний, представленный переслаиванием базальтов, карбонатных и кремнистых пород, мощностью 1-3 км; нижний, сложенный основными породами типа габбро, часто измененными метаморфизмом до амфиболитов, и ультраосновными амфиболитами, мощность 3,5-5 км. Первые два слоя пройдены буровыми скважинами, третий охарактеризован материалом драгирования.
Субокеанская кора развита под глубоководными котловинами окраинных и внутренних морей (Черное, Средиземное, Охотское и др.), а также обнаружена в некоторых глубоких впадинах на суше (центральная часть Прикаспийской впадины). Мощность субокеанской коры 10-25 км, причем увеличена она преимущественно за счет осадочного слоя, залегающего непосредственно на нижнем слое океанской коры.
Субконтинентальная кора характерна для островных дуг (Алеутской, Курильской, Южно-Антильской и др.) и окраин материков. По строению она близка к континентальной коре, но имеет меньшую мощность — 20-30 км. Особенностью субконтинентальной коры является нечеткая граница между слоями консолидированных пород.
Таким образом, различные типы земной коры отчетливо разделяют Землю на океанические и континентальные блоки. Высокое положение континентов объясняется более мощной и менее плотной земной корой, а погруженное положение ложа океанов — корой более тонкой, но более плотной и тяжелой. Область шельфа подстилается континентальной корой и является подводным окончанием материков.
Структурные элементы коры. Помимо деления на такие планетарные структурные элементы как океаны и континенты, земная кора (и литосфера) обнаруживает регионы сейсмичные (тектонически активные) и асейсмичные (спокойные). Спокойными являются внутренние области континентов и ложа океанов — континентальные и океанические платформы. Между платформами располагаются узкие сейсмичные зоны, которые маркируются вулканизмом, землетрясениями, тектоническими подвижками. Эти зоны соответствуют срединно-океаническим хребтам и сочленениям островных дуг или окраинных горных хребтов и глубоководных желобов на периферии океана.
В океанах различают следующие структурные элементы:
- срединно-океанические хребты — подвижные пояса с осевыми рифтами типа грабенов;
- океанические платформы — спокойные области абиссальных котловин с осложняющими их поднятиями.
На континентах основными структурными элементами являются:
- горные сооружения (орогены), которые, подобно срединно-океаническим хребтам, могут обнаруживать тектоническую активность;
- платформы — в основном спокойные в тектоническом отношении обширные территории с мощным чехлом осадочных горных пород.
Горные сооружения имеют сложное внутреннее строение и историю геологического развития. Среди них выделяются орогены, сложенные молодыми допалеогеновыми морскими отложениями (Карпаты, Кавказ, Памир), и более древние, сформированные из раннемезозойских, палеозойских и докембрийских пород, испытавших складкообразовательные движения. Эти древние хребты были денудированы, нередко до основания, а в новейшее время испытали вторичное поднятие. Это возрожденные горы (Тянь-Шань, Алтай, Саяны, хребты Прибайкалья и Забайкалья).
Горные сооружения разделяются и окаймляются пониженными территориями — межгорными прогибами и впадинами, которые заполнены продуктами разрушения хребтов. Например, Большой Кавказ окаймлен Западно-Кубанским, Восточно-Кубанским и Терско-Касписким передовыми прогибами, а от Малого Кавказа отделен Рионской и Куринской межгорными впадинами.
Но не все древние горные сооружения были вовлечены в повторное горообразование. Большая их часть после выравнивания медленно опускалась, была залита морем, и на реликты горных массивов наслоилась толща морских осадков. Так сформировались платформы. В геологическом строении платформ всегда присутствуют два структурно-тектонических этажа: нижний, сложенный метаморфизированными остатками былых гор, являющий собой фундамент, и верхний, представленный осадочными горными породами.
Платформы с докембрийским фундаментом считаются древними, а с палеозойским и раннемезозойским — молодыми. Молодые платформы располагаются между древними или окаймляют их. Например, между древними Восточно-Европейской и Сибирской находится молодая Западно-Сибирская платформа, а на южной и юго-восточной окраине Восточно-Европейской платформы начинаются молодые Скифская и Туранская платформы. В пределах платформ выделяются крупные структуры антиклинального и синклинального профиля, именуемые антеклизами и синеклизами.
Итак, платформы — это древние денудированные орогены, не затронутые более поздними (молодыми) горообразовательными движениями.
В противовес спокойным платформенным регионам на Земле имеются тектонически активные геосинклинальные области. Геосинклинальный процесс можно сравнить с работой огромного глубинного котла, где из ультраосновной и основной магмы и материала литосферы “варится” новая легкая континентальная кора, которая, всплывая, наращивает континенты в окраинных (Тихоокеанская) и спаивает их в межконтинентальных (Средиземноморская) геосинклиналях. Этот процесс завершается формированием складчатых горных сооружений, в сводовой части которых еще долгое время могут работать вулканы. Со временем рост гор прекращается, вулканизм затухает, земная кора вступает в новый цикл своего развития: начинается выравнивание горного сооружения.
Таким образом, там, где сейчас располагаются горные цепи, раньше были геосинклинали. Крупные структуры антиклинального и синклинального профиля в геосинклинальных регионах называются антиклинориями и синклинориями.
geographyofrussia.com
Урок географии по теме «Строение Земли и методы его изучения. Литосфера». 6-й класс
Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.
Цели: создать условия для формирования у учащихся представления о Гипотезах образования Земли; создать условия для усвоения учащимися знаний: внутреннее строение Земли; литосфера; два типа строения земной коры.
Оборудование на уроке: план на доске, проектор для просмотра слайдов (презентация), таблица: «Внутреннее строение Земли».
Терминология: литосфера, ядро, мантия, земная кора: материковая, океаническая.
Тип урока: усвоение новых знаний.
Формы организации: фронтальная, парная.
Методы работы: объяснительно – иллюстративный, репродуктивный, частично – поисковый, интерактивный (показ слайдов), метод контроля и самооценки.
Приемы работы: прием удивления, фантастическая добавка, рефлексия.
План:
- Внутреннее строение Земли: земная кора; мантия; ядро.
- Литосфера.
- Методы изучения Земли.
Ход урока
I этап. Организационный момент (готовность к уроку).
Эмоциональный настрой. Здравствуйте ребята. Надеюсь, наша взаимная работа на уроке будет плодотворной, а вы активны. Садитесь. Сегодня мы начинаем изучение новой темы. Для успешной работы на уроке мы приготовили все необходимое: учебник, тетрадь, простой карандаш, ручка.
II этап. Актуализация знаний.
Ребята, вы сейчас внимательно прослушаете текст, а затем ответите на ряд вопросов. Зачитываю текст. «Первоначально планета была холодной, затем стала разогреваться, а впоследствии стала, вновь остывать. При этом «лёгкие» элементы поднимались, а «тяжёлые» опускались. Так сформировалась первоначальная земная кора. Тяжёлые элементы образовали внутреннее вещество планеты – ядро и мантию».
Учитель. О чём говорят эти строки?
Ученик. О гипотезе происхождения Земли. Гипотеза Шмидта – Фесенкова имеет меньше противоречий и отвечает на большее количество вопросов.
Учитель. Из какого облака образовалась наша планета?
Ученик. Из холодного газопылевого облака.
Учитель. Какова форма Земли?
Ученик. Форма Земли шарообразная.
Учитель. Вспомните из материала природоведения, какие внешние оболочки Земли вам известны?
Ученик. Земля имеет следующие внешние оболочки: атмосфера, гидросфера, биосфера, литосфера.
Интеллектуальная разминка
Изучив географию, 6 класса вы узнаете о каждой из этих оболочек более подробно. А начнём изучать мы планету Земля с оболочки, название которой скрыто в ребусе. У вас у всех на столах лежит технологическая карта, в которой имеется ребус.
Приложение 1
Задание. Разгадайте ребус, назовите спрятанную земную оболочку.
СЛАЙД 2.
Изучение раздела «Литосфера» мы начинаем со знакомства о том, что находится внутри Земли.
Тема сегодняшнего урока. «Строение Земли и методы его изучения. Литосфера».
СЛАЙД 3.
Цель урока: изучить внутреннее строение Земли; познакомиться с методами изучения Земли; сформулировать понятие литосфера.
Записываем число и тему нашего урока в технологическую карту.
Мотивация. Ребята мне довелось быть свидетелем такого случая. Я сейчас его вам зачитаю, а вы внимательно слушаете, так как затем я задам вам вопросы. Читаю рассказ. «Конфета Земля».
– Коля, Коля! – вбежал в комнату Вася, – мне такая идея в голову пришла!
– Какая, Вась?
– Земля ведь как шар, да? – уточнил Вася.
– Ну да…
– Значит, если мы будем копать Землю насквозь, то окажемся в другом месте, так?
– Точно! – обрадовался Коля, – Пойдём скорее к бабушке, спросим, где у нас лопата лежит.
– Побежали!
– Баааааабушка!
– Что, Коленька?
– Бабушка, где у нас лопата лежит?
– В сарае, Коленька. А зачем вам лопата? – ответила бабушка.
– Мы хотим Землю прорыть, авось куда-нибудь да попадём, – радостно сказал Коля.
Бабушка улыбнулась и спросила:
– Вы хотя бы знаете, как она устроена?
– А чего там знать, – ответил Вася, – земля землёй – что может быть проще!
– А нет. Не всё так просто – ответила бабушка.
– А как? Бабушка, расскажи, пожалуйста. Ну, пожаааалуйста! – начал упрашивать бабушку Коля.
– Ну ладно, ладно – согласилась бабушка, и начала свой рассказ.
– Земля похожа на конфету: в центре орешек – ядро, потом идёт сливочная начинка – это мантия, а сверху шоколадная глазурь – это земная кора. Расстояние только отсюда до центра ядра больше 6 000 км, а вы хотите насквозь, – усмехнулась бабушка.
– Значит, всё отменяется, – расстроился Коля…
– Дааа, хорошо бы такую конфету, – мечтательно сказал Вася.
III этап. Объяснение нового материала.
Учитель. Прослушав рассказ и используя (наглядное пособие) ТАБЛИЦА «Внутреннее строение Земли», ответьте на вопросы.
СЛАЙД 4.
Учитель. Каково внутренне строение Земли?
Ученик. Земля имеет послойное строение: ядро, мантия, земная кора.
Учитель. Если сравнить нашу планету с яйцом, то получим некоторое сходство. Какое? Что хотят показать этим сравнением учёные?
Ученик. Скорлупа – земная кора; белок – мантия; ядро – желток. Земля имеет послойное строение.
СЛАЙД 5.
Самостоятельная работа – устно. Внутренне строение Земли на рисунке показано цифрами. Что обозначает каждая цифра?
СЛАЙД 6.
Работа с учебником, с иллюстрациями. Заполнение таблицы. Парная работа (письменно).
Используя материал учебника (стр.38 §16 абзац 3, определить температуру), (рисунок 22, стр.39 §16, определить толщину мантии), заполнить в таблице «Внутреннее строение Земли» пропуски (ячейки). Парная работа (взаимопроверка).
СЛАЙД 7.
Внутреннее строение Земли.
№ | Название оболочки | Размер (толщина) | Состояние | Температура | Давление | Процентное соотношение |
1. | Земная кора | 5–80 км | Твердое | Разная, от -7°С, до +57°С | 760 мм. рт. ст. | 1% |
2. | Мантия верхняя | 200–250 км | Пластичное, размягчённый | 2000°С | 1,3 млн. атм. | 82% |
Мантия нижняя | 2900 км | Твердое, кристаллическое | ||||
3. | Ядро внешнее | 2250 км | Расплавленное, жидком | 2000–5000°С | 3,6 млн. атм. | 17% |
Ядро внутреннее | 1250 км | Твёрдое |
Курсивом отмечены те ячейки, которые учащиеся должны заполнить.
Правило: начиная с глубины 20 – 30м, температура земной коры увеличивается в среднем на 3° на каждые 100м.
Учитель. Почему мантию называют основной частью Земли?
Ученик. Мантия занимает основную внутреннюю часть Земли.
Учитель. Как изменяется температура в недрах Земли.
Ученик. При движении внутрь Земли температура повышается.
Физкультминутка
Приложение 2
Разделение на оболочки произошло благодаря разогреву недр планеты и разделению вещества по удельному весу: более тяжелые элементы погружались к центру Земли и образовали ядро, более лёгкие – всплывали, образовав мантию и земную кору. Разогрев поддерживается внутренним источником энергии – распадом радиоактивных элементов.
Учитель. Ребята, а что такое литосфера.
Литосфера: «литос» – камень, «сфера» – шар. Это твердая, каменная оболочка Земли, состоящая из земной коры и верхней части мантии, имеет мощность от 70 до 250 км.
Литосфера – объединяет внутренние и внешние оболочки Земли.
Земная кора (верхняя часть литосферы) в свою очередь делится на материковую (континентальную) и океаническую.
СЛАЙД 8.
Задание. Используя рисунок, заполните схему.
СЛАЙД 9.
- Назовите виды земной коры?
- Сколько и какие слои слагают материковую земную корку и океаническую?
Толщина материковой земной коры до 70 км в горах, 30–40 км под равнинами. Имеет 3 слоя (осадочный, гранитный, базальтовый). Она более старая.
Толщина океанической земной коры 5–10 км под океанами. Имеет 2 слоя (осадочный, базальтовый). Более молодая, формируется в районе вершин океанических хребтов.
Такое расположение слоев не случайно и объясняется плотностью слагающих их веществ. Гранит в основном состоит из менее плотных веществ, например полевого шпата, слюды. Базальт – более плотных, тяжелых веществ: лабрадора, магнетита, оливина и др. Поэтому базальтовый слой залегает под гранитным.
Земная кора выплавлялась из вещества мантии постепенно, в результате длительного и сложного физико-химического преобразования. При этом вначале выделились гранитный и базальтовый слои. Осадочный возник позднее, главным образом из продуктов их разрушения и преобразования живыми организмами. Он покрывает почти всю поверхность Земли. Осадочный слой сложен осадочными горными породами. Гранитный слой представлен магматическими (граниты и др.) и метаморфическими породами, близкими по составу к гранитам (гнейсы и др.). Базальтовый слой из магматических и плотных метаморфических пород, богатых магнием и железом.
Как происходило образование земной коры? Образование земной коры происходило миллиарды лет назад из вязко–жидкого вещества мантии – магмы.Входившие в его состав наиболее распространенные и легкие химические вещества – кремний и алюминий – застывали в верхних слоях. Затвердев, они больше не тонули и оставались на плаву в виде своеобразных островков. Но эти островки не были устойчивыми, они находились во власти внутренних мантийных течений, которые увлекали их вниз, и нередко попросту тонули в раскаленной магме. Магма (от греческого таgmа –густая грязь) – расплавленная масса, образующаяся в мантии Земли. Но шло время, и первые небольшие твердые массивы постепенно соединялись между собой, образуя территории уже значительной площади. Подобно льдинам в открытом океане, они перемещались по планете по воле внутренних мантийных течений.
Как же удалось людям составить представление о внутреннем строении Земли? Ценную информацию о строении Земли человечество получает в результате бурения сверхглубоких скважин, а также с помощью специальных сейсмических методов исследования (от греч. «seismos» – колебание). Так изучают геофизики нашу Землю. Этот метод основан на изучении скорости распространения в Земле колебаний, возникающих при землетрясениях, извержениях вулканов или взрывах. С этой целью используют специальный прибор – сейсмограф. Уникальную информацию о недрах Земли ученые–сейсмологи получают из наблюдений за извержениями вулканов. Наука сейсмология – наука о землетрясениях. На основании сейсмических данных в строении Земли выделяют 3 главные оболочки, отличающиеся химическим составом, агрегатным состоянием и физическими свойствами.
Немного истории. Один из первых сейсмографов был изобретен в начале XX в. русским физиком и географом Борисом Борисовичем Голицыным. На основе разработок Голицына у нас в стране была создана первая сейсмическая станция. Применив сейсмический метод изучения внутреннего строения Земли, он в 1916 г. обнаружил на глубине около 500 км границу резкого изменения свойств планеты (так называемый слой Голицына), по которой проводят нижнюю границу верхней мантии.
Название прибора говорит о его назначении – записи колебаний земного вещества. Как это происходит? Под действием мощных толчков, происходящих внутри Земли, земное вещество начинает колебаться, при этом оказалось, что скорость распространения колебаний различна. Исследуя это явление в лаборатории, ученые брали разные по плотности вещества. Результаты показали, что скорость колебаний от толчков одинаковой силы в разных по плотности веществах различна. На основании – этого ученые пришли к выводу, что земная кора состоит из разных по плотности веществ. Так, по скорости колебаний земного вещества в земной коре было выявлено три ее слоя: верхний – осадочный (сложен известняками, песком, глиной и другими породами), средний – гранитный и нижний – базальтовый. В гранитных породах, например, скорость распространения волны около 5 км/с, в песчаниках она меньше – около 3 км/с.
СЛАЙД 10.
Работа с учебником. Используя стр. 40 пункт №3 §16 назовите самую глубокую скважину.
Самая глубокая шахта уходит в глубину не более чем на 8 км, а самая глубокая скважина достигает 15 км на Кольском полуострове.
А это ничтожно малая величина по сравнению с размерами Земли. Ведь расстояние от поверхности до центра Земли 6370 км. И все же глубинное бурение – один из надежных методов изучения земных недр, он позволяет многое узнать об особенностях строения нашей планеты.
Для чего необходимо изучать строение Земли? Раскрытие тайн внутреннего строения Земли позволит прави
urok.1sept.ru