Глюкоза это полисахарид или моносахарид: «Что относится к полисахаридам?» – Яндекс.Кью – примеры, химические и физические свойства

Моносахариды — урок. Химия, 8–9 класс.

Простые углеводы относятся к группе моносахаридов. Моносахариды отличаются от других групп углеводов отсутствием реакции гидролиза. Они не реагируют с водой и не разлагаются на более простые вещества.

 

Вспомним свойства двух шестиуглеродных моносахаридов: глюкозы и фруктозы. Состав молекул этих веществ одинаковый и выражается формулой: C6h22O6.

Глюкоза — наиболее распространённый в природе моносахарид. Она образуется растениями в процессе фотосинтеза из углекислого газа и воды:

 

.

 

Глюкоза встречается во всех органах растений, в спелых фруктах и ягодах. Много её содержится в винограде, поэтому глюкозу называют ещё виноградным сахаром.

 

Глюкоза находится и в организмах животных. В крови человека её содержится примерно \(0,1\) %.

 

Глюкоза представляет собой белое кристаллическое вещество, хорошо растворимое в воде,  сладкое на вкус.

 

Установлено, что в природе глюкоза существует в линейной и циклических формах, которые способны к взаимопревращениям. Поэтому её строение выражают не одной, а тремя структурными формулами.

 

Циклические формы глюкозы отличаются расположением гидроксильных групп у первого атома углерода (выделены на рисунке).

 

 

Молекула глюкозы в линейной форме содержит пять гидроксильных групп и одну альдегидную группу. Функциональные группы определяют характерные химические свойства глюкозы: ей характерны как реакции многоатомных спиртов, так и реакции альдегидов.

 

 

Одно из свойств глюкозы — взаимодействие с гидроксидом меди(\(II\)). При комнатной температуре глюкоза со свежеприготовленным гидроксидом образует прозрачный ярко-синий раствор (реакция многоатомных спиртов).

 

 

При нагревании глюкозы с аммиачным раствором оксида серебра на стенках пробирки появляется блестящий налёт — «серебряное зеркало» (реакция альдегидов).

 

 

Глюкозе характерны также особые реакции, которые протекают в клетках живых организмов. Это реакции брожения. В результате брожения, в зависимости от условий протекания, могут образовываться разные продукты.

 

Под влиянием ферментов дрожжей происходит спиртовое брожение. Образуются  этиловый спирт и углекислый газ:

 

.

 

Этот процесс используется в приготовлении дрожжевого теста, в виноделии, пивоварении.

 

Под влиянием ферментов молочнокислых бактерий глюкоза превращается в молочную кислоту:

 

.

 

Молочнокислое брожение используется для получения простокваши, кефира, творога, сметаны, сыра.

 

В клетках живых организмов глюкоза является главным источником энергии для всех жизненных процессов. В живом организме происходит медленное окисление глюкозы с образованием углекислого газа и воды. При этом выделяется энергия:

 

.

 

Глюкоза используется в медицине как питательное вещество и составная часть противошоковых жидкостей. Применяется она для получения лимонной кислоты, витаминов С и Н.

 

Находит глюкоза применение в кондитерской промышленности при изготовлении мармелада, пряников, карамели; в производстве молочной кислоты, этанола.

 

Получают глюкозу гидролизом полисахаридов: крахмала или целлюлозы.

Фруктоза имеет такой же состав, как и глюкоза, но отличается строением. Фруктоза — изомер глюкозы.

 

 

Фруктоза содержится во многих фруктах (поэтому так называется). Она входит в состав мёда (до \(50\) %).

 

Фруктоза, как и глюкоза, представляет собой мелкие кристаллы без запаха, хорошо растворимые в воде. Она в два раза слаще глюкозы и часто рекомендуется людям с нарушением обмена веществ в качестве заменителя сахара.

Источники:

Рудзитис Г. Е., Фельдман Ф. Г. Химия. 9 класс. М.: Просвещение, 2009. — 169 с.

Габриелян О. С. Химия. 9 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2011. — 232 с.

Вишневская Е. И., Ельницкий А. П. и др. Химия 9 класс. Минск: Нар. асвета, 2012. — 163 с.

Моносахариды — Карта знаний

  • Моносахариды (от др.-греч. μόνος ‘единственный’, лат. saccharum ‘сахар’ и суффикса -ид), — органические соединения, одна из основных групп углеводов; самая простая форма сахара; являются обычно бесцветными, растворимыми в воде, прозрачными твердыми веществами. Некоторые моносахариды обладают сладким вкусом. Моносахариды — стандартные блоки, из которых синтезируются дисахариды (такие, как сахароза, мальтоза, лактоза), олигосахариды и полисахариды (такие, как целлюлоза и крахмал), содержат гидроксильные группы и альдегидную (альдозы) или кетогруппу (кетозы). Каждый углеродный атом, с которым соединена гидроксильная группа (за исключением первого и последнего), является хиральным, что дает начало многим изомерным формам. Например, галактоза и глюкоза — альдогексозы, но имеют различные химические и физические свойства. Моносахариды представляют собой производные многоатомных спиртов, содержащие карбонильную группу — альдегидную или кетонную.

Источник: Википедия

Связанные понятия

Тетрáсахариды (от др. греч. τέσσερις — четыре — два и ζάχαροη — сахар) — органические соединения, одна из групп углеводов; являются частным случаем олигосахаридов.

Подробнее: Тетрасахариды

Углево́ды — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(h3O)y, формально являясь соединениями углерода и воды. Альдиты (альдитолы) — ациклические полиолы общей формулы HOCh3nCh3OH, формально являющиеся продуктами восстановления альдегидной группы альдоз. Простейшим альдитом является глицерин. Биомолекулы — это органические вещества, которые синтезируются живыми организмами. В состав биомолекул включают белки, полисахариды, нуклеиновые кислоты, а также более мелкие компоненты обмена веществ. Биомолекулы состоят из атомов углерода, водорода, азота, кислорода, а также фосфора и серы. Другие атомы входят в состав биологически значимых веществ значительно реже. Пентозы (от др.-греч. πέμπτος — «пять» + фр. -ose — суффикс, обозначающий принадлежность к сахарам) — общее родовое химическое название класса пятиуглеродных моносахаридов, то есть сахаров, общей формулой которых является C5(h3O)5, или C5h20O5.

Упоминания в литературе

Моносахариды – углеводы, молекулы которых содержат от двух до семи атомов углерода и больше, один из которых образует карбонильную группу. В зависимости от количества атомов углерода их называют тетрозой, пентозой, гексозой, гептозой. В природе наиболее распространены гексозы и пентозы. К гексозам, например, относится глюкоза (декстроза). Она встречается в зеленых частях растений, семенах, различных ягодах и фруктах. Особенно много ее в зрелом винограде, откуда она и получила свое второе название – виноградный сахар. Из нее построены крахмал, целлюлоза, гликоген. Глюкоза постоянно находится в крови человека, нормальное содержание ее колеблется от 0,085 до 0,120 %. При кратковременном приеме с пищей большого количества глюкозы процентное содержание ее значительно возрастает и она выводится с мочой. А при сахарной болезни (диабете) в крови всегда много глюкозы и она почти постоянно присутствует в моче. В медицине чистая глюкоза в виде 20– и 40 %-ного раствора применяется для внутривенных инъекций. Кроме того, в составе молока присутствуют углеводы. Углеводный состав молока представлен небольшим количеством простых углеводов, называемых еще моносахаридами. Химическое строение моносахаридов характеризуется наличием двух основных групп – карбоксильной и гидроксильной, а также некоторых других групп, как то: аминогруппы, карбоксильной группы. Достаточно наличествует в составе молока углевод лактоза, являющийся главным углеводом молока не только по количеству, но и по биологическому воздействию на организм потребителя. Лактоза примечательна следующей особенностью: ее гидролиз (расщепление) в кишечнике происходит с незначительной скоростью, что препятствует началу интенсивного брожения. Важнейшую роль в любом живом организме выполняют так называемые полимерные молекулы. Они состоят из множества звеньев, соединенных в цепочку. Полимерные молекулы в клетках относятся к трем основным классам: белки, нуклеиновые кислоты (ДНК и РНК) и полисахариды. Белки состоят из соединенных в цепочку аминокислот, ДНК и РНК – из нуклеотидов, а полисахариды – из моносахаридов. Свойства полимеров зависят от типов входящих в них звеньев, от их последовательности и от типов связей между звеньями. Например, два хорошо известных полисахарида – крахмал и целлюлоза – состоят из длинных цепочек молекул глюкозы и отличаются только типом связи между глюкозными звеньями. Пектины – это углеводные полимеры, состоящие из остатков уроновых кислот и моносахаридов. Пектиновые вещества (от греч. pektos – свернувшийся, замерзший), в основе которых лежит пектиновая кислота, являющаяся полигалактуроновой кислотой. В пектине в малых количествах присутствуют остатки нейтральных моносахаридов L-арабинозы, D-галактозы, D-ксилозы и фруктозы, которые присоединены к пектиновым веществам в виде боковых цепей (Н. А. Тюкавкина, Ю. Н. Бауков, 1993). Гликозидная природа обуславливает высокую устойчивость в щелочной и гидролиз в кислой средах. Полный гидролиз приводит к образованию моносахаридов или их производных, неполный – к ряду промежуточных олигосахаридов. Попав в кислую среду раневого отделяемого, пектиновая кислота, подвергаясь гидролизу, образует моносахарид D-галактуроновую кислоту, существующую в циклической и альдегидной формах. Углеводы подразделяются на моносахариды и полисахариды. Последние построены из моносахаридов, являющихся, подобно аминокислотам, мономерами. Среди моносахаридов в клетке наиболее важны глюкоза, фруктоза (содержит шесть атомов углерода) и пентоза (пять атомов углерода). Пентозы входят в состав нуклеиновых кислот. Моносахариды хорошо растворяются в воде. Полисахариды плохо растворяются в воде (в животных клетках гликоген, в растительных – крахмал и целлюлоза. Углеводы являются источником энергии, сложные углеводы, соединенные с белками (гликопротеиды), жирами (гликолипиды), участвуют в образовании клеточных поверхностей и взаимодействиях клеток.

Связанные понятия (продолжение)

Олигосахариды — углеводы, содержащие от 2 до 10 моносахаридных остатков (от греч. ὀλίγος — немногий). Аминосахара́ — производные углеводов, образованные замещением одной или нескольких гидроксильных групп на аминогруппу. Биополиме́ры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды. Глицеральдегид (глицераль, глицериновый альдегид,глицероза, 2,3-дигидроксипропаналь) — моносахарид из группы триоз с эмпирической формулой C3H6O3, принадлежит к альдозам. Является простейшим представителем альдосахаров (альдоз) и единственным сахаром из группы альдотриоз. Озазоны (от -оза и -зон — суффиксы названий сахаров и гидразонов) — 1,2-бис-арилгидразоны кетоальдоз (альдокетоз), образующиеся при реакции альдоз и 2-кетоз с избытком арилгидразина. Иногда озазонами называют также бис-гидразоны α-дикарбонильных соединений общей формулы RNHN=CR1CR2=NNHR. Уроновые кислоты (глюкуроновые кислоты) — монокарбоновые кислоты общей формулы OHCnCOOH, формально являющиеся продуктами окисления терминальной гидроксиметильной группы альдоз в карбоксильную группу. Входят в состав биополимеров как растительного, так и животного происхождения. Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот — это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде). Проли́н (пирролидин-α-карбоновая кислота) — гетероциклическая аминокислота, в которую атом азота входит в составе вторичного, а не первичного, амина (в связи с чем пролин правильнее называть иминокислотой). Существует в двух оптически изомерных формах — L и D, а также в виде рацемата. Ганглиози́ды — сложные по составу молекулы, состоящие из гликосфинголипидов, содержащих церамиды и олигосахариды, среди которых присутствует одна или несколько сиаловых кислот, например N-ацетилнейраминовая кислота (англ. NANA). Нейраминовая кислота представляет собой углевод, состоящий из 9 атомов углерода и входящий в группу сиаловых кислот. Таким образом, наличие в составе молекул ганглиозидов ацетилированных производных углеводов и сиаловых кислот способствует нейтральной реакции среды (рН… Диаминопимелиновая кислота (мезо-ДАПК, DAP) — органическое соединение, непротеиногенная аминокислота, по структуре близка к лизину. Характеристический компонент клеточной стенки грамотрицательных бактерий. Пури́новый обме́н (пури́новый метаболи́зм) — совокупность протекающих в живых организмах процессов синтеза и распада пуринов и пуриновых нуклеотидов. Цереброзиды (гликосфинголипиды) (от лат. cerebrum — мозг) — природные органические соединения из группы сложных липидов. Компоненты клеточных мембран. Впервые были обнаружены в составе мозга (отсюда название). Липоксигеназы (англ. Lipoxygenases) — железо-содержащие ферменты, катализирующие реакцию диоксигенации (присоединение двух атомов кислорода) к полиненасыщенным жирным кислотам. Различные типы липоксигеназ найдены в растениях, животных и грибах. Они вовлечены в различные клеточные функции. Гликозили́рование (англ. Glycosylation) — ферментативный процесс, в ходе которого происходит присоединение остатков сахаров к органическим молекулам. В процессе гликозилирования образуются гликозиды или, в случае белков и липидов, гликопротеины и гликолипиды соответственно. Гликозилирование является одной из форм котрансляционной и посттрансляционной модификации белков. Гликозилирование имеет большое значение для структуры и функций мембранных и секретируемых белков.Преобладающая часть белков, синтезируемых… Пиримидин (C4N2h5, 1,3- или м-диазин, миазин) — гетероциклическое соединение, имеющее плоскую молекулу, простейший представитель 1,3-диазинов. Ци́кл трикарбо́новых кисло́т (сокр. ЦТК, цикл Кре́бса, цитра́тный цикл, цикл лимо́нной кислоты́) — центральная часть общего пути катаболизма, циклический биохимический процесс, в ходе которого ацетильные остатки (СН3СО-) окисляются до диоксида углерода (CO2). При этом за один цикл образуется 2 молекулы CO2, 3 НАДН, 1 ФАДh3 и 1 ГТФ (или АТФ). Электроны, находящиеся на НАДН и ФАДh3, в дальнейшем переносятся на дыхательную цепь, где в ходе реакций окислительного фосфорилирования образуется АТФ. Альдаровые кислоты — полигидроксидикарбоновые кислоты общей формулы HOOCnCOOH, формально являющиеся продуктами окисления обоих терминальных углеродных атомов альдоз до карбоксильных групп. Простейший представитель — тартроновая кислота. Метаболи́зм (от греч. «превращение», «изменение») или обме́н веще́ств — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.

Подробнее: Обмен веществ

Ацета́ли — простые эфиры гем-диолов общей формулы R₂C(OR¹)(OR²), где R¹ и R² — углеводородные радикалы: Ch4, C2H5 и др. Первоначально к ацеталям относили производные альдегидов RCH(OR¹)(OR²), а аналогичные производные кетонов именовались кеталями R—C(R¹)(OR²)(OR³), однако в настоящее время в номенклатуре IUPAC для обоих классов соединений рекомендуется название «ацетали».. Сложные тиоэфиры — органические соединения, содержащие функциональную группу C-S-CO-C и являющиеся сложными эфирами тиолов и карбоновых кислот. Сложные тиоэфиры играют важную роль в биохимических процессах, наиболее известный представитель этого класса — ацетил-CoA. Трисахари́ды (от tri: три, sacchar: сахар) — органические соединения, одна из групп углеводов; являются частным случаем олигосахаридов. Фосфатаза — фермент, который катализирует дефосфорилирование субстрата (как правило другого белка) в результате гидролиза сложноэфирной связи фосфорной кислоты. При этом образуется фосфатный анион и молекула продукта с гидроксильной группой. По своему каталитическому и физиологическому действию фосфатаза является антагонистом фосфорилазы и киназы, которые присоединяют фосфатную группу к субстрату. Енозы — производные моносахаридов, содержащие двойную связь углерод-углерод в основной цепи. Подклассом еноз являются гликали, содержащие в моносахаридном цикле енольную двойную связь и формально являющиеся продуктами элиминирования полуацетальной гидроксильной группы и соседнего атома водорода из циклических форм моносахаридов. Сиаловые кислоты (от др.-греч. σίαλον «слюна») — общее название N- и O-замещённых производных нейраминовой кислоты, моносахарида с девятиатомной углеродной цепью. Наиболее распространённого представителя этого класса — N-ацетилнейраминовую кислоту (НАНК, Neu5Ac) — также часто называют сиаловой кислотой. Широко распространены в тканях животных, однако встречаются также у растений, грибов и бактерий. Впервые были обнаружены в 1930-е годы Гуннаром Бликсом, Эрнстом Кленком и другими в качестве преобладающих… Фенилалани́н (α-амино-β-фенилпропионовая кислота, сокр.: Фен, Phe, F) — ароматическая альфа-аминокислота. Существует в двух оптически изомерных формах l и d и в виде рацемата (dl). По химическому строению соединение можно представить как аминокислоту аланин, в которой один из атомов водорода замещён фенильной группой. Аспараги́н (англ. Asparagine; принятые сокращения: Асн, Asn, N) — амид аспарагиновой кислоты (2-амино-бутанамид-4-овая кислота, Asx или B). Одна из 20 наиболее распространённых аминокислот природного происхождения. Их кодоны AAU и AAC. Гликозеены — производные 2-оксигликалей, т.е. циклических форм непредельных углеводов (гликалей), у которых в образовании двойной связи принимает участие гликозидный атом углерода. В молекуле гликозеенов, в отличие от производных других гликалей, ацильный заместитель содержится также и возле второго углеродного атома в кольце (С2). В свободном состоянии гликозеены не выделены, так как их омыление (удаление ацильных групп) сопряжено с разрушением молекулы. Пиранозы — моносахариды, находящиеся в циклической форме и содержащие шестичленное (пирановое) кольцо. Пиранозы образуются в результате внутримолекулярной ацетализации гидроксигруппы при C-5 и альдегидной группы C-1 (для гексоз). Пиранозы могут существовать в виде α- и β-аномеров. Фруктоза (фруктовый сахар), C6h22O6 — моносахарид, кетоноспирт, кетогексоза, изомер глюкозы. Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (—Nh3) одной аминокислоты с α-карбоксильной группой (—СООН) другой аминокислоты. Хиноны — полностью сопряжённые циклогексадиеноны и их аннелированные аналоги. Существуют два класса хинонов: пара-хиноны с пара-расположением карбонильных групп (1,4-хиноны) и орто-хиноны с орто-расположением карбонильных групп (1,2-хиноны). Благодаря способности к обратимому восстановлению до двухатомных фенолов некоторые производные пара-хинонов участвуют в процессах биологического окисления в качестве коферментов ряда оксидоредуктаз. Нуклеи́новая кислота (от лат. nucleus — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. Фитиновая кислота, или мио-инозитгексафосфорная кислота, — это тривиальные названия D-мио-инозитол-1,2,3,4,5,6- гексакисдигидрофосфорной кислоты (молекулярная масса 660), которая представляет собой сложный эфир циклического шестиатомного полиспирта мио-инозитола (или мио-инозита) и шести остатков ортофосфорной кислоты. Полное название этого соединения точно характеризует его химическое строение: приставка мио- указывает на определённую ориентацию гидроксильных групп относительно инозитольного кольца… Фторлимонная кислота — фторсодержащая карбоновая кислота, являющаяся результатом замещения одного атома водорода в молекуле лимонной кислоты атомом фтора. Соответствующий анион носит название фторцитрат. В организме синтезируется в результате двухступенчатого метаболизма фторуксусной кислоты. Сначала в митохондрии клетки преобразуется в фторацетил-КоА воздействием фермента ацетил-КоА — синтетазы. Далее происходит конденсация фторацетил-КоА и щавелевоуксусной кислоты, катализируемая ферментом цитратсинтазой… ФАД — флавинадениндинуклеотид — кофермент, принимающий участие во многих окислительно-восстановительных биохимических процессах. ФАД существует в двух формах — окисленной и восстановленной, его биохимическая функция, как правило, заключается в переходе между этими формами. Метилглиоксаль (пирувальдегид, 2-оксопропаналь) — альдегид пировиноградной кислоты, является одновременно альдегидом и кетоном. Пептидо-нуклеиновые кислоты (ПНК, англ. PNA, Peptide nucleic acid) — это химические вещества, похожие на РНК или ДНК. В настоящее время ПНК не обнаружены в составе живых организмов и получаются путём химического синтеза для использования в некоторых биологических экспериментах и медицине. Глюко́за, или виноградный сахар, или декстроза (D-глюкоза), C6h22O6 — органическое соединение, моносахарид (шестиатомный гидроксиальдегид, гексоза), один из самых распространённых источников энергии в живых организмах на планете. Встречается в соке многих фруктов и ягод, в том числе и винограда, от чего и произошло название этого вида сахара. Глюкозное звено входит в состав полисахаридов (целлюлоза, крахмал, гликоген) и ряда дисахаридов (мальтозы, лактозы и сахарозы), которые, например, в пищеварительном… Ацетогенез – процесс, в результате которого ацетат получается из CO2 и донора электронов (например, h3, CO, формиат, и т. д.), осуществляемая анаэробными бактериями в последовательности биохимических реакций восстановительного ацетил-КoA пути (Путь Вуда — Льюнгдаля). Группа различные видов бактерий, способных к ацетогенезу, называются ацетогенами. Некоторые ацетогены способны синтезировать ацетат автотрофно, из диоксида углерода и водорода. Суммарная реакция автотрофного синтеза ацетата… Цвиттер-ион (биполярный ион; нем. Zwitter — «гермафродит») — молекула, которая, являясь в целом электронейтральной, в своей структуре имеет части, несущие как отрицательный, так и положительный заряды. Их иногда называют внутримолекулярными солями (например, внутримолекулярные соли аминокислот) и, иногда, (ошибочно) ионными диполярными соединениями. Некоторые химики относят к цвиттер-ионам лишь соединения с зарядами на несоседних атомах, поскольку существуют также соединения с зарядами на соседних… Фруктан — полимер фруктозы. Каждая молекула фруктана состоит из множества молекул β-D-фруктозы и одной молекулы α-D-глюкозы, связанной с фруктозой через свой полуацетальный гидроксил. Таким образом, все фруктаны — невосстанавливающие полисахариды. Особую группу составляют фруктаны с короткой цепью, называемые фруктоолигосахариды. Фруктаны можно обнаружить в таких продуктах питания как агава, артишок, спаржа, лук-порей, чеснок, лук (включая лук-шалот), якон, хикама и пшеница. Ферме́нты (от лат. fermentum) — обычно достаточно сложные молекулы белка, рибосом или их комплексы, ускоряющие химические реакции в живых системах. Каждый фермент, свернутый в определённую структуру, ускоряет соответствующую химическую реакцию: реагенты в такой реакции называются субстратами, а получающиеся вещества — продуктами. Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу.Ферментативная активность может регулироваться… Мутаротация (от лат. muto — изменяю и rotatio — вращение) — изменение величины оптического вращения растворов оптически активных соединений вследствие взаимного перехода аномеров вещества друг в друга. В химии углеводов под мутаротацией обычно подразумевается эпимеризация полуацетального атома углерода. Характерна для моносахаридов, восстанавливающих олигосахаридов, лактонов и др. Мутаротация может катализироваться кислотами и основаниями. Поликонденсация — процесс синтеза полимеров из полифункциональных (чаще всего бифункциональных) соединений, обычно сопровождающийся выделением низкомолекулярных побочных продуктов (воды, спиртов и т. п.) при взаимодействии функциональных групп.

Упоминания в литературе (продолжение)

Моносахариды: глюкоза – основной источник энергии для клеточного дыхания. Фруктоза – составная часть нектара цветов и фруктовых соков. Рибоза и дезоксирибоза – структурные элементы нуклеотидов, являющихся мономерами РНК и ДНК. Моносахариды (простые сахара) состоят из одной молекулы, содержащей от 3 до 6 атомов углерода. Дисахариды – соединения, образованные из двух моносахаридов. Полисахариды являются высокомолекулярными веществами, состоящими из большого числа (от нескольких десятков до нескольких десятков тысяч) моносахаридов. Углеводы представляют собой сахара: простейшие, состоящие из одной молекулы, называются моносахаридами, дисахариды, соответственно, состоят из двух молекул Сахаров, и полисахариды состоят из большого числа молекул. Кроме того, углеводы делятся на усвояемые и неусвояемые (неусвояемые – те, которые не могут быть расщеплены пищеварительными соками человека). Более наглядно информация об углеводах представлена в следующей таблице. Органические кислоты: яблочная, лимонная – стимулируют пищеварение; они сразу поступают в клетки и дают энергию, необходимую для процесса пищеварения. Одновременно с этим моносахариды в организме превращаются пировиноградную кислоту, являющуюся исходным продуктом для последующего извлечения энергии. Одновременно дисахариды превращаются в моносахариды, а полисахариды – в дисахариды. Таким образом в организме осуществляется непрерывный цикл усвоения питательных веществ. Это также очень важные соединения органической природы. Все углеводы разделяют на две группы: монозы, или моносахариды, и полнозы, или полисахариды. Моносахариды называют простыми сахарами. Они представляют собой твердые вещества, хорошо растворимые, сладковатые на вкус. Наибольшее значение среди моносахаридов имеют глюкоза и фруктоза. Глюкоза – первичный и главный источник энергии для клеток. Она обязательно находится в крови. Снижение ее количества в крови влечет за собой немедленное нарушение жизнедеятельности нервных и мышечных клеток, иногда сопровождаемое судорогами или обморочным состоянием. Глюкоза входит в структуры почти всех клеток органов и тканей. Источниками глюкозы являются продукты как растительного, так и животного происхождения. Итак, углеводы – это сахара, которые в зависимости от их молекулярного строения можно разделить на три группы: простые, или моносахариды; сложные, или дисахариды; очень сложные, или полисахариды. 3. Инсулин – в состав входят молекулы моносахарида фруктозы. Участвует практически во всех обменных процессах. В диетологии углеводы разделяются на простые (сахарные) и сложные, более важные с точки зрения рационального питания. Простые углеводы называются моносахаридами (это фруктоза и глюкоза). Моносахариды быстро растворяются в воде, это способствует их поступлению из кишечника в кровь. Сложные углеводы построены из нескольких молекул моносахаридов и называются полисахаридами. К полисахаридам относятся все разновидности сахаров: молочный, свекловичный, солодовый и другие, а также клетчатка, крахмал и гликоген. Гликоген является важнейшим элементом для развития выносливости у спортсменов, относится к полисахаридам, вырабатывается в организме животными. Хранится в печени и мышечной ткани, в мясе гликоген почти не содержится, так как после смерти живых организмов он распадается. Организм усваивает углеводы за достаточно короткое время. Глюкоза, попадая в кровь, сразу становится источником энергии, воспринимаемым всеми тканями организма. Глюкоза необходима для нормального функционирования мозга и нервной системы. Углеводы – обширный класс органических веществ, к которому относятся: сахара, алифатические полиоксикарбонильные соединения, крахмал, камеди, слизи и другие, т. е. компоненты всех без исключения живых организмов. Углеводы делят на моносахариды, олигосахариды и полисахариды. В растениях моносахариды являются первичными продуктами биосинтеза и используются далее для биосинтеза гликозидов, полисахаридов, аминокислот, жирных кислот, полифенолов и др. Всасывание моносахаридов в тонкой кишке активируется транспортом ионов Na+ через мембраны. С наибольшей скоростью всасываются гексозы (глюкоза, галактоза и др.), пентозы всасываются медленнее. С током крови моносахариды поступают в печень, где значительная и× часть задерживается и превращается в гликоген. Часть глюкозы попадает в общий кровоток и используется в качестве источника энергии. Некоторая часть глюкозы превращается в триглицериды и откладывается в жировых депо (печень, подкожный жировой слой и т. п.). Интенсивность всасывания моносахаридов в различных отделах тонкой кишки зависит от скорости гидролиза сахаров, концентрации образовавшихся мономеров и особенностей транспортных систем кишечных эпителиоцитов. Пектины – это углеводные полимеры, состоящие из остатков уроновых кислот и моносахаридов. Характерными свойствами пектинов являются их способность образовывать студни в присутствии сахара и кислот, с многими металлами (кальцием, стронцием, свинцом и др.), образовывать нерастворимые комплексные химические соединения, которые в пищеварительном тракте практически не перевариваются и выводятся из организма. Эта способность пектинов объясняет их радиозащитное, антитоксическое, комплексообразующее действие при промышленном и бытовом отравлении, а также воздействии радионуклидов. Гликолизированный гемоглобин. Гликолизированный гемоглобин – это форма гемоглобина, возникшая в результате неферментативной химической реакции гемоглобина с глюкозой или другими моносахаридами, циркулирующими в крови. В результате такой реакции к молекуле гемоглобина присоединяется остаток моносахарида. Количество образовавшегося гликолизированного гемоглобина пропорционально концентрации глюкозы в крови и зависит от длительности взаимодействия гемоглобина с сахарами. Таким образом, содержание гликолизированного гемоглобина характеризует средний уровень содержания глюкозы в крови на протяжении относительно длительного промежутка времени – периода жизни молекулы гемоглобина (около 3–4 месяцев). Углеводы, содержащиеся в пищевых продуктах, можно разделить на моносахариды (простые углеводы) и полисахариды, образованные из различного количества остатков моносахаридов. Моносахариды – это простые углеводы, которые не расщепляются при гидролизе, наиболее важными из них являются гексозы: глюкоза, фруктоза и галактоза. Если представить себе углеводы в виде конструктора из кубиков, то моносахариды – это самые маленькие кубики конструктора. Основными углеводными молекулами являются простые сахара – моносахариды. Соединения из двух и более моносахаридов называются ди; олиго- или полисахаридами. Главным углеводом в рационе человека служит такой полисахарид, как растительный крахмал. В организме углеводы запасаются в виде гликогена – животного крахмала. В диетологии различают простые углеводы (сахарные) и сложные, более важные с точки зрения рационального питания. Простые углеводы называются моносахаридами, или глюкозой. Моносахариды быстро растворяются в воде, поэтому хорошо всасываются из кишечника в кровь. Сложные углеводы построены из нескольких молекул моносахаридов и называются полисахаридами. К полисахаридам относятся разновидности сахаров: молочный, свекловичный, солодовый и другие, а также клетчатка, крахмал и гликоген. Углеводный обмен в печени происходит так. В результате расщепления различных дисахаридов образуются такие моносахариды, как глюкоза, фруктоза и галактоза, которые и всасываются в пищеварительном тракте. Они поступают в печень, там фруктоза и галактоза превращаются в глюкозу, накапливающуюся в виде гликогена. Позже печень снова превращает гликоген в глюкозу, и тогда концентрация глюкозы в выходящей из печени крови становится выше, чем в крови, входящей в печень. Таким способом печень поддерживает концентрацию глюкозы в крови на сравнительно постоянном уровне в любое время суток. При поступлении белков в организм в достаточном количестве печень способна превращать в глюкозу до 60 % аминокислот пищи. Углеводный обмен в печени происходит так. В результате расщепления различных дисахаридов образуются такие моносахариды, как глюкоза, фруктоза и галактоза, которые и всасываются в пищеварительном тракте. В печени фруктоза и галактоза превращаются в глюкозу, накапливающуюся в виде гликогена. Позже печень снова превращает гликоген в глюкозу, и тогда концентрация глюкозы в выходящей из печени крови становится выше, чем в крови, входящей в печень. Таким способом печень поддерживает концентрацию глюкозы в крови на сравнительно постоянном уровне в любое время суток. При поступлении белков в организм в достаточном количестве печень способна превращать в глюкозу до 60 % аминокислот пищи. Пектины – углеводные полимеры, состоящие из остатков уроновых кислот и моносахаридов, входящие в состав межклеточного вещества растений. С органическими кислотами и сахарами пектиновые вещества желируют, превращаясь в студевидную массу. Они набухают в воде, образуют гели и слизистые растворы. Рассматривая целебные свойства молока, нельзя не сказать об углеводах. Они выполняют функцию снабжения организма энергией и быстро им расходуются. По сравнению с другими углеводами (полисахариды, крахмал, гликоген, дисахариды, сахароза, молочный сахар, моносахариды, глюкоза, фруктоза, галактоза) молоко содержит лишь небольшое количество галактозы, входящей в состав молочного сахара, и не может считаться источником углеводов в диете. Углеводы подразделяют на моносахариды (простые сахара), дисахариды или олигосахариды (состоят из 2-10 молекул простых сахаров) и полисахариды (сложные сахара). К моносахаридам (простые углеводы) относятся глюкоза, фруктоза, галактоза, манноза. Глюкоза и фруктоза в больших количествах содержатся в ягодах, фруктах, меде, манноза – в цитрусовых, галактоза входит в состав молочного сахара – лактозы. Все моносахариды, кроме фруктозы, быстро всасываются в желудочнокишечном тракте и поступают в кровь. Фруктоза широко известна как фруктовый сахар. Она слаще сахарозы примерно на 70 %, мало влияет на увеличение сахара (глюкозы) в крови. Фруктоза в большей степени задерживается печенью, а в крови скорее вступает в обменные реакции. Утилизация в организме фруктозы не требует инсулина, поэтому данный вид сахара рекомендуется больным сахарным диабетом, а также лицам с избыточной массой тела для снижения риска развития этого заболевания. Суточная доза фруктозы составляет 40-80 г, а разовое ее потребление не должно превышать 20 г. Различают простые и сложные, усвояемые и неусвояемые углеводы. Основными простыми углеводами являются моносахариды: глюкоза, галактоза и фруктоза, дисахариды сахароза, лактоза и мальтоза. К сложным углеводам относятся полисахариды: крахмал, клетчатка, гликоген, пектин. Углеводы необходимы для нормального обмена белков и жиров, участвуют в образовании некоторых гормонов и ферментов, слизи, секрета желез, иных биологически важных соединений. Клетчатка и пектины почти не перевариваются в кишечнике, не являются источниками энергии, влияют на двигательную функцию кишечника. Пектины впитывают в себя вредные вещества в кишечнике, уменьшают гнилостные процессы, способствуют заживлению слизистой оболочки. Эти свойства пектинов используют при заболеваниях кишечника. Длительный недостаток в питании пищевых волокон ведет к серьезным заболеваниям, избыточное потребление – к газообразованию с явлениями метеоризма (вздутие живота), ухудшению усвоения белков, жира, кальция, железа и других минеральных веществ. Углеводы бывают простые и сложные, различающиеся химической структурой. Среди простых выделяют моносахариды (глюкоза, галактоза, фруктоза) и дисахариды (сахароза, лактоза и мальтоза). Простые углеводы содержатся в сладких продуктах – сахаре, меде, кленовом сиропе и т. п. В облепихе содержится много других веществ, имеющих целительные свойства: Р-активные соединения холин и бетаин, яблочная и виннокаменная кислоты, моносахариды и дисахариды, следы дубильных веществ, фенольные соединения, флавоноиды, фенолокислоты и тритерпеновые кислоты. Углеводы подразделяются на моносахариды, олигосахариды и полисахариды. Моно– и олигосахариды сладкие на вкус, поэтому их и назвали сахарами. Особое место занимают также сахароза и лактоза, которые в нашем организме распадаются соответственно до глюкозы и фруктозы и глюкозы и галактозы, а фруктоза и галактоза далее в организме снова превращаются в глюкозу. Глюкоза и фруктоза в основном содержится в меде, сладких овощах и фруктах. Глюкоза и фруктоза есть во всех плодах, в семечковых преобладает фруктоза, в косточковых – глюкоза. В поджелудочном соке содержатся ферменты, переваривающие белки, жиры и углеводы до конечных продуктов, пригодных для всасывания и усвоения клетками организма. Ферменты, переваривающие белки (трипсин и химотрипсин) действуют, в отличие от пепсина, в щелочной среде и расщепляют белки до аминокислот. В соке содержатся также: липаза, осуществляющая основное переваривание жиров до глицерина и жирных кислот; амилаза, лактаза и мальтаза, расщепляющие углеводы до моносахаридов; нуклеазы, расщепляющие нуклеиновые кислоты. Углеводы представлены многими лечебными препаратами. Простейшие из них моносахариды (глюкоза, фруктоза и др.). Из них синтезируются более сложные дисахариды (сахароза, мальтоза), а также три-, тетра- и полисахариды. Из полисахаридов в медицинской лечебной практике используется крахмал, инулин, пектин, камеди, слизи, клетчатка. Углеводы поступают в организм с пищей в виде моносахаридов (глюкоза, фруктоза), дисахаридов (сахароза, лактоза) и полисахаридов (крахмал, гликоген, пектиновые вещества и клетчатка). Углеводы делятся на моносахариды (глюкоза и фруктоза), дисахариды (сахароза и лактоза) и полисахариды (крахмал, клетчатка, пектин, гликоген). Быстрее всех всасываются глюкоза и фруктоза, они содержатся во фруктах, ягодах, меде.

Полисахарид Википедия

Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.

Свойства полисахаридов значительно отличаются от свойств их мономеров и зависят не только от состава, но и от строения (в частности, разветвлённости) молекул. Они могут быть аморфными или даже нерастворимыми в воде.[1][2] Если полисахарид состоит из одинаковых моносахаридных остатков, он называется гомополисахаридом или гомогликаном, а если из разных — гетерополисахаридом или гетерогликаном.[3][4]

Природные сахариды чаще всего состоят из моносахаридов с формулой (CH2O)n, где n ≥3 (например, глюкоза, фруктоза и глицеральдегид)[5]. Общая формула большинства полисахаридов — Cx(H2O)y, где x обычно лежит между 200 и 2500. Чаще всего мономерами являются шестиуглеродные моносахариды, и в таком случае формула полисахарида выглядит как (C6H10O5)n, где 40≤n≤3000.

Полисахаридами обычно называют полимеры, содержащие больше десяти моносахаридных остатков. Резкой границы между полисахаридами и олигосахаридами нет. Полисахариды являются важной подгруппой биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Запасным веществом высших растений обычно служит крахмал, состоящий из амилозы и амилопектина (полимеров глюкозы). У животных есть похожий, но более плотный и разветвленный полимер глюкозы — гликоген, или «животный крахмал». Он может быть использован быстрее, что связано с активным метаболизмом животных.

Целлюлоза и хитин — структурные полисахариды. Целлюлоза служит структурной основой клеточной стенки растений, это наиболее распространенное органическое вещество на Земле.[6] Она используется при производстве бумаги и тканей, и в качестве исходного сырья для производства вискозы, ацетилцеллюлозы, целлулоида и нитроцеллюлозы. Хитин имеет такую же структуру, но с азотсодержащим боковым ответвлением, увеличивающим его прочность. Он есть в экзоскелетах членистоногих и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также включают каллозу

Полисахариды — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Полисахариды (гликаны) – это молекулы полимерных углеводов, соединенных длинной цепочкой моносахаридных остатков, объединённые вместе гликозидной связью, а при гидролизе становятся составной частью моносахаридов или олигосахаридов. Они выстраиваются либо линейной в структурной форме, либо разветвленной. Примерами могут служить резервные полисахариды, такие как крахмал и гликоген и структурные полисахариды – целлюлоза и хитин.

Полисахариды чаще всего неоднородны, состоят из смеси непрочных повторяющихся остатков. В зависимости от структуры у этих макромолекул могут быть различные свойства в зависимости от их моносахаридных блочных молекул. Они могут быть аморфные или даже нерастворимы в воде.[1][2] Когда в полисахариде находятся все моносахариды одного типа, полисахарид называется гомополисахаридом или гомогликаном, но когда присутствует больше одного типа моносахаридов, их называют гетерополисахаридами или гетерогликанами.[3][4]

Натуральные сахариды в основном состоят из простых углеводов, называемых моносахаридами с общей формулой (CH2O)n, где n – это три и более. Представители моносахаридов: глюкоза, фруктоза и глицеральдегид.[5] У полисахаридов, тем не менее, есть общая формула Cx(H2O)y где x – это обычно число между 200 и 2500. Учитывая, что повторяющиеся остатки в полимерной цепочке зачастую шестиуглеродные моносахариды, общая формула может также представляться в таком виде (C6H10O5)n, где 40≤n≤3000.

Полисахариды состоят из более, чем десяти моносахаридных остатков. Определение углевода к какой-либо категории полисахаридов и олигосахаридов зависит от личного мнения. Полисахариды являются главным достоинством биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Крахмал (полимер глюкозы) используется в качестве запасного вещества в растениях, в виде и амилозы и разветвленного амилопектина. У животных структурно похожий глюкозный полимер более плотный разветвленный гликоген, иногда называется «животным крахмалом». По своим свойствам гликоген ускоряет метаболизм, который необходим для жизненно необходимых процессов животных.

Целлюлоза и хитин – это структурные полисахариды. Целлюлоза служит структурной основой клеточной мембраны растений и других микроорганизмов, это самое наиболее распространенное органическое вещество на земле.[6] Она используется в значительной степени при производстве бумаги и текстильной индустрии, и в качестве исходного сырья для производства шелка (при создании вискозы), ацетилцеллюлозы, целлулоида и нитроцеллюлозы. У хитина такая же структура, но у него азото-содержащие боковое ответвление, увеличивающее его прочность. Он есть у членистоногих экзоскелетов и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также входят в каллозу или ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.

Функция

Структура

Пищевые полисахариды – основные источники энергии. Многие микроорганизмы легко могут разложить крахмал до глюкозы; однако, большинство микроорганизмов не могут переварить целлюлозу или другие полисахариды, такие как хитин и арабиноксиланы. Эти углеводы могут усваиваться некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.

Даже при том, что эти сложные углеводы не очень легко усвояемы, они поставляют очень важные пищевые элементы для людей. Их называют пищевыми волокнами, эти углеводы улучшают пищеварение среди прочей пользы. Основная функция пищевых волокн – это изменение природного содержимого желудочно-кишечного тракта, и изменение всасывания других нутриентов и химических веществ.[7][8] Растворимые волокна связываются с жёлчными кислотами в тонком кишечнике, растворяя их для лучшего усвоения; это в свою очередь понижает уровень холестерина в крови.[9] Растворимые волокна также замедляют всасывание сахара и уменьшают ответную реакцию на него после еды, нормализуют уровень содержания липидов в крови, и после ферментации в толстой кишке синтезируются в короткоцепочные жирные кислоты в качестве побочных продуктов с широким спектром физиологической активности (пояснение ниже). Хотя нерастворимые волокна и уменьшают риск диабета, механизм их действия до сих пор не изучен.[10]

Пищевые волокна все ещё официально являются необходимым макроэлементом (с 2005 г.) и все также считаются важными составляющими для питания по мнению диетологов, и во многих развитых странах рекомендуется увеличивать их потребление.[7][8][11][12]

Резервные полисахариды

Крахмал

Крахмалы – это полимеры глюкозы, в которых остатки глюкопиранозы образуют альфа-соединения. Они сделаны из смеси амилозы (15–20%) и амилопектина (80–85%). Амилоза состоит из линейной цепочки нескольких сотен глюкозных молекул, а амилопектин – это разветвленная молекула, сделанная из нескольких тысяч глюкозных остатков (каждая цепочка из 24–30 глюкозных остатков – это одна единица амилопектина). Крахмалы нерастворимы в воде. Они могут перевариться при разрыве альфа-соединений (гликозидные соединения). И у животных, и людей есть амилазы, поэтому они могут переварить крахмал. Картофель, рис, мука и кукуруза – главные источники крахмала в человеческом питании. Растения запасают крахмалы в виде глюкозы.

Гликоген

Гликоген служит вторым по значению долговременным энергетическим запасом в клетках животных и грибов, который откладывается в виде энергии в жировой ткани. Гликоген в первую очередь образовывается в печени и мышцах, но также может вырабатываться гликогеногенезом в головном мозге и желудке.[13]

Гликоген – это аналог крахмала, глюкозный полимер в растениях, иногда его называют «животный крахмал»,[14] имеет схожую структуру с амилопектином, но больше разветвлен и компактен, чем крахмал. Гликоген – это полимер, связанный α(1→4) гликозидными связями, с α(1→6) в точках разветвления. Гликоген находится в форме гранул в цитозоли/цитоплазмы многих клеток, и играет важную роль в глюкозном цикле. Гликоген формирует запас энергии, которая быстро пускается в обращение при необходимости в глюкозе, но он менее плотный и быстрее доступен в качестве энергии, чем триглицериды (липиды).

В печеночных гепатоцитах гликоген может образоваться до восьмидесяти процентов (100–120  у взрослых) чистого веса вскоре после еды.[15] Только гликоген, запасенный в печени может быть доступен для других органов. В мышечной массе гликоген находится в небольшой концентрации от одного до двух процентов. Количество гликогена, отложенного в теле — в особенности в мышцах, печени и эритроцитах[16][17][18]— меняется от физической активности, основного обмена и пищевых привычек, таких как периодическое голодание. Небольшое количество гликогена находится в почках, и ещё меньше в клетках глии в головном мозге и лейкоцитах. В матке также запасается гликоген во время беременности, чтобы рос эмбрион.[15]

Гликоген состоит из разветвленной цепочки глюкозных остатков. Он находится в печени и мышцах.

  • Это энергетический запас для животных.
  • Это основная форма углевода, отложенного в теле животного.
  • Он нерастворим в воде. Становится красным при разбавлении с йодом.
  • Он также превращается в глюкозу в процессе гидролиза.
  • Glycogen structure.svg

    Схема гликогена в 2-м поперечном сечении. В сердцевине находится белок гликогенина, окруженного ответвлениями глюкозных остатков. Во всей глобулярной грануле может содержаться примерно 30,000 глюкозных остатков.[19]

  • Ошибка создания миниатюры: Файл не найден

    Панорама строения атома одной ответвленной части глюкозного остатка в гликогеновой молекулы.

Структурные полисахариды

Арабиноксиланы

Арабиноксиланы находятся и в главных, и во второстепенных стенках клеток растений, и они являются сополимерами двух пентозных сахаров: арабиноза и ксилоза.

Целлюлоза

Строительный материал растений формируется в первую очередь из целлюлозы. Дерево – это основной источник целлюлозы, как и лигнин, в то время как бумага и хлопок почти чистая целлюлоза. Целлюлоза – это полимер, сделанный из повторяющихся глюкозных остатков, соединенных вместе бета-связями. У людей и многих животных не хватает энзимов разорвать бета-связи, поэтому они не перевариваривают целлюлозу. Определенные животные, такие как термиты, могут переварить целлюлозу, потому что в их пищеварительной системе присутствуют энзимы, способные переварить её. Целлюлоза нерастворима в воде. Не меняет цвет при смешивании с йодом. При гидролизе переходит в глюкозу. Это самый распространенный углевод в мире.

Хитин

Хитин – один из самых встречающихся натуральных полимеров. Он является строительным компонентом многих животных, к примеру экзоскелетов. Он разлагается микроорганизмами в течение долгого времени в окружающей среде. Его распад могут катализировать ферменты под названием хитиназы, которые секретируют такие микроорганизмы как бактерии и грибы, и производят некоторые растения. У некоторых из этих микроорганизмов есть рецепторы, которые расщепляют хитин до простого сахара. При нахождении хитина, они начинают выделять ферменты, расщепляющие его до гликозидных связей, чтобы получить простые сахара и аммиак.

Химически, хитин очень близок хитозану (более водорастворимое производное хитина). Он также очень похож на целлюлозу в том, что это такая же длинная неразветвленная цепочка глюкозных остатков. Оба материала способствуют формированию структуры и силы, защищающие организмы.

Пектины

Пектины – это совокупность полисахаридов, которые состоят из а-1,4-связей между остатками D-галактопиранозилуроновой кислоты. Они есть во многих важнейших клеточных стенках и в недревесных частях растений.

Кислотные полисахариды

Кислотные полисахариды – это полисахариды карбоновых групп, фосфатных групп и/или групп серных сложных эфиров.

Бактериальные капсульные полисахариды

Патогенные бактерии обычно вырабатывают вязкий, слизистый слой полисахаридов. Эта «капсула» скрывает антигеновые белки на поверхности бактерии, которая иначе вызвала бы иммунный ответ и таким образом привела к разрушению бактерии. Капсульные полисахариды водорастворимые, зачастую кислотные, и у них есть молекулярная масса на уровне 100-2000 kDa. Они линейны и состоят из постоянно повторяющихся субъединиц от одного до шести моносахаридов. Существует огромное структурное многообразие; около двух сотен разных полисахаридов производится только одной кишечной палочкой. Смесь капсульных полисахаридов, либо конъюгируется, либо естественным путем используется как вакцина.

Бактерии и многие другие микробы, включая грибы и водоросли, часто секретируют полисахариды, чтобы прилипнуть к поверхностям для предотвращения пересыхания. Люди научились превращать некоторые такие полисахариды в полезные продукты, включая ксантановую камедь, декстран, гуаровая камедь, велановую камедь, дьютановую камедь и пуллулан.

Большинство из этих полисахаридов выделяют полезные вязкоупругие свойства, когда растворяются в воде на очень низком уровне.[20] Это позволяет использовать различные жидкости в ежедневной жизни, к примеру, в таких продуктах как лосьоны, очищающие средства и краски, вязкие в стабильном состоянии, но становятся намного более жидкие при малейшем движении и используются для размешивания или взбалтывания, чтобы наливать, вытирать или расчесывать. Это свойство называется псевдопластичностью; изучение таких материалов называется реология.

[www.xydatasource.com/xy-showdatasetpage.php?datasetcode=45615&dsid=76&searchtext=polysaccharide Вязкость велановой камеди]
Скорость сдвига (rpm) Вязкость (cP)
0.3 23330
0.5 16000
1 11000
2 5500
4 3250
5 2900
10 1700
20 900
50 520
100 310

У самого по себе водянистого раствора полисахаридов есть интересное свойство при сдвиге: после прекращения движения, раствор изначально продолжает кружить в водовороте по инерции, потом замедляет движение благодаря вязкости и полностью меняет направление прямо перед остановкой. Это движение назад происходит благодаря эластичному эффекту цепочек полисахаридов, которые прежде растянулись в растворе, возвращаются назад в расслабленное состояние.

Мембранные полисахариды выполняют другие роли в бактериальной экологии и физиологии. Они служат барьером между клеточной стенкой и окружающим миром, посредником во взаимодействии хозяин-паразит, и образуют строительные компоненты биопленки. Эти полисахариды синтезируются из нуклеотидно-активированных предшественников (их называют нуклеотидные сахара) и, во многих случаях, все ферменты, необходимые для биосинтеза, собрания и транспортировки целого полимера закодированые генами, организованны в специальных группах с геномом организма. Липополисахарид – это один из самых важных мембранных полисахаридов, так как он играет ключевую структурную роль для сохранения целостности клетки, а также является важнейшим посредником во взаимодействии между хозяином и паразитом.

Недавно были найдены энзимы, которые образуют A-группу (гомоплимерные) и B-группу (гетерополимерные) O-антигенов и определены их метаболические пути.[21] Экзополисахаридный альгинат – это линейный полисахарид, связанный β-1,4-остатками D-маннуроновой и L-гулуроновой кислот, и ответственный за мукоидный фенотип последней стадии муковисцедоза. Pel и psl локусы – две недавно обнаруженные генетические группы, которые также закодированы экзополисахаридами, и как выяснилось, являются очень важным составляющим биопленки. Рамнолипиды – это биологическое поверхностно-активное вещество, чье производство строго регулируется на транскрипционном уровне, но прецизионную роль, которую они играют во время болезни до нынешнего момента до сих пор не изучена. Протеиновое гликозилирование, в частности пилин и флагеллин, стали объектом исследования нескольких групп начиная где-то с 2007 г., и как оказалось, они очень важны для адгезии и инвазии во время бактериальной инфекции.[22]

Напишите отзыв о статье «Полисахариды»

Примечания

  1. Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M. [www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=glyco2 Essentials of glycobiology]. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9.
  2. Varki A, Cummings R, Esko J, Jessica Freeze, Hart G, Marth J. [www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=glyco.TOC&depth=2 Essentials of glycobiology]. — Cold Spring Harbor Laboratory Press, 1999. — ISBN 0-87969-560-9.
  3. IUPAC Gold Book internet edition: «[goldbook.iupac.org/H02856.html homopolysaccharide (homoglycan)]».
  4. IUPAC Gold Book internet edition: «[goldbook.iupac.org/H02812.html heteropolysaccharide (heteroglycan)]».
  5. Matthews, C. E.; K. E. Van Holde; K. G. Ahern (1999) Biochemistry. 3rd edition. Benjamin Cummings. ISBN 0-8053-3066-6
  6. N.A.Campbell (1996) Biology (4th edition). Benjamin Cummings NY. p.23 ISBN 0-8053-1957-3
  7. 1 2 [www.nal.usda.gov/fnic/DRI//DRI_Energy/339-421.pdf Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (2005), Chapter 7: Dietary, Functional and Total fiber.]. US Department of Agriculture, National Agricultural Library and National Academy of Sciences, Institute of Medicine, Food and Nutrition Board.
  8. 1 2 Eastwood M, Kritchevsky D (2005). «Dietary fiber: how did we get where we are?». Annu Rev Nutr 25: 1–8. DOI:10.1146/annurev.nutr.25.121304.131658. PMID 16011456.
  9. Anderson JW (2009). «Health benefits of dietary fiber». Nutr Rev 67 (4): 188–205. DOI:10.1111/j.1753-4887.2009.00189.x. PMID 19335713.
  10. Weickert MO, Pfeiffer AF (2008). «Metabolic effects of dietary fiberand any other substance that consume and prevention of diabetes». J Nutr 138 (3): 439–42. PMID 18287346.
  11. [www.fucoidanforce.com/ Dietary Benefits of Fucoidan from Sulfated Polysaccharides].
  12. Jones PJ, Varady KA (2008). «[article.pubs.nrc-cnrc.gc.ca/ppv/RPViewDoc?issn=1715-5312&volume=33&issue=1&startPage=118 Are functional foods redefining nutritional requirements?]» (PDF). Appl Physiol Nutr Metab 33 (1): 118–23. DOI:10.1139/H07-134. PMID 18347661.
  13. Anatomy and Physiology. Saladin, Kenneth S. McGraw-Hill, 2007.
  14. [www.merriam-webster.com/medical/animal%20starch Animal starch]. Merriam Webster. Проверено 11 мая 2014.
  15. 1 2 Campbell Neil A. [www.phschool.com/el_marketing.html Biology: Exploring Life]. — Boston, Massachusetts: Pearson Prentice Hall, 2006. — ISBN 0-13-250882-6.
  16. Moses SW, Bashan N, Gutman A (December 1972). «[www.bloodjournal.org/cgi/pmidlookup?view=long&pmid=5083874 Glycogen metabolism in the normal red blood cell]». Blood 40 (6): 836–43. PMID 5083874.
  17. jeb.biologists.org/cgi/reprint/129/1/141.pdf
  18. Miwa I, Suzuki S (November 2002). «An improved quantitative assay of glycogen in erythrocytes». Annals of Clinical Biochemistry 39 (Pt 6): 612–3. DOI:10.1258/000456302760413432. PMID 12564847.
  19. [books.google.dk/books?id=SRptlOx7yj4C&printsec=frontcover&hl=en Page 12 in:] Exercise physiology: energy, nutrition, and human performance, By William D. McArdle, Frank I. Katch, Victor L. Katch, Edition: 6, illustrated, Published by Lippincott Williams & Wilkins, 2006, ISBN 0-7817-4990-5, ISBN 978-0-7817-4990-9, 1068 pages
  20. Viscosity of Welan Gum vs. Concentration in Water. www.xydatasource.com/xy-showdatasetpage.php?datasetcode=345115&dsid=80
  21. Guo H, Yi W, Song JK, Wang PG (2008). «Current understanding on biosynthesis of microbial polysaccharides». Curr Top Med Chem 8 (2): 141–51. DOI:10.2174/156802608783378873. PMID 18289083.
  22. Cornelis P (editor). [www.horizonpress.com/pseudo Pseudomonas: Genomics and Molecular Biology]. — 1st. — Caister Academic Press, 2008. — ISBN [www.horizonpress.com/pseudo ]978-1-904455-19-6.

См. также

Общие:
Геометрия
Моносахариды

Кетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)

>7

Мультисахариды
Производные углеводов

Отрывок, характеризующий Полисахариды

– Как зарежешь, на чем поедем? – сказал Балага, подмигивая.
– Ну, я тебе морду разобью, ты не шути! – вдруг, выкатив глаза, крикнул Анатоль.
– Что ж шутить, – посмеиваясь сказал ямщик. – Разве я для своих господ пожалею? Что мочи скакать будет лошадям, то и ехать будем.
– А! – сказал Анатоль. – Ну садись.
– Что ж, садись! – сказал Долохов.
– Постою, Федор Иванович.
– Садись, врешь, пей, – сказал Анатоль и налил ему большой стакан мадеры. Глаза ямщика засветились на вино. Отказываясь для приличия, он выпил и отерся шелковым красным платком, который лежал у него в шапке.
– Что ж, когда ехать то, ваше сиятельство?
– Да вот… (Анатоль посмотрел на часы) сейчас и ехать. Смотри же, Балага. А? Поспеешь?
– Да как выезд – счастлив ли будет, а то отчего же не поспеть? – сказал Балага. – Доставляли же в Тверь, в семь часов поспевали. Помнишь небось, ваше сиятельство.
– Ты знаешь ли, на Рожество из Твери я раз ехал, – сказал Анатоль с улыбкой воспоминания, обращаясь к Макарину, который во все глаза умиленно смотрел на Курагина. – Ты веришь ли, Макарка, что дух захватывало, как мы летели. Въехали в обоз, через два воза перескочили. А?
– Уж лошади ж были! – продолжал рассказ Балага. – Я тогда молодых пристяжных к каурому запрег, – обратился он к Долохову, – так веришь ли, Федор Иваныч, 60 верст звери летели; держать нельзя, руки закоченели, мороз был. Бросил вожжи, держи, мол, ваше сиятельство, сам, так в сани и повалился. Так ведь не то что погонять, до места держать нельзя. В три часа донесли черти. Издохла левая только.

Анатоль вышел из комнаты и через несколько минут вернулся в подпоясанной серебряным ремнем шубке и собольей шапке, молодцовато надетой на бекрень и очень шедшей к его красивому лицу. Поглядевшись в зеркало и в той самой позе, которую он взял перед зеркалом, став перед Долоховым, он взял стакан вина.
– Ну, Федя, прощай, спасибо за всё, прощай, – сказал Анатоль. – Ну, товарищи, друзья… он задумался… – молодости… моей, прощайте, – обратился он к Макарину и другим.
Несмотря на то, что все они ехали с ним, Анатоль видимо хотел сделать что то трогательное и торжественное из этого обращения к товарищам. Он говорил медленным, громким голосом и выставив грудь покачивал одной ногой. – Все возьмите стаканы; и ты, Балага. Ну, товарищи, друзья молодости моей, покутили мы, пожили, покутили. А? Теперь, когда свидимся? за границу уеду. Пожили, прощай, ребята. За здоровье! Ура!.. – сказал он, выпил свой стакан и хлопнул его об землю.
– Будь здоров, – сказал Балага, тоже выпив свой стакан и обтираясь платком. Макарин со слезами на глазах обнимал Анатоля. – Эх, князь, уж как грустно мне с тобой расстаться, – проговорил он.
– Ехать, ехать! – закричал Анатоль.
Балага было пошел из комнаты.
– Нет, стой, – сказал Анатоль. – Затвори двери, сесть надо. Вот так. – Затворили двери, и все сели.
– Ну, теперь марш, ребята! – сказал Анатоль вставая.
Лакей Joseph подал Анатолю сумку и саблю, и все вышли в переднюю.
– А шуба где? – сказал Долохов. – Эй, Игнатка! Поди к Матрене Матвеевне, спроси шубу, салоп соболий. Я слыхал, как увозят, – сказал Долохов, подмигнув. – Ведь она выскочит ни жива, ни мертва, в чем дома сидела; чуть замешкаешься, тут и слезы, и папаша, и мамаша, и сейчас озябла и назад, – а ты в шубу принимай сразу и неси в сани.
Лакей принес женский лисий салоп.
– Дурак, я тебе сказал соболий. Эй, Матрешка, соболий! – крикнул он так, что далеко по комнатам раздался его голос.
Красивая, худая и бледная цыганка, с блестящими, черными глазами и с черными, курчавыми сизого отлива волосами, в красной шали, выбежала с собольим салопом на руке.
– Что ж, мне не жаль, ты возьми, – сказала она, видимо робея перед своим господином и жалея салопа.
Долохов, не отвечая ей, взял шубу, накинул ее на Матрешу и закутал ее.
– Вот так, – сказал Долохов. – И потом вот так, – сказал он, и поднял ей около головы воротник, оставляя его только перед лицом немного открытым. – Потом вот так, видишь? – и он придвинул голову Анатоля к отверстию, оставленному воротником, из которого виднелась блестящая улыбка Матреши.
– Ну прощай, Матреша, – сказал Анатоль, целуя ее. – Эх, кончена моя гульба здесь! Стешке кланяйся. Ну, прощай! Прощай, Матреша; ты мне пожелай счастья.
– Ну, дай то вам Бог, князь, счастья большого, – сказала Матреша, с своим цыганским акцентом.
У крыльца стояли две тройки, двое молодцов ямщиков держали их. Балага сел на переднюю тройку, и, высоко поднимая локти, неторопливо разобрал вожжи. Анатоль и Долохов сели к нему. Макарин, Хвостиков и лакей сели в другую тройку.
– Готовы, что ль? – спросил Балага.
– Пущай! – крикнул он, заматывая вокруг рук вожжи, и тройка понесла бить вниз по Никитскому бульвару.
– Тпрру! Поди, эй!… Тпрру, – только слышался крик Балаги и молодца, сидевшего на козлах. На Арбатской площади тройка зацепила карету, что то затрещало, послышался крик, и тройка полетела по Арбату.
Дав два конца по Подновинскому Балага стал сдерживать и, вернувшись назад, остановил лошадей у перекрестка Старой Конюшенной.
Молодец соскочил держать под уздцы лошадей, Анатоль с Долоховым пошли по тротуару. Подходя к воротам, Долохов свистнул. Свисток отозвался ему и вслед за тем выбежала горничная.
– На двор войдите, а то видно, сейчас выйдет, – сказала она.
Долохов остался у ворот. Анатоль вошел за горничной на двор, поворотил за угол и вбежал на крыльцо.
Гаврило, огромный выездной лакей Марьи Дмитриевны, встретил Анатоля.
– К барыне пожалуйте, – басом сказал лакей, загораживая дорогу от двери.
– К какой барыне? Да ты кто? – запыхавшимся шопотом спрашивал Анатоль.
– Пожалуйте, приказано привесть.
– Курагин! назад, – кричал Долохов. – Измена! Назад!
Долохов у калитки, у которой он остановился, боролся с дворником, пытавшимся запереть за вошедшим Анатолем калитку. Долохов последним усилием оттолкнул дворника и схватив за руку выбежавшего Анатоля, выдернул его за калитку и побежал с ним назад к тройке.

Марья Дмитриевна, застав заплаканную Соню в коридоре, заставила ее во всем признаться. Перехватив записку Наташи и прочтя ее, Марья Дмитриевна с запиской в руке взошла к Наташе.
– Мерзавка, бесстыдница, – сказала она ей. – Слышать ничего не хочу! – Оттолкнув удивленными, но сухими глазами глядящую на нее Наташу, она заперла ее на ключ и приказав дворнику пропустить в ворота тех людей, которые придут нынче вечером, но не выпускать их, а лакею приказав привести этих людей к себе, села в гостиной, ожидая похитителей.
Когда Гаврило пришел доложить Марье Дмитриевне, что приходившие люди убежали, она нахмурившись встала и заложив назад руки, долго ходила по комнатам, обдумывая то, что ей делать. В 12 часу ночи она, ощупав ключ в кармане, пошла к комнате Наташи. Соня, рыдая, сидела в коридоре.
– Марья Дмитриевна, пустите меня к ней ради Бога! – сказала она. Марья Дмитриевна, не отвечая ей, отперла дверь и вошла. «Гадко, скверно… В моем доме… Мерзавка, девчонка… Только отца жалко!» думала Марья Дмитриевна, стараясь утолить свой гнев. «Как ни трудно, уж велю всем молчать и скрою от графа». Марья Дмитриевна решительными шагами вошла в комнату. Наташа лежала на диване, закрыв голову руками, и не шевелилась. Она лежала в том самом положении, в котором оставила ее Марья Дмитриевна.
– Хороша, очень хороша! – сказала Марья Дмитриевна. – В моем доме любовникам свидания назначать! Притворяться то нечего. Ты слушай, когда я с тобой говорю. – Марья Дмитриевна тронула ее за руку. – Ты слушай, когда я говорю. Ты себя осрамила, как девка самая последняя. Я бы с тобой то сделала, да мне отца твоего жалко. Я скрою. – Наташа не переменила положения, но только всё тело ее стало вскидываться от беззвучных, судорожных рыданий, которые душили ее. Марья Дмитриевна оглянулась на Соню и присела на диване подле Наташи.
– Счастье его, что он от меня ушел; да я найду его, – сказала она своим грубым голосом; – слышишь ты что ли, что я говорю? – Она поддела своей большой рукой под лицо Наташи и повернула ее к себе. И Марья Дмитриевна, и Соня удивились, увидав лицо Наташи. Глаза ее были блестящи и сухи, губы поджаты, щеки опустились.
– Оставь… те… что мне… я… умру… – проговорила она, злым усилием вырвалась от Марьи Дмитриевны и легла в свое прежнее положение.
– Наталья!… – сказала Марья Дмитриевна. – Я тебе добра желаю. Ты лежи, ну лежи так, я тебя не трону, и слушай… Я не стану говорить, как ты виновата. Ты сама знаешь. Ну да теперь отец твой завтра приедет, что я скажу ему? А?
Опять тело Наташи заколебалось от рыданий.
– Ну узнает он, ну брат твой, жених!
– У меня нет жениха, я отказала, – прокричала Наташа.
– Всё равно, – продолжала Марья Дмитриевна. – Ну они узнают, что ж они так оставят? Ведь он, отец твой, я его знаю, ведь он, если его на дуэль вызовет, хорошо это будет? А?
– Ах, оставьте меня, зачем вы всему помешали! Зачем? зачем? кто вас просил? – кричала Наташа, приподнявшись на диване и злобно глядя на Марью Дмитриевну.
– Да чего ж ты хотела? – вскрикнула опять горячась Марья Дмитриевна, – что ж тебя запирали что ль? Ну кто ж ему мешал в дом ездить? Зачем же тебя, как цыганку какую, увозить?… Ну увез бы он тебя, что ж ты думаешь, его бы не нашли? Твой отец, или брат, или жених. А он мерзавец, негодяй, вот что!
– Он лучше всех вас, – вскрикнула Наташа, приподнимаясь. – Если бы вы не мешали… Ах, Боже мой, что это, что это! Соня, за что? Уйдите!… – И она зарыдала с таким отчаянием, с каким оплакивают люди только такое горе, которого они чувствуют сами себя причиной. Марья Дмитриевна начала было опять говорить; но Наташа закричала: – Уйдите, уйдите, вы все меня ненавидите, презираете. – И опять бросилась на диван.
Марья Дмитриевна продолжала еще несколько времени усовещивать Наташу и внушать ей, что всё это надо скрыть от графа, что никто не узнает ничего, ежели только Наташа возьмет на себя всё забыть и не показывать ни перед кем вида, что что нибудь случилось. Наташа не отвечала. Она и не рыдала больше, но с ней сделались озноб и дрожь. Марья Дмитриевна подложила ей подушку, накрыла ее двумя одеялами и сама принесла ей липового цвета, но Наташа не откликнулась ей. – Ну пускай спит, – сказала Марья Дмитриевна, уходя из комнаты, думая, что она спит. Но Наташа не спала и остановившимися раскрытыми глазами из бледного лица прямо смотрела перед собою. Всю эту ночь Наташа не спала, и не плакала, и не говорила с Соней, несколько раз встававшей и подходившей к ней.
На другой день к завтраку, как и обещал граф Илья Андреич, он приехал из Подмосковной. Он был очень весел: дело с покупщиком ладилось и ничто уже не задерживало его теперь в Москве и в разлуке с графиней, по которой он соскучился. Марья Дмитриевна встретила его и объявила ему, что Наташа сделалась очень нездорова вчера, что посылали за доктором, но что теперь ей лучше. Наташа в это утро не выходила из своей комнаты. С поджатыми растрескавшимися губами, сухими остановившимися глазами, она сидела у окна и беспокойно вглядывалась в проезжающих по улице и торопливо оглядывалась на входивших в комнату. Она очевидно ждала известий об нем, ждала, что он сам приедет или напишет ей.
Когда граф взошел к ней, она беспокойно оборотилась на звук его мужских шагов, и лицо ее приняло прежнее холодное и даже злое выражение. Она даже не поднялась на встречу ему.
– Что с тобой, мой ангел, больна? – спросил граф. Наташа помолчала.
– Да, больна, – отвечала она.
На беспокойные расспросы графа о том, почему она такая убитая и не случилось ли чего нибудь с женихом, она уверяла его, что ничего, и просила его не беспокоиться. Марья Дмитриевна подтвердила графу уверения Наташи, что ничего не случилось. Граф, судя по мнимой болезни, по расстройству дочери, по сконфуженным лицам Сони и Марьи Дмитриевны, ясно видел, что в его отсутствие должно было что нибудь случиться: но ему так страшно было думать, что что нибудь постыдное случилось с его любимою дочерью, он так любил свое веселое спокойствие, что он избегал расспросов и всё старался уверить себя, что ничего особенного не было и только тужил о том, что по случаю ее нездоровья откладывался их отъезд в деревню.

Со дня приезда своей жены в Москву Пьер сбирался уехать куда нибудь, только чтобы не быть с ней. Вскоре после приезда Ростовых в Москву, впечатление, которое производила на него Наташа, заставило его поторопиться исполнить свое намерение. Он поехал в Тверь ко вдове Иосифа Алексеевича, которая обещала давно передать ему бумаги покойного.
Когда Пьер вернулся в Москву, ему подали письмо от Марьи Дмитриевны, которая звала его к себе по весьма важному делу, касающемуся Андрея Болконского и его невесты. Пьер избегал Наташи. Ему казалось, что он имел к ней чувство более сильное, чем то, которое должен был иметь женатый человек к невесте своего друга. И какая то судьба постоянно сводила его с нею.
«Что такое случилось? И какое им до меня дело? думал он, одеваясь, чтобы ехать к Марье Дмитриевне. Поскорее бы приехал князь Андрей и женился бы на ней!» думал Пьер дорогой к Ахросимовой.
На Тверском бульваре кто то окликнул его.
– Пьер! Давно приехал? – прокричал ему знакомый голос. Пьер поднял голову. В парных санях, на двух серых рысаках, закидывающих снегом головашки саней, промелькнул Анатоль с своим всегдашним товарищем Макариным. Анатоль сидел прямо, в классической позе военных щеголей, закутав низ лица бобровым воротником и немного пригнув голову. Лицо его было румяно и свежо, шляпа с белым плюмажем была надета на бок, открывая завитые, напомаженные и осыпанные мелким снегом волосы.
«И право, вот настоящий мудрец! подумал Пьер, ничего не видит дальше настоящей минуты удовольствия, ничто не тревожит его, и оттого всегда весел, доволен и спокоен. Что бы я дал, чтобы быть таким как он!» с завистью подумал Пьер.
В передней Ахросимовой лакей, снимая с Пьера его шубу, сказал, что Марья Дмитриевна просят к себе в спальню.
Отворив дверь в залу, Пьер увидал Наташу, сидевшую у окна с худым, бледным и злым лицом. Она оглянулась на него, нахмурилась и с выражением холодного достоинства вышла из комнаты.
– Что случилось? – спросил Пьер, входя к Марье Дмитриевне.
– Хорошие дела, – отвечала Марья Дмитриевна: – пятьдесят восемь лет прожила на свете, такого сраму не видала. – И взяв с Пьера честное слово молчать обо всем, что он узнает, Марья Дмитриевна сообщила ему, что Наташа отказала своему жениху без ведома родителей, что причиной этого отказа был Анатоль Курагин, с которым сводила ее жена Пьера, и с которым она хотела бежать в отсутствие своего отца, с тем, чтобы тайно обвенчаться.
Пьер приподняв плечи и разинув рот слушал то, что говорила ему Марья Дмитриевна, не веря своим ушам. Невесте князя Андрея, так сильно любимой, этой прежде милой Наташе Ростовой, променять Болконского на дурака Анатоля, уже женатого (Пьер знал тайну его женитьбы), и так влюбиться в него, чтобы согласиться бежать с ним! – Этого Пьер не мог понять и не мог себе представить.
Милое впечатление Наташи, которую он знал с детства, не могло соединиться в его душе с новым представлением о ее низости, глупости и жестокости. Он вспомнил о своей жене. «Все они одни и те же», сказал он сам себе, думая, что не ему одному достался печальный удел быть связанным с гадкой женщиной. Но ему всё таки до слез жалко было князя Андрея, жалко было его гордости. И чем больше он жалел своего друга, тем с большим презрением и даже отвращением думал об этой Наташе, с таким выражением холодного достоинства сейчас прошедшей мимо него по зале. Он не знал, что душа Наташи была преисполнена отчаяния, стыда, унижения, и что она не виновата была в том, что лицо ее нечаянно выражало спокойное достоинство и строгость.
– Да как обвенчаться! – проговорил Пьер на слова Марьи Дмитриевны. – Он не мог обвенчаться: он женат.
– Час от часу не легче, – проговорила Марья Дмитриевна. – Хорош мальчик! То то мерзавец! А она ждет, второй день ждет. По крайней мере ждать перестанет, надо сказать ей.
Узнав от Пьера подробности женитьбы Анатоля, излив свой гнев на него ругательными словами, Марья Дмитриевна сообщила ему то, для чего она вызвала его. Марья Дмитриевна боялась, чтобы граф или Болконский, который мог всякую минуту приехать, узнав дело, которое она намерена была скрыть от них, не вызвали на дуэль Курагина, и потому просила его приказать от ее имени его шурину уехать из Москвы и не сметь показываться ей на глаза. Пьер обещал ей исполнить ее желание, только теперь поняв опасность, которая угрожала и старому графу, и Николаю, и князю Андрею. Кратко и точно изложив ему свои требования, она выпустила его в гостиную. – Смотри же, граф ничего не знает. Ты делай, как будто ничего не знаешь, – сказала она ему. – А я пойду сказать ей, что ждать нечего! Да оставайся обедать, коли хочешь, – крикнула Марья Дмитриевна Пьеру.
Пьер встретил старого графа. Он был смущен и расстроен. В это утро Наташа сказала ему, что она отказала Болконскому.
– Беда, беда, mon cher, – говорил он Пьеру, – беда с этими девками без матери; уж я так тужу, что приехал. Я с вами откровенен буду. Слышали, отказала жениху, ни у кого не спросивши ничего. Оно, положим, я никогда этому браку очень не радовался. Положим, он хороший человек, но что ж, против воли отца счастья бы не было, и Наташа без женихов не останется. Да всё таки долго уже так продолжалось, да и как же это без отца, без матери, такой шаг! А теперь больна, и Бог знает, что! Плохо, граф, плохо с дочерьми без матери… – Пьер видел, что граф был очень расстроен, старался перевести разговор на другой предмет, но граф опять возвращался к своему горю.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *