Конус на: Конус инструментальный — Википедия – Конус Морзе: размеры, габариты, характеристики, назначение

Содержание

Конус инструментальный — Википедия

Ко́нус инструмента́льный — конический хвостовик инструмента (сверло, зенкер, фреза, развёртка, зажимной патрон, электрод контактной сварки) и коническое отверстие соответствующего размера (гнездо) в шпинделе или задней бабке, например, токарного станка. Предназначен для быстрой смены инструмента с высокой точностью центрирования и надёжностью крепления. Существует много стандартов на различные конусы, различающиеся по конусности и исполнению.

Конус Морзе № 2 (MT2). Схема инструментального конуса (наружные конусы с лапкой, наружные конусы без лапки, внутренние конусы (гнёзда)).

Конус Морзе — одно из самых широко применяемых креплений инструмента. Был предложен Стивеном А. Морзе приблизительно в 1864 году[1]

.

Конус Морзе подразделяется на восемь размеров, от КМ0 до КМ7 (англ. Morse taper, MT0-MT7, нем. Morsekegel, MK0-MK7)[2][3]. Конусность от 1:19,002 до 1:20,047 (угол конуса от 2°51’26″ до 3°00’52″, уклон конуса от 1°25’43″ до 1°30’26″) в зависимости от типоразмера.

Стандарты на конус Морзе: ISO 296, DIN 228, ГОСТ 25557-2016 «Конусы инструментальные. Основные размеры.». В российском стандарте конус КМ7 к применению не рекомендован, вместо него применяется несовместимый метрический конус № 80. Конусы, изготовленные по дюймовым и метрическим стандартам, взаимозаменяемы во всём, кроме резьбы хвостовика.

Существует несколько исполнений хвостовика конуса: с лапкой, с резьбой и без них. Инструмент с лапкой крепится в шпинделе заклиниванием этой лапки, для чего в рукаве некоторых шпинделей есть соответствующий паз. Лапка предназначена для облегчения выбивания конуса из шпинделя и предотвращения проворачивания. Инструмент с внутренней резьбой фиксируется в шпинделях штоком (штревелем), вворачивающимся в торец конуса. Конусы с резьбой гарантируют невыпадение инструмента и облегчают извлечение заклинившего конуса из шпинделя. Шпиндель обычно делается под один из вариантов фиксации — с лапкой, со штревелем или с фиксацией трением. Поскольку угол конуса меньше чем угол трения, фиксация хвостовика в гнезде может также происходить только за счет сил трения, без использования штревелей и лапок.

Некоторые конусы снабжаются системой отверстий и канавок для подачи смазочно-охлаждающей жидкости (СОЖ).

Метрический конус[править | править код]

По мере развития станкостроения понадобилось расширить диапазон размеров конусов Морзе как в большую, так и в меньшую стороны. При этом, для новых типоразмеров конуса, выбрали конусность ровно 1:20 (угол конуса 2°51’51″, уклон конуса 1°25’56″) и назвали их метрическими конусами (англ. Metric Taper). Типоразмер метрических конусов указывается по наибольшему диаметру конуса в миллиметрах. ГОСТ 25557-2016 также определяет уменьшенные метрические конуса № 4 и № 6 (англ. ME4, ME6) и большие метрические конуса № 80, 100, 120, 160, 200 (англ. ME80 — ME200).

Конструктивных различий между конусом Морзе и метрическим нет.

Размеры наружного и внутреннего конуса (по ГОСТ 25557-2006), мм

Таблица 1

Обозначение конусаКонусностьDD1dd1d2d3 maxd4 maxd5l1 maxl2 maxl3 maxl4 maxl5 minl6
Метрический№ 41:2044,12,92,5323 252521
№ 61:2066,24,444,632353429
МорзеКМ01:19,2129,0459,26,46,1666,7505356,359,55249
КМ11:20,04712,06512,29,4M698,799,753,5576265,55652
КМ21:20,02017,7801814,6M101413,51414,9646975806762
КМ31:19,99223,82524,119,8M1219,118,51920,280,18694998478
КМ41:19,25431,26731,625,9M1625,225,22426,5102,5109117,512410798
КМ51:19,00244,39944,737,6M2036,535,735,738,2129,5136149,5156135125
КМ61:19,18063,34863,853,9M2452,4
51
5154,6182190210218188177
КМ7[сн 1]1:19,23183,058285.75294.1
Метрический№ 801:208080,470,2M3069676771,5196204220228202186
№ 1001:20100100,588,4M3687858590232242260270240220
№ 1201:20120120,6106,6M36
105
102102108,5268280300312276254
№ 1601:20160160,8143M48141138138145,5340356380396350321
№ 2001:20200201179,4M48177174174182,5412432460480424388
  1. ↑ Отсутствует в ГОСТ 25557-2006

Укороченные конуса Морзе[править | править код]

Для многих применений длина конуса Морзе оказалась избыточной. Поэтому были придуманы девять типоразмеров укороченных конусов Морзе, полученных удалением более толстой части конуса Морзе. Цифра в обозначении короткого конуса — диаметр новой толстой части конуса в мм. Российский стандарт на укороченные конуса ГОСТ 9953-82 «Конусы инструментов укороченные. Основные размеры.».

  • B7 — укороченный до 14 мм КМ0.
  • B10, B12 — укороченный до 18 и 22 мм соответственно КМ1.
  • B16, B18 — укороченный до 24 и 32 мм соответственно КМ2.
  • B22, B24 — укороченный до 45 и 55 мм соответственно КМ3.
  • B32 — укороченный до 57 мм КМ4.
  • B45 — укороченный до 71 мм КМ5.
1941-G.jpg

Широко распространённый инструментальный конус, в основном, для станков с ЧПУ с автоматической сменой инструмента. Цель разработки — устранение недостатков конуса Морзе (самозаклинивание конуса в шпинделе, малая площадь осевого упора, большая длина, сложность автоматической фиксации конуса в шпинделе, отсутствие зацепов для автоматической смены инструмента).

Существует ряд национальных и международных стандартов на этот конус, отличающихся базовой размерностью (дюймовая или метрическая), вспомогательными элементами (фланцы, штревели, каналы подачи СОЖ) и обозначениями. Конуса, изготовленные по разным стандартам, не всегда взаимозаменяемы.

  • ISO-конусы. Международные стандарты ISO 297:1988 (конструктивная разновидность для ручной смены инструмента), ISO 7388 (конструктивные разновидности для автоматизированной смены инструмента).
  • Новые российские стандарты: ГОСТ 25827-2014 — конструкции конусов, фланцев и резьб хвостовиков. Парный к нему ГОСТ ИСО 7388-3-2014 — конструкции штревелей. Практически дубликат ISO 297 и ISO 7388.
  • Все еще могут быть актуальны советские и старые российские стандарты:
    • ГОСТ 15945-82 — основные размеры конусов и парный к нему ГОСТ 19860-93 — допуски.
    • ГОСТ 25827-93 — конструкции конусов, фланцев и хвостовиков.
  • DV, SK (от нем. Steilkegel). Немецкий вариант конуса. Стандарты DIN 2080, DIN 69871.
  • NMTB (от англ. National Machine Tool Builders Association), NST, NT. Американский вариант конуса. Стандарт ANSI B5.18. Дюймовая размерность, конструктивно аналог ISO 297.
  • CAT, CV (от англ. Caterpillar V-Flange). Американский вариант конуса. Стандарт ANSI B5.50. Дюймовая размерность, конструктивно аналог ISO 7388 вариант A.
  • BT — японская разновидность конуса согласно стандарта JIS B6339 (JMTBA MAS-403 «BT»). Дюймовая размерность, конструктивно аналог ISO 7388 вариант J.
  • NFE 62540 — французский стандарт.
  • IS 2340, IS 11173 — индийские стандарты. Первый аналог ISO 297, второй ISO 7388.

Типоразмер конуса обозначается цифрой, существуют размеры от 10-го до 80-го с шагом 5. Например, ISO10, NMTB40, BT50. Для всех стандартов размер конусной части одинаков. Угол конуса 16°35’40″. В таблице размеров конусов

D обозначает базовый размер — наибольший диаметр конусного отверстия (гнезда), L обозначает глубину конусного отверстия. Эти значения также примерно соответствуют наибольшему диаметру конуса и его длине. Диаметр фланца DF примерно одинаков у всех конструктивных разновидностей.

1941-G.jpg Конус с фланцем для автоматической смены инструмента
КонусDLРезьбаDF
1015,8721,8
1519,0526,9
2525,4039,8
3031,7549,2M1250
3538,1057,2
4044,4565,6M1663
4557,1584,8M2080
5069,85103,7M2497
5588,90132,0M24130
60107,95163,7M30156
65133,35200,0M36195
70165,10247,5M36230
75203,20305,8M40280
80254,00390,8M40350

Стандарты ISO и новый российский ГОСТ определяют несколько конструктивных разновидностей: одну для ручной смены инструмента и три разновидности для автоматической смены инструмента, обозначаемые буквами A, U, J. Каждой конструктивной разновидности соответствует свой фланец и штревель. Помимо того, стандарты регламентируют два метода подвода охлаждающей жидкости к инструменту: центральный через штревель (обозначается буквой D) или боковой через фланец (буквой F).

Старый ГОСТ 25827-93 определял три исполнения конусов. Исполнение 1 было аналогично ISO 297. Исполнение 2 было аналогично ISO 7388 вариант A. Исполнение 3 аналогов не имело. Стандарт не определял конструкций штревелей, только фланцев и резьб хвостовиков.

В настоящее время конуса обычно изготавливают со сменными штревелями, что улучшает совместимость оборудования разных стандартов.

HSK-конус (от нем. Hohlschaftkegel или англ. Hollow Shaft Taper, полый конус) используется во фрезерных обрабатывающих центрах и особенно в токарно-фрезерных центрах. Стандарты на эти конуса ISO 12164, DIN 69893, ГОСТ Р ИСО 12164. Конусность 1:10.

Имеет несколько конструктивных разновидностей фланцев, обозначаемых буквами A, B, C, D, E, F. Размер конуса обозначается цифрой наибольшего диаметра фланца в мм (от 25 до 160). Например, HSK-A63. Следует учесть, что диаметр фланца и размер конуса могут не совпадать у разных конструктивов, например, HSK-A50 и HSK-В63 имеют одинаковый конус, а HSK-A63 и HSK-В63 — разный.

Главные достоинства HSK-соединения: автоматическая быстрая смена инструмента (что очень важно в обрабатывающих центрах с ЧПУ), небольшой вес, возможность устанавливать в шпиндель токарные резцы, хорошая повторяемость, жесткость. Как правило, стандартные резцы квадратного сечения устанавливаются в специальную промежуточную оправку, которая, в свою очередь, имеет конус HSK. Но иногда также используются резцы, имеющие хвостовик HSK.

KM — конус, разработанный компанией Kennametal. По сути сходен с HSK, но не получил массового распространения. Конструкция КМ не запатентована.

Конус Capto, разработанный компанией Sandvik Coromant, сегодня продвигается, как аналог HSK премиум-класса. С 2008 года посадка Capto вошла в международный стандарт ISO 26623.

В сечении он представляет собой треугольник со скругленными краями и выгнутыми сторонами. Угол поверхности посадки взят аналогично конусу Морзе. Такая форма не позволяет конусу провернуться в гнезде, обеспечивает необходимое самозаклинивание и повторяемость при разборке-сборке по всем осям. Понятно, что с одной стороны базирование на треугольник более предпочтительно ввиду гораздо большей жесткости передачи. Однако технология изготовления такого конуса несколько сложнее и следовательно дороже для конечного потребителя. При всей своей премиумной цене логически обоснованным является применение Capto для черновой, получерновой обработки.

Главное преимущество посадки Capto по отношению к другим посадкам — жесткость соединения. Некоторые производители станков, проверив на практике возможности интерфейса Capto, стали интегрировать его в базовый шпиндель станка (WFL, Mazak). В зависимости от размера соединения Capto обозначаются C3..C10. Существуют следующие типоразмеры интерфейса (указан диаметр фланца):

  • С3 — 32мм
  • С4 — 40мм
  • С5 — 50мм
  • С6 — 63мм
  • С8 — 80мм
  • С10 — 100мм

При всей своей привлекательности этот конус не отвечает требованию концентрации износа. (То есть при превышении нагрузки на шпиндель — сгорит шпиндель, но Capto не провернется)

По внешнему виду и сферам применения похожи на конуса Морзе[4]. Спецификации конусов являются внутрифирменными, национальных или международных стандартов на них нет. Получили распространение, в основном, на территории США.

1941-G.jpg

Внутрифирменный конус, изначально создавался специально для цанговых зажимов. Впоследствии конструктив стал использоваться как инструментальный конус. Разработан компанией Bridgeport Machines для своего оборудования, получил некоторое распространение, в том числе, в виде клонов этого оборудования. Существует один типоразмер этого конуса.

Переходные втулки конусов Морзе.

Для уменьшения номенклатуры инструмента выпускаются разнообразные переходники из одних конусов в другие. Переходник типа наружный конус — внутренний конус именуют переходной втулкой. Переходник типа наружный конус — наружный конус именуют переходной оправкой. Например, оправка с конуса 7:24 на укороченный конус Морзе обозначается ISO30-B16.

Другие конусы, применяемые в машиностроении[править | править код]

Конус 1:50[править | править код]

Конусность 1:50 имеют установочные штифты, применяемые при необходимости дополнительного скрепления двух деталей, зафиксированных резьбовым соединением, чтобы они не могли перемещаться одна относительно другой. Установочные штифты вставляются в отверстия, просверленные и конически развернутые одновременно в обеих деталях, после их сборки. Конусность 1:50 соответствует углу уклона 0°34′[5].

Конус 1:30[править | править код]

Конусы насадных разверток, зенкеров и оправки для них. Конусность 1:30 соответствует углу уклона 0°55′[5].

Конус 1:16[править | править код]

Резьба обсадных труб 6 5/8″, бурильных и насосно-компрессорных труб, резьба трубная коническая общего назначения.

Конус 1:10[править | править код]

Концы валов электрических и других машин и соответствующие им муфты. ГОСТ 12081-72.

Центры упорные и конусы инструментов для тяжелых станков. ГОСТ 7343—72.

Отверстия под заклепки в котельных листах, мостовых и корабельных конструкциях (т. н. котельный конус).

Конус 1:7[править | править код]

Пробковые краны, центры упорные для тяжелых станков, конусы инструментов (ГОСТ 7343—72).

Конус 1:5[править | править код]

Концы шлифовальных шпинделей с наружным базирующим конусом ГОСТ 2323

Конус 1:4[править | править код]

Фланцевые концы шпинделей токарных, револьверных и других станков, резьба замков в нефтепромышленности.

Конус 1:1,866[править | править код]

Центры станков, центровые отверстия, потайные и полупотайные головки заклёпок диаметром 16—25 мм, потайные головки винтов диаметром 22—24 мм.

Конус 1:0,866[править | править код]

Зажимные цанги.

Конус 1:0,652[править | править код]

Потайные головки болтов, потайные и полупотайные головки заклёпок диаметром 10—13 мм.

Конус 7:64[править | править код]

Отверстия под оправки в столах зубодолбежных станков.

Конус Морзе: размеры, габариты, характеристики, назначение

Конус Морзе – это одно из самых распространенных средств для закрепления инструмента на станке. Свое название данный инструмент получил в честь знаменитого инженера Стивена Морзе, жившего в XIX веке. Сегодня для правильного выбора размеров этого изделия применяют дробные числа. Существует несколько стандартизованных значений, различающихся углами наклона и размерами.

Область применения конуса Морзе – это машиностроение. С его помощью можно быстро и очень точно закрепить режущий инструмент. Для этого конус Морзе крепится в станке в специальном отверстии или патроне, а в него в свою очередь вставляется например сверло. Такой способ крепежа гарантирует наиболее точное центрирование и последующую обработку. Также с его помощью можно подавать к обрабатываемой детали или режущему инструменту смазочно-охлаждающую жидкость.

Конус МорзеКонус Морзе Конус Морзе

Габариты и элементы конуса Морзе

Отличительной чертой одного конуса Морзе от другого являются размеры. Существуют несколько их видов и в соответствии с ГОСТом каждый имеет определенный номер и аббревиатуру. Чтобы измерить его, необходимо воспользоваться калибровкой, а лучше всего специальной таблицей, которая позволит рассчитать размеры до микрона. В зависимости от станка, на котором будет проводиться обработка детали, следует выбирать например резец, сверло, а затем вид изобретения Стивена Морзе.

С развитием машиностроительной отрасли возникла потребность в расширении модельного ряда конусов Морзе. Для этого был разработан метрический конус, который не имел особых конструктивных отличий от своего предшественника. Его конусность равнялась 1:20, при этом угол 2°51’51″, а уклон 1°25’56″. Метрические конусы позволили создать большой выбор инструмента для различных станков и операций. Классифицируются они на две категории: большие и малые. Большие обозначаются, например № 120, 200, и цифры соответствуют наибольшему диаметру метрического конуса.

Размеры конуса МорзеРазмеры конуса Морзе

Размеры конуса Морзе

Инструментальный конус представляет собой конический хвостовик какого-нибудь режущего инструмента и коническое отверстие в шпинделе или бабке такого же диаметра. Его функция заключается в быстрой смене режущего инструмента и сохранении высокой точности при центрировании и закреплении.

Применяется в основном в станках с ЧПУ, потому что устраняет ряд недостатков обычного конуса Морзе.

Преимущества:

  • заклинивание хвостовиков в шпинделе гораздо меньше;
  • меньшие размеры;
  • улучшенный упор по оси;
  • простота закрепления;
  • автоматическая смена режущего инструмента.

В наши дни конусы Морзе изготавливают в соответствие с международным стандартом ISO и DIN. В России система стандартизации объединяет в один класс как просто конусы Морзе, так и метрические и инструментальные. Информацию о них можно получить в ГОСТ 25557-82. Ситуация с единым ГОСТом сложилась из-за того, что конусы Морзе со времен СССР пользуются в нашем государстве большой популярностью, а параллельно с этим появилось много новых.

Скачать ГОСТ 25557-82

Конусы Морзе распределены по 8 категориям. За рубежом это МТ0, МТ1, МТ2, МТ3, МТ4, МТ5, МТ6, МТ7. В Германии такая же нумерация, но буквенное обозначение МК. В нашей стране и на постсоветском пространстве КМ0, КМ1, КМ2, КМ3, КМ4, КМ5, КМ6 и №80.

Укороченный конусУкороченный конус

Укороченный конус

Как показало время, некоторые конусы Морзе зарубежного производства неудобны в эксплуатации по причине большой длины. На этот случай был разработан ряд укороченных изделий, имеющий 9 размеров.

Наилучшие разновидности конусов на сегодняшний день

В наши дни особой популярностью, благодаря своему качеству, пользуются инструментальные конусы Морзе компаний HSK, Capto и Kennametal. Хорошая устойчивость к изменениям температуры и соответствие жестким требованиям в станкостроении позволило конусам Морзе этих брендов стать лидерами рынка.

HSK – это полые инструменты с конусностью 1:10. Обозначаются буквой латинского алфавита и цифрой, обозначающей больший диаметр фланца. Главной особенностью таких изделий является быстрая замена инструмента, что очень важно в станках с ЧПУ.

HSK 63HSK 63

HSK 63

Инструментальные конусы Capto соответствуют международному стандарту ISO и являются высококлассной продукцией. Продукция дорогостоящая из-за сложности изготовления, но высокая точность позволит минимизировать брак на производстве при использовании на станках этих инструментов. Особенность конструкции не позволяет им провернуться во время работы станка, происходит самозаклинивание. Жесткость соединения продукции компании Capto – это основное их преимущество перед другими конкурентами

Продукция Kennametal менее распространена, но так же отлично справляется со своим предназначением.

Продукция компаний B&S, Jacobs и Jarno распространены в основном в США, так как не имеют подтверждения международных стандартов и создаются соответственно для американского рынка, где пользуются большим спросом.

Компания Bridgerport Machines разработала модель R8 для цанговых зажимов на своем оборудовании. Но затем изобретение было доработано и выпущено на международный рынок. Эффективность этого средства вызвала в свое время фурор и стали появляться всевозможные аналоги. На сегодняшний день компания выпускает только один вид исполнения такого механизма.

R8R8

R8

Инструментальный конус 7:24 широко применяем в станках с ЧПУ, где смена инструмента происходит автоматически. Являясь инструментальным, он обладает рядом преимуществ перед обычным и поэтому так популярен в станкостроении. Существует множество его разновидностей. Во многих странах разработаны собственные стандарты к нему и поэтому между собой модели 7:24 от разных производителей не заменяют друг друга.

Конус 1:50 также широко применим в машиностроительной отрасли, если требуется дополнительно скрепить два изделия с резьбовым соединением. Для этого у модели 1:50 есть специальный штифты, которые необходимо вставить в обрабатываемые изделия, предварительно просверлив в тех отверстия в соответствующих местах.

Основные сведения о хвостовиках и их обозначение

Существует несколько видов исполнения инструментального конуса. Он может содержать резьбу, лапку или обходиться без них.

В его торце может быть нарезана резьба, которую делают для закрепления инструмента на шпинделе с использованием штревеля. Это специальный шток, предотвращающий выпадение инструмента. Также с его помощью изделие можно извлечь, если его случайным образом заклинит в шпинделе.

Если хвостовик изготовлен с лапкой, то она удерживает инструмент в шпинделе за счет того, что закреплена в специальном пазу. Лапка имеет два предназначения, с ее помощью легче достать изделие из шпинделя, а также создается жесткая фиксация и не будет проворачивания.

Также можно встретить исполнение с несколькими канавками и отверстиями. Они имеют разную глубину и размеры. Их задача – подводить к режущему инструменту смазочно-охлаждающую жидкость.

Хвостовики инструмента бывают различной конструкции и обозначаются буквенным кодом. Ниже приведена их расшифровка:

  • BI – внутренний, имеется паз;
  • ВЕ – наружный, имеется лапка;
  • AI – внутренний, имеется отверстие по оси;
  • АЕ – наружный, имеется отверстие по оси с резьбой;
  • BIK – внутренний, имеются паз и отверстие для подачи смазочно-охлаждающей жидкости (СОЖ);
  • ВЕК – наружный, имеется лапка и отверстие для подачи СОЖ;
  • AIK – внутренний, содержит отверстия по оси и для подачи СОЖ;
  • АЕК – наружный, содержит отверстие по оси с резьбой и отверстие для подачи СОЖ.

Наружный и внутренний соответствуют своим названиям. В зависимости от используемого инструмента, следует выбирать исполнение наружное или внутреннее.

Укороченные конусы Морзе

В некоторых ситуациях размеры конуса Морзе через чур большие и в таком случае следует пользоваться укороченными вариантами.

B12 и B16B12 и B16

B12 и B16

Представленные ниже названия означают, что конус был укорочен:

  • B7 — до 14 мм;
  • B10 — до 18 мм;
  • B12 — до 22 мм;
  • B16 — до 24 мм;
  • B18 — до 32 мм;
  • B22 — до 45 мм;
  • B24 — до 55 мм;
  • B32 — до 57 мм;
  • B45 — до 71 мм;

Цифра в названии информирует о размере диаметра новой части конуса. Подробные данные можно взять из соответствующего ГОСТа.

Онлайн калькулятор: Конус

Конус — трехмерная фигура, имеющая одно основание и одну вершину.

Косой конусКосой конусПравильный конусПравильный конус

Косой конус — конус у которого вершина не находится по центру основания.
Правильный конус имеет вершину четко выровненную по центру основания. Основание правильного конуса не обязательно должно быть кругом.

Объем конуса: , где __ площадь основания конуса, -кратчайшее расстояние от вершины конуса до основания.

КонусКонус

Если основание правильного конуса — круг, то такой конус будет правильным круговым конусом.
Такой конус характеризуется радиусом основания и высотой- расстоянием от вершины до центра основания. Объем правильного кругового конуса:

Площадь поверхности конуса выражается следующей формулой: , где — наклонная высота конуса, измеряемая как расстояние от вершины конуса до любой точки на периметре основания.

PLANETCALC, Конус
Конус
Точность вычисления

Знаков после запятой: 5

Площадь боковой поверхности

 

Площадь поверхности

 

save Сохранить extension Виджет

Схема усеченного правильного конусаСхема усеченного правильного конусаПравильный усеченный конусПравильный усеченный конус

Объем правильного кругового усеченного конуса
Площадь поверхности правильного усеченного конуса

PLANETCALC, Усеченный конус
Усеченный конус
Точность вычисления

Знаков после запятой: 5

Площадь боковой поверхности

 

Площадь поверхности

 

save Сохранить extension Виджет

Как выточить конус на токарном станке: видео, схемы, способы

Токарные станки применяются для точения заготовок во время ее точения путем использования специальных резцов. При наличии определенного опыта выточить можно не только детали обычной формы, но и, к примеру, коническую поверхность. Для создания конуса следует иметь определенные навыки работы на токарном станке.

Точение конусаТочение конуса Точение конуса

Поворот верхних салазок суппорта

Провести процесс точения конуса можно, воспользовавшись следующей рекомендацией:

  1. Берем заготовку и закрепляем ее в шпинделе, а также задней бабкой. Учитывая то, что изготовление конуса проводится с высокой точностью, диаметральный размер и угол могут иметь незначительно отклонение. Если заготовка изготовлена из твердого материала, следует подбирать твердосплавные резцы.
  2. Обработка может проводиться только при соблюдении техники безопасности путем использования средств индивидуальной защиты.
  3. Выбираем скорость резания на токарном станке. Обработка конических поверхностей может проводиться со скоростью, которая выбирается в зависимости от стойкости режущей кромки и твердости материала. Если точных данных, которые позволяют рассчитать скорость резания нет, следует идти испытательным путем – от меньших значений к большим.
  4. Установленной заготовке нужно придать цилиндрическую форму. Для этого используется проходной резец, сначала ведется черновая обработка для снятия большого количества ненужного металла. Обработка возле кулачков проводится отогнутым резцом.
  5. Изготовление точных деталей происходит в два прохода: черновая и чистовая обработка. На токарном станке чистовое точение проводится специальным режущим инструментом при определенной скорости и подачи.
  6. Для создания небольших конических поверхностей верхняя часть суппорта поворачивается на определенный угол, который должен быть равен половине угла конуса у вершины.

Подобным образом можно провести создание конических поверхностей  без использования специального приспособления.

Метод смещения относительно оси центров

Смещение центров позволяет также получить на токарном станке конус морзе. Однако в этом случае провести точение можно исключительно наружных конических поверхностей.  К достоинствам рассматриваемого способа можно отнести:

  1. Есть возможность сделать длинный конус морзе.
  2. Используется механическая подача суппорта, что обуславливает возможность применения обычных моделей токарных станков.
Смещение оси центровСмещение оси центров

Смещение оси центров

К существенным недостаткам можно отнести:

  1. Невысокую точность, с которой можно сделать деталь.
  2. В процессе получения конуса происходит перекос центровых отверстий.

Показатель величины смещения задней бабки во время создании конических поверхностей определяется при помощи прямоугольного треугольника.

Конусная линейка

Некоторые токарные станки оснащаются специальными конусными линейками. Подобное приспособление  позволяет проводить обработку наружных и внутренних поверхностей, когда угол наклона не превышает 12 градусов. Сделать конусную форму в этом случае можно путем сочетания продольной и поперечной передачи.

При использовании линейки можно подобрать угол, который будет создан при одновременном движении суппорта в продольном и поперечном направлении. Правильный угол выдерживать на протяжении всего времени позволяет специальная линейка.

Использование широкого углового резца

Довольно простым способом, при помощи которого на токарном станке можно получить конусную поверхность, является использование углового резца. При его помощи можно создать конус небольшой длины, режущая кромка должна быть прямой. Угол конуса можно корректировать путем заточки кромки или установки его под определенным углом к заготовке.

Точение конуса резцомТочение конуса резцом

Точение конуса резцом

Все вышеприведенные способы требуют наличия определенных навыков работы на токарном станке. В некоторых случаях, для крупносерийного производства, изготавливают специальные копиры. Для мелкосерийного производства подойдет способ, в котором используется линейка или поворот салазок токарного станка, смещение бабки.

Конус / Многогранники / Справочник по геометрии 7-9 класс

Конус — это объемное тело, которое получается при вращении прямоугольного треугольника вокруг одного из его катетов.

Возьмем прямоугольный треугольник АВС. Будем вращать этот треугольник вокруг катета АС.

Прямая АСось косинуса.

Отрезок АСвысота конуса.

Основание конусакруг, образованный при вращении катета ВС.

Коническая поверхность (или боковая поверхность конуса) — поверхность, образованная при вращении гипотенузы АВ и состоящая из отрезков с общим концом А.

Образующие конусаотрезки, из которых составлена боковая поверхность конуса (на рисунке выше указаны образующие АВ, АВ1 и АВ2).

Определение

Конус — это тело, ограниченное кругом и конической поверхностью.

Объем конуса

Объем конуса равен одной трети произведения площади основания на высоту.
Доказательство

Дано: конус с площадью основания S, высотой h и объемом V.

Доказать: V = Sh.

Доказательство:

Воспользуемся принципом Кавальери. Рассмотрим конус и пирамиду с площадями оснований S и высотами ЕН = h и РО = h соответственно, «стоящие» на одной плоскости .

Проведем секущую плоскость , параллельную плоскости и пересекающую высоты ЕН и РО в точках Н1 и О1соответственно. В сечении конуса плоскостью получится круг радиуса Н1А1.

ЕН1А1 подобен ЕНА по двум углам (Е — общий, ЕН1А1 = ЕНА = 900, т.к. в противном случае прямые НА и Н1А1, а значит, и плоскости и пересекались бы, что противоречит условию). Поэтому  , откуда и площадь сечения конуса равна .

Площадь сечения пирамиды равна . По условию ЕН = РО = h, значит, ЕН1 = РО1 (т.к. ЕН1 = hНН1 и РО1 = hОО1, параллельные плоскости отсекают одинаковые отрезки НН1 и ОО1 от отрезков ЕН и РО, т.е. НН1 = ОО1).

Следовательно, площадь сечения конуса равна площади сечения пирамиды. Поэтому и его объем равен объему пирамиды, т.е. V = Sh. Что и требовалось доказать.

Площадь боковой поверхности конуса

Рассмотрим конус с радиусом основания и образующей .

Представим, что его боковую поверхность разрезали по одной из образующих и развернули так, что получился круговой сектор.

Радиус этого сектора равен образующей конуса, т.е. равен , а длина дуги сектора равна длине окружности основания конуса, т.е. равна 2, — градусная мера дуги сектора, тогда площадь данного сектора:   (1)

Длина дуги окружности с градусной мерой и радиусом равна . С другой стороны, длина этой дуги равна 2, поэтому учитывая (1), получим: .

Площадь боковой поверхности конуса равна площади ее развертки, т.е. .

Конус Абрамса — Википедия

Материал из Википедии — свободной энциклопедии

Конус Абрамса, он же Конус КА — прибор для определения пластичности (удобоукладываемости) бетонной смеси. Впервые предложен Даффом Абрамсом[en] в 1918 году, собственно поэтому он и назван конусом Абрамса. Конус изготавливают из листовой стали толщиной не менее 1,5 мм. Внутренняя поверхность конуса должна иметь шероховатость не более 40 мкм.

Размеры конуса в соответствии с ГОСТ 10181-2014
Наименование конусаВнутренний размер конуса, мм
dDH
Нормальный100±2200±2300±2
Увеличенный150±2300±2450±2
Конус для определения жесткости по методу Скрамтаева100±2194±2300±2
Примечание — конус для определения жесткости по методу Скрамтаева изготавливают без упоров

Данный метод, известный также как испытание бетона на осадку[en] нормирован в отечественной практике требованиями норм[~ 1] и соответствует европейскому стандарту EN 12350-2:2009 Testing fresh concrete — Part 2: Slump test[1] (Испытание свежеприготовленной бетонной смеси. Часть 2. Определение осадки конуса) в части общих требований к методу определения осадки конуса.

Для определения подвижности с заполнителем, фракция которого не превышает 40 мм включительно используют нормальный КА, с заполнителем большей крупности — увеличенный КА. Перед испытанием все поверхности КА соприкасающиеся с бетонной смесью необходимо очистить и смочить водой. Конус ставят на гладкий металлический лист, размерами не менее 700 х 700 мм. Затем конус заполоняют бетонной смесью марок П1, П2 и П3 через воронку в три слоя одинаковой толщины. Каждый слой уплотняют штыкованием гладким металлическим стержнем 25 раз. При проведении испытаний при помощи увеличенного КА каждый слой необходимо уплотнять 56 раз. Для испытаний бетонных смесей марок П4 и П5 конус следует заполнять в один прием и уплотнять штыкованием в нормальном КА 10 раз, в увеличенном КА — 20 раз. Во время штыкования конус должен быть плотно прижат к металлическому листу.

После уплотнения бетонной смеси снимают загрузочную воронку, излишки смеси срезают кельмой вровень с верхней кромкой конуса и разглаживают поверхность смеси. Время от начала заполнения конуса до его снятия не должно превышать трех минут. Конус плавно снимают и ставят рядом. Время, затраченное на подъем конуса не должно превышать 5-7 секунд.

Усадку конуса определяют, укладывая гладки стержень на верх конуса и измеряя расстояние от нижней поверхности стержня до поверхности бетонной смеси. Осадку конуса бетонной смеси, определенную в увеличенном конусе приводят к осадке, определенной в нормальном конусе, умножением осадки увеличенного конуса на коэффициент 0,67.

Марка по удобоукладываемости определяется по таблице:

Марка по удобоукладываемостиОсадка конуса, см
П11-4
П25-9
П310-15
П416-20
П521 и более
Сноски
Источники

Конус — это… Что такое Конус?

Прямой круговой конус. Прямой и косой круговой конусы с равным основанием и высотой. Эти тела обладают одинаковым объёмом. Усечённый прямой круговой конус.

Ко́нус (от др.-греч. κώνος «шишка») — тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, имеющую ограниченный объём и полученную объединением всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае называют основанием конуса, а конус называют опирающимся на данное основание). Если основание конуса представляет собой многоугольник, такой конус является пирамидой.

Связанные определения

  • Отрезок, соединяющий вершину и границу основания, называется образующей конуса.
  • Объединение образующих конуса называется образующей (или боковой) поверхностью конуса. Образующая поверхность конуса является конической поверхностью.
  • Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса.
  • Угол раствора конуса — угол между двумя противоположными образующими (угол при вершине конуса, внутри конуса).
  • Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым. При этом прямая, соединяющая вершину и центр основания, называется осью конуса.
  • Косой (наклонный) конус — конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии.
  • Круговой конус — конус, основание которого является кругом.
  • Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось конуса).
  • Конус, опирающийся на эллипс, параболу или гиперболу, называют соответственно эллиптическим, параболическим и гиперболическим конусом (последние два имеют бесконечный объём).
  • Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом, или коническим слоем.

Свойства

  • Если площадь основания конечна, то объём конуса также конечен и равен трети произведения высоты на площадь основания.

где S — площадь основания, H — высота. Таким образом, все конусы, опирающиеся на данное основание (конечной площади) и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.

  • Центр тяжести любого конуса с конечным объёмом лежит на четверти высоты от основания.
  • Телесный угол при вершине прямого кругового конуса равен
где  — угол раствора конуса.
  • Площадь боковой поверхности такого конуса равна
  • Площадь поверхности такого конуса равна
где  — радиус основания,  — длина образующей.
  • Объём кругового конуса равен
  • Для усечённого конуса (не обязательно прямого и кругового) объём равен:

где S1 и S2 — площади соответственно верхнего (ближнего к вершине) и нижнего оснований, h и H — расстояния от плоскости соответственно верхнего и нижнего основания до вершины.

Уравнение конуса

Уравнения, задающие боковую поверхность прямого кругового конуса с углом раствора 2Θ, вершиной в начале координат и осью, совпадающей с осью Oz:

или
Это уравнение в каноническом виде записывается как

где константы a, с определяются пропорцией Отсюда видно, что боковая поверхность прямого кругового конуса представляет собой поверхность второго порядка (она носит название коническая поверхность). В общем виде коническая поверхность второго порядка опирается на эллипс; в подходящей декартовой координатной системе (оси Ох и Оу параллельны осям эллипса, вершина конуса совпадает с началом координат, центр эллипса лежит на оси Oz) её уравнение имеет вид

причём a/c и b/c равны полуосям эллипса. В наиболее общем случае, когда конус опирается на произвольную плоскую поверхность, можно показать, что уравнение боковой поверхности конуса (с вершиной в начале координат) задаётся уравнением где функция  является однородной, то есть удовлетворяющей условию для любого действительного числа α.

Развёртка

Развёртка прямого кругового конуса

Прямой круговой конус как тело вращения образован прямоугольным треугольником, вращающимся вокруг одного из катетов, где h — высота конуса от центра основания до вершины — является катетом прямоугольного треугольника, вокруг которого происходит вращение. Второй катет прямоугольного треугольника r — радиус в основании конуса. Гипотенузой прямоугольного треугольника является l — образующая конуса.

В создании развёртки конуса могут использоваться всего две величины r и l. Радиус основания r определяет в развертке круг основания конуса, а сектор боковой поверхности конуса определяет образующая боковой поверхности l, являющаяся радиусом сектора боковой поверхности. Угол сектора в развёртке боковой поверхности конуса определяется по формуле:

φ = 360°·(r/l).

С имеющимися и полученными значениями можно нарисовать развёртку конуса на бумаге или другом материале, чтобы из развёртки получить конус как наглядное пособие или промышленное изделие.

Вариации и обобщения

См. также

Литература

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *