Графит кристаллическая решетка атомная – тип, строение, твердость, плотность, свойства (физические и химические), модификации атомной структуры и схожесть с другими камнями

тип, строение, сходство с графитом

Разные образования

Узнав физические свойства алмаза и графита, ученые отметили, что это разные формы углерода. Первый – это драгоценный минерал, один из самых твердых в мире. По принятой у геммологов шкале Мооса алмаз имеет наибольший балл твердости – 10. Графит по этой системе не дотягивает даже до 2. Блестящая драгоценность и грифель простого карандаша состоят из углерода. Различие этих минералов определяет тип кристаллической решетки. Но свойства их сильно отличаются друг от друга. Об этом читайте ниже.

Что такое алмаз и графит

Алмаз – самый твердый минерал. Внешне это прозрачный камень, у которого четко видна кристаллическая форма. Диаманты бесцветные, но встречаются разные оттенки, среди которых даже черный. Цвет зависит от природных условий, в которых формировался камень, а также от различных примесей в его структуре.

Разница со всех сторон

Графит – хрупкое, жирное на ощупь вещество, имеющее металлический блеск, состоящее из молекул углерода, расположенных слоями и образующих мелкие тонкие пластинки. При его нажатии на листке остается след.

Состав минералов

Первое, с чего начнем рассмотрение характеристики алмаза и графита, это состав минералов. Оба – из углерода, шестого элемента периодической системы.

Поскольку алмаз и графит состоят из частиц углерода, тип вещества у них – индивидуальный, а качественный состав образован соединениями атомов углерода. Формула алмаза и графита в химии проста – С, углерод. Этот химический элемент не имеет запаха, поэтому ни алмаз, ни графит ничем не пахнут.

Состоит из частиц углерода

Хотя химическая формула алмаза имеет схожесть с формулой графита, у структур, в которые соединяются атомы углерода, образуя кристаллическую решетку, есть разница.

Когда у минералов кристаллические решетки имеют отличие, но для них характерен идентичный химический состав, их называют полиморфами. Рассматриваемые минералы – разные виды полиморфных модификаций углерода.

Как и где находят углеродные минералы

Сходство элементарного химического состава не обуславливает схожие свойства веществ. Различия объясняются сложностями происхождения двух разных углеродных пород. Алмазы образуются под действием сильного давления после сверхбыстрого охлаждения. А если атмосферное давление занижено, то при довольно высокой температуре образуется графит.

Кимберлитовые трубки

Подтверждением того, что алмаз и графит образовались не одинаково, служит их нахождение в природе. Около 80% всех бриллиантов добывают в кимберлитовых трубках – глубоких воронках, образованных магмой, вышедшей после взрыва и выхода наружу подземного газа.

Графитовых же месторождений много в осадочных породах и пластах, образованных магмой.

Химическая связь в углеродных минералах

Частицы, из которых состоят твердые вещества, соединены в кристаллические решетки. Науке известны 4 вида таких решеток – ионная, молекулярная, атомная и металлическая.

Внешне драгоценный кристалл схож с кристаллами соли, но у солей ионная кристаллическая решетка.

Кристаллическая решетка алмаза

Тип кристаллической решетки алмаза, как и его полиморфа графита, атомная. В ее узлах лежат атомы углерода. Агрегатное состояние – твердое тело. Но все же по твердости углеродные полиморфы различны.

Свойство алмаза быть таким прочным обусловлено силой химической связи атомов. Структура диаманта трехмерная, атомы углерода в нем расположены в форме трехгранной пирамиды, тетраэдра. Каждая атомарная частица одинаково крепко соединяется со всеми четырьмя соседними, это осуществлено посредством ковалентной связи.

Атомарно графит – это множество слоев шестиугольных фигур, в каждой вершине которых расположен атом углерода. Его слоистая структура двухмерна. Связь в слоях ковалентная сильная, а между слоями гораздо слабее, как у веществ с молекулярной кристаллической решеткой. Пласты связаны непрочно. Поэтому твердость графита меньше по сравнению с бриллиантом.

Кристаллическая решетка графита

Взаимосвязь атомного строения и физики минерала

Рассмотрим, как внешне проявляется геометрия атомов. Различие свойств алмаза и графита напрямую связано с типом строения кристаллической решетки. Кристаллическая решетка алмаза имеет звенья из 4 хорошо соединенных атомов углерода. Они образовали сверхпрочные ковалентные сигма-связи. Оптические свойства межатомных соединений поглощают свет, делая кристалл прозрачным. А крепкая фиксация отрицательно заряженных элементарных частиц в однородных по силе связях придает ему твердость и свойства диэлектрика.

Образованные ковалентные пи-соединения гексагональной кристаллической решетки графита скрепляют атомы углерода в слои. При такой связи несколько электронов остаются свободными, поэтому пласты скреплены между собой незначительно. Движение нелокализованных элементарных частиц со знаком минус придает графиту электропроводность. У них отсутствует световая проводимость, что лишает вещество прозрачности, поэтому у графита цвет черный.

Аллотропные модификации углерода

Аллотропия – это способность химических элементов существовать в двух и более физических формах (аллотропах). Самой широкой из всех открытых является аллотропия углерода.

Если вы перечислите основные углеродные аллотропные видоизменения, то это будут:

  • алмаз;
  • графит;
  • карбин;
  • фуллерен.

Из указанных выше два аллотропа углерода синтезированы. Карбин и фуллерен – полученные искусственно аллотропные видоизменения углерода. Карбин – порошок из мелких кристалликов черного цвета. После открытия в лаборатории было найдено и природное вещество. Фуллерен – синтезированный в конце прошлого века в США желтый кристалл около 5 мм в диаметре.

Карбин – порошок из мелких кристалликов

Аллотропические формы углерода могут трансформироваться. Сам по себе переход алмаза в другое состояние не произойдет. Но при нагревании кристалла в безвоздушном пространстве до 1800 градусов он превратится в графит.

Известны методы, позволяющие осуществить и обратные превращения.

Как получить драгоценный камень из графита

Получить алмаз можно из графита. При давлении выше 1000 Па и температуре 3000 градусов с добавлением металлов углерод в графите меняет ковалентные связи. Полученные в результате камни мутные и пористые.

Другой метод – это применение ударной волны, после которой можно любоваться чистыми, прозрачными кристаллами правильной геометрической формы, но очень маленького размера.

Слишком маленького размера

Несовершенство этих методов привело к выводу, что алмазы лучше всего выращивать. При нагреве бриллианта до 1,5 тысячи градусов он растет. Но это дорого, поэтому сегодня искусственные драгоценности получают из метана.

Физические и химические свойства

Алмаз не обладает электропроводностью, но тепло проводит. Хорошо преломляет и отражает свет. Прозрачен, имеет блеск. Плавится при 3700-4000 градусов. Лавуазье впервые сжег диамант в 18 веке.

Позже ученые выяснили, что в соединении с кислородом алмаз горит при 721-800 градусах, испаряясь углекислым газом. Без воздуха может перейти в графит при нагреве до 2001-3000 градусов. Химические свойства говорят об устойчивости к воздействию кислот.

Хорошо преломляет и отражает свет

Графит электро-и-теплопроводный, нерастворим кислотами и водой, теплостойкий. Температура плавления 2500 – 3000 градусов. Не горит до 250-300 градусов, но при сжигании с температурой выше 300 и до 1000 превращается в углекислый газ.

Сравнительная характеристика

Сравним строение алмаза и графита и их физические свойства: твердость, теплопроводность, электропроводность, особенности химической связи.

О характеристиках минералов расскажет подробная сравнительная таблица:

Сравнительная таблица характеристик алмаза и графита

Применение в промышленности

Ювелиры ограняют состоящий из углерода алмаз, и он получает блеск бриллианта. Об этом читайте в статье «Что такое бриллиант и для чего он нужен».

В промышленности используют камни, которые имеют трещины, сколы, иные дефекты. Из них делают подшипники, сверла. Необработанные острые кристаллы применяют в электронике в качестве игл, в микросхемах, счетчиках прослойки из алмазов. Из алмазного порошка производят детали различных механизмов, обрамляют шлифовочные круги. Подробнее об этом – в статье «Области применения технических алмазов».

Алмазные подшипники

Алмаз имеет меньше ценности в промышленности, чем графит. Черный мягкий минерал встречается и в канцелярском карандаше, и в числе компонентов литейного производства, и в электроугольной промышленности. Электропроводные свойства графита используют для изготовления электродов.

Напишите, пожалуйста, в комментариях, о каких свойствах алмаза и графита вы узнали впервые.

Если статья вам понравилась, ставьте лайки и делитесь ссылкой на нее с друзьями в соцсетях.

Алмазные подшипники Загрузка…

кристаллическая решетка и свойства, применение

На чтение 5 мин. Просмотров 150 Опубликовано

Графит — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Распространенный в природе минерал. Встречается обычно в виде отдельных чешуек, пластинок и скоплений, разных по величине и содержанию графита.

Графит

Различают месторождения кристаллического графита, связанного с магматическими горными породами или кристаллическими сланцами, и скрытокристаллического графита, образовавшегося при метаморфизме углей.

Структура графита

Структура графита

Гексагональная кристаллическая полиморфная (аллотропная) модификация чистого углерода, наиболее устойчивая в условиях земной коры.

Слои кристаллической решетки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный вид симметрии), до тригональной (дитригонально-скаленоэдрический в.с.). Кристаллическая решетка графита — слоистого типа.

В слоях атомы С расположены в узлах гексагональных ячеек слоя. Каждый атом С окружен тремя соседними с расстоянием 1,42Α

Различают две модификации графита: α-графит (гексагональный P63/mmc) и β-графит (ромбоэдрический R(-3)m). Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

β-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

Свойства

Свойства

Хорошо проводит электрический ток. В отличие от алмаза обладает низкой твёрдостью (1 по шкале Мооса). Относительно мягкий. После воздействия высоких температур становится немного твёрже, и становится очень хрупким. Плотность 2,08—2,23 г/см³.

Цвет тёмно-серый, блеск металлический. Неплавкий, устойчив при нагревании в отсутствие воздуха. Жирный (скользкий) на ощупь. Природный графит содержит 10—12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах).

Теплопроводность графита от 278,4 до 2435 Вт/(м*К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры.

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном — в сотни раз меньше.

Минимальное значение проводимости наблюдается в интервале 300—1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Коэффициент теплового расширения графита до 700 К отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным.

В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

Морфология

Морфология

Хорошо образованные кристаллы редки. Кристаллы пластинчатые, чешуйчатые, кривогранные, обычно имеют пластинчатую несовершенную форму. Чаще бывает представлен листочками без кристаллографических очертаний и их агрегатами.

Образует сплошные скрытокристаллические, листоватые или округлые радиально-лучистые агрегаты, реже — сферолитовые агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто наблюдается треугольная штриховка на плоскостях (0001).

Происхождение

Происхождение

Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных полиметаллических месторождениях.

Широко распространён в метаморфических породах — кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн). Акцессорный минерал метеоритов. Сопутствующие минералы: кварц, пирит, гранаты, шпинель.

Применение

Применение

Для изготовления плавильных тиглей, футеровочных плит — применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов.

Применяется в электродах, нагревательных элементах — благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).

Для получения химически активных металлов методом электролиза расплавленных соединений, твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках, наполнитель пластмасс.

Является замедлителем нейтронов в ядерных реакторах, компонентом состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином).

Используется для получения синтетических алмазов, в качестве эталона длины нанометрового диапазона для калибровки сканеров сканирующего туннельного микроскопа и атомно-силового микроскопа, для изготовления контактных щёток и токосъёмников для разнообразных электрических машин, электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов.

А также прочих устройств, где требуется надёжный подвижный электрический контакт, для изготовления тепловой защиты носовой части боеголовок баллистических ракет и возвращаемых космических аппаратов.

Графит (англ. Graphite) — C

Молекулярный вес12.01 г/моль
Происхождение названияот др.-греч. γράφω — записывать, писать
IMA статусдействителен, описан впервые до 1959 (до IMA)

Классификация

Strunz (8-ое издание)1/B.02-10
Nickel-Strunz (10-ое издание)1.CB.05a
Dana (7-ое издание)1.3.5.2
Dana (8-ое издание)1.3.6.2
Hey’s CIM Ref.1.25

Физические свойства

Цвет минералажелезно-чёрный переходящий в стально-серый
Цвет чертычёрный переходящий в стально-серый
Прозрачностьнепрозрачный
Блескполуметаллический
Спайностьвесьма совершенная по {0001}
Твердость (шкала Мооса)1-2
Изломслюдоподобный
Прочностьгибкий
Плотность (измеренная)2.09 — 2.23 г/см3
Радиоактивность (GRapi)0

Оптические свойства

Типодноосный (-)
Показатели преломленияnω = 1.93-2.07
Анизотропиячрезмерная
Цвет в отраженном светежелезно-чёрный переходящий в стально-серый
Плеохроизмсильный, цвет красный
Люминесценция в ультрафиолетовом излучениине флюоресцентный

Кристаллографические свойства

Точечная группа6 mm — дигексагонально-пирамидальный
Пространственная группаP63mc
Сингониягексагональная
Параметры ячейкиa = 2.461Å, c = 6.708Å
Двойникованиепо {1121}

 

Источник: http://mineralpro.ru/minerals/graphite/

Атомная кристаллическая решетка

Любое вещество в природе, как известно, состоит из более мелких частиц. Они, в свою очередь, связаны и образуют определенную структуру, которая определяет свойства конкретного вещества.

Атомная кристаллическая решетка свойственна твердым веществам и возникает при низких температурах и высоком давлении. Собственно, именно благодаря такому строению, алмаз, металлы и ряд других материалов приобретают характерную прочность.

Строение таких веществ на молекулярном уровне выглядит, как кристаллическая решетка, каждый атом в которой связан со своим соседом самым прочным соединением, существующим в природе — ковалентной связью. Все мельчайшие элементы, образующие структуры, расположены упорядоченно и с определенной периодичностью. Представляя собой сетку, в углах которой расположены атомы, окруженные всегда одинаковым числом спутников, атомная кристаллическая решетка практически не меняет своего строения. Общеизвестно, что изменить структуру чистого металла или сплава можно лишь нагревая его. При этом температура тем выше, чем более прочные связи в решетке.

Иными словами, атомная кристаллическая решетка является залогом прочности и твердости материалов. При этом, однако, стоит учитывать, что расположение атомов в различных веществах также может отличаться, что, в свою очередь, влияет на степень прочности. Так, например, алмаз и графит, имеющие в составе один и тот же атом углерода, в высшей мере отличаются друг от друга по показателям прочности: алмаз — самое твердое вещество на Земле, графит же может слоиться и ломаться. Дело в том, что в кристаллической решетке графита атомы расположены слоями. Каждый слой напоминает пчелиную соту, в которой атомы углерода сочленены достаточно слабо. Подобное строение обуславливает слоистое крошение грифелей карандаша: при поломке части графита попросту отслаиваются. Другое дело — алмаз, кристаллическая решетка которого состоит из возбужденных атомов углерода, то есть тех, что способны образовывать 4 прочных связи. Разрушить такое сочленение попросту невозможно.

Кристаллические решетки металлов, кроме того, обладают определенными характеристиками:

1. Период решетки — величина, определяющая расстояние между центрами двух рядом расположенных атомов, измеряемая по ребру решетки. Общепринятое обозначение не отличается от оного в математике: a, b, c — длина, ширина, высота решетки соответственно. Очевидно, что размеры фигуры столь малы, что расстояние измеряется в наименьших единицах измерения — десятой доли нанометра или ангстремах.

2. К — координационное число. Показатель, определяющий плотность упаковки атомов в рамках одной решетки. Соответственно, плотность ее тем больше, чем выше число К. По факту же данная цифра являет собой количество атомов, находящихся как можно ближе и на равном расстоянии от изучаемого атома.

3. Базис решетки. Также величина, характеризующая плотность решетки. Представляет собой общее число атомов, которые принадлежат конкретной изучаемой ячейке.

4. Коэффициент компактности измеряется путем подсчета общего объема решетки, поделенного на тот объем, что занимают все атомы в ней. Как и предыдущие две, эта величина отражает плотность изучаемой решетки.

Мы рассмотрели всего несколько веществ, которым свойственна атомная кристаллическая решетка. Меж тем, их великое множество. Несмотря на большое разнообразие, кристаллическая атомная решетка включает в себя единицы, всегда соединенные при помощи ковалентной связи (полярной или неполярной). Кроме того, подобные вещества практически не растворяются в воде и характеризуются низкой теплопроводностью.

В природе существует три вида кристаллических решеток: кубическая объемно-центрированная, кубическая гранецентрированная, плотноупакованная гексагональная.

Кристаллические решетки

Цели.

  • Дать понятие о кристаллическом и аморфном состоянии твердых веществ; познакомиться с типами кристаллических решеток, их взаимосвязью с видами химической связи и влиянием на физические свойства веществ; дать представление о законе постоянства состава веществ.
  • Развивать логическое мышление, умения наблюдать и делать выводы.
  • Формировать эстетический вкус и коллективизм, расширять кругозор.

Оборудование и реактивы. Модели кристаллических решеток; пластилин, жевательная резинка, смолы, воск, поваренная соль NaCl, графит, сахар, вода; раздаточный материал, компьютер, презентация (приложение).

Тип урока: усвоение нового материала.

Форма организации работы. фронтальная, групповая.

Методы и приемы. объяснительно-иллюстративный, проблемный, демонстрационный опыт, лабораторная работа, самостоятельная работа.

Презентация к уроку

Ход урока

Сегодня я хочу начать урок со слов поэта Леонида Мартынова:

(Cлайд 1)

«В мире этом – я знаю –
нет счета сокровищам,
Но весьма поучительно
для очей заглянуть
повнимательнее в нутро вещам,
прямо в нутро вещей».

(Слайд 2) Тема урока: Кристаллические решетки

Цель урока– понять, что такое кристаллическое и аморфное состояние твердых веществ, познакомиться с типами кристаллических решеток, получить представление о законе постоянства состава веществ.

Посмотрите на слайд (3). На нем представлены вещества: алмаз, медный купорос, аметист, графит, алюминий, оксид углерода (IV), ртуть, каменная соль.

В конце урока вы должны ответить на вопрос:

(Слайд 3) Что общего у этих веществ?

Вспомните: Какие агрегатные состояния веществ известны?

(Ответ): Твердое, жидкое и газообразное.

(Слайд 4) Следовательно: вещества по агрегатному состоянию делят на газы, жидкости и твердые тела.

Приведите примеры веществ. (Слайд 4, продолжение)

Для нас важны все три агрегатных состояния, так как любое вещество может быть газом, жидкостью или твердым веществом.

Приведите примеры таких переходов:

Например: лед ↔ вода ↔ пар; твердый натрий легко плавится и может испарятся, т.е. быть газообразным. Газ кислород при низких температурах сначала превращается в жидкость, а при еще более низких – затвердевает в синие кристаллы.

Сегодня мы рассмотрим твердое состояние вещества.

(Лабораторная работа) Посмотрите на вещества на ваших столах и распределите их на две группы (по своему усмотрению).

(на столе: пластилин, жевательная резинка, смола, воск, поваренная соль NaCl, графит, сахар)

(Ответ учащихся) Пластилин, жевательная резинка, смола, воск – это аморфные вещества. У них часто нет постоянной температуры плавления, наблюдается текучесть, нет упорядоченного строения. Напротив, соль NaCl, графит и сахар – кристаллические вещества. Для них характерны четкие температуры плавления, правильные геометрические формы, симметрия, упорядоченное строение.

(Слайд 5) Исходя из вашего ответа следует вывод, что все твердые вещества делятся на аморфные и кристаллические (их характеристика).

Что бы выяснить отличие аморфных и кристаллических веществ мы заглянем внутрь этих веществ.

Кристаллические вещества характеризуются правильным расположением частиц, из которых они построены: атомов, молекул или ионов. Эти частицы расположены в строго (Слайд 6)

определенных точках пространства – называемыхузлами. Если соединить узлы прямыми линиями, то образуется пространственный каркаскристаллическая решетка.

В соответствии с видом частиц можно выделить четыре типа кристаллических решеток.

Установим взаимосвязь между типом решетки, видом химической связи и свойствами веществ одновременно заполняя таблицу (приложение 1).

(слайды 7-10)

1 кристаллическая решетка – ИОННАЯ.

Виды частиц в узлах решетки? – ионы.

Вид связи между частицами – ионная, прочная.

Какие вещества могут иметь ионную кристаллическую решетку? – соли, оксиды и гидроксиды типичных металлов (IIII групп)

Какими физ. свойствами будут обладать такие вещества? – твердые, прочные, нелетучие, тугоплавкие.

Следующий тип кристаллической решетки – АТОМНАЯ.

Виды частиц в узлах решетки – атомы.

Вид связи между частицами? – (атомная или) ковалентная.

Примеры – графит (его кристаллическая. решетка показана на слайде), кварц, алмаз.

Физические свойства веществ – такие же что и у веществ с ионной кристаллической решеткой – твердые, прочные, нелетучие, тугоплавкие, не растворимы в воде.

У алмаза кристаллическая решетка по структуре отличается от решетки графита. (демонстрация кристаллических решеток графита и алмаза) Она имеет тетраэдрическое строение. Из за такого своего строения алмаз – твердое, очень прочное вещество.

3 тип кристаллической решетки – МОЛЕКУЛЯРНАЯ.

В узлах такой решетки находятся – молекулы.

Между молекулами – слабые силы межмолекулярного притяжения, а внутри молекул – прочная ковалентная связь.

Примеры веществ –твердые при особых условиях вещества, которые при обычных условиях газы, жидкости; сера, иод, уксусная кислота.

Характерные физические свойства таких веществ – непрочные, летучие, легкоплавкие, имеющие малую твердость.

На слайде приведена кристаллическая решетка углекислого газа – оксида углерода (IV). В узлах находится молекула состоящая из атома углерода и двух атомов кислород.

В кристаллических решетках простых веществ, например иода – в узлах находятся двухатомные молекулы иода. (Приложение 2)

И последняя кристаллическая решетка – МЕТАЛЛИЧЕСКАЯ.

В узлах находятся – атом – ионы (металлов).

Связь – металлическая, осуществляемая свободными обобществленными электронами (которые двигаются между атом – ионами).

(Демонстрация кристаллической решетки металлов, раздаточный материал) (приложение 3).

Примеры – металлы и сплавы.

Какими физ. свойствами будут обладать такие вещества? – ковкие, пластичные, электро – и теплопроводны, имеют мет. блеск ( все свойства металлов).

(слайды 11-12) Рассмотрев типы кристаллических решеток мы с вами установили взаимосвязь между строением атома, химическими связями, кристаллическими решетками и свойствами веществ.

Строение атома химическая связь кристаллическая решетка свойства вещества.

Откройте учебник на стр. 80, табл. 6 и обратите внимание на типы кристаллических решеток простых веществ в зависимости от их положения в периодической системе.

Какой тип решетки не встречается в простых веществах?

Ответ учеников. У простых веществ не бывает ионных решеток.

Для веществ с молекулярной решеткой характерно явление возгонки (сублимации).

Демонстрационный опыт.

Возгонка иода. (Возгонка – это превращение (при нагревании) твердого вещества в газ, минуя жидкую фазу, а затем снова кристаллизация в виде инея.)

(слайд13) Остался еще один момент урока – закон постоянства состава вещества, которому подчиняются вещества с молекулярным строением.

Этот закон открыт французским химиком Ж.Л.Прустом.

Его формулировка такова: вещества молекулярного строения имеют постоянный состав независимо от способа их получения.

Н-р: вода – не зависимо от того как ее получают, в каком агрегатном состоянии она находится, состав ее не меняется – Н2О.

Для веществ с ионным строением закон Пруста не всегда выполняется.

ИТОГ: Мы заглянули в нутро вещей. Рассмотрели кристаллические решетки

А теперь отвечаем на вопрос, который был задан в начале урока.

(слайды 14-16) Что общего у этих веществ? (типы кристаллических решеток)

Закрепление материала

(слайд 17)

Какие кристаллические решетки у О2, Н2О, NaCl, С?

Ответ учеников. О2 и Н2О – молекулярные кристаллические решетки, NaCl – ионная решетка, С – атомная решетка.

Кремний имеет атомную кристаллическую решетку. Каковы его физические свойства?

Оксид СО2 имеет низкую tпл, а кварц SiO2 – очень высокую (кварц плавится при 1725°С). Какие кристаллические решетки они должны иметь?

Я на бумаге оставляю (слайд 18)
Конечно, очень жирный след.
И рисовать вам помогаю
Уже я много – много лет!
Не прочен я, не как гранит!
А называюсь я … (графит)

Какое строение (кристаллическую решетку) имеет это вещество? Какими свойствами он обладает?

Горжусь своим я блеском (слайд 19

)
И тем, что очень твёрд.
Разрежу я железку
На тысячи кусков.
Я – камень драгоценный,
Чужих боюсь я глаз!
Надеюсь, догадались:
Меня зовут… (алмаз)

Какое строение (кристаллическую решетку) имеет это вещество? Какими свойствами он обладает?

(слайд 20) Самостоятельная работа

Определить тип кристаллической решетки для веществ:

  • 1 вариант: Н2, Са, КСl, Si, Н2S
  • 2 вариант: Сl2, NaNO3, Mg, Н2SO4, С

(слайд 21) Домашнее задание § 22, упр. 6

Используемая литература

  1. О.С.Габриелян и др. — Химия. 8 класс — М.: Дрофа, 2005.
  2. О.С.Габриелян и др.– Настольная книга учителя химии 8 класс – М.: Дрофа, 2005.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *