Hi химия это – Иодоводородная кислота — это… Что такое Иодоводородная кислота?

Содержание

Иодоводородная кислота — это… Что такое Иодоводородная кислота?


Иодоводородная кислота

Иодоводород HI — бесцветный удушливый газ, сильно дымит на воздухе. Неустойчив, разлагается при 300 °C.

Иодоводород хорошо растворяется в воде. Он образует азеотропную смесь, кипящую при 127 °C, с концентрацией HI 57%.

Получение

В промышленности HI получают по реакции I2 с гидразином, в результате которой также получается N2:

2 I2 + N2H4 → 4 HI + N2

В лабоатории HI можно получать также с помощью следующих окислительно-восстановительных реакций:

H2S + I2 → S↓ + 2HI

Либо гидролизом иодида фосфора:

РI3 + 3H2O → H3РO3 + 3НI

Иодоводород также получается при взаимодействии простых веществ H2

и I2. Эта реакция идет только при нагревании и протекает не до конца, так как в системе устанавливается равновесие:

H2 + I2 → 2 HI

Свойства

Водный раствор HI называется иодоводородной кислотой (бесцветная жидкость с резким запахом). Иодоводородная кислота является самой сильной кислотой. Соли иодоводородной кислоты называются иодидами.

Иодоводород является сильным восстановителем. При стоянии водный раствор HI окрашивается в бурый цвет, вследствие постепенного окисления его кислородом воздуха и выделения молекулярного иода:

4HI + O2 → 2H2O + 2I2

HI способен восстановить концентрированную серную кислоту до сероворода:

8HI + H2SO4 → 4I2 + H2S + 4H2O

Подобно другим галогенводородам, HI присоединяется к кратным связям (реакция электрофильного присоединения):

HI + H2C=CH2 → H3CCH2I

Применение

Иодоводород используют в лабораториях как восстановитель во многих органических синтезах, а также для приготовления различных иодсодержащих соединений.

Литература

  • Ахметов Н.С. «Общая и неорганическая химия» М.:Высшая школа, 2001

Wikimedia Foundation. 2010.

  • Иодистый водород
  • Иодсодержащие контрастные препараты

Смотреть что такое «Иодоводородная кислота» в других словарях:

  • иодоводородная кислота — (иодистоводородная кислота), раствор иодоводорода в воде, очень сильная кислота (сильнее, чем HCl и HBr). Чистая  бесцветная, на свету желтеет или буреет (окисляется с выделением иода). Соли иодоводородной кислоты  иодиды …   Энциклопедический словарь

  • ИОДОВОДОРОДНАЯ КИСЛОТА — (иодистово дородная кислота), р р иодоводорода в воде, очень сильная кислота (сильнее, чем НС1 и НВr). Чистая бёсцв., на свету желтеет или буреет (окисляется с выделением иода). Соли И. к. иодиды …   Естествознание. Энциклопедический словарь

  • Кислота — У этого термина существуют и другие значения, см. Кислота (значения) …   Википедия

  • иодистоводородная кислота — то же, что иодоводородная кислота. * * * ИОДИСТОВОДОРОДНАЯ КИСЛОТА ИОДИСТОВОДОРОДНАЯ КИСЛОТА, раствор иодистого водорода в воде, очень сильная кислота (сильнее, чем HCl и HBr). Чистая бесцветная, на свету желтеет или буреет (окисляется с… …   Энциклопедический словарь

  • ИОДИСТОВОДОРОДНАЯ КИСЛОТА — то же, что иодоводородная кислота …   Естествознание. Энциклопедический словарь

  • Йодоводородная кислота — Иодоводород Общие Систематическое наименование Иодоводород Химическая формула …   Википедия

  • Список кислот и ангидридов

    — …   Википедия

  • Кислоты и ангидриды —       Служебный список статей, созданный для координации работ по развитию темы.   Данное предупреждение не устанавл …   Википедия

  • Галогеноводороды — Галогеноводороды  общее название соединений, образованных из водорода и галогенов: Плавиковая кислота  водный раствор фтороводорода Соляная кислота  водный раствор хлороводорода Бромоводородная кислота  водный раствор… …   Википедия

  • Иодоводород — Иодоводород …   Википедия

dic.academic.ru

Йодоводородная кислота — это… Что такое Йодоводородная кислота?


Йодоводородная кислота

Иодоводород HI — бесцветный удушливый газ, сильно дымит на воздухе. Неустойчив, разлагается при 300 °C.

Иодоводород хорошо растворяется в воде. Он образует азеотропную смесь, кипящую при 127 °C, с концентрацией HI 57%.

Получение

В промышленности HI получают по реакции I2 с гидразином, в результате которой также получается N2:

2 I2 + N2H4 → 4 HI + N2

В лабоатории HI можно получать также с помощью следующих окислительно-восстановительных реакций:

H2S + I2 → S↓ + 2HI

Либо гидролизом иодида фосфора:

РI3 + 3H2O → H3РO3 + 3НI

Иодоводород также получается при взаимодействии простых веществ H2 и I2. Эта реакция идет только при нагревании и протекает не до конца, так как в системе устанавливается равновесие:

H2 + I2 → 2 HI

Свойства

Водный раствор HI называется иодоводородной кислотой (бесцветная жидкость с резким запахом). Иодоводородная кислота является самой сильной кислотой. Соли иодоводородной кислоты называются иодидами.

Иодоводород является сильным восстановителем. При стоянии водный раствор HI окрашивается в бурый цвет, вследствие постепенного окисления его кислородом воздуха и выделения молекулярного иода:

4HI + O2 → 2H2O + 2I2

HI способен восстановить концентрированную серную кислоту до сероворода:

8HI + H2SO4 → 4I2 + H2S + 4H2O

Подобно другим галогенводородам, HI присоединяется к кратным связям (реакция электрофильного присоединения):

HI + H2C=CH2 → H3CCH2I

Применение

Иодоводород используют в лабораториях как восстановитель во многих органических синтезах, а также для приготовления различных иодсодержащих соединений.

Литература

  • Ахметов Н.С. «Общая и неорганическая химия» М.:Высшая школа, 2001

Wikimedia Foundation. 2010.

  • Йодок, Йобст
  • Йодок Йобст

Смотреть что такое «Йодоводородная кислота» в других словарях:

  • Йод — (хим.) один из элементов группы галоидов, химический знак J, атомный вес 127, по Стасу 126,85 (О = 16), открыт Куртуа в 1811 г. в маточном рассоле золы морских водорослей. Природа его, как элемента, установлена Гей Люссаком и им же ближе… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Кислоты — У этого термина существуют и другие значения: Кислота (наркотик) Кислоты  один из основных классов химических соединений. Они получили своё название из за кислого вкуса большинства кислот, таких, как азотная или серная. По определению кислота … …   Википедия

  • Кисль — У этого термина существуют и другие значения: Кислота (наркотик) Кислоты  один из основных классов химических соединений. Они получили своё название из за кислого вкуса большинства кислот, таких, как азотная или серная. По определению кислота … …   Википедия

  • Иодоводород — Иодоводород …   Википедия

dic.academic.ru

Йодистый водород — это… Что такое Йодистый водород?


Йодистый водород

Иодоводород HI — бесцветный удушливый газ, сильно дымит на воздухе. Неустойчив, разлагается при 300 °C.

Иодоводород хорошо растворяется в воде. Он образует азеотропную смесь, кипящую при 127 °C, с концентрацией HI 57%.

Получение

В промышленности HI получают по реакции I2 с гидразином, в результате которой также получается N2:

2 I2 + N
2
H4 → 4 HI + N2

В лабоатории HI можно получать также с помощью следующих окислительно-восстановительных реакций:

H2S + I2 → S↓ + 2HI

Либо гидролизом иодида фосфора:

РI3 + 3H2O → H3РO3 + 3НI

Иодоводород также получается при взаимодействии простых веществ H2 и I2. Эта реакция идет только при нагревании и протекает не до конца, так как в системе устанавливается равновесие:

H2 + I2 → 2 HI

Свойства

Водный раствор HI называется иодоводородной кислотой (бесцветная жидкость с резким запахом). Иодоводородная кислота является самой сильной кислотой. Соли иодоводородной кислоты называются иодидами.

Иодоводород является сильным восстановителем. При стоянии водный раствор HI окрашивается в бурый цвет, вследствие постепенного окисления его кислородом воздуха и выделения молекулярного иода:

4HI + O2 → 2H2O + 2I2

HI способен восстановить концентрированную серную кислоту до сероворода:

8HI + H2SO4 → 4I2 + H2S + 4H2O

Подобно другим галогенводородам, HI присоединяется к кратным связям (реакция электрофильного присоединения):

HI + H2C=CH2 → H3CCH2I

Применение

Иодоводород используют в лабораториях как восстановитель во многих органических синтезах, а также для приготовления различных иодсодержащих соединений.

Литература

  • Ахметов Н.С. «Общая и неорганическая химия» М.:Высшая школа, 2001

Wikimedia Foundation. 2010.

  • Йодид калия
  • Йодистый метил

Смотреть что такое «Йодистый водород» в других словарях:

  • Йодистый водород — см. Йод …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Этил йодистый — C2H5I йодистый Э., жидкость, температура кипения 72,34°; D14,5 = 1,9444. Свежеприготовленный йодистый Э. бесцветен, при стоянии буреет и разлагается с выделением свободного йода. Обладает сильным эфирным запахом. Загорается трудно. Зажженный,… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Йод — (хим.) один из элементов группы галоидов, химический знак J, атомный вес 127, по Стасу 126,85 (О = 16), открыт Куртуа в 1811 г. в маточном рассоле золы морских водорослей. Природа его, как элемента, установлена Гей Люссаком и им же ближе… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Болотный газ или метан — (также водородистый метил, формен) предельный углеводород состава СН4, первый член ряда СnН2n+n, одно из простейших соединений углерода, вокруг которого группируются все остальные и от которого могут быть произведены через замещение атомов… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Восстановление — Алхимики принимали, что металлы суть тела сложные, состоящие из духа, души и тела, или ртути, серы и соли; под духом, или ртутью, они понимали не обыкновенную ртуть, а летучесть и металлические свойства, напр., блеск, ковкость; под серою (душою)… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Химические равновесия — Явления химического равновесия охватывают область неполных превращений, т. е. таких случаев, когда химическое превращение материальной системы совершается не до конца, но прекращается после того, как изменению подвергнется часть вещества. В… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Фосфор, химический элемент — (хим.; Phosphore франц., Phosphor нем., Phosphorus англ. и лат., откуда обозначение P, иногда Ph; атомный вес 31 [В новейшее время атомный вес Ф. найден (van der Plaats) такой: 30,93 путем восстановления определенным весом Ф. металлического… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Галоиды или галогены — (хим.). Так называются четыре элементарных тела, находящихся в седьмой группе периодической системы элементов: фтор F = 19, хлор Сl = 3,5, бром Br = 80 и йод J = 127. Последние три очень похожи друг на друга, а фтор стоит несколько особняком.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Галоиды — или галогены (хим.) Так, называются четыре элементарных тела, находящихся в седьмой группе периодической системы элементов: фтор F = 19, хлор Cl = 3,5, бром Br = 80 и йод J = 127. Последние три очень похожи друг на друга, а фтор стоит несколько… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Этан — углеводород предельного ряда С2h5; встречается в природе, в выделениях из почвы нефтеносных местностей. Искусственно получен в первый раз Кольбе и Франкландом в 1848 г. при действии металлического калия на пропионнитрил, ими же в следующем 1849… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

dic.academic.ru

Иодоводород — Циклопедия

Синтез иодоводородной кислоты // Himikus500 [6:11]

Иодоводород — неорганическое соединение ряда галогеноводородов состава HI. При обычных условиях является бесцветным ядовитым газом, раздражает слизистую оболочку. При растворении в воде образует сильную иодидную кислоту (иодоводородную).

Используется в органическом и неорганическом синтезе для получения иодидной кислоты, иодорганических соединений, а также в качестве восстановителя.

[править] Физические свойства

Иодоводород — бесцветный газ, который дымит на воздухе с образованием сильной иодидной кислоты. Хорошо растворим в воде (425 объемов газа в 1 объеме воды). Кислота сохраняется в темных, плотно закрытых сосудах поскольку вступает в реакцию с кислородом.

[править] Иодоводородная кислота

Иодоводородная кислота — раствор чистого HI в воде. Коммерческая иодоводородная кислота обычно содержит 57 % HI по массе. Иодоводородная кислота является одной из самых сильных кислот.

HI(г) + H2O(р) → H3O(р)+ + I–(р) Ka ≈ 1010

Иодоводородная кислота используется только в лабораторной практике.

Индустриальное производство иодоводорода происходит каталитической реакцией иода и водорода на платиновой губке при 500 °C:

[math]\mathrm{H_2 + I_2 \longrightarrow 2HI}[/math]

Иногда в качестве восстановителя применяют гидразин или сероводород:

[math]\mathrm{N_2H_4 + 2I_2 \longrightarrow 4HI + N_2}[/math]
[math]\mathrm{ H_2S + I_2\longrightarrow 2HI + S}[/math]

Также иодоводород можно получить реакцией воды с трииодидом фосфора:

[math]\mathrm{PI_3 + 3 \ H_2O \longrightarrow H_3PO_3 + 3 \ HI}[/math]

Однако эта реакция не подходит для получения газообразного иодоводорода. В лаборатории используют реакцию взаимодействия йода с декалином:

[math]\mathrm{C_{10}H_{18} + 3I_2 \longrightarrow 6HI \uparrow + C_{10}H_{12}}[/math]

Кроме этого иодоводород выделяют из его концентрированных растворов путем их осушения оксидом фосфора.

[править] Химические свойства

При нагревании иодоводород распадается на простые вещества:

[math]\mathrm{ 2HI \xrightarrow{200^oC} \ H_2 + I_2 }[/math]

При стоянии на свету водные растворы HI окрашиваются в бурый цвет вследствие постепенного окисления воздухом и выделения молекулярного иод:

[math]\mathrm{4HI + O_2 \longrightarrow 2I_2 + 2H_2O }[/math]

Иодоводород является сильным восстановителем:

[math]\mathrm{ 2HI + NO_2 \longrightarrow I_2 + NO + H_2O}[/math]
[math]\mathrm{ 2HI + S \xrightarrow{500^oC} \ I_2 + H_2 S }[/math]

HI способен восстановить концентрированную серную кислоту до серы или даже до сероводорода:

[math]\mathrm{6HI + H_2SO_4 \longrightarrow 4I_2 + S + 4H_2O}[/math]
[math]\mathrm{8HI + H_2SO_4 \longrightarrow 4I_2 + H_2S + 4H_2O}[/math]

Подобно другим галогеноводородам, HI присоединяется к кратным связям (реакция электрофильного присоединения):

[math]\mathrm{ HI + H_2C{=}CH_2 \longrightarrow H_3CCH_2I}[/math]
  • Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ / Под ред. Р. А. Лидина. — 3-е. — М.: «Химия», 2000. — 480 с. — ISBN 5-7245-1163-0.

cyclowiki.org

Словарь химических формул — это… Что такое Словарь химических формул?

Химическая формулаНазвание соединенияНомер по классификатору CAS
D2Oоксид дейтерия7732-20-0
Химическая формулаНазвание соединенияНомер по классификатору CAS
LaCl3Хлорид лантана (III)10099-58-8
LaPO4Фосфат лантана (III)14913-14-5
Li(AlSi2O6)Кеатит
LiBrБромид лития7550-35-8
LiBrO3Бромат лития
LiCNЦианид лития
LiC2H5OЭтилат лития
LiFфторид лития7789-24-4
LiHSO4Гидросульфат лития
LiIO3Иодат лития
LiNO3Нитрат лития
LiTaO3Танталат лития
Li2CrO4Хромат лития
Li2Cr2O7Дихромат лития
Li2MoO4Ортомолибдат лития13568-40-6
Li2NbO3Метаниобат лития
Li2SO4Сульфат лития10377-48-7
Li2SeO3Селенит лития
Li2SeO4Селенат лития
Li2SiO3Метасиликат лития10102-24-6
Li2SiO4Ортосиликат лития
Li2TeO3Теллурит лития
Li2TeO4Теллурат лития
Li2TiO3Метатитанат лития12031-82-2
Li2WO4Ортовольфрамат лития13568-45-1
Li2ZrO3Метацирконат лития
Химическая формулаНазвание соединенияНомер по классификатору CAS
PH3phosphine7803-51-2
POCl3phosphoryl chloride10025-87-3
PO43−phosphate ion
P2I4phosphorus(II) iodide
P2O74−pyrophosphate ion
P2S3phosphorus(III) sulfide
P2Se3phosphorus(III) selenide
P2Se5phosphorus(V) selenide
P2Te3phosphorus(III) telluride
P3N5phosphorus(V) nitride12136-91-3
P4O10tetraphosphorus decaoxide16752-60-6
Pb(CH3COO)2·3H2Oацетат свинца — тригидрат
PbCO3lead carbonate
cerussite
Pb(C2H5)4tetraethyllead
PbC2O4lead oxalate
PbCrO4lead chromate
PbF2lead fluoride7783-46-2
Pb(IO3)2lead iodate
PbI2lead(II) iodide10101-63-0
Pb(NO3)2lead(II) nitrate
lead dinitrate
plumbous nitrate
Pb(N3)2lead azide
PbOlead(II) oxide
litharge
1317-36-8
Pb(OH)2plumbous hydroxide
Pb(OH)4plumbic hydroxide
plumbic acid
Pb(OH)62−plumbate ion
PbO2lead(IV) oxide
lead dioxide
1309-60-0
PbSсульфид свинца
галенит
1314-87-0
PbSO4сульфат свинца(II)7446-14-2
Pb3(SbO4)2lead antimonate
PtBr2platinum(II) bromide
PtBr4platinum(IV) bromide
PtCl2platinum(II) chloride
PtCl4platinum(IV) chloride
PtI2platinum(II) iodide
PtI4platinum(IV) iodide
[Pt(NH2CH2CH2NH2)3]Br4tris(ethylenediamine)platinum(IV) bromide
[Pt(NH3)2(H2O)2Cl2]Br2diamminediaquadichloroplatinum(VI) bromide
PtO2platinum(IV) oxide50417-46-4
PtS2platinum(IV) sulfide
Химическая формулаНазвание соединенияНомер по классификатору CAS
RbAl(SO4)2·12H2Orubidium aluminum sulfate — dodecahydrate
RbBrrubidium bromide7789-39-1
RbC2H3O2rubidium acetate
RbClrubidium chloride7791-11-9
RbClO4rubidium perchlorate
RbFrubidium fluoride13446-74-7
RbNO3rubidium nitrate13126-12-0
RbO2rubidium superoxide
Rb2C2O4rubidium oxalate
Rb2CrO4rubidium chromate
Rb2PO4rubidium orthophosphate
Rb2SeO3rubidium selenite
Rb2SeO4rubidium selenate
Rb3C6H5O7·H2Orubidium citrate — monohydrate
Химическая формулаНазвание соединенияНомер по классификатору CAS
SCNthiocyanate
SF4sulfur tetrafluoride
SF6sulfur hexafluoride2551-62-4
SOF2thionyl difluoride7783-42-8
SO2sulfur dioxide7446-09-5
SO2Cl2sulfuryl chloride7791-25-5
SO2F2sulfuryl difluoride2699-79-8
SO2OOHperoxymonosulfurous acid (aqueous)
SO3sulfur trioxide7446-11-9
SO32−sulfite ion
SO42−sulfate ion
S2Br2sulfur(II) bromide71677-14-0
S2O32−thiosulfate ion
S2O72−disulfate ion
SbBr3antimony(III) bromide7789-61-9
SbCl3antimony(III) chloride10025-91-9
SbCl5antimony(V) chloride7647-18-9
SbI3antimony(III) iodide7790-44-5
SbPO4antimony(III) phosphate
Sb2OS2antimony oxysulfide
kermesite
Sb2O3antimony(III) oxide1309-64-4
Sb2O5antimony(V) oxide
Sb2S3antimony(III) sulfide1345-04-6
Sb2Se3antimony(III) selenide1315-05-5
Sb2Se5antimony(V) selenide
Sb2Te3antimony(III) telluride
Sc2O3scandium oxide
scandia
SeBr4selenium(IV) bromide
SeClselenium(I) chloride
SeCl4selenium(IV) chloride10026-03-6
SeOCl2selenium(IV) oxychloride7791-23-3
SeOF2selenyl difluoride
SeO2selenium(IV) oxide7446-08-4
SeO42−selenate ion
SeTeselenium(IV) telluride12067-42-4
SiBr4silicon(IV) bromide7789-66-4
SiCкарбид кремния409-21-2
SiCl4silicon(IV) chloride10026-04-7
SiH4силан7803-62-5
SiI4silicon(IV) iodide13465-84-4
SiO2диоксид кремния
silica
кварц
7631-86-9
SiO44−silicate ion
Si2O76−disilicate ion
Si3N4silicon nitride12033-89-5
Si6O1812−cyclosilicate ion
SnBrCl3tin(IV) bromotrichloride
SnBr2tin(II) bromide10031-24-0
SnBr2Cl2tin(IV) dibromodichloride
SnBr3Cltin(IV) tribromochloride14779-73-8
SnBr4tin(IV) bromide7789-67-5
SnCl2tin(II) chloride7772-99-8
SnCl2I2tin(IV) dichlorodiiodide
SnCl4tin(IV) chloride7646-78-8
Sn(CrO4)2tin(IV) chromate
SnI4tin(IV) iodide7790-47-8
SnO2tin(IV) oxide18282-10-5
SnO32−stannate ion
SnStin(II) sulfide1314-95-0
SnS2tin(IV) sulfide
Sn(SO4)2·2H2Otin(IV) sulfate — dihydrate
SnSetin(II) selenide1315-06-6
SnSe2tin(IV) selenide
SnTetin(II) telluride12040-02-7
SnTe4tin(IV) telluride
Sn(VO3)2tin(II) metavanadate
Sn3Sb4tin(IV) antimonide
SrBr2strontium bromide10476-81-0
SrBr2·6H2Ostrontium bromide — hexahydrate
SrCO3strontium carbonate
SrC2O4strontium oxalate
SrF2strontium fluoride7783-48-4
SrI2strontium iodide10476-86-5
SrI2·6H2Ostrontium iodide — hexahydrate
Sr(MnO4)2strontium permanganate
SrMoO4strontium orthomolybdate13470-04-7
Sr(NbO3)2strontium metaniobate
SrOstrontium oxide1314-11-0
SrSeO3strontium selenite
SrSeO4strontium selenate
SrTeO3strontium tellurite
SrTeO4strontium tellurate
SrTiO3титанат стронция
Химическая формулаНазвание соединенияНомер по классификатору CAS
T2Oоксид трития
tritiated water
14940-65-9
TaBr3бромид тантала (III)
TaBr5бромид тантала (V)
TaCl5Хлорид тантала(V)7721-01-9
TaI5Иодид тантана(V)
TaO3tantalate ion
TcO4pertechnetate ion
TeBr2tellurium(II) bromide
TeBr4tellurium(IV) bromide
TeCl2tellurium(II) chloride
TeCl4tellurium(IV) chloride10026-07-0
TeI2tellurium(II) iodide
TeI4tellurium(IV) iodide
TeO2tellurium(IV) oxide7446-07-3
TeO4tellurate ion
TeYyttrium telluride12187-04-1
Th(CO3)2thorium carbonate19024-62-5
Th(NO3)4thorium nitrate13823-29-5
TiBr4titanium(IV) bromide7789-68-6
TiCl2I2titanium(IV) dichlorodiiodide
TiCl3Ititanium(IV) trichloroiodide
TiCl4titanium tetrachloride7550-45-0
TiO2оксид титана (IV)
рутил
1317-70-0
TiO32−titanate ion
TlBrthallium(I) bromide7789-40-4
TlBr3thallium(III) bromide
Tl(CHO2)thallium(I) formate
TlC2H3O2thallium(I) acetate563-68-8
Tl(C3H3O4)thallium(I) malonate
TlClthallium(I) chloride7791-12-0
TlCl3thallium(III) chloride
TlFthallium(I) fluoride7789-27-7
TlIthallium(I) iodide7790-30-9
TlIO3thallium(I) iodate
TlI3thallium(III) iodide
TiI4titanium(IV) iodide7720-83-4
TiO(NO3)2 · xH2Otitanium(IV) oxynitrate — hydrate
TlNO3thallium(I) nitrate10102-45-1
TlOHthallium(I) hydroxide
TlPF6thallium(I) hexafluorophosphate60969-19-9
TlSCNthallium thiocyanate
Tl2MoO4thallium(I) orthomolybdate
Tl2SeO3thallium(I) selenite
Tl2TeO3thallium(I) tellurite
Tl2WO4thallium(I) orthotungstate
Tl3Asthallium(I) arsenide
Химическая формулаНазвание соединенияНомер по классификатору CAS
Zn(AlO2)2алюминат цинка
Zn(AsO2)2арсенит цинка10326-24-6
ZnBr2бромид цинка7699-45-8
Zn(CN)2цианид цинка557-21-1
ZnCO3карбонат цинка3486-35-9
Zn(C8H15O2)2каприлат цинка557-09-5
Zn(ClO3)2хлорат цинка10361-95-2
ZnCl2хлорид цинка7646-85-7
ZnCr2O4хромит цинка12018-19-8
ZnF2фторид цинка7783-49-5
Zn(IO3)2иодат цинка7790-37-6
ZnI2иодид цинка10139-47-6
ZnMoO4ортомолибдат цинка
Zn(NO2)2нитрит цинка10102-02-0
Zn(NO3)2нитрат цинка7779-88-6
Zn(NbO3)2метаниобат цинка
ZnOоксид цинка1314-13-2
ZnO2пероксид цинка1314-22-3
Zn(OH)2гидроксид цинка20427-58-1
Zn(OH)42−zincate ion
ZnSсульфид цинка
сфалерит
1314-98-3
Zn(SCN)2тиоцианат цинка557-42-6
ZnSO4сульфат цинка7733-02-0
ZnSbантимонид цинка12039-35-9
ZnSeселенид цинка1315-09-9
ZnSeO3селенит цинка
ZnSnO3станнат цинка
Zn(TaO3)2метатанталат цинка
ZnTeтеллурид цинка1315-11-3
ZnTeO3теллурит цинка
ZnTeO4теллурат цинка
ZnTiO3метатитанат цинка
Zn(VO3)2метаванадат цинка
ZnWO4zinc orthotungstate
ZnZrO3метацирконат цинка
Zn2P2O7пирофосфат цинка7446-26-6
Zn2SiO4ортосиликат цинка13597-65-4
Zn3(AsO4)2арсенат цинка13464-44-3
Zn3As2арсенид цинка
Zn3N2нитрид цинка1313-49-1
Zn3P2фосфид цинка1314-84-7
Zn3(PO4)2фосфат цинка7779-90-0
Zn3Sb2антимонид цинка
ZrB2борид циркония12045-64-6
ZrBr4бромид циркония13777-25-8
ZrCкарбид циркония12020-14-3
ZrCl4тетрахлорид циркония10026-11-6
ZrF4фторид циркония7783-64-4
ZrI4иодид циркония13986-26-0
ZrNнитрид циркония25658-42-8
Zr(OH)4гидроксид циркония14475-63-9
ZrO2диоксид циркония
бадделеит
1314-23-4
ZrO32−цирконат-ион
ZrP2фосфид циркония12037-80-8
ZrS2сульфид циркония12039-15-5
ZrSi2силицид циркония
(ди)силицид циркония[1]
12039-90-6
ZrSiO4ортосиликат циркония
циркон
10101-52-7
Zr3(PO4)4фосфат циркония

dic.academic.ru

Йодоводородная кислота. Свойства, получение, применение и цена йодоводородной кислоты

Самая сильная из кислот. Звание принадлежит не соляной и даже не серной, хоть они и на слуху. Самой сильной наука признает йодоводородную кислоту. Она является раствором йодоводорода.

Последний, является удушливым газом. Он бесцветен и легко смешивается с водой. В ста миллилитрах жидкости помещается 132 грамма йодоводорода. Это при нормальном давлении и комнатной температуре. При нагреве до 100 градусов в воде растворяются уже 177 граммов газа. Узнаем, на что способен полученный раствор.

Свойства йодоводородной кислоты

Будучи сильным, соединение проявляет себя как типичная кислота. Это выражено, к примеру, в реакциях с металлами. Взаимодействие проходит с теми из них, что стоят левее водорода. Именно на место этого элемента встает атом металла.

Получается йодит. Водород улетучивается. С солями йодоводородная кислота реагирует тоже в случае выделения газа. Реже, взаимодействие приводит к осаждению одного из его продуктов.

Йодоводородная-кислота-Свойства-получение-применение-и-цена-йодоводородной-кислоты-1

С основными оксидами героиня статьи тоже реагирует, как и прочие сильные кислоты. Основными оксидами именуют соединения с кислородом металлов с первой или второй степенями окисления. Взаимодействие приводит к выделению воды и получению йодита металла, то есть, соли йодоводородной кислоты.

Реакция героини статьи с основаниями тоже дает воду и соль металла. Типичное для сильных кислот взаимодействие. Однако, большинство веществ класса трехосновные. Это указывает на содержание в молекуле 3-ех атомов водорода.

В йодоводородном же соединении атом газа всего один, значит, вещество одноосновное. К тому же, оно относится к бескислородным. Как соляная кислота записывается HCl, так формула йодоводородной кислоты – HI. По сути, это газ. Как же быть с водным раствором? Он считается  истинной кислотой, но редко встречается в лабораториях. Проблема состоит в хранении раствора.

Сильные восстанавливающие свойства йодоводородной кислоты приводят к быстрому окислению йода. В итоге, остается чистая вода и бурый осадок на дне пробирки. Это диодоиодат йода. То есть, в растворе героиня недолговечна.

Процесс «порчи» кислоты неизбежен. Но, есть путь восстановить героиню статьи. Делают это с помощью красного фосфора. Кислоту перегоняют в его присутствии. Нужна инертная атмосфера, к примеру, из аргона, азота или углекислого газа.

Альтернативой фосфору является диксодигидрофосфат водорода с формулой H (PH2O2). Присутствие при перегонке сероводорода на йодоводород тоже влияет положительно. Посему, не стоит выкидывать расслоившуюся смесь и смешивать свежие реагенты. Кислоту можно восстановить.

Пока йод в растворе кислоты не окислился, жидкость бесцветна и резко пахнет. Раствор азеототропен. Это значит, что при кипении состав смеси остается прежним. Испарения и жидкая фазы равновесны. Кипит йодоводородная кислота, к слову, не при 100-та, а при 127-ми градусах Цельсия. Если нагреть до 300-от, вещество разложится.

Теперь, выясним, почему в ряду сильных кислот йодоводород считается самой сильной. Достаточно примера взаимодействия с «коллегами». Так, «встречаясь» с концентратом серной кислоты йодоводород восстанавливает его до сероводорода. Если же серное соединение встретится с другими, восстановителем выступит уже оно.

Способность отдавать атомы водорода – основное свойство кислот. Эти атомы присоединяются к прочим элементам, образуются новые молекулы. Вот и процесс восстановления. Реакции восстановления лежат и в основе получения героини статьи.

Получение йодоводородной кислоты

Из-за неустойчивости йодоводородное соединение активно дымит. Учитывая едкость паров, работают с героиней статьи лишь в условиях лабораторий. Обычно, берут сероводород и йод. Получается следующая реакция: H2S + I2à S + 2HI. Элементарная сера, формируемая в итоге взаимодействия, выпадает в осадок.

Получить реагент можно, так же, совместив суспензию йода, воду и оксид серы. Итогом станут серная кислота и героиня статьи. Уравнение реакции выглядит так: I2 + SO2 + 2H2O à 2HI + H2SO4.

Третий способ получения йодоводорода – совмещение йодита калия и ортофосфорной кислоты. На выходе кроме героини статьи получится гидроортофосфат калия. Йодоводород во всех реакциях выделяется в виде газа. Улавливают его водой, получая раствор кислоты. Трубку, по которой идет газ, нельзя опускать в жидкость.

На крупных предприятиях йодоводород получают реакцией йода с гидразином. Последний, как и героиня статьи, бесцветен и резко пахнет. Химическая запись взаимодействия выглядит так: — 2I+ N2H4 à4HI + N2. Как видно, реакция дает больший «выхлоп» йодоводорода, чем лабораторные приемы.

Остается очевидный, но маловыгодный вариант – взаимодействие чистых элементов. Сложность реакции в том, что она протекает лишь при нагреве. К тому же, в системе быстро устанавливается равновесие.

Это не дает реакции дойти до конца. Равновесием в химии именуют точку, когда система начинает противостоять воздействиям на нее. Так что, совмещение элементарных йода и водорода – лишь глава в учебниках химии, но не практический метод.

Применение йодоводородной кислоты

Как и прочие кислоты, йодоводородная кислота – электролит. Героиня статьи способна распадаться на ионы, по которым и «пробегает» ток. Для этого бега нужно поместить в раствор катод и анод. Один заряжен положительно, другой отрицательно.

Полученные ресурсы служат в конденсаторах. Электролиты применяют как источники тока и как среду для золочения, серебрения металлов и нанесения на них прочих напылений.
Пользуются промышленники и восстановительными свойствами йодоводорода. Сильную кислоту закупают для органических синтезов. Так, спирты восстанавливаются йодоводородом до алканов. К ним относятся все парафины. До алканов героиня статьи восстанавливает, так же, галогениды и прочие кислоты.

Не поддаются восстановлению йодоводородом лишь некоторые хлоропроизводные. Учитывая стоимость кислоты, это мало кого печалит. Если в лаборатории йодоводородную кислоту нейтрализовали, значит, предприятие хорошо финансируют. Ознакомимся с ценниками на реагент.

Цена йодоводородной кислоты

Для лабораторий йодоводородную кислоту продают литрами. Хранят реагент в темноте. На свету жидкость быстро буреет, распадается на воду и диодоиодат. Тару плотно закрывают. Героиня статьи не разъедает пластик. В нем-то и хранят реагент.

Спросом пользуется 57-процентная кислота. На складах бывает редко, изготавливается, в основном, под заказ. Ценник выставляют, обычно, в евро. В переводе на рубли получается не меньше 60 000. В евро это за 1 000. Поэтому, приобретают реагент по необходимости. Если есть альтернатива, берут ее. Из кислот йодоводородная не только самая сильная, но и самая дорогая.

tvoi-uvelirr.ru

Кислоты: классификация и химические свойства

Кислотами называются сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла и кислотный остаток.

КислотыПо наличию или отсутствию кислорода в молекуле кислоты делятся на кислородсодержащие (H2SO4 серная кислота, H2SO3 сернистая кислота, HNO3 азотная кислота, H3PO4 фосфорная кислота, H2CO3 угольная кислота, H2SiO3 кремниевая кислота) и бескислородные (HF фтороводородная кислота, HCl хлороводородная кислота (соляная кислота), HBr бромоводородная кислота, HI иодоводородная кислота, H2S сероводородная кислота).

В зависимости от числа атомов водорода в молекуле кислоты кислоты бывают одноосновные (с 1 атомом Н), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н). Например, азотная кислота HNO3 одноосновная, так как в молекуле её один атом водорода, серная кислота H2SO4 двухосновная и т.д.

 

К И С Л О Т Ы

 

 Одноосновные

 Двухосновные

 Трехосновные

 HNO3 азотная

 HF фтороводородная

 HCl хлороводородная

 HBr бромоводородная

 HI иодоводородная

 H2SO4 серная

 H2SO3 сернистая

 H2S сероводородная

 H2CO3 угольная

 H2SiO3 кремниевая

 H3PO4 фосфорная

Неорганических соединений, содержащих четыре атома водорода, способных замещаться на металл, очень мало.

Часть молекулы кислоты без водорода называется кислотным остатком.

Кислотные остатки могут состоять из одного атома  (-Cl, -Br, -I) – это простые кислотные остатки, а могут – из группы атомов (-SO3, -PO4, -SiO3) – это сложные остатки.

В водных растворах при реакциях обмена и замещения кислотные остатки не разрушаются:

H2SO4 + CuCl→ CuSO4 + 2 HCl↑

Слово ангидрид означает безводный, то есть кислота без воды. Например,

H2SO4 – H2O → SO3. Бескислородные кислоты ангидридов не имеют.

Своё название кислоты получают от названия образующего кислоту элемента (кислотообразователя) с прибавлением окончаний «ная» и реже «вая»: H2SO4 – серная; H2SO3 – угольная; H2SiO3 – кремниевая  и т.д.

Элемент может образовать несколько кислородных кислот. В таком случае указанные окончания в названии кислот будут тогда, когда элемент проявляет высшую валентность (в молекуле кислоты большое содержание атомов кислорода). Если элемент проявляет низшую валентность, окончание в названии кислоты будет «истая»: HNO3  азотная, HNO– азотистая.

Кислоты можно получать растворением ангидридов в воде. В случае, если ангидриды в воде не растворимы, кислоту можно получить действием другой более сильной кислоты на соль необходимой кислоты. Этот способ характерен как для кислородных так и бескислородных кислот. Бескислородные кислоты получают так же прямым синтезом из водорода и неметалла с последующим растворением полученного соединения в воде:

H2 + Cl2 → 2 HCl;

H2 + S → H2S.

Растворы полученных газообразных веществ HCl  и H2S и являются кислотами.

При обычных условиях кислоты бывают как в жидком, так и в твёрдом состоянии.

Химические свойства кислот

Растворыв кислот действуют на индикаторы. Все кислоты (кроме кремниевой) хорошо растворяются  в воде. Специальные вещества – индикаторы позволяют определить присутствие кислоты.

Индикаторы – это вещества сложного строения. Они меняют свою окраску в зависимоти от взаимодействия с разными химическими веществами. В нейтральных растворах — они имеют одну окраску, в растворах оснований – другую. При взаимодействии с кислотой они меняют свою окраску: индикатор метиловый оранжевый окрашивается в красный цвет, индикатор лакмус – тоже в красный цвет.

Взаимодействуют с основаниями с образованием воды и соли, в которой содержится неизменный кислотный остаток (реакция нейтрализации):

H2SO4 + Ca(OH)→ CaSO4 + 2 H2O.

Взаимодействуют с основанными оксидами с образованием воды и соли (реакция нейтрализации). Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации:

H3PO4 + Fe2O3 → 2 FePO4 + 3 H2O.

КислотыВзаимодействуют с металлами. Для взаимодействия кислот с металлами должны выполнятся некоторые условия:

1. металл должен быть достаточно активным по отношению к кислотам (в ряду активности металлов он должен располагаться до водорода). Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами;

2. кислота должна быть достаточно сильной (то есть способной отдавать ионы водорода H+).

При протекании химических реакций кислоты с металлами образуется соль и выделяется водород (кроме взаимодействия металлов с азотной и концентрированной серной кислотами,):

Zn + 2HCl → ZnCl2 + H2↑;

Cu + 4HNO3 → CuNO3 + 2 NO+ 2 H2O.

Остались вопросы? Хотите знать больше о кислотах?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *