Интегралы онлайн решить: Решение неопределенных интегралов | Онлайн калькулятор

2

Содержание

Решение высшей математики онлайн


‹— Назад При вычислении производной, наличие формул для производной суммы, разности, произведения, частного и композиции — всех тех операций, при помощи которых элементарные функции образуются из минимального набора — приводит к тому, что производная любой элементарной функции снова является элементарной функцией. При нахождении неопределённых интегралов, однако, формул для первообразной произведения, частного и композиции нет. Это приводит к такому положению, что отнюдь не для любой элементарной подынтегральной функции можно «взять интеграл», то есть выразить некоторую первообразную для подынтегральной функции в виде некоторого выражения, использующего лишь элементарные функции. Дело не в том, что пока что не придумано способа это сделать, а в принципиальной невозможности: никакая из первообразных в случае «неберущегося» интеграла никаким образом не может быть выражена как комбинация элементарных функций, связанных знаками арифметических действий и знаками композиции.
Не следует думать, что если такое представление невозможно, то и функции такой нет1: можно считать, что для её выражения просто не хватает запаса рассматриваемых операций или запаса рассматриваемых исходных функций, и их надо расширить, то есть выйти за рамки множества функций, называемых элементарными2. В науке и её приложениях в технике, экономике и других дисциплинах применяются многие неэлементарные функции; часто их называют специальными. К специальным функциям относятся и многие первообразные для элементарных функций, причём часто не столь уж «сложной» структуры. Интегралы, выражающиеся через такие первообразные, называются (по традиции, берущей начало в 18 веке) неберущимися. Итак, интеграл не берётся, если функция не является элементарной. Приведём примеры неберущихся интегралов и названия первообразных — специальных функций, связанных с этими интегралами.
        Пример 1.8
  Неберущимся является интеграл Здесь одна из первообразных, которую мы обозначили , выделяется из всего набора первообразных условием . Функция называется функцией Лапласа. Она широко применяется в теории вероятностей, физике, математической и прикладной статистике и других разделах науки и её приложений. Для вычисления значений функции Лапласа составлены таблицы, имеющиеся во многих учебниках, задачниках и справочниках по теории вероятностей и статистике. Возможность вычисления предусмотрена также на многих моделях калькуляторов (не самых дешёвых) и уж, обязательно, на тех, что предназначены для статистической обработки числового материала. Так что, с практической точки зрения, пользоваться функцией Лапласа ничуть не сложнее, чем, скажем, синусом, арктангенсом или натуральным логарифмом, которые мы условно относим к элементарным функциям.     
        Пример 1.10
  Ещё один неберущийся интеграл: Одна из первообразных — та, что мы использовали в правой части и обозначили  — называется интегральным косинусом.              Пример 1.11   — это тоже неберущийся интеграл. Одна из первообразных, которую мы обозначили , — специальная функция, называющаяся интегральной экспонентой.              Пример 1.12   Не берётся интеграл (при  одна из первообразных, , называется интегральным логарифмом.     

Используя специальные функции, заданные предыдущими примерами, мы с помощью изученных выше правил интегрирования можем выражать через эти функции и другие интегралы. Приведём такой пример.

        Упражнение 1.3   Выразите функцию ошибок через функцию Лапласа и наоборот, функцию Лапласа через функцию ошибок.              Пример 1.14   К интегралу предыдущего примера можно свести и тем самым выразить через функцию Лапласа, например, такой интеграл:
   
   

Для вычисления мы применили формулу интегрирования по частям.              Пример 1.15   Вычислим интеграл от интегральной экспоненты . Заметим, что по определению первообразной. Применяя формулу интегрирования по частям, получаем:
   
   

    

Кроме приведённых выше, в приложениях встречаются и многие другие неберущиеся интегралы, например:

Эти четыре интеграла называются интегралами Френеля.         Упражнение 1.4   Сделав соответствующую замену переменного, выразите последние два из интегралов Френеля через функции и , которые стоят в правых частях первых двух интегралов Френеля.     

Не берутся также интегралы

и многие другие.

Тем не менее, для многих классов интегралов, наиболее часто встречающихся в приложениях, первообразную всё же удаётся выразить через элементарные функции. В следующей главе мы изучим такие классы интегралов.

Математика, вышка, высшая математика, математика онлайн, вышка онлайн, онлайн математика, онлайн решение математики, ход решения, процес решения, решение, задачи, задачи по математике, математические задачи, решение математики онлайн, решение математики online, online решение математики, решение высшей математики, решение высшей математики онлайн, матрицы, решение матриц онлайн, векторная алгебра онлайн, решение векторов онлайн, система линейных уравнений, метод Крамера, метод Гаусса, метод обратной матрицы, уравнения, системы уравнений, производные, пределы, интегралы, функция, неопределенный интеграл, определенный интеграл, решение интегралов, вычисление интегралов, решение производных, интегралы онлайн, производные онлайн, пределы онлайн, предел функции, предел последовательности, высшие производные, производная неявной функции

Интегрирование дифференциального бинома

Применяемые подстановки

Рассмотрим интеграл:
,
где m, n, p – рациональные числа, a, b – действительные числа.
Подынтегральное выражение называется дифференциальным биномом. Интеграл от него сводится к интегралам от рациональных функций в трех случаях.

  1)   Если p – целое, то выполняется подстановка x = t N, где N – общий знаменатель дробей m и n.
  2)   Если – целое, то подстановка a x n + b = t M, где M – знаменатель числа p.
  3)   Если – целое, подстановка a + b x – n = t M, где M – знаменатель числа p.

Если ни одно из трех чисел     не является целым числом, то по теореме Чебышева интегралы данного вида не могут быть выражены конечной комбинацией элементарных функций.

Формулы приведения (понижения или повышения показателей степеней)

В ряде случаев, сначала бывает полезным привести интеграл к более удобным значениям показателей степеней m и p. Это можно сделать с помощью формул приведения:
;
.

Доказательство формул приведения

Доказательство первой формулы

Докажем первую формулу:

Выполняем преобразования.


Интегрируем по частям, умножив на na(p+1).
u = xm–n+1, v = (axn + b) p+1, du = (xm–n+1)′ dx = (m–n+1) xm–n dx.

Преобразуем оставшийся интеграл.

Подставляем.

Отсюда

Или
.

Доказательство второй формулы

Докажем вторую формулу:
.

Выполняем преобразования.


Интегрируем по частям, умножив на m + 1.
u = (axn + b)p, v = xm+1,

Преобразуем оставшийся интеграл.

Подставляем.

Отсюда
.

Пример

Вычислить интеграл.

Решение

Преобразуем.

Это интеграл от дифференциального бинома

со значениями m = 1/3, p = 1/3, n = 2, a = – 1, b = 1.
Поскольку
– целое, то интеграл сводится к интегралу от рациональной функции третьей подстановкой:
– 1 + x – 2 = t3.

Возьмем дифференциал от обеих частей этого равенства.


Подставляем

Интегрируем по частям.

Разложим дробь на простейшие.

Выделим в числителе второй дроби производную знаменателя и преобразуем знаменатель.
(t2 – t + 1)′ = 2t – 1

Подставляем

Интегрируем

Окончательно имеем

Ответ


где .

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов.     Опубликовано:

Вычислить сходится или расходится определенный интеграл онлайн. Определенный интеграл онлайн

Определенный интеграл как предел интегральной суммы

может существовать (т.е. иметь определенное конечное значение) лишь при выполнении условий


Если хотя бы одно из этих условий нарушено, то определение теряет смысл. Действительно, в случае бесконечного отрезка, например [a ; ) его нельзя разбить на п частей конечной длины
, которая к тому же с увеличением количества отрезков стремилась бы к нулю. В случае же неограниченной в некоторой точкес [a ; b ] нарушается требование произвольного выбора точки на частичных отрезках – нельзя выбрать=с , поскольку значение функции в этой точке не определено. Однако и для этих случаев можно обобщить понятие определенного интеграла, введя еще один предельный переход. Интегралы по бесконечным промежуткам и от разрывных (неограниченных) функций называют

несобственными .

Определение.

Пусть функция
определена на промежутке [a ; ) и интегрируема на любом конечном отрезке [a ; b ], т.е. существует
для любого b > a . Предел вида
называютнесобственным интегралом первого рода (или несобственным интегралом по бесконечному промежутку) и обозначают
.

Таким образом, по определению,
=
.

Если предел справа существует и конечен, то несобственный интеграл
называютсходящимся . Если этот предел бесконечен, или не существует вообще, то говорят, что несобственный интеграл расходится .

Аналогично можно ввести понятие несобственного интеграла от функции
по промежутку (–;

b ]:

=
.

А несобственный интеграл от функции
по промежутку (–; +) определяется как сумма введенных выше интегралов:

=
+
,

где а – произвольная точка. Этот интеграл сходится, если сходятся оба слагаемых, и расходится, если расходится хотя бы одно из слагаемых.

С геометрической точки зрения, интеграл
,
, определяет численное значение площади бесконечной криволинейной трапеции, ограниченной сверху графиком функции
, слева – прямой
, снизу – осью ОХ. Сходимость интеграла означает существование конечной площади такой трапеции и равенство ее пределу площади криволинейной трапеции с подвижной правой стенкой
.

На случай интеграла с бесконечным пределом можно обобщить и формулу Ньютона-Лейбница :

=
=F(+ ) – F(a ),

где F(+ ) =
. Если этот предел существует, то интеграл сходится, в противном случае – расходится.

Мы рассмотрели обобщение понятия определенного интеграла на случай бесконечного промежутка.

Рассмотрим теперь обобщение для случая неограниченной функции.

Определение

Пусть функция
определена на промежутке [a ; b ), неограниченна в некоторой окрестности точки b , и непрерывна на любом отрезке
, где>0 (и, следовательно, интегрируема на этом отрезке, т.е.
существует). Предел вида
называетсянесобственным интегралом второго рода (или несобственным интегралом от неограниченной функции) и обозначается
.

Таким образом, несобственный интеграл от неограниченной в точке b функции есть по определению

=
.

Если предел справа существует и конечен, то интеграл называется сходящимся . Если конечного предела не существует, то несобственный интеграл называется расходящимся.

Аналогично можно определить несобственный интеграл от функции

имеющей бесконечный разрыв в точкеа :

=
.

Если функция
имеет бесконечный разрыв во внутренней точкес
, то несобственный интеграл определяется следующим образом

=
+
=
+
.

Этот интеграл сходится, если сходятся оба слагаемых, и расходится, если расходится хотя бы одно слагаемое.

С геометрической точки зрения, несобственный интеграл от неограниченной функции также характеризует площадь неограниченной криволинейной трапеции:

Поскольку несобственный интеграл выводится путем предельного перехода из определенного интеграла, то все свойства определенного интеграла могут быть перенесены (с соответствующими уточнениями) на несобственные интеграла первого и второго рода.

Во многих задачах, приводящих к несобственным интегралам, не обязательно знать, чему равен этот интеграл, достаточно лишь убедиться в его сходимости или расходимости. Для этого используют признаки сходимости . Признаки сходимости несобственных интегралов:

1) Признак сравнения .

Пусть для всех х

. Тогда, если
сходится, то сходится и
, причем

. Если
расходится, то расходится и
.

2) Если сходится
, то сходится и
(последний интеграл в этом случае называетсяабсолютно сходящимся ).

Признаки сходимости и расходимости несобственных интегралов от неограниченных функций аналогичны сформулированным выше.

Примеры решения задач.

Пример 1.

а)
; б)
; в)

г)
; д)
.

Решение.

а) По определению имеем:

.

б) Аналогично

Следовательно, данный интеграл сходится и равен .

в) По определению
=
+
, причем,а – произвольное число. Положим в нашем случае
, тогда получим:

Данный интеграл сходится.

Значит, данный интеграл расходится.

д) Рассмотрим
. Чтобы найти первообразную подынтегральной функции, необходимо применить метод интегрирования по частям. Тогда получим:

Поскольку ни
, ни
не существуют, то не существует и

Следовательно, данный интеграл расходится.

Пример 2.

Исследовать сходимость интеграла в зависимости от п .

Решение.

При
имеем:

Если
, то
и. Следовательно, интеграл расходится.

Если
, то
, а
, тогда

=,

Следовательно, интеграл сходится.

Если
, то

следовательно, интеграл расходится.

Таким образом,

Пример 3.

Вычислить несобственный интеграл или установить его расходимость:

а)
; б)
; в)
.

Решение.

а) Интеграл
является несобственным интегралом второго рода, поскольку подынтегральная функция
не ограничена в точке

. Тогда, по определению,

.

Интеграл сходится и равен .

б) Рассмотрим
. Здесь также подынтегральная функция не ограничена в точке
. Поэтому, данный интеграл – несобственный второго рода и по определению,

Следовательно, интеграл расходится.

в) Рассмотрим
. Подынтегральная функция
терпит бесконечный разрыв в двух точках:
и
, первая из которых принадлежит промежутку интегрирования
. Следовательно, данный интеграл – несобственный второго рода. Тогда, по определению

=

=

.

Следовательно, интеграл сходится и равен
.

Тема НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

В теме «Определенный интеграл» было рассмотрено понятие определенного интеграла для случая конечного промежутка
и ограниченной функции
(см. теорему 1 из §3). Теперь займемся обобщением этого понятия для случаев бесконечного промежутка и неограниченной функции. Необходимость такого обобщения показывают, например, такие ситуации.

1. Если, используя формулу для длины дуги, попытаться вычислить длину четверти окружности
,
, то придем к интегралу от неограниченной функции:

, где
.

2. Пусть тело массой
движется по инерции в среде с силой сопротивления
, где
— скорость тела. Используя второй закон Ньютона (
, где
ускорение), получим уравнение:
, где
. Нетрудно показать, что решением этого (дифференциального!) уравнения является функция
Если нам потребуется вычислить путь, пройденный телом до полной остановки, т.е. до момента, когда
, то придем к интегралу по бесконечному промежутку:

I Определение

Пусть функция
определена и непрерывна на промежутке
. Тогда для любого
она интегрируема на промежутке
, то есть существует интеграл
.

Определение 1 . Конечный или бесконечный предел этого интеграла при
называют несобственным интегралом 1-го рода от функции
по промежутку
и обозначают символом
. При этом, если указанный предел конечен, то несобственный интеграл называют сходящимся, в противном случае (
или не существует) – расходящимся.

Итак, по определению

Примеры

2.
.

3.
– не существует.

Несобственный интеграл из примера 1 сходится, в примерах 2 и 3 интегралы расходятся.

II Формула Ньютона – Лейбница для несобственного интеграла первого рода

Пусть
— некоторая первообразная для функции
(сущест-вует на
, т.к.
— непрерывна). Тогда

Отсюда ясно, что сходимость несобственного интеграла (1) равносильна существованию конечного предела
. Если этот предел обозначить
, то можно написать для интеграла (1) формулу Ньютона-Лейбница:

, где
.

Примеры .

5.
.

6. Более сложный пример:
. Сначала найдем первообразную:

Теперь можем найти интеграл , учитывая, что

:

III Свойства

Приведем ряд свойств несобственного интеграла (1), которые вытекают из общих свойств пределов и определенного интеграла:


IV Другие определения

Определение 2 . Если
непрерывна на
, то

.

Определение 3 . Если
непрерывна на
, то принимают по определению

(– произвольное),

причем несобственный интеграл в левой части сходится, если только оба ин-теграла в правой части сходятся.

Для этих интегралов, как и для интеграла (1) можно написать соответствующие формулы Ньютона – Лейбница.

Пример 7 .

§2. Признаки сходимости несобственного интеграла 1-го рода

Чаще всего несобственный интеграл вычислить по определению не-возможно, поэтому используют приближенное равенство

(для больших ).

Однако, это соотношение имеет смысл лишь для сходящихся интегралов. Необходимо иметь методы выяснения поведения интеграла минуя определение.

I Интегралы от положительных функций

Пусть
на
. Тогда определенный интеграл
как функция верхнего предела есть функция возрастаю-щая (это следует из общих свойств определенного интеграла).

Теорема 1 . Несобственный интеграл 1 го рода от неотрицательной функ-ции сходится тогда и только тогда, когда функция
остается ограниченной при увеличении.

Эта теорема – следствие общих свойств монотонных функций. Практического смысла теорема почти не имеет, но позволяет получить т.н. признаки сходимости.

Теорема 2 (1-й признак сравнения). Пусть функции
и
непре-рывны на
и удовлетворяют неравенству
. Тогда:

1) если интеграл
сходится, то и
сходится;

2) если интеграл
расходится, то и
расходится.

Доказательство . Обозначим:
и
. Так как
, то

. Пусть интеграл
сходится, тогда (в силу теоремы 1) функция
‒ ограничена. Но тогда и
ограничена, а значит, интеграл
тоже сходится. Аналогично доказывается и вторая часть теоремы.

Этот признак не применим в случае расходимости интеграла от
или сходимости интеграла от
. Этот недостаток отсутствует у 2-го признака сравнения.

Теорема 3 (2-й признак сравнения). Пусть функции
и
непрерывны и неотрицательны на
. Тогда, если
при
, то несобственные интегралы
и
сходятся или расходятся одновременно.

Доказательство . Из условия теоремы получим такую цепочку равно-сильных утверждений:

, ,


.

Пусть, например,
. Тогда:

Применим теорему 2 и свойство 1) из §1 и получим утверждение теоремы 3.

В качестве эталонной функции, с которой сравнивают данную, высту-пает степенная функция
,
. Предлагаем студентам самим доказать, что интеграл

сходится при
и расходится при
.

Примеры . 1.
.

Рассмотрим подынтегральную функцию на промежутке
:

,
.

Интеграл
сходится, ибо
. По 2-му признаку сравнения сходится и интеграл
, а в силу свойства 2) из §1 сходится и исход-ный интеграл.

2.
.

Так как
, тоcуществует
такое, что при

. Для таких значений переменной:

Известно, что логарифмическая функция растет медленнее степенной, т.е.

,

а значит, начиная с некоторого значения переменной, эта дробь меньше 1. Поэтому

.

Интеграл сходится как эталонный. В силу 1-го признака сравнения сходится и
. Применяя 2-й признак, получим, что и интеграл
сходится. И снова свойство 2) из §1 доказывает сходимость исходного интеграла.

Определенные интегралы онлайн на сайт для закрепления студентами и школьниками пройденного материала. И тренировки своих практических навыков. Полноценное решение определенных интегралов онлайн для вас в считанные мгновения поможет определить все этапы процесса.. Интегралы онлайн — определенный интеграл онлайн. Определенные интегралы онлайн на сайт для полноценного закрепления студентами и школьниками пройденного материала и тренировки своих практических навыков. Полноценное решение определенных интегралов онлайн для вас в считанные мгновения поможет определить все этапы процесса. . Интегралы онлайн — определенный интеграл онлайн. Для нас определенный интеграл онлайн взять не представляется чем-то сверх естественным, изучив данную тему по книге выдающихся авторов. Огромное им спасибо и выражаем респект этим личностям. Поможет определить определенный интеграл онлайн сервис по вычислению таких задач в два счета. Только укажите правильные данные и все будет Good! Всякий определенный интеграл как решение задачи повысит грамотность студентов. Об этом мечтает каждый ленивец, и мы не исключение, признаем это честно. Если все-таки получится вычислить определенный интеграл онлайн с решением бесплатно, то, пожалуйста, напишите адрес сайт всем желающим им воспользоваться. Как говорится, поделишься полезной ссылкой — и тебя отблагодарят добрые люди за даром. Очень интересным будет вопрос разбора задачки, в которой определенный интеграл будет калькулятор решать самостоятельно, а не за счет траты вашего драгоценного времени. На то они и машины, чтобы пахать на людей. Однако решение определенных интегралов онлайн не всякому сайту по зубам, и это легко проверить, а именно, достаточно взять сложный пример и попытаться решить его с помощью каждого такого сервиса. Вы почувствуете разницу на собственной шкуре. Зачастую найти определенный интеграл онлайн без прилагаемых усилий станет достаточно сложно и нелепо будет выглядеть ваш ответ на фоне общей картины представления результата. Лучше бы сначала пройти курс молодого бойца. Всякое решение несобственных интегралов онлайн сводится сначала к вычислению неопределенного, а затем через теорию пределов вычислить как правило односторонние пределы от полученных выражений с подставленными границами A и B. Рассмотрев указанный вами определенный интеграл онлайн с подробным решением, мы сделали заключение, что вы ошиблись на пятом шаге, а именно при использовании формулы замены переменной Чебышева. Будьте очень внимательны в дальнейшем решении. Если ваш определенный интеграл онлайн калькулятор не смог взять с первого раза, то в первую очередь стоит перепроверить написанные данные в соответствующие формы на сайте. Убедитесь, что все в порядке и вперёд, Go-Go! Для каждого студента препятствием является вычисление несобственных интегралов онлайн при самом преподе, так как это либо экзамен, либо коллоквиум, или просто контрольная работа на паре. . Как только заданный несобственный интеграл онлайн калькулятор будет в вашем распоряжении, то сразу вбивайте заданную функцию, подставляйте заданные пределы интегрирования и нажимайте на кнопку Решение, после этого вам будет доступен полноценный развернутый ответ. И все-таки хорошо, когда есть такой замечательный сайт как сайт, потому что он и бесплатный, и простой в пользовании, также содержит очень много разделов. которыми студенты пользуются повседневно, один из них как раз есть определенный интеграл онлайн с решением в полном виде. В этом же разделе можно вычислить несобственный интеграл онлайн с подробным решением для дальнейших применений ответа как в институте, так и в инженерных работах. Казалось бы, всем определить определенный интеграл онлайн дело нехитрое, если заранее решить такой пример без верхней и нижней границы, то есть не интеграл Лейбница, а неопределенный интеграл. Но тут мы с вами не согласны категорически, так как на первый взгляд это может показаться именно так, однако есть существенная разница, давайте разберем все по полочкам. Такой определенный интеграл решение дает не в явном виде, а в следствие преобразования выражения в предельное значение. Другими словами, нужно сначала решить интеграл с подстановкой символьных значений границ, а затем вычислить предел либо на бесконечности, либо в определенной точке. Отсюда вычислить определенный интеграл онлайн с решением бесплатно означает ни что иное как представление точного решения по формуле Ньютона-Лейбница. Если же рассматривать наш определенный интеграл калькулятор поможет его подсчитать за несколько секунд прямо на ваших глазах. Такая спешка нужна всем желающим как можно быстрее справиться с заданием и освободиться для личных дел. Не стоит искать в интернете сайты, на которых попросят вас регистрироваться, затем пополнить деньги на баланс и все ради того, чтобы какой-нибудь умник подготавливал решение определенных интегралов якобы онлайн. Запомните адрес Math34 — это бесплатный сервис для решения множества математических задач, в том же числе мы поможем найти определенный интеграл онлайн, и чтобы в этом убедиться, просим проверить наше утверждение на конкретных примерах. Введите подынтегральную функцию в соответствующее поле, затем укажите либо бесконечные предельные значения (в это случае будет вычислен и получено решение несобственных интегралов онлайн), либо задайте свои числовые или символьные границы и определенный интеграл онлайн с подробным решением выведется на странице после нажатия на кнопку «Решение». Неправда ли — это очень просто, не требует от вас лишних действий, бесплатно, что самое главное, и в то же время результативно. Вы можете самостоятельно воспользоваться сервисом, чтобы определенный интеграл онлайн калькулятор принес вам максимум пользы, и вы бы получили комфортное состояние, не напрягаясь на сложность всех вычислительных процессов, позвольте нам сделать все за вас и продемонстрировать всю мощь компьютерных технологий современного мира. Если погружаться в дебри сложнейших формул и вычисление несобственных интегралов онлайн изучить самостоятельно, то это похвально, и вы можете претендовать на возможность написания кандидатской работы, однако вернемся к реалиям студенческой жизни. А кто такой студент? В первую очередь — это молодой человек, энергичный и жизнерадостный, желающий успеть отдохнуть и сделать домашку! Поэтому мы позаботились об учениках, которые стараются отыскать на просторах глобальной сети несобственный интеграл онлайн калькулятор, и вот он к вашему вниманию — сайт — самая полезная для молодежи решалка в режиме онлайн. Кстати наш сервис хоть и преподносится как помощник студентам и школьникам, но он в полной мере подойдет любому инженеру, потому что нам под силу любые типы задач и их решение представляется в профессиональном формате. Например, определенный интеграл онлайн с решением в полном виде мы предлагаем по этапам, то есть каждому логическому блоку (подзадачи) отводится отдельная запись со всеми выкладками по ходу процесса общего решения. Это конечно же упрощает восприятие многоэтапных последовательных раскладок, и тем самым является преимуществом проекта сайт перед аналогичными сервисами по нахождению несобственный интеграл онлайн с подробным решением.

Несобственный интеграл с бесконечным пределом интегрирования

Иногда такой несобственный интеграл еще называют несобственным интегралом первого рода..gif»>.

Реже встречаются интегралы с бесконечным нижним пределом или с двумя бесконечными пределами: .

Мы рассмотрим самый популярный случай https://pandia.ru/text/80/057/images/image005_1.gif»>? Нет, не всегда. Подынтегральная функция https://pandia.ru/text/80/057/images/image007_0.gif»>

Изобразим на чертеже график подынтегральной функции . Типовой график и криволинейная трапеция для данного случая выглядит так:

Несобственный интеграл https://pandia.ru/text/80/057/images/image009_0.gif»>», иными словами, площадь тоже бесконечна. Так быть может. В этом случае говорят, что, что несобственный интеграл расходится .

2) Но . Как это ни парадоксально прозвучит, площадь бесконечной фигуры может равняться… конечному числу! Например: . . Во втором случае несобственный интеграл сходится .

А что будет, если бесконечная криволинейная трапеция расположена ниже оси?.gif»>.

: .

Пример 1

Подынтегральная функция https://pandia.ru/text/80/057/images/image017_0.gif»>, значит, всё нормально и несобственный интеграл можно вычислить «штатным» методом.

Применение нашей формулы https://pandia.ru/text/80/057/images/image018_0.gif»>

То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности.

При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций!

Пример 2

Вычислить несобственный интеграл или установить его расходимость.

Выполним чертеж:

Во-первых, замечаем следующее: подынтегральная функция непрерывна на полуинтервале . Гуд..gif»>

(1) Берем простейший интеграл от степенной функции (этот частный случай есть во многих таблицах). Минус лучше сразу вынести за знак предела, чтобы он не путался под ногами в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы по формуле Ньютона-Лейбница.

(3) Указываем, что https://pandia.ru/text/80/057/images/image024.gif»> (Господа, это уже давно нужно понимать) и упрощаем ответ.

Вот здесь площадь бесконечной криволинейной трапеции равна конечному числу! Невероятно, но факт.

Пример 3

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция непрерывна на .

Сначала попытаемся найти первообразную функцию (неопределенный интеграл).

На какой из табличных интегралов похожа подынтегральная функция? Напоминает она арктангенс: . Из этих соображений напрашивается мысль, что неплохо бы в знаменателе получить квадрат. Делается это путем замены.

Проведем замену:

Всегда полезно выполнить проверку, то есть продифференцировать полученный результат:

Теперь находим несобственный интеграл:

(1) Записываем решение в соответствии с формулой . Константу лучше сразу вынести за знак предела, чтобы она не мешалась в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы в соответствии с формулой Ньютона-Лейбница..gif»>? Смотрите график арктангенса в уже неоднократно рекомендованной статье.

(3) Получаем окончательный ответ. Тот факт, что полезно знать наизусть.

Продвинутые студенты могут не находить отдельно неопределенный интеграл, и не использовать метод замены, а использовать метод подведения функции под знак дифференциала и решать несобственный интеграл «сразу». В этом случае решение должно выглядеть примерно так:

Подынтегральная функция непрерывна на https://pandia.ru/text/80/057/images/image041.gif»>

Пример 4

Вычислить несобственный интеграл или установить его расходимость.

! Это типовой пример, и похожие интегралы встречаются очень часто. Хорошо его проработайте! Первообразная функция здесь находится методом выделения полного квадрата.

Пример 5

Вычислить несобственный интеграл или установить его расходимость.

Этот интеграл можно решить подробно, то есть сначала найти неопределенный интеграл, проведя замену переменной. А можно решить «сразу» – подведением функции под знак дифференциала..

Несобственные интегралы от неограниченных функций

Иногда такие несобственные интегралы называют несобственными интегралами второго рода. Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: ..gif»>, 2) или в точке , 3) или в обеих точках сразу, 4) или даже на отрезке интегрирования. Мы рассмотрим первые два случая, для случаев 3-4 в конце статьи есть ссылка на дополнительный урок.

Сразу пример, чтобы было понятно: https://pandia.ru/text/80/057/images/image048.gif»>, то знаменатель у нас обращается в ноль, то есть подынтегральной функции просто не существует в этой точке!

Вообще при анализе несобственного интеграла всегда нужно подставлять в подынтегральную функцию оба предела интегрирования . .jpg» alt=»Несобственный интеграл, точка разрыва в нижнем пределе интегрирования»>

Здесь почти всё так же, как в интеграле первого рода.
Наш интеграл численно равен площади заштрихованной криволинейной трапеции, которая не ограничена сверху. При этом могут быть два варианта: несобственный интеграл расходится (площадь бесконечна) либо несобственный интеграл равен конечному числу (то есть, площадь бесконечной фигуры – конечна!).

Осталось только модифицировать формулу Ньютона-Лейбница. Она тоже модифицируется с помощью предела, но предел стремится уже не к бесконечности, а к значению https://pandia.ru/text/80/057/images/image052.gif»> справа .

Пример 6

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечный разрыв в точке (не забываем устно или на черновике проверить, всё ли нормально с верхним пределом!)

Сначала вычислим неопределенный интеграл:

Замена:

Вычислим несобственный интеграл:

(1) Что здесь нового? По технике решения практически ничего. Единственное, что поменялось, это запись под значком предела: . Добавка обозначает, что мы стремимся к значению справа (что логично – см. график). Такой предел в теории пределов называют односторонним пределом. В данном случае у нас правосторонний предел.

(2) Подставляем верхний и нижний предел по формуле Ньютона Лейбница.

(3) Разбираемся с https://pandia.ru/text/80/057/images/image058.gif»>. Как определить, куда стремиться выражение? Грубо говоря, в него нужно просто подставить значение , подставляем три четверти и указываем, что . Причесываем ответ.

В данном случае несобственный интеграл равен отрицательному числу.

Пример 7

Вычислить несобственный интеграл или установить его расходимость.

Пример 8

Вычислить несобственный интеграл или установить его расходимость.

Если подынтегральной функции не существует в точке

Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:

Здесь всё абсолютно так же, за исключением того, что предел у нас стремится к значению https://pandia. ru/text/80/057/images/image052.gif»> мы должны бесконечно близко приблизиться к точке разрыва слева .

Вы еще здесь? =) Нет, я никого не пытался запугать, просто тема несобственных интегралов – очень хорошая иллюстрация тому, как важно не запускать высшую математику и другие точные науки. Для освоения урока на сайте всё есть – в подробной и доступной форме, было бы желание….

Итак, начнем-с. Образно говоря, несобственный интеграл – это «продвинутый» определенный интеграл, и на самом деле сложностей с ними не так уж и много, к тому же у несобственного интеграла есть очень хороший геометрический смысл.

Что значит вычислить несобственный интеграл?

Вычислить несобственный интеграл – это значит, найти ЧИСЛО (точно так же, как в определенном интеграле), или доказать, что он расходится (то есть, получить в итоге бесконечность вместо числа).

Несобственные интегралы бывают двух видов.

Несобственный интеграл с бесконечным пределом (ами) интегрирования

Иногда такой несобственный интеграл называют несобственным интегралом первого рода . В общем виде несобственный интеграл с бесконечным пределом чаще всего выглядит так: . В чем его отличие от определенного интеграла? В верхнем пределе. Он бесконечный: .

Реже встречаются интегралы с бесконечным нижним пределом или с двумя бесконечными пределами: , и их мы рассмотрим позже – когда войдёте во вкус:)

Ну а сейчас разберём самый популярный случай . В подавляющем большинстве примеров подынтегральная функция непрерывна на промежутке , и этот важный факт следует проверять в первую очередь! Ибо если есть разрывы, то есть дополнительные нюансы. Для определённости предположим, что и тогда типичная криволинейная трапеция будет выглядеть так:


Обратите внимание, что она бесконечна (не ограничена справа), и несобственный интеграл численно равен её площади . При этом возможны следующие варианты:

1) Первая мысль, которая приходит в голову: «раз фигура бесконечная, то », иными словами, площадь тоже бесконечна. Так быть может. В этом случае говорят, что несобственный интеграл расходится .

2) Но . Как это ни парадоксально прозвучит, площадь бесконечной фигуры может равняться… конечному числу! Например: . Может ли так быть? Запросто. Во втором случае несобственный интеграл сходится .

3) О третьем варианте чуть позже.

В каких случаях несобственный интеграл расходится, а в каком сходится? Это зависит от подынтегральной функции , и конкретные примеры мы очень скоро рассмотрим.

А что будет, если бесконечная криволинейная трапеция расположена ниже оси? В этом случае, несобственный интеграл (расходится) либо равен конечному отрицательному числу.

Таким образом, несобственный интеграл может быть отрицательным .

Важно! Когда Вам для решения предложен ЛЮБОЙ несобственный интеграл, то, вообще говоря, ни о какой площади речи не идет и чертежа строить не нужно . Геометрический смысл несобственного интеграла я рассказал только для того, чтобы легче было понять материал.

Коль скоро, несобственный интеграл очень похож на определенный интеграл, то вспомним формулу Ньютона- Лейбница: . На самом деле формула применима и к несобственным интегралам, только ее нужно немного модифицировать. В чем отличие? В бесконечном верхнем пределе интегрирования: . Наверное, многие догадались, что это уже попахивает применением теории пределов, и формула запишется так: .

В чем отличие от определенного интеграла? Да ни в чем особенном! Как и в определенном интеграле, нужно уметь находить первообразную функцию (неопределенный интеграл), уметь применять формулу Ньютона-Лейбница. Единственное, что добавилось – это вычисление предела. У кого с ними плохо, изучите урок Пределы функций. Примеры решений , ибо лучше поздно, чем в армии.

Рассмотрим два классических примера:

Пример 1

Для наглядности я построю чертеж, хотя, еще раз подчеркиваю, на практике строить чертежи в данном задании не нужно .

Подынтегральная функция непрерывна на полуинтервале , значит, всё нормально и несобственный интеграл можно вычислить «штатным» методом.

Применение нашей формулы и решение задачи выглядит так:

То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности.

В рассмотренном примере у нас простейший табличный интеграл и такая же техника применения формулы Ньютона-Лейбница, как в определенном интеграле. Но применятся эта формула под знаком предела. Вместо привычной буквы «динамической» переменной выступает буква «бэ». Это не должно смущать или ставить в тупик, потому что любая буква ничем не хуже стандартного «икса».

Если Вам не понятно почему при , то это очень плохо, либо Вы не понимаете простейшие пределы (и вообще не понимаете, что такое предел), либо не знаете, как выглядит график логарифмической функции. Во втором случае посетите урок Графики и свойства элементарных функций .

При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций!

Чистовое оформление задания должно выглядеть примерно так:

! При оформлении примера всегда прерываем решение, и указываем, что происходит с подынтегральной функцией непрерывна она на промежутке интегрирования или нет . Этим мы идентифицируем тип несобственного интеграла и обосновываем дальнейшие действия.

Пример 2

Вычислить несобственный интеграл или установить его расходимость.

Выполним чертеж:

Во-первых, замечаем следующее: подынтегральная функция непрерывна на полуинтервале . Гуд. Решаем с помощью формулы :

(1) Берем простейший интеграл от степенной функции (этот частный случай есть во многих таблицах). Минус лучше сразу вынести за знак предела, чтобы он не путался под ногами в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы по формуле Ньютона-Лейбница.

(3) Указываем, что при (Господа, это уже давно нужно понимать) и упрощаем ответ.

Вот здесь площадь бесконечной криволинейной трапеции равна конечному числу! Невероятно, но факт.

Чистовое оформление примера должно выглядеть примерно так:

Подынтегральная функция непрерывна на

Что делать, если вам встретится интеграл наподобие – с точкой разрыва на интервале интегрирования? Это говорит о том, что в примере опечатка (вероятнее всего) , либо о продвинутом уровне обучения. В последнем случае, в силу свойства аддитивности , следует рассмотреть два несобственных интеграла на промежутках и и затем разобраться с суммой.

Иногда вследствие опечатки либо умысла несобственного интеграла может вовсе не существовать , так, например, если в знаменатель вышеуказанного интеграла поставить квадратный корень из «икс», то часть промежутка интегрирования вообще не войдёт в область определения подынтегральной функции.

Более того, несобственного интеграла может не существовать даже при всём «видимом благополучии». Классический пример: . Несмотря на определённость и непрерывность косинуса, такого несобственного интеграла не существует! Почему? Всё очень просто, потому что:
– не существует соответствующего предела .

И такие примеры пусть редко, но встречаются на практике! Таким образом, помимо сходимости и расходимости, есть ещё и третий исход решения с полноправным ответом: «несобственного интеграла не существует».

Следует также отметить, что строгое определение несобственного интеграла даётся именно через предел, и желающие могут ознакомиться с ним в учебной литературе. Ну а мы продолжаем практическое занятие и переходим к более содержательным задачам:

Пример 3

Вычислить несобственный интеграл или установить его расходимость.

Сначала попытаемся найти первообразную функцию (неопределенный интеграл). Если нам не удастся этого сделать, то несобственный интеграл мы, естественно, тоже не решим.

На какой из табличных интегралов похожа подынтегральная функция? Напоминает она арктангенс: . Из этих соображений напрашивается мысль, что неплохо бы в знаменателе получить квадрат. Делается это путем замены.

Проведем замену:

Неопределенный интеграл найден, константу в данном случае добавлять не имеет смысла.

На черновике всегда полезно выполнить проверку, то есть продифференцировать полученный результат:

Получена исходная подынтегральная функция, значит, неопределенный интеграл найден правильно.

Теперь находим несобственный интеграл:

(1) Записываем решение в соответствии с формулой . Константу лучше сразу вынести за знак предела, чтобы она не мешалась в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы в соответствии с формулой Ньютона-Лейбница. Почему при ? Смотрите график арктангенса в уже неоднократно рекомендованной статье.

(3) Получаем окончательный ответ. Тот факт, что полезно знать наизусть.

Продвинутые студенты могут не находить отдельно неопределенный интеграл, и не использовать метод замены, а использовать метод подведения функции под знак дифференциала и решать несобственный интеграл «сразу». В этом случае решение должно выглядеть примерно так:

Подынтегральная функция непрерывна на .

Пример 4

Вычислить несобственный интеграл или установить его расходимость.

! Это типовой пример, и похожие интегралы встречаются очень часто. Хорошо его проработайте! Первообразная функция здесь находится методом выделения полного квадрата, более подробно с методом можно ознакомиться на уроке Интегрирование некоторых дробей .

Пример 5

Вычислить несобственный интеграл или установить его расходимость.

Этот интеграл можно решить подробно, то есть сначала найти неопределенный интеграл, проведя замену переменной. А можно решить «сразу» – подведением функции под знак дифференциала. У кого какая математическая подготовка.

Полные решения и ответы в конце урока.

Примеры решений несобственных интегралов с бесконечным нижним пределом интегрирования можно посмотреть на странице Эффективные методы решения несобственных интегралов . Там же разобран случай, когда оба предела интегрирования бесконечны.

Несобственные интегралы от неограниченных функций

Или несобственные интегралами второго рода . Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: Но, в отличие от определенного интеграла, подынтегральная функция терпит бесконечный разрыв (не существует): 1) в точке , 2) или в точке , 3) или в обеих точках сразу, 4) или даже на отрезке интегрирования. Мы рассмотрим первые два случая, для случаев 3-4 в конце статьи есть ссылка на дополнительный урок.

Сразу пример, чтобы было понятно: . Вроде бы это определенный интеграл. Но на самом деле – это несобственный интеграл второго рода, если мы подставим в подынтегральную функцию значение нижнего предела , то знаменатель у нас обращается в ноль, то есть подынтегральной функции просто не существует в этой точке!

Вообще при анализе несобственного интеграла всегда нужно подставлять в подынтегральную функцию оба предела интегрирования . В этой связи проверим и верхний предел: . Здесь всё хорошо.

Криволинейная трапеция для рассматриваемой разновидности несобственного интеграла принципиально выглядит так:

Здесь почти всё так же, как в интеграле первого рода.

Наш интеграл численно равен площади заштрихованной криволинейной трапеции, которая не ограничена сверху. При этом могут быть два варианта*: несобственный интеграл расходится (площадь бесконечна) либо несобственный интеграл равен конечному числу (то есть, площадь бесконечной фигуры – конечна!).

* по умолчанию привычно полагаем, что несобственный интеграл существует

Осталось только модифицировать формулу Ньютона-Лейбница. Она тоже модифицируется с помощью предела, но предел стремится уже не к бесконечности, а к значению справа. Легко проследить по чертежу: по оси мы должны бесконечно близко приблизиться к точке разрыва справа .

Посмотрим, как это реализуется на практике.

Пример 6

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечный разрыв в точке (не забываем устно или на черновике проверить, всё ли нормально с верхним пределом!)

Сначала вычислим неопределенный интеграл:

Замена:

У кого возникли трудности с заменой, обратитесь к уроку Метод замены в неопределенном интеграле .

Вычислим несобственный интеграл:

(1) Что здесь нового? По технике решения практически ничего. Единственное, что поменялось, это запись под значком предела: . Добавка обозначает, что мы стремимся к значению справа (что логично – см. график). Такой предел в теории пределов называют односторонним пределом . В данном случае у нас правосторонний предел .

(2) Подставляем верхний и нижний предел по формуле Ньютона Лейбница.

(3) Разбираемся с при . Как определить, куда стремится выражение? Грубо говоря, в него нужно просто подставить значение , подставляем три четверти и указываем, что . Причесываем ответ.

В данном случае несобственный интеграл равен отрицательному числу. В этом никакого криминала нет, просто соответствующая криволинейная трапеция расположена под осью .

А сейчас два примера для самостоятельного решения.

Пример 7

Вычислить несобственный интеграл или установить его расходимость.

Пример 8

Вычислить несобственный интеграл или установить его расходимость.

Если подынтегральной функции не существует в точке

Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом.3+1}. \]

Определенные интегралы онлайн на сайт для закрепления студентами и школьниками пройденного материала. И тренировки своих практических навыков. Полноценное решение определенных интегралов онлайн для вас в считанные мгновения поможет определить все этапы процесса.. Интегралы онлайн — определенный интеграл онлайн. Определенные интегралы онлайн на сайт для полноценного закрепления студентами и школьниками пройденного материала и тренировки своих практических навыков. Полноценное решение определенных интегралов онлайн для вас в считанные мгновения поможет определить все этапы процесса.. Интегралы онлайн — определенный интеграл онлайн. Для нас определенный интеграл онлайн взять не представляется чем-то сверх естественным, изучив данную тему по книге выдающихся авторов. Огромное им спасибо и выражаем респект этим личностям. Поможет определить определенный интеграл онлайн сервис по вычислению таких задач в два счета. Только укажите правильные данные и все будет Good! Всякий определенный интеграл как решение задачи повысит грамотность студентов. Об этом мечтает каждый ленивец, и мы не исключение, признаем это честно. Если все-таки получится вычислить определенный интеграл онлайн с решением бесплатно, то, пожалуйста, напишите адрес сайт всем желающим им воспользоваться. Как говорится, поделишься полезной ссылкой — и тебя отблагодарят добрые люди за даром. Очень интересным будет вопрос разбора задачки, в которой определенный интеграл будет калькулятор решать самостоятельно, а не за счет траты вашего драгоценного времени. На то они и машины, чтобы пахать на людей. Однако решение определенных интегралов онлайн не всякому сайту по зубам, и это легко проверить, а именно, достаточно взять сложный пример и попытаться решить его с помощью каждого такого сервиса. Вы почувствуете разницу на собственной шкуре. Зачастую найти определенный интеграл онлайн без прилагаемых усилий станет достаточно сложно и нелепо будет выглядеть ваш ответ на фоне общей картины представления результата. Лучше бы сначала пройти курс молодого бойца. Всякое решение несобственных интегралов онлайн сводится сначала к вычислению неопределенного, а затем через теорию пределов вычислить как правило односторонние пределы от полученных выражений с подставленными границами A и B. Рассмотрев указанный вами определенный интеграл онлайн с подробным решением, мы сделали заключение, что вы ошиблись на пятом шаге, а именно при использовании формулы замены переменной Чебышева. Будьте очень внимательны в дальнейшем решении. Если ваш определенный интеграл онлайн калькулятор не смог взять с первого раза, то в первую очередь стоит перепроверить написанные данные в соответствующие формы на сайте. Убедитесь, что все в порядке и вперёд, Go-Go! Для каждого студента препятствием является вычисление несобственных интегралов онлайн при самом преподе, так как это либо экзамен, либо коллоквиум, или просто контрольная работа на паре.. Как только заданный несобственный интеграл онлайн калькулятор будет в вашем распоряжении, то сразу вбивайте заданную функцию, подставляйте заданные пределы интегрирования и нажимайте на кнопку Решение, после этого вам будет доступен полноценный развернутый ответ. И все-таки хорошо, когда есть такой замечательный сайт как сайт, потому что он и бесплатный, и простой в пользовании, также содержит очень много разделов. которыми студенты пользуются повседневно, один из них как раз есть определенный интеграл онлайн с решением в полном виде. В этом же разделе можно вычислить несобственный интеграл онлайн с подробным решением для дальнейших применений ответа как в институте, так и в инженерных работах. Казалось бы, всем определить определенный интеграл онлайн дело нехитрое, если заранее решить такой пример без верхней и нижней границы, то есть не интеграл Лейбница, а неопределенный интеграл. Но тут мы с вами не согласны категорически, так как на первый взгляд это может показаться именно так, однако есть существенная разница, давайте разберем все по полочкам. Такой определенный интеграл решение дает не в явном виде, а в следствие преобразования выражения в предельное значение. Другими словами, нужно сначала решить интеграл с подстановкой символьных значений границ, а затем вычислить предел либо на бесконечности, либо в определенной точке. Отсюда вычислить определенный интеграл онлайн с решением бесплатно означает ни что иное как представление точного решения по формуле Ньютона-Лейбница. Если же рассматривать наш определенный интеграл калькулятор поможет его подсчитать за несколько секунд прямо на ваших глазах. Такая спешка нужна всем желающим как можно быстрее справиться с заданием и освободиться для личных дел. Не стоит искать в интернете сайты, на которых попросят вас регистрироваться, затем пополнить деньги на баланс и все ради того, чтобы какой-нибудь умник подготавливал решение определенных интегралов якобы онлайн. Запомните адрес Math34 — это бесплатный сервис для решения множества математических задач, в том же числе мы поможем найти определенный интеграл онлайн, и чтобы в этом убедиться, просим проверить наше утверждение на конкретных примерах. Введите подынтегральную функцию в соответствующее поле, затем укажите либо бесконечные предельные значения (в это случае будет вычислен и получено решение несобственных интегралов онлайн), либо задайте свои числовые или символьные границы и определенный интеграл онлайн с подробным решением выведется на странице после нажатия на кнопку «Решение». Неправда ли — это очень просто, не требует от вас лишних действий, бесплатно, что самое главное, и в то же время результативно. Вы можете самостоятельно воспользоваться сервисом, чтобы определенный интеграл онлайн калькулятор принес вам максимум пользы, и вы бы получили комфортное состояние, не напрягаясь на сложность всех вычислительных процессов, позвольте нам сделать все за вас и продемонстрировать всю мощь компьютерных технологий современного мира. Если погружаться в дебри сложнейших формул и вычисление несобственных интегралов онлайн изучить самостоятельно, то это похвально, и вы можете претендовать на возможность написания кандидатской работы, однако вернемся к реалиям студенческой жизни. А кто такой студент? В первую очередь — это молодой человек, энергичный и жизнерадостный, желающий успеть отдохнуть и сделать домашку! Поэтому мы позаботились об учениках, которые стараются отыскать на просторах глобальной сети несобственный интеграл онлайн калькулятор, и вот он к вашему вниманию — сайт — самая полезная для молодежи решалка в режиме онлайн. Кстати наш сервис хоть и преподносится как помощник студентам и школьникам, но он в полной мере подойдет любому инженеру, потому что нам под силу любые типы задач и их решение представляется в профессиональном формате. Например, определенный интеграл онлайн с решением в полном виде мы предлагаем по этапам, то есть каждому логическому блоку (подзадачи) отводится отдельная запись со всеми выкладками по ходу процесса общего решения. Это конечно же упрощает восприятие многоэтапных последовательных раскладок, и тем самым является преимуществом проекта сайт перед аналогичными сервисами по нахождению несобственный интеграл онлайн с подробным решением.

Вы еще здесь? =) Нет, я никого не пытался запугать, просто тема несобственных интегралов – очень хорошая иллюстрация тому, как важно не запускать высшую математику и другие точные науки. Для освоения урока на сайте всё есть – в подробной и доступной форме, было бы желание….

Итак, начнем-с. Образно говоря, несобственный интеграл – это «продвинутый» определенный интеграл, и на самом деле сложностей с ними не так уж и много, к тому же у несобственного интеграла есть очень хороший геометрический смысл.

Что значит вычислить несобственный интеграл?

Вычислить несобственный интеграл – это значит, найти ЧИСЛО (точно так же, как в определенном интеграле), или доказать, что он расходится (то есть, получить в итоге бесконечность вместо числа).

Несобственные интегралы бывают двух видов.

Несобственный интеграл с бесконечным пределом (ами) интегрирования

Иногда такой несобственный интеграл называют несобственным интегралом первого рода . В общем виде несобственный интеграл с бесконечным пределом чаще всего выглядит так: . В чем его отличие от определенного интеграла? В верхнем пределе. Он бесконечный: .

Реже встречаются интегралы с бесконечным нижним пределом или с двумя бесконечными пределами: , и их мы рассмотрим позже – когда войдёте во вкус:)

Ну а сейчас разберём самый популярный случай . В подавляющем большинстве примеров подынтегральная функция непрерывна на промежутке , и этот важный факт следует проверять в первую очередь! Ибо если есть разрывы, то есть дополнительные нюансы. Для определённости предположим, что и тогда типичная криволинейная трапеция будет выглядеть так:


Обратите внимание, что она бесконечна (не ограничена справа), и несобственный интеграл численно равен её площади . При этом возможны следующие варианты:

1) Первая мысль, которая приходит в голову: «раз фигура бесконечная, то », иными словами, площадь тоже бесконечна. Так быть может. В этом случае говорят, что несобственный интеграл расходится .

2) Но . Как это ни парадоксально прозвучит, площадь бесконечной фигуры может равняться… конечному числу! Например: . Может ли так быть? Запросто. Во втором случае несобственный интеграл сходится .

3) О третьем варианте чуть позже.

В каких случаях несобственный интеграл расходится, а в каком сходится? Это зависит от подынтегральной функции , и конкретные примеры мы очень скоро рассмотрим.

А что будет, если бесконечная криволинейная трапеция расположена ниже оси? В этом случае, несобственный интеграл (расходится) либо равен конечному отрицательному числу.

Таким образом, несобственный интеграл может быть отрицательным .

Важно! Когда Вам для решения предложен ЛЮБОЙ несобственный интеграл, то, вообще говоря, ни о какой площади речи не идет и чертежа строить не нужно . Геометрический смысл несобственного интеграла я рассказал только для того, чтобы легче было понять материал.

Коль скоро, несобственный интеграл очень похож на определенный интеграл, то вспомним формулу Ньютона- Лейбница: . На самом деле формула применима и к несобственным интегралам, только ее нужно немного модифицировать. В чем отличие? В бесконечном верхнем пределе интегрирования: . Наверное, многие догадались, что это уже попахивает применением теории пределов, и формула запишется так: .

В чем отличие от определенного интеграла? Да ни в чем особенном! Как и в определенном интеграле, нужно уметь находить первообразную функцию (неопределенный интеграл), уметь применять формулу Ньютона-Лейбница. Единственное, что добавилось – это вычисление предела. У кого с ними плохо, изучите урок Пределы функций. Примеры решений , ибо лучше поздно, чем в армии.

Рассмотрим два классических примера:

Пример 1

Для наглядности я построю чертеж, хотя, еще раз подчеркиваю, на практике строить чертежи в данном задании не нужно .

Подынтегральная функция непрерывна на полуинтервале , значит, всё нормально и несобственный интеграл можно вычислить «штатным» методом.

Применение нашей формулы и решение задачи выглядит так:

То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности.

В рассмотренном примере у нас простейший табличный интеграл и такая же техника применения формулы Ньютона-Лейбница, как в определенном интеграле. Но применятся эта формула под знаком предела. Вместо привычной буквы «динамической» переменной выступает буква «бэ». Это не должно смущать или ставить в тупик, потому что любая буква ничем не хуже стандартного «икса».

Если Вам не понятно почему при , то это очень плохо, либо Вы не понимаете простейшие пределы (и вообще не понимаете, что такое предел), либо не знаете, как выглядит график логарифмической функции. Во втором случае посетите урок Графики и свойства элементарных функций .

При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций!

Чистовое оформление задания должно выглядеть примерно так:

! При оформлении примера всегда прерываем решение, и указываем, что происходит с подынтегральной функцией непрерывна она на промежутке интегрирования или нет . Этим мы идентифицируем тип несобственного интеграла и обосновываем дальнейшие действия.

Пример 2

Вычислить несобственный интеграл или установить его расходимость.

Выполним чертеж:

Во-первых, замечаем следующее: подынтегральная функция непрерывна на полуинтервале . Гуд. Решаем с помощью формулы :

(1) Берем простейший интеграл от степенной функции (этот частный случай есть во многих таблицах). Минус лучше сразу вынести за знак предела, чтобы он не путался под ногами в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы по формуле Ньютона-Лейбница.

(3) Указываем, что при (Господа, это уже давно нужно понимать) и упрощаем ответ.

Вот здесь площадь бесконечной криволинейной трапеции равна конечному числу! Невероятно, но факт.

Чистовое оформление примера должно выглядеть примерно так:

Подынтегральная функция непрерывна на

Что делать, если вам встретится интеграл наподобие – с точкой разрыва на интервале интегрирования? Это говорит о том, что в примере опечатка (вероятнее всего) , либо о продвинутом уровне обучения. В последнем случае, в силу свойства аддитивности , следует рассмотреть два несобственных интеграла на промежутках и и затем разобраться с суммой.

Иногда вследствие опечатки либо умысла несобственного интеграла может вовсе не существовать , так, например, если в знаменатель вышеуказанного интеграла поставить квадратный корень из «икс», то часть промежутка интегрирования вообще не войдёт в область определения подынтегральной функции.

Более того, несобственного интеграла может не существовать даже при всём «видимом благополучии». Классический пример: . Несмотря на определённость и непрерывность косинуса, такого несобственного интеграла не существует! Почему? Всё очень просто, потому что:
– не существует соответствующего предела .

И такие примеры пусть редко, но встречаются на практике! Таким образом, помимо сходимости и расходимости, есть ещё и третий исход решения с полноправным ответом: «несобственного интеграла не существует».

Следует также отметить, что строгое определение несобственного интеграла даётся именно через предел, и желающие могут ознакомиться с ним в учебной литературе. Ну а мы продолжаем практическое занятие и переходим к более содержательным задачам:

Пример 3

Вычислить несобственный интеграл или установить его расходимость.

Сначала попытаемся найти первообразную функцию (неопределенный интеграл). Если нам не удастся этого сделать, то несобственный интеграл мы, естественно, тоже не решим.

На какой из табличных интегралов похожа подынтегральная функция? Напоминает она арктангенс: . Из этих соображений напрашивается мысль, что неплохо бы в знаменателе получить квадрат. Делается это путем замены.

Проведем замену:

Неопределенный интеграл найден, константу в данном случае добавлять не имеет смысла.

На черновике всегда полезно выполнить проверку, то есть продифференцировать полученный результат:

Получена исходная подынтегральная функция, значит, неопределенный интеграл найден правильно.

Теперь находим несобственный интеграл:

(1) Записываем решение в соответствии с формулой . Константу лучше сразу вынести за знак предела, чтобы она не мешалась в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы в соответствии с формулой Ньютона-Лейбница. Почему при ? Смотрите график арктангенса в уже неоднократно рекомендованной статье.

(3) Получаем окончательный ответ. Тот факт, что полезно знать наизусть.

Продвинутые студенты могут не находить отдельно неопределенный интеграл, и не использовать метод замены, а использовать метод подведения функции под знак дифференциала и решать несобственный интеграл «сразу». В этом случае решение должно выглядеть примерно так:

Подынтегральная функция непрерывна на .

Пример 4

Вычислить несобственный интеграл или установить его расходимость.

! Это типовой пример, и похожие интегралы встречаются очень часто. Хорошо его проработайте! Первообразная функция здесь находится методом выделения полного квадрата, более подробно с методом можно ознакомиться на уроке Интегрирование некоторых дробей .

Пример 5

Вычислить несобственный интеграл или установить его расходимость.

Этот интеграл можно решить подробно, то есть сначала найти неопределенный интеграл, проведя замену переменной. А можно решить «сразу» – подведением функции под знак дифференциала. У кого какая математическая подготовка.

Полные решения и ответы в конце урока.

Примеры решений несобственных интегралов с бесконечным нижним пределом интегрирования можно посмотреть на странице Эффективные методы решения несобственных интегралов . Там же разобран случай, когда оба предела интегрирования бесконечны.

Несобственные интегралы от неограниченных функций

Или несобственные интегралами второго рода . Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: Но, в отличие от определенного интеграла, подынтегральная функция терпит бесконечный разрыв (не существует): 1) в точке , 2) или в точке , 3) или в обеих точках сразу, 4) или даже на отрезке интегрирования. Мы рассмотрим первые два случая, для случаев 3-4 в конце статьи есть ссылка на дополнительный урок.

Сразу пример, чтобы было понятно: . Вроде бы это определенный интеграл. Но на самом деле – это несобственный интеграл второго рода, если мы подставим в подынтегральную функцию значение нижнего предела , то знаменатель у нас обращается в ноль, то есть подынтегральной функции просто не существует в этой точке!

Вообще при анализе несобственного интеграла всегда нужно подставлять в подынтегральную функцию оба предела интегрирования . В этой связи проверим и верхний предел: . Здесь всё хорошо.

Криволинейная трапеция для рассматриваемой разновидности несобственного интеграла принципиально выглядит так:

Здесь почти всё так же, как в интеграле первого рода.

Наш интеграл численно равен площади заштрихованной криволинейной трапеции, которая не ограничена сверху. При этом могут быть два варианта*: несобственный интеграл расходится (площадь бесконечна) либо несобственный интеграл равен конечному числу (то есть, площадь бесконечной фигуры – конечна!).

* по умолчанию привычно полагаем, что несобственный интеграл существует

Осталось только модифицировать формулу Ньютона-Лейбница. Она тоже модифицируется с помощью предела, но предел стремится уже не к бесконечности, а к значению справа. Легко проследить по чертежу: по оси мы должны бесконечно близко приблизиться к точке разрыва справа .

Посмотрим, как это реализуется на практике.

Пример 6

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечный разрыв в точке (не забываем устно или на черновике проверить, всё ли нормально с верхним пределом!)

Сначала вычислим неопределенный интеграл:

Замена:

У кого возникли трудности с заменой, обратитесь к уроку Метод замены в неопределенном интеграле .

Вычислим несобственный интеграл:

(1) Что здесь нового? По технике решения практически ничего. Единственное, что поменялось, это запись под значком предела: . Добавка обозначает, что мы стремимся к значению справа (что логично – см. график). Такой предел в теории пределов называют односторонним пределом . В данном случае у нас правосторонний предел .

(2) Подставляем верхний и нижний предел по формуле Ньютона Лейбница.

(3) Разбираемся с при . Как определить, куда стремится выражение? Грубо говоря, в него нужно просто подставить значение , подставляем три четверти и указываем, что . Причесываем ответ.

В данном случае несобственный интеграл равен отрицательному числу. В этом никакого криминала нет, просто соответствующая криволинейная трапеция расположена под осью .

А сейчас два примера для самостоятельного решения.

Пример 7

Вычислить несобственный интеграл или установить его расходимость.

Пример 8

Вычислить несобственный интеграл или установить его расходимость.

Если подынтегральной функции не существует в точке

Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом.

Несобственные интегралы первого рода: распространение понятия определённого интеграла на случаи интегралов с бесконечным верхним или нижними пределами интегрирования, или оба предела интегрирования бесконечны.

Несобственные интегралы второго рода: распространение понятия определённого интеграла на случаи интегралов от неограниченных функций, подынтегральная функция в конечном числе точек конечного отрезка интегрирования не существует, обращаясь в бесконечность.

Для сравнения. При введении понятия определённого интеграла предполагалось, что функция f (x ) непрерывна на отрезке [a , b ], а отрезок интегрирования является конечным, то есть ограничен числами, а не бесконечностью. Некоторые задачи приводят к необходимости отказаться от этих ограничений. Так появляются несобственные интегралы.

Геометрический смысл несобственного интеграла выясняется довольно просто. В случае, когда график функции y = f (x ) находится выше оси Ox , определённый интеграл выражает площадь криволинейной трапеции, ограниченной кривой y = f (x ) , осью абсцисс и ординатами x = a , x = b . В свою очередь несобственный интеграл выражает площадь неограниченной (бесконечной) криволинейной трапеции, заключённой между линиями y = f (x ) (на рисунке ниже — красного цвета), x = a и осью абсцисс.

Аналогичным образом определяются несобственные интегралы и для других бесконечных интервалов:

Площадь бесконечной криволинейной трапеции может быть конечным числом и в этом случае несобственный интеграл называется сходящимся. Площадь может быть и бесконечностью и в этом случае несобственный интеграл называется расходящимся.

Использование предела интеграла вместо самого несобственного интеграла. Для того, чтобы вычислить несобственный интеграл, нужно использовать предел определённого интеграла. Если этот предел существует и конечен (не равен бесконечности), то несобственный интеграл называется сходящимся, а в противном случае — расходящимся. К чему стремится переменная под знаком предела, зависит от того, имеем мы дело с несобственным интегралом первого рода или второго рода. Узнаем об этом сейчас же.

Несобственные интегралы первого рода — с бесконечными пределами и их сходимость

Несобственные интегралы с бесконечным верхним пределом

Итак, запись несобственного интеграла как отличается от обычного определённого интеграла тем, что верхний предел интегрирования бесконечен.

Определение. Несобственным интегралом с бесконечным верхним пределом интегрирования от непрерывной функции f (x ) на промежутке от a до называется предел интеграла этой функции с верхним пределом интегрирования b и нижним пределом интегрирования a при условии, что верхний предел интегрирования неограниченно растёт , т.е.

.

Если этот предел существует и равен некоторому числу, а не бесконечности, то несобственный интеграл называется сходящимся , а число, которому равен предел, принимается за его значение. В противном случае несобственный интеграл называется расходящимся и ему не приписывается никакого значения.

Пример 1. Вычислить несобственный интеграл (если он сходится).

Решение. На основании определения несобственного интеграла находим

Так как предел существует и равен 1, то и данный несобственный интеграл сходится и равен 1.

В следующем примере подынтегральная функция почти как в примере 1, только степень икса — не двойка, а буква альфа, а задача состоит в исследовании несобственного интеграла на сходимость. То есть предстоит ответить на вопрос: при каких значениях альфы данный несобственный интеграл сходится, а при каких расходится?

Пример 2. Исследовать на сходимость несобственный интеграл (нижний предел интегрирования больше нуля).

Решение. Предположим сначала, что , тогда

В полученном выражении перейдём к пределу при :

Нетрудно видеть, что предел в правой части существует и равен нулю, когда , то есть , и не существует, когда , то есть .

В первом случае, то есть при имеет место . Если , то и не существует.

Вывод нашего исследования следующий: данный несобственный интеграл сходится при и расходится при .

Применяя к изучаемому виду несобственного интеграла формулу Ньютона-Лейбница , можно вывести следующую очень похожую на неё формулу:

.

Это обобщённая формула Ньютона-Лейбница.

Пример 3. Вычислить несобственный интеграл (если он сходится).

Предел этого интеграла существует:

Второй интеграл, составляющий сумму, выражающую исходный интеграл:

Предел этого интеграла также существует:

.

Находим сумму двух интегралов, являющуюся и значением исходного несобственного интеграла с двумя бесконечными пределами:

Несобственные интегралы второго рода — от неограниченных функций и их сходимость

Пусть функция f (x ) задана на отрезке от a до b и неограниченна на нём. Предположим, что функция обращается в бесконечность в точке b , в то время как во всех остальных точках отрезка она непрерывна.

Определение. Несобственным интегралом функции f (x ) на отрезке от a до b называется предел интеграла этой функции с верхним пределом интегрирования c , если при стремлении c к b функция неограниченно возрастает, а в точке x = b функция не определена , т.е.

.

Если этот предел существует, то несобственный интеграл второго рода называется сходящимся, в противном случае — расходящимся.

Используя формулу Ньютона-Лейбница, выводим.

Несобственный интеграл с бесконечным пределом интегрирования

Иногда такой несобственный интеграл еще называют несобственным интегралом первого рода..gif»>.

Реже встречаются интегралы с бесконечным нижним пределом или с двумя бесконечными пределами: .

Мы рассмотрим самый популярный случай https://pandia.ru/text/80/057/images/image005_1.gif»>? Нет, не всегда. Подынтегральная функция https://pandia.ru/text/80/057/images/image007_0.gif»>

Изобразим на чертеже график подынтегральной функции . Типовой график и криволинейная трапеция для данного случая выглядит так:

Несобственный интеграл https://pandia.ru/text/80/057/images/image009_0.gif»>», иными словами, площадь тоже бесконечна. Так быть может. В этом случае говорят, что, что несобственный интеграл расходится .

2) Но . Как это ни парадоксально прозвучит, площадь бесконечной фигуры может равняться… конечному числу! Например: .. Во втором случае несобственный интеграл сходится .

А что будет, если бесконечная криволинейная трапеция расположена ниже оси?.gif»>.

: .

Пример 1

Подынтегральная функция https://pandia.ru/text/80/057/images/image017_0.gif»>, значит, всё нормально и несобственный интеграл можно вычислить «штатным» методом.

Применение нашей формулы https://pandia.ru/text/80/057/images/image018_0.gif»>

То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности.

При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций!

Пример 2

Вычислить несобственный интеграл или установить его расходимость.

Выполним чертеж:

Во-первых, замечаем следующее: подынтегральная функция непрерывна на полуинтервале . Гуд..gif»>

(1) Берем простейший интеграл от степенной функции (этот частный случай есть во многих таблицах). Минус лучше сразу вынести за знак предела, чтобы он не путался под ногами в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы по формуле Ньютона-Лейбница.

(3) Указываем, что https://pandia.ru/text/80/057/images/image024.gif»> (Господа, это уже давно нужно понимать) и упрощаем ответ.

Вот здесь площадь бесконечной криволинейной трапеции равна конечному числу! Невероятно, но факт.

Пример 3

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция непрерывна на .

Сначала попытаемся найти первообразную функцию (неопределенный интеграл).

На какой из табличных интегралов похожа подынтегральная функция? Напоминает она арктангенс: . Из этих соображений напрашивается мысль, что неплохо бы в знаменателе получить квадрат. Делается это путем замены.

Проведем замену:

Всегда полезно выполнить проверку, то есть продифференцировать полученный результат:

Теперь находим несобственный интеграл:

(1) Записываем решение в соответствии с формулой . Константу лучше сразу вынести за знак предела, чтобы она не мешалась в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы в соответствии с формулой Ньютона-Лейбница..gif»>? Смотрите график арктангенса в уже неоднократно рекомендованной статье.

(3) Получаем окончательный ответ. Тот факт, что полезно знать наизусть.

Продвинутые студенты могут не находить отдельно неопределенный интеграл, и не использовать метод замены, а использовать метод подведения функции под знак дифференциала и решать несобственный интеграл «сразу». В этом случае решение должно выглядеть примерно так:

Подынтегральная функция непрерывна на https://pandia.ru/text/80/057/images/image041.gif»>

Пример 4

Вычислить несобственный интеграл или установить его расходимость.

! Это типовой пример, и похожие интегралы встречаются очень часто. Хорошо его проработайте! Первообразная функция здесь находится методом выделения полного квадрата.

Пример 5

Вычислить несобственный интеграл или установить его расходимость.

Этот интеграл можно решить подробно, то есть сначала найти неопределенный интеграл, проведя замену переменной. А можно решить «сразу» – подведением функции под знак дифференциала..

Несобственные интегралы от неограниченных функций

Иногда такие несобственные интегралы называют несобственными интегралами второго рода. Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: ..gif»>, 2) или в точке , 3) или в обеих точках сразу, 4) или даже на отрезке интегрирования. Мы рассмотрим первые два случая, для случаев 3-4 в конце статьи есть ссылка на дополнительный урок.

Сразу пример, чтобы было понятно: https://pandia.ru/text/80/057/images/image048.gif»>, то знаменатель у нас обращается в ноль, то есть подынтегральной функции просто не существует в этой точке!

Вообще при анализе несобственного интеграла всегда нужно подставлять в подынтегральную функцию оба предела интегрирования ..jpg» alt=»Несобственный интеграл, точка разрыва в нижнем пределе интегрирования»>

Здесь почти всё так же, как в интеграле первого рода.
Наш интеграл численно равен площади заштрихованной криволинейной трапеции, которая не ограничена сверху. При этом могут быть два варианта: несобственный интеграл расходится (площадь бесконечна) либо несобственный интеграл равен конечному числу (то есть, площадь бесконечной фигуры – конечна!).

Осталось только модифицировать формулу Ньютона-Лейбница. Она тоже модифицируется с помощью предела, но предел стремится уже не к бесконечности, а к значению https://pandia.ru/text/80/057/images/image052.gif»> справа .

Пример 6

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечный разрыв в точке (не забываем устно или на черновике проверить, всё ли нормально с верхним пределом!)

Сначала вычислим неопределенный интеграл:

Замена:

Вычислим несобственный интеграл:

(1) Что здесь нового? По технике решения практически ничего. Единственное, что поменялось, это запись под значком предела: . Добавка обозначает, что мы стремимся к значению справа (что логично – см. график). Такой предел в теории пределов называют односторонним пределом. В данном случае у нас правосторонний предел.

(2) Подставляем верхний и нижний предел по формуле Ньютона Лейбница.

(3) Разбираемся с https://pandia.ru/text/80/057/images/image058.gif»>. Как определить, куда стремиться выражение? Грубо говоря, в него нужно просто подставить значение , подставляем три четверти и указываем, что . Причесываем ответ.

В данном случае несобственный интеграл равен отрицательному числу.

Пример 7

Вычислить несобственный интеграл или установить его расходимость.

Пример 8

Вычислить несобственный интеграл или установить его расходимость.

Если подынтегральной функции не существует в точке

Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:

Здесь всё абсолютно так же, за исключением того, что предел у нас стремится к значению https://pandia.ru/text/80/057/images/image052.gif»> мы должны бесконечно близко приблизиться к точке разрыва слева .

Интегральный калькулятор

с шагами — Open Omnia

Войдите в функцию. Используйте x в качестве переменной.
См. Примеры

ПОМОЩЬ

Используйте предоставленную клавиатуру для ввода функций. Используйте x в качестве переменной. Нажмите «РЕШИТЬ», чтобы обработать введенную вами функцию.

Вот несколько примеров того, что вы можете ввести.

Вот как вы используете кнопки

долларов США
РЕШЕНИЕ Обрабатывает введенную функцию.
ПРОЗРАЧНЫЙ Удаляет весь текст в текстовом поле.
DEL Удаляет последний элемент перед курсором.
а-я Показывает алфавит.
триг Показывает тригонометрические функции.
Переместите курсор влево.{□} {□} N-й корень.
(□) Круглая скобка.
журнал База 10.
пер. Натуральное бревно (база д).
| $ □ $ | Абсолютное значение.

Расчет неопределенных интегралов онлайн

Введите функцию для интеграции:

x y π e 1 2 3 ÷ Trig func
a 2 a b a b exp 4 5 6 ×

удалить

( ) | а | пер. 7 8 9
3 C журнал a 0 . +
TRIG: sin cos tan кроватка csc sec Назад
ОБРАТНЫЙ: arcsin arccos arctan acot acsc asec

удалить

HYPERB: sinh cosh tanh coth x π
ДРУГОЕ: , y = < >

Этот калькулятор для решения неопределенных интегралов взят от Wolfram Alpha LLC.Все права принадлежат владельцу!

Неопределенный интеграл

Нахождение неопределенного интеграла — очень распространенная задача в математике и других технических науках. На самом деле решение простейших физических задач редко обходится без нескольких вычислений простых интегралов. Поэтому, начиная со школьного возраста, нас учат приемам и методам решения интегралов , даются многочисленные таблицы интегралов простых функций. Но со временем все благополучно забывается, или у нас нет времени на вычисления, или нам нужно найти неопределенный интеграл от очень сложной функции.Наш сервис идеально подойдет для решения этих проблем. Это позволяет точно находить неопределенные интегралы онлайн.

Решить неопределенный интеграл

Онлайн-сервис OnSolver.com позволяет быстро и бесплатно решить комплексную онлайн-задачу. Вы можете заменить наш сервис на поиск нужного интеграла в таблицах. Здесь вы получите решение неопределенного интеграла в табличной форме, просто набрав нужную функцию. Не все математические сайты могут быстро и эффективно вычислять неопределенные интегралы функций в режиме онлайн, особенно если вы хотите найти неопределенный интеграл от сложных функций или функций, которые не включены в общий курс высшей математики.Сайт OnSolver.com поможет решить комплексную онлайн-задачу и хорошо справится с вашей работой. Онлайн-решение интегрального на сайте OnSolver.com всегда даст вам точный ответ.

Благодаря нашему сервису вам будет легко проверить свой ответ, или найти внесенную ошибку, или оплошность, или просто убедиться, что вы выполнили свою работу безупречно, даже если вы хотите вычислить интеграл самостоятельно. Если вы решаете задачу и вам нужно решить неопределенный интеграл в качестве вспомогательной операции, зачем тратить время на то, что вы, возможно, уже делали тысячу раз? Более того, ненужные вычисления интеграла могут быть причиной канцелярских или других мелких ошибок, которые впоследствии приведут к неправильному ответу.Просто воспользуйтесь нашими услугами и без труда найдите неопределенный интеграл онлайн. 2-3 \ right) dx $, применив интегрирование методом подстановки (также называемое U-подстановкой).{n-1}

долл. США

$ 2x $

3

Теперь, чтобы переписать $ dx $ в терминах $ du $, нам нужно найти производную от $ u $. Нам нужно вычислить $ du $, мы можем сделать это, выведя уравнение выше

$ du = 2xdx $

Объясните подробнее 4

Изолировать $ dx $ в предыдущем уравнении

$ \ frac {du} {2x} = dx $

Промежуточные ступени

Упростим дробь $ \ frac {xu} {2x} $ на $ x $

$ \ int \ frac {u} {2} за

долл. США 5

Замена $ u $ и $ dx $ в интеграл и упрощение

$ \ int \ frac {u} {2} за

долл. США Объясните подробнее

Промежуточные ступени

6

Извлечь константу $ \ frac {1} {2} $ из интеграла

$ \ frac {1} {2} \ udu

$ Объясните подробнее

Промежуточные ступени

$ \ frac {1} {2} \ cdot \ frac {1} {2} u ^ 2 $

Умножить $ \ frac {1} {2} $ на $ \ frac {1} {2} $

$ \ frac {1} {4} u ^ 2 $

7

Применяя правило степени для интегрирования, $ \ displaystyle \ int x ^ n dx = \ frac {x ^ {n + 1}} {n + 1} $, где $ n $ представляет собой число или постоянную функцию, в данном случае $ n = 1 $

$ \ frac {1} {4} u ^ 2 $

Объясните подробнее

Промежуточные ступени

$ \ frac {1} {4} \ left (x ^ 2-3 \ right) ^ 2 $

8

Замените $ u $ значением, которое мы присвоили ему в начале: $ x ^ 2-3 $

$ \ frac {1} {4} \ left (x ^ 2-3 \ right) ^ 2 $

Объясните подробнее 9

Поскольку интеграл, который мы решаем, является неопределенным интегралом, когда мы закончим интегрирование, мы должны добавить константу интегрирования $ C $

$ \ frac {1} {4} \ left (x ^ 2-3 \ right) ^ 2 + C_0 $

Окончательный ответ

$ \ frac {1} {4} \ left (x ^ 2-3 \ right) ^ 2 + C_0 $

Калькулятор и решатель тригонометрических интегралов

1

Решенный пример тригонометрических интегралов

$ \ int \ sin \ left (x \ right) ^ 4dx $

Промежуточные ступени

$ \ int \ left (1- \ cos \ left (x \ right) ^ 2 \ right) ^ {\ frac {4} {2}} dx $

$ \ int \ left (1- \ cos \ left (x \ right) ^ 2 \ right) ^ {2} dx $

2

Примените формулу: $ \ sin \ left (x \ right) ^ n $$ = \ left (1- \ cos \ left (x \ right) ^ 2 \ right) ^ {\ frac {n} {2}} $, где $ n = 4 $

$ \ int \ left (1- \ cos \ left (x \ right) ^ 2 \ right) ^ {2} dx $

Объясните подробнее

Промежуточные ступени

$ \ int \ left (1 ^ 2 + 2 \ cdot 1 \ left (-1 \ right) \ cos \ left (x \ right) ^ 2 + \ left (- \ cos \ left (x \ right) ^ 2 \ right) ^ 2 \ right) dx $

$ \ int \ left (1 ^ 2 + 2 \ left (-1 \ right) \ cos \ left (x \ right) ^ 2 + \ left (- \ cos \ left (x \ right) ^ 2 \ right) ^ 2 \ вправо) dx $

Вычислить степень $ 1 ^ 2 $

$ \ int \ left (1 + 2 \ left (-1 \ right) \ cos \ left (x \ right) ^ 2 + \ left (- \ cos \ left (x \ right) ^ 2 \ right) ^ 2 \ справа) dx $

$ \ int \ left (1-2 \ cos \ left (x \ right) ^ 2 + \ left (- \ cos \ left (x \ right) ^ 2 \ right) ^ 2 \ right) dx $

$ \ int \ left (1-2 \ cos \ left (x \ right) ^ 2 + \ left (- \ cos \ left (x \ right) ^ 2 \ right) ^ 2 \ right) dx $

Упростить $ \ left (- \ cos \ left (x \ right) ^ 2 \ right) ^ 2 $

$ \ int \ left (1-2 \ cos \ left (x \ right) ^ 2 + \ cos \ left (x \ right) ^ {4} \ right) dx $

3

Развернуть $ \ left (1- \ cos \ left (x \ right) ^ 2 \ right) ^ {2} $

$ \ int \ left (1-2 \ cos \ left (x \ right) ^ 2 + \ cos \ left (x \ right) ^ {4} \ right) dx $

Объясните подробнее 4

Раскрыть интеграл $ \ int \ left (1-2 \ cos \ left (x \ right) ^ 2 + \ cos \ left (x \ right) ^ {4} \ right) dx $

$ \ int1dx + \ int-2 \ cos \ left (x \ right) ^ 2dx + \ int \ cos \ left (x \ right) ^ {4} dx $

Промежуточные ступени

Интеграл от константы равен константе, умноженной на переменную интеграла

$ x

$ 5

Интеграл $ \ int1dx $ дает: $ x $

$ x

$ Объясните подробнее 6

Умножьте единичный член $ -2 $ на каждый член

$ \ frac {1} {2} \ cdot -2x + \ frac {1} {4} \ cdot -2 \ sin \ left (2x \ right) $

Промежуточные ступени

Интеграл постоянной функции равен постоянной, умноженной на интеграл функции

$ -2 \ int \ cos \ left (x \ right) ^ 2dx $

Примените формулу: $ \ int \ cos \ left (x \ right) ^ 2dx $$ = \ frac {1} {2} x + \ frac {1} {4} \ sin \ left (2x \ right) $

$ -2 \ left (\ frac {1} {2} x + \ frac {1} {4} \ sin \ left (2x \ right) \ right) $

7

Интеграл $ \ int-2 \ cos \ left (x \ right) ^ 2dx $ дает: $ -x- \ frac {1} {2} \ sin \ left (2x \ right) $

$ -x- \ frac {1} {2} \ sin \ left (2x \ right) $

Объясните подробнее 8

Соберите результаты всех интегралов

$ x- \ frac {1} {2} \ sin \ left (2x \ right) -x + \ int \ cos \ left (x \ right) ^ {4} dx $

9

Вычитая x $ и x $

$ — \ frac {1} {2} \ sin \ left (2x \ right) + \ int \ cos \ left (x \ right) ^ {4} dx $

Промежуточные ступени

Примените формулу: $ \ int \ cos \ left (x \ right) ^ ndx $$ = \ frac {\ cos \ left (x \ right) ^ {\ left (n-1 \ right)} \ sin \ left (x \ right)} {n} + \ frac {n-1} {n} \ int \ cos \ left (x \ right) ^ {\ left (n-2 \ right)} dx $, где $ n = 4 $

$ \ frac {\ cos \ left (x \ right) ^ {3} \ sin \ left (x \ right)} {4} + \ frac {3} {4} \ int \ cos \ left (x \ right ) ^ {2} dx $

Примените формулу: $ \ int \ cos \ left (x \ right) ^ 2dx $$ = \ frac {1} {2} x + \ frac {1} {4} \ sin \ left (2x \ right) $

$ \ frac {\ cos \ left (x \ right) ^ {3} \ sin \ left (x \ right)} {4} + \ frac {3} {4} \ left (\ frac {1} {2 } x + \ frac {1} {4} \ sin \ left (2x \ right) \ right) $

10

Интеграл $ \ int \ cos \ left (x \ right) ^ {4} dx $ дает: $ \ frac {\ cos \ left (x \ right) ^ {3} \ sin \ left (x \ right) } {4} + \ frac {3} {4} \ left (\ frac {1} {2} x + \ frac {1} {4} \ sin \ left (2x \ right) \ right) $

$ \ frac {\ cos \ left (x \ right) ^ {3} \ sin \ left (x \ right)} {4} + \ frac {3} {4} \ left (\ frac {1} {2 } x + \ frac {1} {4} \ sin \ left (2x \ right) \ right) $

Объясните подробнее 11

Соберите результаты всех интегралов

$ — \ frac {1} {2} \ sin \ left (2x \ right) + \ frac {3} {4} \ left (\ frac {1} {2} x + \ frac {1} {4} \ sin \ left (2x \ right) \ right) + \ frac {\ cos \ left (x \ right) ^ {3} \ sin \ left (x \ right)} {4} $

12

Поскольку интеграл, который мы решаем, является неопределенным интегралом, когда мы закончим интегрирование, мы должны добавить константу интегрирования $ C $

$ — \ frac {1} {2} \ sin \ left (2x \ right) + \ frac {3} {4} \ left (\ frac {1} {2} x + \ frac {1} {4} \ sin \ left (2x \ right) \ right) + \ frac {\ cos \ left (x \ right) ^ {3} \ sin \ left (x \ right)} {4} + C_0 $

Промежуточные ступени

Найдите произведение $ \ frac {3} {4} \ left (\ frac {1} {2} x + \ frac {1} {4} \ sin \ left (2x \ right) \ right) $

$ — \ frac {1} {2} \ sin \ left (2x \ right) + \ frac {3} {4} \ cdot \ frac {1} {2} x + \ frac {3} {4} \ cdot \ frac {1} {4} \ sin \ left (2x \ right) + \ frac {\ cos \ left (x \ right) ^ {3} \ sin \ left (x \ right)} {4} + C_0 $

Умножить $ \ frac {3} {4} $ на $ \ frac {1} {2} $

$ — \ frac {1} {2} \ sin \ left (2x \ right) + \ frac {3} {8} x + \ frac {3} {4} \ cdot \ frac {1} {4} \ sin \ left (2x \ right) + \ frac {\ cos \ left (x \ right) ^ {3} \ sin \ left (x \ right)} {4} + C_0 $

Умножить $ \ frac {3} {4} $ на $ \ frac {1} {4} $

$ — \ frac {1} {2} \ sin \ left (2x \ right) + \ frac {3} {8} x + \ frac {3} {16} \ sin \ left (2x \ right) + \ frac {\ cos \ left (x \ right) ^ {3} \ sin \ left (x \ right)} {4} + C_0 $

Объединение одинаковых терминов $ — \ frac {1} {2} \ sin \ left (2x \ right) $ и $ \ frac {3} {16} \ sin \ left (2x \ right) $

$ — \ frac {5} {16} \ sin \ left (2x \ right) + \ frac {3} {8} x + \ frac {\ cos \ left (x \ right) ^ {3} \ sin \ left (x \ right)} {4} + C_0

долл. {3} \ sin \ left ( x \ right)} {4} + C_0 $

Калькулятор определенного интеграла в SolveMyMath.com

Список справки по математике — — Математическая справка Быстрый переход — Научный онлайн-калькулятор — Общая математика — Калькулятор фракцийКалькулятор процентовКалькулятор квадратного корняКалькулятор факторингаУпрощающие выраженияКалькулятор делителейКалькулятор факторингаКалькулятор наибольшего общего множителя (GCF) Калькулятор последнего общего множителя (LCM) Калькулятор простых чисел и средство проверкиПроверка идеального числа — Валидатор квадратов — Алгебра и комбинаторики -уравнения SolverQuadratic Уравнение SolverSystem уравнений SolverCombinatoricsPermutationsPolynomialsPolynomials — Сложение и SubtractionPolynomials — Умножение и DivisionPolynomials — Дифференциация и IntegrationPolynomials — Паритет калькулятор (нечетный, четный, нет) Полиномы — Корень FinderPolynomials — Сформировать из RootsMatricesMatrix Calculator- определителя, обратная матрица CalculatorMatrix — Сложение, вычитание, умножение, исчисление, интегральный калькулятор, калькулятор определенного интеграла, калькулятор производной, числовая производная КалькуляторКалькулятор пределов Отклонение CalculatorVariance CalculatorKurtosis CalculatorSkewness Calculator- Описательная статистика Калькуляторы -Матрица Центральный момент CalculatorCorrelation Матрица CalculatorCovariance Матрица CalculatorMatrix Среднее геометрическое CalculatorMatrix гармоническое среднее CalculatorMatrix межквартильный Диапазон CalculatorMatrix Эксцесс CalculatorMatrix нецентральные Момент CalculatorMatrix Среднее CalculatorMatrix Максимальная CalculatorMatrix Минимальная CalculatorMatrix Медиана CalculatorMatrix Среднее отклонение CalculatorMatrix Среднее отклонение CalculatorMatrix Quantile Калькулятор Калькулятор асимметрии квартиля матрицы Калькуляторы Калькуляторы распределения Вейбулла — Калькуляторы дискретных распределений — Калькуляторы биномиального распределения

Двойной интеграл функции калькулятора

Поиск инструмента

Двойной интеграл

Инструмент для вычисления двойного интеграла.Вычисление двух последовательных интегралов позволяет вычислить площади для функций с двумя переменными для интегрирования на заданном интервале.

Результаты

Двойной интеграл — dCode

Тег (и): функции, символьные вычисления

Поделиться

dCode и другие

dCode является бесплатным, а его инструменты являются ценным подспорьем в играх, математике, геокешинге, головоломках и задачах, которые нужно решать каждый день!
Предложение? обратная связь? Жук ? идея ? Запись в dCode !

Калькулятор двойного интеграла

Калькулятор интегралов в 2D-области

Ответы на вопросы (FAQ)

Как вычислить двойной интеграл?

Вычисление двойного интеграла эквивалентно вычислению двух последовательных интегралов, от самого внутреннего до самого внешнего.{y} (x + y) \ text {d} x \ right) \ text {d} y $$

Как интегрировать с полярными координатами?

Полярные координаты полезны для вычисления площади путем двойного интегрирования путем изменения переменной:

$$ \ iint f (x, y) \ text {d} x \ text {d} y = \ iint (r \ cos (\ theta), r \ sin (\ theta)) r \ text {d} г \ текст {d} \ theta $$

Задайте новый вопрос

Исходный код

dCode сохраняет за собой право собственности на исходный код онлайн-инструмента Double Integral. За исключением явной лицензии с открытым исходным кодом (обозначенной CC / Creative Commons / бесплатно), любого алгоритма двойного интеграла, апплета или фрагмента (конвертер, решатель, шифрование / дешифрование, кодирование / декодирование, шифрование / дешифрование, переводчик) или любого двойного интеграла ‘функция (вычислить, преобразовать, решить, расшифровать / зашифровать, расшифровать / зашифровать, декодировать / закодировать, перевести), написанная на любом информатическом языке (Python, Java, PHP, C #, Javascript, Matlab и т. д.)) и никакая загрузка данных, скрипт, копипаст или доступ к API для Double Integral не будут бесплатными, то же самое для автономного использования на ПК, планшете, iPhone или Android! dCode распространяется бесплатно и онлайн.

Нужна помощь?

Пожалуйста, посетите наше сообщество dCode Discord для получения помощи!
NB: для зашифрованных сообщений проверьте наш автоматический идентификатор шифра!

Вопросы / комментарии

Сводка

Похожие страницы

Поддержка

Форум / Справка

Ключевые слова

интеграл, двойной, функция, интегрирование, интегрировать, исчисление, площадь, примитив

Ссылки


Источник: https: // www.dcode.fr/double-integral

© 2021 dCode — Идеальный «инструментарий» для решения любых игр / загадок / геокэшинга / CTF.

Проблемы с математикой? Получите мгновенные результаты!

Проблемы с математикой? Разочарование в домашнем задании? Что, если бы вы могли получить мгновенные результаты и изучить пошаговый процесс одним нажатием кнопки? Звучит слишком хорошо, чтобы быть правдой.

Войдите в Photomath, самый умный в мире калькулятор с камерой и помощник по математике.

Просто наведите камеру на математическую задачу.Затем Photomath покажет результат с подробными пошаговыми инструкциями. Вы также можете редактировать с помощью интеллектуального калькулятора, а также изучать графики.

Photomath предоставляет:

  • Калькулятор камеры
  • Распознавание рукописного ввода
  • Пошаговая инструкция
  • Умный калькулятор
  • Графики

Photomath может решить так много проблем, что делает его простым в использовании для любого возраста! Photomath поддерживает арифметику, целые числа, дроби, десятичные числа, корни, алгебраические выражения, линейные уравнения / неравенства, квадратные уравнения / неравенства, абсолютные уравнения / неравенства, системы уравнений, логарифмы, тригонометрию, экспоненциальные и логарифмические функции, производные и интегралы.

Вы только посмотрите на эти обзоры!

«Я так благодарен. Кто бы это ни читал, знайте, что тот, кто создал это приложение, должен заработать награду; они гении. Итак, если вы когда-либо скептически относились к своей математике или у вас возникли проблемы, просто перейдите в Photomath. И это тоже не обман, это фактически объясняет проблему шаг за шагом, чтобы помочь вам … СПАСИБО, ФОТОМАТ, ВЫ СОХРАНИЛИ МОЮ ЖИЗНЬ !!!!!!!! » (Оценка 5 звёзд)

Пингвекула, рецензент магазина приложений

« Есть причина, по которой вас нет.1 место в топе бесплатного образования. Это очень полезно и хорошо объясняет решение. Так держать! Надеюсь, это приложение не потребует никаких покупок. Большое спасибо за это приложение. Отличная работа!» (Оценка 5 звёзд)

— Анжелика Джойс Лопес, обозреватель Google Play

Попробуйте сами или посмотрите это интерактивное видео.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2015-2019 © Игровая комната «Волшебный лес», Челябинск
тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск