Основные понятия физики — шпаргалки. Основные понятия физики
Определите, известные Вам из курса физики, характеристики движения, используемые в теоретической механике:
1. прямолинейное движение
2. криволинейное движение
3. скоростное движение
4. относительное движение
5. реактивное движение
6. железнодорожное движение
Вариант 8.
Задача №1. Раскрыть следующие понятия: 1. Виды деформаций тела. Коэффициент жёсткости 2. Определение механической работы. 3. Звуковые волны. Условия, необходимые для возникновения и существования звука.
Задача №2. Раскрыть следующее понятие: Инерциальная система отсчета.
Задача №3.
Определите, от какого особого свойства всякого тела, в соответствие с законами классической механики И. Ньютона, зависит ускорение, которое получает это тело при его взаимодействии с другим телом.
1. От его скорости
2. От его инертности
3. От его температуры
Вариант 9.
Задача №1. Раскрыть следующие понятия: 1. Понятие импульса. Закон сохранения импульса. 2. Мощность. Определение и физическая формула. 3. Основные понятия теории механических волн: Длина волны.
Задача №2. Раскрыть следующее понятие: Первый закон Ньютона – закон инерциальных систем.
Задача №3.
Полная механическая энергия, т.е. сумма потенциальной и кинетической энергии тела, остается постоянной при определенных физических условиях. При каких?
1. На тело действует сила упругости
2. На тело действует сила тяготения
3. На тело не действует сила трения (она отсутствует)
4. На тело не действует сила гравитации
5. На тело действует сила скольжения
6. На тело действует сила упрямости.
Вариант 10.
Задача №1. Раскрыть следующие понятия: 1. Реактивное движение. Формула Циолковского для определения максимальной скорости ракеты. 2. Кинетическая энергия. Физическая формула кинетической энергии. 3. Основные понятия теории механических волн. Луч волны.
Задача №2. Раскрыть следующее понятие: Принцип суперпозиции сил в теории И. Ньютона.
Задача №3.
Этой физической величиной (или единицей) измеряется электрический потенциал, разность потенциалов, электрического напряжения и электродвижущей силы.
При этом, разность потенциалов между двумя точками равна 1 вольту , если для перемещения заряда такой же величины из одной точки в другую над ним надо совершить работу такой же величины (по абсолютному значению).
В каких единицах измеряется энергия, выделяемая при совершении такой работы?
1. 1 Джоуль
5. 1 Ньютон
6. 1 Эйнштейн
Письменное Задание №4 (по итогам декабря)
Вариант 1.
Задача №1. Раскрыть следующие понятия: 1. Открытия Кулона и Гальвани.
2. Электромагнитная индукция. 3. Второй закон термодинамики.
Задача №2. Раскрыть следующее понятие: Отличительные признаки твердых тел, жидкостей и газов.
Если и стоит знать хотя бы одну научную теорию, то пусть она объяснит, как вселенная достигла нынешнего своего состояния (или не достигла, ). На основании исследований, проведенных Эдвином Хабблом, Жоржем Леметром и Альбертом Эйнштейном, теория Большого Взрыва постулирует, что Вселенная началась 14 миллиардов лет назад с массивного расширения. В какой-то момент Вселенная была заключена в одной точке и охватывала всю материю нынешней вселенной. Это движение продолжается и по сей день, а сама вселенная постоянно расширяется.
Теория Большого Взрыва получила широкую поддержку в научных кругах после того, как Арно Пензиас и Роберт Уилсон обнаружили космический микроволновый фон в 1965 году. С помощью радиотелескопов два астронома обнаружили космический шум, или статику, которая не рассеивается со временем. В сотрудничестве с принстонским исследователем Робертом Дике, пара ученых подтвердила гипотезу Дике о том, что первоначальный Большой Взрыв оставил после себя излучение низкого уровня, которое можно обнаружить по всей Вселенной.
Закон космического расширения Хаббла
Давайте на секунду задержим Эдвина Хаббла. В то время как в 1920-х годах бушевала Великая депрессия, Хаббл выступал с новаторским астрономическим исследованием. Он не только доказал, что были и другие галактики помимо Млечного Пути, но также обнаружил, что эти галактики несутся прочь от нашей собственной, и это движение он назвал разбеганием.
Для того, чтобы количественно оценить скорость этого галактического движения, Хаббл предложил закон космического расширения, он же закон Хаббла. Уравнение выглядит так: скорость = H0 x расстояние. Скорость представляет собой скорость разбегания галактик; H0 — это постоянная Хаббла, или параметр, который показывает скорость расширения вселенной; расстояние — это расстояние одной галактики до той, с которой происходит сравнение.
Постоянная Хаббла рассчитывалась при разных значениях в течение достаточно долгого времени, однако в настоящее время она замерла на точке 70 км/с на мегапарсек. Для нас это не так важно. Важно то, что закон представляет собой удобный способ измерения скорости галактики относительно нашей собственной. И еще важно то, что закон установил, что Вселенна
Тепловые явления. Молекулярная физика. Введение
Механическое движение. В VIII классе подробно изучалась механическая форма движения материи, т. е. перемещение в пространстве одних тел относительно других с течением времени. То, что все тела состоят из атомов или молекул, не принималось во внимание. Тела рассматривались как сплошные, лишенные внутренней структуры.
Исследование свойств тел не входит в задачу механики. Ее цель – определение положения тел в пространстве и их скоростей в любой момент времени в зависимости от сил взаимодействий между ними при заданных начальных положениях и скоростях тел.
Тепловое движение. Атомы и молекулы вещества, как вам известно из курса физики VII класса, совершают беспорядочное (хаотическое) движение, называемое тепловым движением. В разделе «Тепловые явления. Молекулярная физика» в IX классе мы будем изучать основные закономерности тепловой формы движения материи.
Движение молекул беспорядочно в связи с тем, что число их в телах, которые нас окружают, необозримо велико и молекулы взаимодействуют друг с другом. Понятие теплового движения не применимо к системам из нескольких молекул. Хаотическое движение огромного числа молекул качественно отличается от упорядоченного механического перемещения отдельных тел. Именно поэтому оно представляет собой особую форму движения материи, обладающую специфическими свойствами.
Тепловое движение обуславливает внутренние свойства тел, и его изучение позволяет понять многие физические процессы, протекающие в телах.
Макроскопические тела. В физике тела, состоящие из очень большого числа атомов или молекул, называют макроскопическими. Размеры макроскопических тел во много раз превышают размеры атомов. Газ в баллоне, вода в стакане, песчинка, камень, стальной стержень, земной шар – все это примеры макроскопических тел (рис. 1).
Мы будем рассматривать процессы в макроскопических телах.
Тепловые явления. Тепловое движение молекул зависит от температуры. Об этом говорилось в курсах физики VI и VII классов. Следовательно, изучая тепловое движение молекул, мы тем самым будем изучать явления, зависящие от температуры тел. При нагревании происходят переходы вещества из одного состояния в другое: твердые тела превращаются в жидкости, а жидкости – в газы. При охлаждении, наоборот, газы превращаются в жидкости, а жидкости – в твердые тела.
Эти и многие другие явления, обусловленные хаотическим движением атомов и молекул, называют тепловыми явлениями.
Значение тепловых явлений. Тепловые явления играют огромную роль в жизни людей, животных и растений. Изменение температуры воздуха на 20-30° C при смене времени года меняет все вокруг нас. С наступлением весны природа пробуждается, леса одеваются листвой, зеленеют луга. Зимой же богатые летние краски заменяются однообразным белым фоном, жизнь растений и многих насекомых замирает. При изменении температуры нашего тела всего лишь на один градус мы уже чувствуем недомогание.
Тепловые явления интересовали людей с древнейших времен. Люди добились относительной независимости от окружающих условий после того, как научились добывать и поддерживать огонь. Это было одним из величайших открытий, сделанных человеком.
Изменение температуры оказывает влияние на все свойства тел. Так, при нагревании или охлаждении изменяются размеры твердых тел и объем жидкостей. Значительно меняются также их механические свойства, например упругость. Кусок резиновой трубки не пострадает, если ударить по нему молотком. Но при охлаждении до температуры ниже –100° C резина становится хрупкой, как стекло. От легкого удара резиновая трубка разбивается на мелкие кусочки. Лишь после нагревания резина вновь обретет свои упругие свойства.
Все перечисленные выше и многие другие тепловые явления подчиняются определенным законам. Эти законы также точны и надежны, как и законы механики, но отличаются от них по содержанию и форме. Открытие законов, которым подчиняются тепловые явления, позволяет с максимальной пользой применять эти явления на практике, в технике. Современные тепловые двигатели, установки для сжижения газов, холодильные аппараты и другие устройства конструируют на основе знания этих законов.
Молекулярно-кинетическая теория. Теория, объясняющая тепловые явления в макроскопических телах и внутренние свойства этих тел на основе представлений о том, что все тела состоят из отдельных хаотически движущихся частиц
, носит название молекулярно-кинетической теории. В теории ставится задача связать закономерности поведения отдельных молекул с величинами, характеризующими свойства макроскопических тел.Еще философы древности догадывались о том, что теплота – это вид внутреннего движения частиц, слагающих тела. Большой вклад в развитие молекулярно-кинетической теории был сделан великим русским ученым М. В. Ломоносовым. Ломоносов рассматривал теплоту как вращательное движение частиц вещества. С помощью своей теории он дал вполне правильное в общих чертах объяснение явлений плавления, испарения и теплопроводности. Им был сделан вывод о существовании «наибольшей или последней степени холода», когда движение частичек вещества прекращается.
Ломоносов Михаил Васильевич (1711 – 1765) – великий русский ученый, энциклопедист, поэт и общественный деятель, основатель Московского университета, носящего его имя. Пушкин назвал М. В. Ломоносова «первым русским университетом». М. В. Ломоносову принадлежат выдающиеся труды по физике, химии, горному делу и металлургии. Он развил молекулярно-кинетическую теорию тепла, в его работах предвосхищены законы сохранения массы и энергии. М. В. Ломоносов создал фундаментальные труды по истории русского народа, он является основоположником современной русской грамматики.
Однако трудности построения молекулярно-кинетической теории привели к тому, что окончательную победу она одержала лишь в начале XX в. Дело в том, что число молекул в макроскопических телах огромно и проследить за движением каждой молекулы невозможно. Необходимо научиться на основе законов движения отдельных молекул находить тот средний результат, к которому приводит их совокупное движение. Именно этот средний результат движения всех молекул определяет тепловые явления в макроскопических телах.
Термодинамика. Вещество обладает многими свойствами, которые можно изучать, не углубляясь в его строение. Тепловые явления можно описывать с помощью величин, регистрируемых такими приборами, как манометр и термометр, которые не реагируют на воздействие отдельных молекул.
В середине XIX в. после открытия закона сохранения энергии была построена первая научная теория тепловых процессов – термодинамика. Термодинамика – это теория тепловых явлений, в которой не учитывается молекулярное строение тел. Она возникла при изучении оптимальных условий использования теплоты для совершения работы задолго до того, как молекулярно-кинетическая теория получила всеобщее признание.
Термодинамика и статистическая механика. В настоящее время в науке и в технике используют как термодинамику, так и молекулярно-кинетическую теорию, называемую также статистической механикой. Эти теории взаимно дополняют друг друга.
Все содержание термодинамики заключается в нескольких утверждениях, называемых законами термодинамики. Эти законы установлены опытным путем. Они справедливы для всех веществ, независимо от их внутреннего строения. Статистическая механика – более глубокая, но зато и более сложная теория тепловых явлений. С ее помощью можно обосновать теоретически все законы термодинамики.
Вначале мы остановимся на основных положениях молекулярно-кинетической теории, известных нам частично из курса физики VI и VII классов. Затем познакомимся с количественной молекулярно-кинетической теорией простейшей системы – газа сравнительно небольшой плотности.
тексты с описанием разл. физич явлений или процесс.
№ 4. Текст по разделу «Электродинамика»
Молния
Наблюдали ли вы молнию? Красивое и небезопасное явление природы! Уже в середине XIII в. ученые обратили внимание на внешнее сходство молнии и электрической искры. Высказывалось предположение, что молния — это электрическая искра. Когда же она возникает? Соберем установку: к двум шарикам, закрепленным на изолирующих штативах и находящимися на некотором расстоянии друг от друга, подключим батарею конденсаторов. Начнем заряжать конденсаторы от электрической машины.
По мере заряжения конденсатора увеличивается разность потенциалов между электродами, а следовательно, будет увеличиваться напряженность поля в газе. Пока напряженность поля невелика, между шариками нельзя заметить никаких изменений. Однако при достаточной напряженности поля (30 000 В/см) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и расширяется, отчего возникают звуковые волны, и мы слышим характерный треск.
Опыты с атмосферным электричеством, проводимые М.В.Ломоносовым и Франклином независимо друг от друга, доказали, что грозовые облака несут в себе большие электрические заряды и что молния — это гигантская искра, ничем (кроме размеров) не отличающаяся от искры между шариками.
Ответьте на вопросы:
- Зачем в описанном опыте применяли батарею конденсаторов?
- К какому виду разрядов можно отнести молнию?
- Когда между облаками проскакивает молния?
- Может ли возникнуть молния между облаками и Землей? Объясните.
№ 8. Текст по разделу «Электродинамика»
Огни святого Эльма
В природе наблюдается интересное явление. Иногда в тропическую ночь на мачтах и реях кораблей появляются кисточки холодного пламени. Эти огни известны очень давно. Их видели Колумб и Магеллан, о них писал даже Юлий Цезарь, который однажды даже видел такое свечение на копьях своих солдат во время ночного похода через горы. Не составляет большого труда самим получить такое свечение. Если хорошо натереть лист оргстекла сухой тканью и после этого к листу поднести полураскрытые ножницы остриями к листу, то в затемнённой комнате можно увидеть, как на остриях ножниц появляются дрожащие пучки нитей, светящиеся лиловатым пламенем. В тишине можно услышать лёгкое шипение или жужжание. Если вместо ножниц к листу оргстекла поднести спичку, то она не зажжётся, хотя огонь будет плясать прямо на головке спички. Возникшее свечение холодное. Такое же свечение часто появлялось на шпиле церкви святого Эльма в одном из городов Франции и считалось доброй приметой. Подобное свечение получило название огней святого Эльма.
Ответьте на вопросы:
- Какое физическое явление лежит в основе появления огней Св. Эльма?
- Почему оно не возникает на плоской металлической крыше?
- Опасно ли находиться вблизи этого свечения?
- На каком физическом приборе можно получить огни Св. Эльма?
№ 16. Текст по разделу «Молекулярная физика»
Пузыри
Вам наверняка приходилось наблюдать за пузырями, которые образуются на поверхности пенных растворов, при выдувании из трубочки специальных растворов. Какой они формы? Долго они живут или быстро исчезают? Большие они или маленькие?
Ведь вы наверняка наблюдали, как иголка или, например, скрепка или лезвие может держаться на поверхности воды. Надо сделать это – только очень осторожно: положить эти предметы строго горизонтально, стоит только опускать эти предметы наклонно, как они сразу идут ко дну. Значит, в первом случае что-то поддерживало их, но что?
Молекулы, расположенные не очень близко друг к другу, притягиваются. В твёрдых телах межмолекулярные силы притяжения настолько велики, что надо приложить очень большое усилие для расщепления молекул и разделения твёрдого предмета на части.
В жидкостях притяжение не настолько сильное, но оно существует и вполне ощутимо. Наблюдая капли росы, вы замечали их округлую форму? А капля воды, растекаясь по ровной поверхности, образует круг, а в центре приподнятый холмик. Несомненно, существует какое-то притяжение между молекулами воды, которое заставляет их собираться в единое целое. Силы притяжения сближают молекулы, находящиеся на внешней поверхности, как можно ближе к центру капли. В результате поверхность служит как бы плёнкой, стягивающей всю массу жидкости. Говорят, что жидкость обладает поверхностным натяжением.
Пузыри тоже образуются за счёт сил поверхностного натяжения. Добавление в воду моющих средств, например мыла, ослабляет силы притяжения. На поверхности такого раствора уже практически невозможно удержать лёгкие предметы.
Пусть сначала поверхностное натяжение велико, как в случае чистой водой. Наружный слой воды давит на воздух и сжимает его. Сжатый воздух пытается прорваться через плёнку и, в конце концов, прорывает её в каком-либо слабом месте – пузырь лопается.
Ответьте на вопросы:
- Каким образом некоторые насекомые, например stenus, удерживаются на воде и даже используют силы поверхностного натяжения для того, чтобы двигаться?
- Почему пузырь всегда имеет шарообразную форму?
- Зависит ли сила поверхностного натяжения от температуры?
- Как можно измерить силу поверхностного натяжения?
№ 17. Текст по разделу «Механика»
Резонанс
Вы наблюдали, что вращении велосипедного колеса, начиная с некоторой скорости вращения, невозможно различить спицы колеса. они стали как бы шире и сливаются воедино. представим себе, что между двумя брусочками закрепим четыре упругие гибкие пластины разной длины (пластинки можно нарубить из металлических линеек). на концах пластинок имеются, сделанные из легкой жести, белые флажки. пластины могут совершать упругие колебания. для своих наблюдений прибор укрепим на центробежной машине (рис.)
Начнем плавно вращать рукоятку центробежной машины, медленно и равномерно увеличивая ее скорость: При этом пластинки нашего прибора испытывают периодические толчки, частота которых равна числу оборотов машины. Наблюдаем, что при постепенном увеличении скорости вращения визуальная ширина закрепленных пластин поочередно увеличивается. Чем больше частота вращения, тем у более короткой пластинке наступает эффект увеличении полоски флажка и наоборот. Увеличение ширины полоски флажка можно объяснить тем, что у пластинок наблюдается максимальное отклонение от положения равновесия при определенной частоте вращения. Когда собственная частота пластинки, определяемая ее параметрами, совпадает с частотой вращения центробежной машины, наступает явление резонанса.
Ответьте на вопросы:
- За счет чего можно добиться гибкости пластин?
- Что называется резонансом?
- Почему в резонанс вступает короткая пластинка при большей частоте, а длинная — при меньшей?
- Приведите примеры полезного применения резонанса.
№ 20. Текст по разделу «Молекулярная физика»
Броуновское движение
В своей повседневной жизни мы часто сталкиваемся с явлением диффузии — проникновением молекул одного вещества среди молекул другого (засолка продуктов, окраска тканей и т.д.). Причем чем выше температура веществ, тем процесс диффузии происходит быстрее. В 1827 г. английский ученый Р. Броун впервые наблюдал это явление, рассматривая в микроскоп взвешенные в воде споры плауна. Броуновское движение можно наблюдать и в газе. Вот как описывает броуновское движение немецкий физик Р. Поль. «Немногие явления способны так увлечь наблюдателя, как броуновское движение. Здесь наблюдателю позволяется заглянуть за кулисы того, что совершается в природе. Перед нм открывается новый мир — безостановочной сутолока огромного числа частиц. Быстро пролетают в поле зрения микроскопа мельчайшие частицы, почти мгновенно меняют свое направление движения. Большие частицы практически толкутся на месте. Их выступы явно показывают вращение частиц вокруг своей оси, которая постоянно меняет свое направление в пространстве. Нигде нет и следа системы или порядка. Господство слепого случая — вот какое сильное, подавляющие впечатление производит эта картина на наблюдателя». Броуновским движением является дрожание стрелок чувствительных измерительных приборов, которое происходит из-за теплового движения атомов деталей приборов и окружающей среды. Молекулярно-кинетическая теория броуновского движения была создана А. Эйнштейном в 1905 г.
Ответьте на вопросы:
- Какова причина броуновского движения?
- Как влияет температура вещества на броуновское движение?
- Наблюдается ли броуновское движение в твердых телах?
- Кто окончательно построил теорию движения и экспериментально ее подтвердил?
№21. Текст по теме « Квантовая физика и элементы астрофизики»
Какие они, звезды?
Важнейшим источником информации о большинстве небесных объектов является их излучение. Наиболее ценные и разнообразные сведения о телах позволяет получить спектральный анализ их излучения. Этим методом можно установить качественный и количественный химический состав светила, его температуру, наличие магнитного поля, скорость движения по лучу зрения и многое другое. Спектральный анализ основан на явлении дисперсии света. Известно, что свет распространяется в виде электромагнитных волн. Причем каждому цвету, входящему в спектр света, соответствует определенная длина электромагнитной волны. Длина волны света увеличивается от фиолетовых лучей до красных приблизительно от 0,4 до 0,7 мкм. За фиолетовыми лучами в спектре лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку. Еще меньшую длину волны имеют рентгеновские лучи. За красными лучами находится область инфракрасных лучей. Они невидимы, но воспринимаются приемниками инфракрасного излучения, например, специальными фотопластинками.
Для получения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектры рассматривают, а спектрографом его фотографируют. Для спектрального анализа различных видов излучения в астрофизике используют и более сложные приборы. Достаточно протяженные плотные газовые массы звезд дают непрерывные сплошные спектры в виде радужных полосок. Каждый газ излучает свет строго определенных длин волн и дает характерный для данного химического элемента линейчатый спектр. Наблюдения показывают, что звезды порой меняют свой блеск. Изменения в состоянии газа дают изменения и в спектре данного газа. По уже составленным таблицам с перечнем линий для каждого газа и с указанием яркости линии определяют количественный и качественный состав небесных светил.
Ответьте на вопросы к тексту:
- Как определяется химический состав звезд?
- Как определяется качественный состав звезд?
- Можно ли считать качественный анализ по спектрам излучения точным?
Чем отличается спектроскоп от спектрографа?
№ 22. Текст по разделу «Механика»
Звуки
Задумайтесь о происхождении звуков — вот стукнула дверь, ударили кулаком по столу, проехала машина, стучат каблучки по полу. Звук всегда вызывается каким-либо механическим движением. Доски, стол, стены, большинство других предметов от толчков не приходят в видимое движение, если только они не очень сильны. Но они способны несколько прогибаться, и в результате возникает их легкое движение вперед-назад (вибрация). Хорошо иллюстрирует природу колебаний туго натянутая струна или резиновый шнур. Предложим, что мы оттянули середину струны гитары из нормального положения. Струна натягивается, и, когда мы ее отпустим, она вернется назад, но в момент возвращения в свое нормальное положение она будет двигаться. Продолжая движение, постепенно замедляясь, она остановится, но уже по другую сторону от своего первоначального положения. Теперь струна снова натянута и должна двигаться назад. Со временем, после многих таких колебаний струна вернется в состояние покоя.
Подобным способом происходят колебания твердых упругих предметов, если какой-то участок тела толкнуть и вывести из нормального состояния. Колебания одной части предмета оказывают влияние на остальные части. Колеблющиеся участки тянут и толкают соседние, а те тоже начинают колебаться. В свою очередь, они приводят в движение окружающие их участки и т.д. Таким образом, колебания, созданные в одной точке тела, передаются другим его точкам внутри сферы с центром в источнике колебаний. Так распространяется звуковая волна в твердом материале.
Ответьте на вопросы:
- Одинакова ли скорость распространения звука в различных твердых материалах?
- Только ли в твердых материалах распространяется звук?
- Можно ли на Земле услышать гул двигателя космического корабля, пролетающего в открытом космосе?
- Получите звуковые колебания на одном из физических приборов?
№ 23. Текст по разделу «Молекулярная физика»
О природе теплоты
Задумывались ли над тем, как тепло проникает через твердые тела? Почему испарение приводит к охлаждению?
Молекулы веществ находятся в непрерывном движении и все время взаимодействуют друг с другом. В жидкостях, газах они способны передвигаться на большие расстояния, причем в газах движение происходит более свободно, чем в жидкостях. В твердом теле молекулы только совершают колебания вблизи определенных мест. Чем быстрее движутся молекулы, тем выше температура тела. При передаче тепла через твердый материал распространяется не вещество, вроде воды или воздуха, а изменяется интенсивность колебаний молекул. Наблюдали ли вы, что происходит, когда пища в кастрюле, поставленной на газовую плиту, разогревается? Движение молекул горящего газа намного быстрее, чем у предметов с нормальной температурой. Эти быстрые молекулы сталкиваются с молекулами металла у дна кастрюли. И те начинают двигаться гораздо быстрее. Затем, в свою очередь, начинают двигаться быстрее молекулы, расположенные в верхних слоях металла и так от молекулы к молекуле быстрое колебательное движение распространяется через металл и достигает содержимого кастрюли.
А почему происходит охлаждение, когда вода или другая жидкость испаряется? Жидкости отличаются от твердых тел тем, что молекулы в них могут вырываться из своего окружения и двигаться более или менее сами по себе. Межмолекулярных сил уже не хватает, чтобы удерживать молекулу в одном определенном положении, как это имеет место в твердых телах. Но силы притяжения в жидкости еще достаточно велики, чтобы удерживать молекулы все вместе в объеме жидкости, налитой в сосуд. Во время своих-перемещений по жидкости молекулы соударяются друг с другом. Может случиться так. что молекула, находящаяся недалеко от поверхности, получит при соударении настолько большую скорость, что сможет вылететь из жидкости в воздух. Происходит процесс испарения. В жидкости остаются более медленные молекулы, которым соответствует более низкая температура. В результате при испарении жидкость охлаждается.
Ответьте на вопросы:
- Что вы чувствуете, когда протираете кожу своей руки спиртом?
- При одной и той же температуре, когда нам кажется теплее — в сырую погоду или в сухую?
- Когда быстрее растает кусочек льда — закутанный в теплый шарф или положенный на тарелку?
- Каков принцип работы холодильника?
№ 24. Текст по разделу «Электродинамика»
Тлеющий разряд
Кто из нас не любовался огнями города? Красные, зеленые,.. огни в рекламных трубках. Как они создаются?Если из трубок откачать воздух до давления порядка десятых и сотых долей миллиметра ртутного столба и па впаянные в трубку электроды подать напряжение порядка нескольких сотен вольт, то в трубке возникает свечение. Возникшее свечение получило название тлеющего разряда.
При тлеющем разряде почти вся трубка, за исключением небольшого участка возле катода, заполнена однородным свечением, называемым положительным столбом. Когда мы соединяем электроды трубки с источником высокого напряжения, то свободные, положительные ионы устремляются к катоду. При определенном разряжении, когда длина свободного пробега значительна, скорость положительных ионов достигает такого значения, что с поверхности катода вырываются электроны, устремляющиеся к аноду. При своем движении электроны, сталкиваясь с нейтральными молекулами газа, возбуждают свечение газа и частично его ионизируют.
Если трубка наполнена неоном, возникает красное свечение, аргоном — сиренево-зеленое свечение. В лампах дневного света используют разряд в парах ртути. Тлеющий разряд получил применение в квантовых генераторах — газовых лазерах.
Ответьте на вопросы:
- Для чего понижается давление в газоразрядных трубках?
- 0т чего зависит цвет свечения?
- Почему при возникшем тлеющем разряде не вся трубка заполнена положительным столбом?
- Где применяют трубки с тлеющим разрядом?
ВПР по физике 11 класс 2017 год: анализ, решение заданий
Всероссийская проверочная работа включает в себя 18 заданий. На выполнение работы по физике отводится 1 час 30 мин (90 минут). При выполнении заданий разрешается использовать калькулятор. В работу включены группы заданий, проверяющие умения, являющиеся составной частью требований к уровню подготовки выпускников. При разработке содержания проверочной работы учитывается необходимость оценки усвоения элементов содержания из всех разделов курса физики базового уровня: механики, молекулярной физики, электродинамики, квантовой физики и элементов астрофизики. В таблице приведено распределение заданий по разделам курса. Часть заданий в работе имеют комплексный характер и включают в себя элементы содержания из разных разделов, задания 15–18 строятся на основе текстовой информации, которая может также относиться сразу к нескольким разделам курса физики. В таблице 1 приведено распределение заданий по основным содержательным разделам курса физики.
Таблица 1. Распределение заданий по основным содержательным разделам курса физики
Раздел курса физики |
Количество заданий |
Механика |
4–6 |
Молекулярная физика |
3–5 |
Электродинамика |
4–6 |
Квантовая физика |
1–4 |
ИТОГО |
18 |
ВПР разрабатывается исходя из необходимости проверки требований к уровню подготовки выпускников. В таблице 2 приведено распределение заданий по основным умениям и способам действий.
Таблица 2. Распределение заданий по видам умений и способам действий
Основные умения и способы действий |
Количество заданий |
Знать/понимать смысл физических понятий, величин, законов. Описывать и объяснять физические явления и свойства тел |
10 |
Объяснять устройство и принцип действия технических объектов, приводить примеры практического использования физических знаний |
3 |
Отличать гипотезы от научных теорий, делать выводы на основе экспериментальных данных, проводить опыты по исследованию изученных явлений и процессов |
2 |
Воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в СМИ, Интернете, научно-популярных статьях |
3 |
Итого |
18 |
В работе содержатся задания базового и повышенного уровней сложности.
Система оценивания отдельных заданий и работы в целом
Задания 2, 4–7, 9–11, 13–17 считаются выполненными, если записанный учеником ответ совпадает с верным ответом. Выполнение каждого из заданий 4–7, 9–11, 14, 16 и 17 оценивается 1 баллом. Выполнение каждого из заданий 2, 13 и 15 оценивается 2 баллами, если верно указаны оба элемента ответа; 1 баллом, если допущена ошибка в указании одного из приведенных вариантов ответов. Выполнение каждого из заданий с развернутым ответом 1, 3, 8, 12 и 18 оценивается с учетом правильности и полноты ответа. К каждому заданию с развернутым ответом приводится инструкция, в которой указывается, за что выставляется каждый балл – от нуля до максимального балла.
Задание 1
Прочитайте перечень понятий, с которыми Вы встречались в курсе физики: Конвекция, градус Цельсия, Ом, Фотоэффект, Дисперсия света, сантиметр
Разделите эти понятия на две группы по выбранному Вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.
Название группы понятий |
Перечень понятий |
|
|
|
|
Решение
В задании требуется разделить понятия на две группы по выбранному признаку, записать в таблицу название каждой группы и понятия, входящие в эту группу.
Название группы понятий |
Перечень понятий |
Физические явления |
Конвекция, фотоэффект, дисперсия света |
Единицы физических величин |
Градус Цельсия, Ом, сантиметр |
Уметь выбирать из предложенных явлений только физические. Помнить перечень физических величин и их единиц измерения.
Задание 2
Тело движется вдоль оси ОХ. На рисунке представлен график зависимости проекции скорости тела на ось ОХ от времени t.
Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.
- В момент времени t1 тело находилось в состоянии покоя.
- На протяжении интервала времени t2 < t < t3 тело двигалось равномерно
- На протяжении интервала времени t3 < t < t5 координата тела не изменялась.
- В момент времени t5 координата тела была больше, чем в момент времени t2
- В момент времени t4 модуль ускорения тела меньше, чем в момент времени t1
Решение
Выполняя это задание важно правильно читать график зависимости проекции скорости от времени. Определить характер движения тела на отдельных участках. Установить, где тело покоилось или двигалось равномерно. Выбрать участок, где скорость тела изменялась. Из предложенных утверждений разумно исключить те, которые не подходят. В итоге останавливаемся на верных утверждениях. Это утверждение 1: В момент времени t1 тело находилось в состоянии покоя, так проекция скорости равна 0. Утверждение 4: В момент времени t5 координата тела была больше, чем в момент времени t2, когда vx = 0. Проекция скорости тела была больше по своему значению. Записав уравнение зависимости координаты тела от времени, видим, что x(t) = vx t + x0, x0 – начальная координата тела.
Ответ: 14
Трудные вопросы ЕГЭ по физике: Методика решения задач по механическим и электромагнитным колебаниям
Задание 3
Тело всплывает со дна стакана с водой (см. рисунок). Изобразите на данном рисунке силы, действующие на тело, и направление ее ускорения.
Решение
Внимательно читаем задание. Обращаем внимание на то, что происходит с пробкой в стакане. Пробка всплывает со дна стакана с водой, причем с ускорением. Указываем силы, действующие на пробку. Это сила тяжести т, действующая со стороны Земли, сила Архимеда а, действующая со стороны жидкости, и сила сопротивления жидкости с. Важно понимать, что сумма модулей векторов силы тяжести и силы сопротивления жидкости меньше модуля Архимедовой силы. Значит, результирующая сила направлена вверх, по второму закону Ньютона, вектор ускорения имеет такое же направление. Вектор ускорения направлен по направлению силы Архимеда а
Задание 4
Прочитайте текст и вставьте пропущенные слова: уменьшается; увеличивается; не изменяется. Слова в тексте могут повторяться.
Фигурист, стоя на льду, ловит букет, который подлетел к нему горизонтально. В результате скорость букета _______________, скорость фигуриста ________________, импульс системы тел фигурист – букет ___________.
Решение
В задании требуется вспомнить понятие импульса тела и закон сохранения импульса. До взаимодействия, импульс фигуриста был равен нулю, так он покоился относительно Земли. Импульс букета максимальный. После взаимодействия, фигурист и букет начинают двигаться вместе с общей скоростью. Следовательно, скорость букета уменьшается, скорость фигуриста увеличивается. В целом импульс системы фигурист-букет – не изменяется.
Методическая помощь учителю физики
Задание 5
Четыре металлических бруска положили вплотную друг к другу, как показано на рисунке. Стрелки указывают направление теплопередачи от бруска к бруску. Температуры брусков в данный момент 100 °С, 80 °С, 60 °С, 40 °С. Температуру 60 °С имеет брусок.
Решение
Изменение внутренней энергии и передача ее от одного тела к другому происходит в процессе взаимодействия тел. В нашем случае изменение внутренней энергии происходит вследствие соударения хаотически движущихся молекул соприкасающихся тел. Теплопередача между брусками происходит от тел с большей внутренней энергией, к брускам у которых внутренняя энергия меньше. Процесс происходит до тех пор, пока те наступит тепловое равновесие.
Температуру 60° С имеет брусок В.
Задание 6
На рисунке представлена PV-диаграмма процессов в идеальном газе. Масса газа постоянна. Какому участку соответствует Изохорное нагревание.
1) ОА;
2) ОВ;
3) ОД;
4) ОС.
Решение
Для того, чтобы правильно выбрать участок графика, соответствующий изохорному нагреванию, необходимо вспомнить изопроцессы . Задачу упрощает то, что графики даны в осях PV. Изохорное нагревание, процесс, когда объем идеального газа не изменяется, а с ростом температуры растет давление. Напомним – это закон Шарля. Следовательно, это участок ОА. Исключаем участок ОС, где объем тоже не изменяется, но давление уменьшается, что соответствует охлаждению газа.
|
Линия УМК А. В. Перышкина. Физика (7-9 классы) В доработанную версию УМК в конец каждой главы был добавлен обобщающий итоговый материал, включающий краткую теоретическую информацию и тестовые задания для самопроверки. Учебники также были дополнены заданиями разных типов, направленных на формирование метапредметных умений: сравнение и классификацию, формулирование аргументированного мнения, работу с разнообразными источниками информации, в том числе электронными ресурсами и интернетом, решение расчетных, графических и экспериментальных задач. |
Задание 7
Металлический шарик 1, укрепленный на длинной изолирующей ручке и имеющий заряд +q, приводят поочередно в соприкосновение с двумя такими же шариками 2 и 3, расположенными на изолирующих подставках и имеющими, соответственно, заряды –q и +q.
Какой заряд останется на шарике №3.
Решение
После взаимодействия первого шарика с таким же по размерам вторым шариком заряд этих шариков станет равным нулю. Так как по модулю эти заряды одинаковы. После соприкосновения шарика первого с третьим, произойдет перераспределение заряда. Заряд поделится поровну. Будет по q/2 на каждом.
Ответ: q/2.
Задание 8
Определить какое количество теплоты выделится в нагревательной спирали за 10 мин, при протекании электрического тока 2 А. Сопротивление спирали 15 Ом.
Решение
Первым делом переведем единицы измерения в систему СИ. Время t = 600 c, Дальше отмечаем, что при прохождении тока I = 2 A по спирали с сопротивлением R = 15 Ом, за время 600 с выделяется количество теплоты Q = I2Rt (закон Джоуля – Ленца). Подставим числовые значения в формулу: Q = (2 A)2 15 Oм · 600 с = 36000 Дж
Ответ: 36000 Дж.
|
Линия УМК Н. С. Пурышевой. Физика (10-11 классы) Основой курса, написанного по авторской программе, является индуктивный подход: путь к теоретическим построениям лежит через повседневный жизненный опыт, наблюдения за окружающей действительностью и простые эксперименты. Большое внимание уделяется практическим работам школьников и дифференцированному подходу к обучению. Учебники позволяют организовать и индивидуальную и групповую работу старшеклассников, благодаря чему развиваются навыки как самостоятельной деятельности, так и сотрудничества в команде. |
Задание 9
Расположите виды электромагнитных волн, излучаемых Солнцем, в порядке уменьшения их длин волн. Рентгеновское излучение, инфракрасное излучение, ультрафиолетовое излучение
Решение
Знакомство со шкалой электромагнитных волн предполагает, что выпускник должен четко представлять в какой последовательности расположено электромагнитное излучение. Знать связь длины волны с частотой излучения
где v – частота излучения, c – скорость распространения электромагнитного излучения. Помнить, что скорость распространения электромагнитных волн в вакууме одинакова и равна 300 000 км/с. Начинается шкала с длинных волн меньшей частоты, это инфракрасное излучение, следующее излучение с большей частотой соответственно – ультрафиолетовое излучение и более высокочастотное из предложенных — это рентгеновское излучение. Понимая, что частота увеличивается, а длина волны уменьшается, записываем в нужной последовательности.
Ответ: Инфракрасное излучение, ультрафиолетовое излучение, рентгеновское излучение.
Задание 10
Используя фрагмент Периодической системы химических элементов, представленный на рисунке, определите, изотоп какого элемента образуется в результате электронного бета-распада висмута
Ответ:
Решение
β – распад в атомном ядре происходит в результате превращения нейтрона в протон с испусканием электрона. В результате этого распада число протонов в ядре увеличивается на единицу, и электрический заряд увеличивается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:
в общем виде. Для нашего случая имеем:
Зарядовое число 84 соответствует полонию.
Ответ: В результате электронного бета распада висмута образуется полоний.
О совершенствовании методики преподавания физики в России: от XVIII до XXI века
Задание 11
А) Цена деления и предел измерения прибора равны соответственно:
- 50 А,2А;
- 2 мА, 50мА;
- 10 А, 50 А;
- 50 мА, 10 мА.
Б) Запишите результат электрического напряжения, учитывая, что погрешность измерения равна половине цены деления.
- (2,4 ± 0,1) В
- (2,8 ± 0,1) В
- (4,4 ± 0,2) В
- (4,8 ± 0,2) В
Решение
Задание проверяет умение записывать показания измерительных приборов с учетом заданной погрешности измерения и умение правильно пользоваться любым измерительным прибором (мензурка, термометр, динамометр, вольтметр, амперметр) в быту. Кроме этого акцентирует внимание на запись результата с учетом значащих цифр. Определяем название прибора. Это миллиАмперметр. Прибор для измерения силы тока. Единицы измерения мА. Предел измерения – это максимальное значение шкалы, 50 мА. Цена деления 2 мА.
Ответ: 2 мА, 50 мА.
Если требуется по рисунку записать показания измерительного прибора с учетом погрешности, то алгоритм выполнения следующий:
Определяем, что измерительным прибором является вольтметр. Вольтметр имеет две шкалы измерения. Обращаем внимание, какая пара клемм задействована у прибора, и следовательно работаем по верхней шкале. Предел измерения – 6 В; Цена деления с = 0,2 В; погрешность измерения по условию задачи равна половине цены деления. ∆U = 0,1 В.
Показания измерительного прибора с учетом погрешности: (4,8 ± 0,1) В.
Задание 12
Вам необходимо исследовать, как меняется угол преломления света в зависимости от вещества, в котором наблюдается явление преломления света. Имеется следующее оборудование (см. рисунок):
- Лист бумаги;
- Лазерная указка;
- Полукруглые пластинки из стекла, полистирола и горного хрусталя;
- Транспортир;
В ответе:
- Опишите экспериментальную установку.
- Опишите порядок действий при проведении исследования.
Решение
Вам необходимо исследовать, как меняется угол преломления света в зависимости от вещества, в котором наблюдается явление преломления света. Имеется следующее оборудование (см. рисунок):
- Лист бумаги;
- Лазерная указка;
- Полукруглые пластинки из стекла, полистирола и горного хрусталя;
- Транспортир;
В ответе:
- Опишите экспериментальную установку.
- Опишите порядок действий
В опыте используется установка, изображенная на рисунке. Угол падения и угол преломления измеряются при помощи транспортира. Необходимо провести два или три опыта, в которых луч лазерной указки направляют на пластинки из разных материалов: стекло, полистирол, горный хрусталь. Угол падения луча на плоскую грань пластинки оставляют неизменным, а угол преломления измеряют. Полученные значения углов преломления сравниваются.
ВПР в вопросах и ответах
Задание 13
Установите соответствие между примерами проявления физических явлений и физическими явлениями. Для каждого примера из первого столбца подберите соответствующее название физического явления из второго столбца.
Примеры |
Физические явления |
А) При поднесении заряженной эбонитовой палочки стрелка незаряженного электрометра отклоняется. |
1) Электризация проводника через влияние |
Б) Железные опилки притягиваются к куску магнитной руды |
2) поляризация диэлектрика в электрическом поле |
|
3) Намагничивание вещества в магнитном поле |
|
4) Взаимодействие постоянного магнита с магнитным полем Земли |
Запишите в таблицу выбранные цифры под соответствующими буквами.
Решение
Установим соответствие между примерами проявления физических явлений и физическими явлениями. Для каждого примера из первого столбца подберем соответствующие названия физического явления из второго столбца.
Примеры |
Физические явления |
А) При поднесении заряженной эбонитовой палочки стрелка незаряженного электрометра отклоняется. |
1) Электризация проводника через влияние |
Б) Железные опилки притягиваются к куску магнитной руды |
2) поляризация диэлектрика в электрическом поле |
|
3) Намагничивание вещества в магнитном поле |
|
4) Взаимодействие постоянного магнита с магнитным полем Земли |
Под действием электрического поля заряженной эбонитовой палочки стрелка незаряженного электрометра отклоняется, когда палочку подносят к нему. Вследствие электризации проводника через влияние. Намагничивание вещества в магнитном поле проявляется в случае, когда железные опилки притягиваются к куску магнитной руды.
Прочитайте текст и выполните задания 14 и 15
Электрофильтры
На промышленных предприятиях широко используется электрическая очистка газов от твердых примесей. Действие электрофильтра основано на применении коронного разряда. Можно проделать следующий опыт: сосуд, наполненный дымом, внезапно делается прозрачным, если в него внести острые металлические электроды, разноименно заряженные от электрической машины.
На рисунке представлена схема простейшего электрофильтра: внутри стеклянной трубки содержатся два электрода (металлический цилиндр и натянутая по его оси тонкая металлическая проволока). Электроды подсоединены к электрической машине. Если продувать через трубку струю дыма или пыли и привести в действие машину, то при некотором напряжении, достаточном для зажигания коронного разряда, выходящая струя воздуха становится чистой и прозрачной.
Объясняется это тем, что при зажигании коронного разряда воздух внутри трубки сильно ионизируется. Ионы газа прилипают к частицам пыли и тем самым заряжают их. Заряженные частицы под действием электрического поля движутся к электродам и оседают на них
Рис. Простейший вид электрофильтра
Задание 14
Какой процесс наблюдается в газе, находящемся в сильном электрическом поле?
Решение
Внимательно читаем предложенный текст. Выделяем процессы, которые описываются в условии. Речь идет о коронном разряде внутри стеклянной трубки. Воздух ионизируется. Ионы газа прилипают к частицам пыли и тем самым заряжают их. Заряженные частицы под действием электрического поля движутся к электродам и оседают на них.
Ответ: Коронный разряд, ионизация.
Задание 15
Выберите из предложенного перечня два верных утверждения. Укажите их номера.
- Между двумя электродами фильтра возникает искровой разряд.
- В качестве тонкой проволоки в фильтре можно использовать шелковую нить.
- Согласно подключению электродов, изображенному на рисунке, отрицательно заряженные частицы будут оседать на стенках цилиндра.
- При малых напряжениях очистка воздуха в электрофильтре будет происходить медленно.
- Коронный разряд можно наблюдать на острие проводника, помещенного в сильное электрическое поле.
Ответ:
Решение
Для ответа воспользуемся текстом про электрофильтры. Исключаем из предложенного перечня неверные утверждения, используя описание электрической очистки воздуха. Смотрим на рисунок и обращаем внимание на подключение электродов. Нить подключена к отрицательному полюсу, стенки цилиндра к положительному полюсу источника. Заряженные частицы будут оседать на стенках цилиндра. Верное утверждение 3. Коронный разряд можно наблюдать на острие проводника, помещенного в сильное электрическое поле.
Ответ: 35
|
Линия УМК А. В. Грачева. Физика (10-11 классы) В пособия вошли задания трех уровней сложности, курс предполагает совместную деятельность школьников по решению задач, выполнению экспериментальных и проектных работ. Система заданий в рабочих тетрадях позволяет организовать дифференцированное обучение и вести подготовку к ЕГЭ. Тетради для лабораторных работ включают экспериментальные задания для базового и углубленного уровней, рекомендации по обработке результатов и технике безопасности. |
Прочитайте текст и выполните Задания 16–18
Исследование морских глубин
При исследовании больших глубин используют такие подводные аппараты, как батискафы и батисферы. Батисфера представляет собой глубоководный аппарат в форме шара, который на стальном тросе опускают в воду с борта корабля.
Несколько прототипов современных батисфер появились в Европе в XVI–XIX вв. Одним из них является водолазный колокол, конструкцию которого предложил в 1716 г. английский астроном Эдмонд Галлей (см. рисунок). В деревянном колоколе, открытом у основания, размещалось до пяти человек, частично погружённых в воду. Воздух они получали из двух поочерёдно опускаемых с поверхности бочонков, откуда воздух поступал в колокол по кожаному рукаву. Надев кожаный шлем, водолаз мог проводить наблюдения и за пределами колокола, получая из него воздух через дополнительный шланг. Отработанный воздух выпускался через кран, находящийся в верхней части колокола.
Главный недостаток колокола Галлея заключается в том, что его нельзя использовать на большой глубине. По мере погружения колокола плотность воздуха в нём увеличивается настолько, что им становится невозможно дышать. Более того, при длительном пребывании водолаза в зоне повышенного давления происходит насыщение крови и тканей организма газами воздуха, главным образом азотом, что может привести к так называемой кессонной болезни при подъеме водолаза с глубины к поверхности воды.
Профилактика кессонной болезни требует соблюдения норм рабочего времени и правильной организации декомпрессии (выхода из зоны повышенного давления).
Время пребывания водолазов на глубине регламентируется специальными правилами безопасности водолазных работ (см. таблицу).
Давление (дополнительно к атмосферному), атм.
Допустимое время пребывания в рабочей зоне
0,10–1,3
5 ч. 28 м.
1,31–1,7
5 ч. 06 м.
1,71–2,5
4 ч. 14 м.
2,51–2,9
3 ч. 48 м.
2,91–3,2
2 ч. 48 м.
3,21–3,5
2 ч. 26 м.
3,51–3,9
1 ч. 03 м.
Задание 16
Как изменяется по мере погружения колокола давление воздуха в нем?
Задание 17
Как изменяется допустимое время работы водолаза при увеличении глубины погружения?
Задание 16–17. Решение
Прочитали внимательно текст и рассмотрели рисунок водолазного колокола, конструкцию которого предложил английский астроном Э.Галлей. Познакомились с таблицей, в которой время пребывания водолазов на глубине регламентируется специальными правилами безопасности водолазных работ.
Давление (дополнительно к атмосферному), атм. |
Допустимое время пребывания в рабочей зоне |
0,10-1,3 |
5 ч. 28 м. |
1,31-1,7 |
5 ч. 06 м. |
1,71-2,5 |
4 ч. 14 м. |
2,51-2,9 |
3 ч. 48 м. |
2,91-3,2 |
2 ч. 48 м. |
3,21-3,5 |
2 ч. 26 м. |
3,51-3,9 |
1 ч. 03 м. |
Из таблицы видно, что чем больше давление (чем больше глубина погружения), тем меньшее время водолаз может на ней находиться.
Задание 16. Ответ: Давление воздуха увеличивается
Задание 17. Ответ: Допустимое время работы уменьшается
Задание 18
Допустима ли работа водолаза на глубине 30 м в течение 2,5 ч? Ответ поясните.
Решение
Работа водолаза на глубине 30 метров в течение 2,5 часов допустима. Так как на глубине 30 метров гидростатическое давление составляет примерно 3 · 105 Па или 3 атм атмосферы) дополнительно к атмосферному давлению. Допустимое время пребывания водолаза при таком давлении составляет 2 часа 48 минут, что больше требуемых 2,5 часов.
Образец ВПР 2020 по физике 11 класс
Образец ВПР 2020 по физике 11 класс с ответами. Работа содержит 18 заданий. На выполнение работы по физике в 11 классе дается 90 минут.
1. Прочитайте перечень понятий, с которыми Вы встречались в курсе физики:
электромагнитная индукция, идеальный газ, гравитационное взаимодействие, точечный электрический заряд, идеальный блок, испарение жидкости.
Разделите эти понятия на две группы по выбранному Вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.
Название группы понятий | Перечень понятий |
2. Выберите два верных утверждения о физических явлениях, величинах и закономерностях. Запишите в ответе их номера.
1) Сила Архимеда увеличивается с увеличением плотности тела, погруженного в жидкость.
2) Импульс тела — векторная величина, равная произведению массы тела на его ускорение.
3) В процессе плавления кристаллических тел их температура остается неизменной.
4) Разноименные полюса постоянных магнитов отталкиваются друг от друга.
5) Силой Лоренца называют силу, с которой магнитное поле действует на движущиеся заряженные частицы.
3. В истории известны случаи обрушения мостов, когда по ним проходил строй солдат, марширующих «в ногу». Дело в том, что в этих случаях частота шагов солдат совпадала с собственной частотой свободных колебаний моста, и он начинал колебаться с очень большой амплитудой. Какое явление наблюдалось в этих случаях?
4. Четыре металлических бруска (A, B, C и D) положили вплотную друг к другу, как показано на рисунке. Стрелки указывают направление теплопередачи от бруска к бруску. Температуры брусков в данный момент равны 80 °С, 50 °С, 30 °С, 10 °С. Какой из брусков имеет температуру 80 °С?
5. Магнитная стрелка компаса зафиксирована (северный полюс затемнен, см. рисунок).
К компасу поднесли сильный постоянный полосовой магнит, затем освободили стрелку, она повернулась и остановилась в новом положении. Изобразите новое положение стрелки.
6. Ядерная реакция, происходящая при бомбардировке ядер быстрыми протонами, была осуществлена на ускорителе в 1932 г. В процессе этой реакции ядра изотопа лития поглощают протон, и образуется два одинаковых ядра.
73Li + 11H → 2Х
Используя фрагмент Периодической системы химических элементов Д.И. Менделеева, определите, ядра какого элемента образуются в этой реакции.
7. Гофрированный цилиндр, в котором под закрепленным поршнем находится воздух, начинают охлаждать, поместив в сосуд с холодной водой (см. рисунок).
Как будет изменяться концентрация молекул воздуха, а также давление воздуха в цилиндре по мере охлаждения?
Установите соответствие между физическими величинами и их возможными изменениями.
Для каждой величины определите соответствующий характер изменения:
1) увеличивается
2) уменьшается
3) не изменяется
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Концентрация молекул воздуха в цилиндре | Давление воздуха в цилиндре |
8. Мотоциклист движется по прямой улице. На графике представлена зависимость его скорости от времени.
Выберите два утверждения, которые верно описывают движение мотоциклиста. Запишите номера, под которыми они указаны.
1) В промежутке времени от 20 до 40 с равнодействующая сил, действующих на мотоциклиста, сообщает ему постоянное по модулю ускорение, отличное от нуля.
2) В течение первых 20 с мотоциклист двигался равноускоренно, а в течение следующих 20 с – равномерно.
3) Модуль максимальной скорости мотоциклиста за весь период наблюдения составляет 72 км/ч.
4) В момент времени 60 с мотоциклист остановился, а затем начал движение в противоположном направлении.
5) Модуль максимального ускорения мотоциклиста за весь период наблюдения равен 4 м/с2.
9. В паспорте электрического утюга написано, что его потребляемая мощность составляет 1,2 кВт при напряжении питания 220 В (см. рисунок).
Определите сопротивление нагревательного элемента утюга.
Запишите решение и ответ. Ответ округлите до целого числа.
10. С помощью амперметра проводились измерения силы тока в электрической цепи. Использовалась шкала с пределом измерения 8 А. Погрешность измерений силы тока равна цене деления шкалы амперметра.
Запишите в ответ показания амперметра с учетом погрешности измерений.
11. Учитель на уроке уравновесил на рычажных весах два одинаковых стакана с водой, только один стакан был заполнен холодной водой, а другой — горячей (см. рисунок).
Через некоторое время учитель обратил внимание учащихся на тот факт, что равновесие весов нарушилось: перевесил стакан с холодной водой.
С какой целью был проведен данный опыт?
12. Вам необходимо исследовать, зависит ли выталкивающая сила, действующая на полностью погруженное в жидкость тело, от плотности жидкости.
Имеется следующее оборудование (см. рисунок):
− динамометр;
− сосуды с тремя жидкостями: водой, подсолнечным маслом и спиртом;
− набор из трех сплошных стальных грузов объёмом 30 см3, 40 см3 и 80 см3.
В ответе:
1. Опишите экспериментальную установку.
2. Опишите порядок действий при проведении исследования.
13. Установите соответствие между примерами проявления физических явлений и физическими явлениями. Для каждого примера из первого столбца подберите соответствующее физическое явление из второго столбца.
ПРИМЕРЫ ПРОЯВЛЕНИЯ ФИЗИЧЕСКИХ ЯВЛЕНИЙ
А) при поднесении заряженной эбонитовой палочки бумажные лепестки султанчика притягиваются к ней
Б) железные опилки ориентируются вблизи постоянного магнита
ФИЗИЧЕСКИЕ ЯВЛЕНИЯ
1) электризация проводника через влияние
2) поляризация диэлектрика в электрическом поле
3) намагничивание вещества в магнитном поле
4) взаимодействие постоянного магнита и проводника с током
Запишите выбранные цифры под соответствующими буквами.
Прочитайте фрагмент технического описания проточного электрического водонагревателя и выполните задания 14 и 15.
Проточный электрический водонагреватель
Проточный электрический водонагреватель (ЭВН) предназначен для получения горячей воды, рассчитан на напряжение 220 В и потребляемую мощность 6 кВт. Вода, поступающая из водопровода (минимально допустимое давление равно 0,05 МПа), нагревается, проходя по теплообменнику из меди, в котором находятся нагревательные элементы. Температура воды задается либо регулировкой потока воды, либо терморегулятором. Выставленное на терморегуляторе значение температуры воды достигается через 15 с после включения ЭВН. В течение года температура холодной воды может колебаться от 5 ºС до 20 ºС. При минимально допустимом потоке 1,8 л/мин. вода нагревается на 40 ºС, при меньшей величине потока воды ЭВН отключается автоматически, при температуре воды выше 90 ºС тепловой предохранитель отключает ЭВН.
Правила эксплуатации
1. Запрещается эксплуатация ЭВН без заземления (для электропитания используется трехполюсная розетка).
2. Подключение к сети должно производиться трёхжильным медным кабелем, рассчитанным на мощность ЭВН, но с сечением жилы не менее 4 мм2.
3. ЭВН должен эксплуатироваться в отапливаемых помещениях.
4. Запрещается включать ЭВН при замерзании в нем воды.
5. Запрещается использовать воду, содержащую ил, ржавчину и т. п.
6. Запрещается выдергивать вилку из розетки мокрыми руками.
14. После включения электрического водонагревателя вода, текущая из крана, становится горячей спустя некоторое время. Объясните, почему
15. Почему нельзя использовать водонагреватель в неотапливаемом помещении в морозную погоду?
Прочитайте текст и выполните задания 16, 17 и 18.
Гамма-излучение
Гамма-излучение было открыто в начале XX в. при изучении радиоактивного излучения радия. Гамма-излучение — широкий диапазон электромагнитного спектра, поскольку он не ограничен со стороны высоких энергий. Мягкое гамма-излучение с энергией от 100 кэВ образуется при энергетических переходах внутри атомных ядер. Более жесткое, с энергией от 10 МэВ, — при ядерных реакциях. Существуют космические гамма-лучи, которые почти полностью задерживаются атмосферой Земли, поэтому наблюдать их можно только из космоса.
На рисунке — фотография неба в гамма-лучах с энергией 100 МэВ. Обзор в диапазоне жёсткого гамма-излучения выполнен космической гамма-обсерваторией «Комптон», которая была запущена по программе NASA «Великие обсерватории» и с 1991 по 2000 г. вела наблюдения в диапазоне от жёсткого рентгена до жёсткого гамма-излучения. На фотографии отчётливо видна плоскость Галактики, где излучение формируется в основном остатками сверхновых. Яркие источники вдали от плоскости Галактики имеют в основном внегалактическое происхождение.
Гамма-кванты сверхвысоких энергий (от 100 ГэВ) рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они разрушают ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью. При торможении эти частицы испускают свет, который наблюдают с помощью специальных телескопов на Земле.
Где и как образуются гамма-лучи ультравысоких энергий (от 100 ТэВ (1 ТэВ = 1012 эВ; 1 эВ = 1,6 ⋅ 10-19 Дж)), пока не вполне ясно. Земным технологиям такие энергии недоступны. Самые энергичные наблюдаемые кванты (1020–1021 эВ) приходят из космоса крайне редко — примерно один квант в 100 лет на квадратный километр.
Гамма-кванты негативно воздействуют на организм человека и являются мутагенным фактором. Обладая высокой проникающей способностью, они ионизуют и разрушают молекулы, которые, в свою очередь, начинают ионизировать следующую порцию молекул. Происходит трансформация клеток и появление мутированных клеток, которые не способны исполнять свойственные им функции.
Несмотря на опасность таких лучей, их используют в различных областях, соблюдая необходимые меры защиты, например для стерилизации продуктов, обработки медицинского инструментария и техники, контроля над внутренним состоянием ряда изделий, а также для культивирования растений. В последнем случае мутации сельскохозяйственных культур позволяют использовать их для выращивания на территории стран, изначально к этому не приспособленных. Применяются гамма-лучи и при лечении различных онкологических заболеваний. Метод получил название лучевой терапии.
16. Вставьте в предложение пропущенные слова (сочетания слов), используя информацию из текста.
Земные организмы защищены от воздействия космических гамма-квантов, так как они задерживаются _________________. Для наблюдения этого гамма-излучения используют гамма-телескопы, расположенные _______________________.
17. Энергия кванта определяется по формуле E = hν. Оцените частоту гамма-излучения, образующегося при энергетических переходах внутри атомных ядер.
18. Почему гамма-излучение используют для стерилизации продуктов и медицинских инструментов?
Ответы на образец ВПР 2020 по физике 11 класс
1.
Название группы понятий
Физические модели
Физические явления
Перечень понятий
Идеальный газ, точечный электрический заряд, идеальный блок
Электромагнитная индукция, гравитационное взаимодействие, испарение жидкости
2. 35
3. резонанс
4. А
5.
6. Гелий
7. 34
8. 24
9. R = U2/R = 2202/1200 = 40 Ом
10. (5,4 ± 0,2) А
11. Скорость остывания воды зависит от разности температур воды и окружающей среды. / Скорость теплопередачи уменьшается при уменьшении разности температуры тел, участвующих в теплопередаче
12.
1) Используется установка, изображенная на рисунке. Для проведения опыта используются сосуды с разными жидкостями и один из грузов.
2) Выталкивающая сила определяется как разница показаний динамометра при взвешивании груза в воздухе и в жидкости.
3) Выталкивающая сила, действующая на груз, определяется для двух или трех жидкостей.
4) Полученные значения выталкивающей силы сравниваются.
13. 13
14. Разогрев нагревательных элементов требует времени. Пока не пущена вода и на нагревательные элементы не подано напряжение, они холодные. При протекании электрического тока с течением времени устанавливается равновесие между количеством теплоты, выделяющейся по закону Джоуля – Ленца в нагревательном элементе, и тем количеством теплоты, которое отдаётся воде. Поэтому заданное значение температуры не достигается мгновенно.
15. В выключенном водонагревателе находится вода, которая может замёрзнуть в неотапливаемом помещении. При замерзании воды трубки будут разорваны, и прибор будет не годен к эксплуатации. Включение неисправного прибора может привести к перегреву нагревательных элементов и пожару.
16. Атмосферой / атмосферой Земли на спутниках / искусственных спутниках / в космосе
17. 2 ⋅ 1019 Гц
18. Гамма-излучение обладает ионизирующим действием, тем самым его воздействие способно разрушать ДНК имеющихся микроорганизмов, предотвращать их размножение и способствовать гибели. Облученные продукты и инструменты становятся стерильными
Качественные задания по физике
Текст по разделу «Электродинамика»,
содержащий информацию об использовании различных
электрических устройств.
Задание на определение условий безопасного использования
электрических устройств
Короткое замыкание. Плавкие предохранители
Любое электрическое устройство рассчитывают на определенную силу тока. Во время эксплуатации прибора, если произойдет увеличение силы тока больше допустимого значения, может возникнуть короткое замыкание. Возрастание силы тока в цепи может произойти при соединении оголенных проводов, при ремонте электрических цепей под током. В любом случае короткое замыкание возникает тогда, когда соединяются концы участков цепи проводником, сопротивление которого мало по сравнению с сопротивлением самого участка цепи. При коротком замыкании резко возрастает сила тока в электрической цепи, что может стать причиной пожара. Чтобы этого не случилось, применяют плавкие предохранители. Плавкие предохранители при возникновении короткого замыкания отключают электрическую цепь.
Главная часть предохранителя — свинцовая проволока, находящаяся в фарфоровой пробке. В зависимости от толщины проволоки, она выдерживает ту или иную силу тока, например 10 А. Если сила тока превысит допустимое значение, проволока в пробке расплавится, и электрическая цепь разомкнётся. Если перегоревшую проволоку заменить, то плавкий предохранитель можно использовать снова.
Ответьте на вопросы к тексту.
Почему в плавких предохранителях применяют именно свинцовую
проволоку?
Где в квартире устанавливают предохранители?
3. Имеют ли автономные электрические устройства, например телевизоры
предохранители?
4. Существуют ли другие конструкции предохранителей?
Текст по разделу «Квантовая физика и элементы астрофизики»,
содержащий описание опыта. Задание на формулировку гипотезы опыта, условий его проведения и выводов
Изучение космических лучей
В 1896 г. французский физик А. Беккерель открыл ионизирующее действие быстрых заряженных частиц на эмульсию фотопластинки. Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра. Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение, при проявлении в этих кристалликах восстанавливается металлическое серебро и цепочка зерен серебра образует трек частицы.
Эти опыты Беккереля легли в основу создания метода изучения космических лучей и ядерных процессов, разработанных Л.С. Мысовским, А.П. Ждановым и др. Наблюдения показали, что -частицы, попадая в эмульсию фотопластинки под острым утлом к ее поверхности, оставляют в ней характерный след, становящийся видимым в микроскоп после проявления. Пробег -частицы в фотоэмульсии вследствие большой плотности среды составляет несколько десятков микрометров. У обычных фотопластинок слой светочувствительной эмульсии имеет толщину всего около 20 мкм. Для ядерных исследований изготавливают пластинки с тридцатикратной и более толщиной светочувствительного слоя (до 600 и даже 1000 мкм) и применяют мелкозернистые эмульсии, позволяющие запечатлеть след протонов.
Изучение следов космических частиц в толстослойных фотопластинках, поднятых с помощью ракет на высоту 100 км, не оставляет сомнения в том, что первичными частицами космического излучения являются главным образом протоны и в меньшем количестве альфа-частицы и ядра других более тяжелых элементов.
Интенсивность первичных космических лучей равна примерно 100 000 МэВ/мин на 1 см2 в единице телесного угла
По порядку величины энергия, приносимая на Землю космическим излучением, примерно равна энергии, получаемой Землей от звезд.
Ответьте на вопросы к тексту:
1. Можно ли для регистрации космических лучей использовать фото
пластинки, применяемые при обычном фотографировании?
Как, изучая трек частиц, можно определить массу частиц?
Как, изучая трек частиц, можно определить энергию частиц?
4. Каковы преимущества метода фотоэмульсий перед другими методами
исследования частиц?
Текст по разделу «Молекулярная физика»,
содержащий описание использования законов MKT и термодинамики в технике. Задание на понимание основных принципов, лежащих в основе работы описанного устройства
Тепловая машина
В современной технике механическую энергию в основном получают за счет внутренней энергии топлива. Устройства, в которых происходит преобразование внутренней энергии в механическую, получили название тепловых двигателей. Если в цилиндре есть поршень, который может свободно перемещаться, то можно заставить перемещаться этот поршень за счет расширения газа, т.е. газ совершает работу. В этом случае газ называют рабочим телом. Чтобы двигатель работал непрерывно, необходимо, чтобы поршень после расширения газа каждый раз возвращался в исходное положение, сжимая газ до первоначального положения. Сжатие газа может происходить только под действием внешней силы, которая при этом совершает работу. После этого вновь могут происходить процессы расширения и сжатия газа. Следовательно, работа теплового двигателя должна состоять из периодически повторяющихся процессов расширения и сжатия.
Рассмотрим принцип работы поршневого двигателя. В таком двигателе рабочим телом является газ, который давит на поршень, вследствие чего поршень перемещается. При расширении газа возникает движение поршня, которое передается валу двигателя с укрепленным на нем маховиком. Для сжатия газа поршень должен переместиться под действием внешней силы в противоположном направлении. Это движение совершается за счет кинетической энергии, запасенной маховиком в процессе расширения газа
Если работа сжатия газа меньше работы расширения газа, то мы получим полезную работу, т.е. каждому значению объема газа при сжатии должно соответствовать меньшее давление, чем при расширении. Давление газа при одном и том же объеме тем меньше, чем ниже его температура Поэтому газ перед сжатием должен быть охлажден. Для этого его необходимо привести в контакт с телом, имеющим более низкую температуру. Это тело называют холодильником.
Нагреватель, рабочее тело и холодильник — основные части теплового двигателя. На рис. в координатных осях pV графически представлен процесс расширения газа (линия АВ) и сжатия до первоначального объема (линия CD).
Ответьте на вопросы к тексту:
Чему численно равна площадь фигуры ABEF1
Чему численно равна площадь фигуры DCEF1
Чему численно равна площадь фигуры ABCD1
4.Может ли коэффициент полезного действия тепловой машины быть
больше единицы? Ответ обоснуйте.
Текст по теме «Ядерная физика»,
содержащий информацию о влиянии радиации на живые организмы или воздействия ядерной энергетики на окружающую среду. Задание на понимание основных принципов радиационной безопасности
Экологические последствия на Чернобыльской АЭС
Авария на Чернобыльской АЭС является не только крупной по своим масштабам, но и классической по опасным экологическим последствиям. Первичное парогазовое облако, образовавшееся в результате разрушения реактора, содержало всю гамму радионуклидов, накопившихся в реакторе за время его работы, а также компоненты ядерного топлива. Облако содержало большое количество образовавшихся биологически опасных изотопов плутония и других актинидов (нептуний-237, америций-242, -245, кюрий-242,-244 и другие), опасных газообразных изотопов (ксенон-133, криптон-85, йод-131,-132). При подъеме этого облака и его движении образовались два радиоактивных следа: западный и северный.
Безусловно, что радиационному воздействию за счет прохождения первичного парогазового облака подверглись люди и окружающая среда. Причем на малых расстояниях от аварийного облака доза облучения на его следе была весьма значительна, о чем свидетельствует гибель хвойных пород леса на западном следе облака. В дальнейшем значительные выбросы радионуклидов продолжались еще 9 суток. Все эти выбросы радионуклидов при меняющихся в этот период метеорологических условиях и вызвали в целом неравномерное радиоактивное загрязнение огромных территорий. Значимые с точки зрения экологических последствий для населения и территорий выпадения радионуклидов были ограничены расстоянием 100-200 км от аварийного энергоблока. На дальних расстояниях преобладала конденсация компонента выпадения, характерной особенностью которой является преимущественный вклад цезия-137 в суммарную активность загрязнения объектов окружающей среды после распада короткоживущих радионуклидов. В развитии радиационной обстановки после аварии на Чернобыльской АЭС принято выделять два основных периода: период «йодовой опасности» и «цезиевый» период, который наступил спустя два месяца после аварии. В «йодовом периоде», кроме внешнего облучения, за счет которого формировалось до 45% дозы за первый год, основные проблемы были связаны со снижением уровней внутреннего облучения, которое определялось в основном употреблением молока — главного «поставщика» радионуклида йода в организм человека, и листовых овощей. Для примера отметим, что корова ежесуточно съедает на пастбище корм с площади около 150 м2 и является идеальным концентратором радиоактивности в молоке.
«Цезиевый период», наступивший в конце июня 1986 г., будет продолжаться длительное время, и цезий будет являться основной причиной радиационного воздействия на население и окружающую среду. Как известно, период полураспада цезия-137 составляет 300 лет.
Анализ чернобыльской аварии убедительно подтверждает, что радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению.
Ответьте на вопросы к тексту:
1.Когда произошла авария на Чернобыльской АЭС?
2.Какие наиболее опасные изотопы актинидов?
3.Что значит принцип обоснования обеспечения радиационной безопасности?
Что значит принцип аварийной оптимизации обеспечения радиационной безопасности?
Текст по разделу «Молекулярная физика»,
содержащий описание опыта. Задание на формулировку гипотезы, опыта, условий его проведения и выводов
Огонь из «ничего»
Возьмем толстостенный сосуд, сделанный из оргстекла (см. рис.). Сосуд имеет диаметр порядка 40 мм и высоту около 160 мм. Вблизи дна сосуда имеется плотно закрывающееся отверстие. Внутри сосуда может перемещаться хорошо пригнанный к стенкам поршень с ручкой. Положим на дно цилиндра смоченный эфиром кусочек ваты и быстро опустим поршень вниз. Сквозь стенки прозрачного сосуда мы видим ярко вспыхнувшее пламя. Нагревание воздуха при быстром сжатии нашло применение в двигателях Дизеля. В цилиндр двигателя засасывается атмосферный воздух, и в тот момент, когда наступает его максимальное сжатие, туда вспрыскивается жидкое топливо. К этому моменту температура воздуха так велика, что горючее самовоспламеняется. Двигатели Дизеля имеют больший коэффициент полезного действия, чем обычные, но более сложны в изготовлении и эксплуатации. Сейчас все большее количество автомобилей снабжается двигателями Дизеля.
Ответьте на вопросы к тексту:
Почему опыт не удается, если воздух в цилиндре сжимать медленно?
Почему для проведения опыта берется именно эфир?
Какой из двигателей: карбюраторный двигатель внутреннего сгорания или двигатель Дизеля более экологичный?
Почему у двигателей Дизеля больше КПД, чем у карбюраторных двигателей?
Текст по разделу «Электродинамика»,
содержащий описание использования законов электродинамики в технике. Задание на понимание основных принципов, лежащих в основе работы описанного устройства
Какое хочу, такое и получу
Рис.
При практическом использовании энергии электрического тока очень часто возникает необходимость изменять напряжение, даваемое каким-либо генератором. В одних случаях нужны напряжения в тысячи или даже сотни тысяч вольт, в других необходимы напряжения в несколько вольт или несколько десятков вольт. Осуществить такого рода преобразования можно в устройствах, которые называют трансформаторами. В основе работы трансформатора лежит явление электромагнитной индукции. Трансформатор состоит из двух обмоток, надетых на магнитомягкий стальной сердечник. Сердечник собран из пластин. Одна из обмоток, называемая первичной, подключается к источнику переменного тока. Вторая обмотка, к которой подсоединяют «нагрузку», называют вторичной ( см. рис.).
Для трансформаторов, работающих на холостом ходу, справедливо соотношение U1/ U2= N1/ N2 = K где U1 и U2 и — напряжения на первичной и вторичной обмотках трансформатора, a N1 и N2 — число витков на первичной и вторичной обмотках
трансформатора. Величину К называют коэффициентом трансформации. Трансформатор преобразует переменный электрический ток таким образом, что произведение силы тока на напряжение приблизительно одинаково в первичной и вторичной обмотках.
Электрическая энергия — самая универсальная и удобная форма энергии для передачи на большие расстояния. Удвоение потребления электроэнергии происходит в среднем за 10 лет. Это означает, что роль трансформаторов как повышающих, так и понижающих будет возрастать.
Ответьте на вопросы к тексту:
В чем заключается явление электромагнитной индукции?
Может ли трансформатор работать от постоянного тока?
Каковы потери передаваемой мощности в трансформаторах?
Почему сердечник трансформатора набирается из пластин?
Текст по разделу «Электродинамика»,
содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задание на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи имеющихся знаний
Огни святого Эльма
В природе наблюдается интересное явление. Иногда в тропическую ночь на мачтах и реях кораблей появляются кисточки холодного пламени. Эти огни известны очень давно. Их видели Колумб и Магеллан, о них писал даже Юлий Цезарь, который однажды видел такое свечение на копьях своих солдат во время ночного похода через горы. Не составляет большого труда самим получить такое свечение. Если хорошо натереть лист оргстекла сухой тканью и после этого к листу поднести полураскрытые ножницы остриями к листу, то в затемненной комнате можно увидеть как на остриях ножниц появляются дрожащие пучки нитей, светящиеся лиловатым пламенем. В тишине можно услышать легкое шипение или жужжание. Если вместо ножниц к листу оргстекла поднести спичку, то она не зажжется, хотя огонь будет плясать прямо на головке спички. Возникшее свечение холодное. Такое же свечение часто появлялось на шпиле церкви святого Эльма в одном из городов Франции и считалось доброй приметой. Подобное свечение получило название огней святого Эльма.
Ответьте на вопросы к тексту и выполните задание:
1.Какое физическое явление лежит в основе появления огней святого Эльма?
2.Почему не возникает такого свечения на плоской металлической крыше?
3.Опасно ли находиться вблизи возникших огней святого Эльма на корабле?
4.На каком физическом приборе можно получить огни святого Эльма?
Текст по разделу «Механика»,
содержащий описание использования законов механики в технике. Задание на понимание основных принципов, лежащих в основе работы описанного устройства
От Галилея до современности
Маятник обладает удивительным свойством — оно казалось удивительным Галилею, измерявшему время по числу биений пульса, оно кажется таким же и современному человеку, пользующемуся секундомером. Заключается оно в том, что колебания маятника и с малой амплитудой и с большой амплитудой совершаются практически за одно и то же время. Если сначала колебания происходят с очень большим отклонением, скажем на 80° от вертикали, то при затухании колебаний до 60…40…20° период уменьшится лишь на несколько процентов; а при уменьшении отклонений от 20° до едва заметного период изменяется меньше чем на 1%. При отклонениях меньше 5° период остается неизменным с точностью до 0,05%.
Это свойство маятника оказалось не только удивительным, но и полезным. Галилей предложил использовать маятник в качестве регулятора в часах. Лишь столетие спустя после Галилея часы с маятниковым регулятором вошли в обиход. Однако мореплаватели нуждались в точных часах для измерения долготы на море. Была объявлена премия за создание морских часов, которые позволяли бы измерять время с достаточной точностью. Премию получил Гариссон за хронометр, в котором для регулирования хода использовалось маховое колесо (баланс) и специальная пружина.
Свойство независимости периода колебаний маятника от амплитуды называется изохронностью.
Ответьте на вопросы к тексту:
Одинакова ли скорость движения маятника?
Постоянно ли. ускорение при движении маятника?
Отчего зависит период колебаний?
В чем заключается свойство изохронности?
Текст по разделу «Квантовая физика и элементы астрофизики»,
содержащий описание использования законов квантовой, атомной или ядерной физики в технике.
Задание на понимание основных принципов, лежащих в основе работы описанного устройства
Пока еще недоступная энергия
При слиянии легких ядер выделяется энергия. Как научиться управлять этой энергией? Задача состоит в том, чтобы, преодолев электрическое отталкивание, сблизить легкие ядра на достаточно близкие расстояния друг от друга, где уже начинают действовать между ними ядерные силы притяжения. Если бы можно было заставить два протона и два нейтрона объединиться в ядро атома гелия — или же четыре протона с соответствующими превращениями, — то при этом выделилась бы огромная энергия. Заставить сблизиться ядра можно с помощью нагрева до высоких температур, когда в результате обычных столкновений ядра смогут сблизиться на столь малые расстояния, чтобы ядерные силы вступили в реакцию, и произошел синтез. Начавшись, процесс синтеза, по-видимому, сможет дать такое количество теплоты, которое нужно для поддержания высокой температуры, необходимой для дальнейших слияний ядер. Этот многостадийный процесс «горения» водорода, в результате которого происходит синтез ядер гелия, является источником непрерывного потока солнечной радиации. Проблема использования синтеза ядер в мирных целях, например для производства электрической энергии, упирается в очень трудную проблему удержания реакции. Газ должен быть раскален до температуры порядка 50 000 000 °С, и любая твердая оболочка, соприкоснувшись с ним, обратится в пар. Если к тому же при синтезе выделяется полезное тепло, то задача удержания реакции еще более усложняется.
В настоящее время ведутся исследования по удержанию реагирующих веществ с помощью электромагнитного поля. Можно подвешивать в воздухе магнит с помощью других магнитов, хотя такое равновесное положение и является неустойчивым. Если пропускать ток достаточно большой силы через газ, то образуются потоки электронов и положительных ионов, движущихся навстречу друг другу. Под действием магнитного поля, которое окружает ток, такой поток движущихся зарядов будет сжиматься в узкий шнур. В этом заключается так называемый пинч-эффект. Пинч-эффект и силы, создаваемые магнитными нолями, меняющимися по определенному закону, можно использовать для удержания плазмы — смеси быстро движущихся ядер и электронов в «магнитной бутылке», где происходит реакция синтеза.
Ответьте на вопросы к тексту:
Что означает слово синтез?
Всегда ли при ядерной реакции выделяется энергия?
Что такое плазма?
Каковы проблемы управления термоядерным синтезом?
Текст по разделу «Электродинамика»,
содержащий описание использования законов электродинамики в технике. Задание на понимание основных принципов, лежащих в основе работы описанного устройства
Действие магнитного ноля на проводник с током
Воспользуемся магнитным полем дугообразного магнита, а электрическую цепь соберем согласно рис.1
Проводник АВ представляет собою прямолинейный участок цепи, находящийся в магнитном поле дугообразного магнита. При пропускании электрического тока наблюдается отклонение проводника с током в магнитном поле. Меняя направление тока, можно наблюдать изменение направления отклонения проводника с током в магнитном поле.
В 1820 г. французский физик Ампер экспериментально установил, от каких физических величин зависит эта сила.
Сила, с которой магнитное поле действует на помещенный в него отрезок проводника с током, равна произведению силы тока, модуля вектора магнитной индукции, длины отрезка проводника и синуса угла между направлениями тока и магнитной индукции:
F = IBlsina. Существует правило, по которому определяется направление силы Ампера. Если в магнитном поле будет находиться рамка с током, то на нее действует пара сил, которая создает вращающий момент для рамки (рис.2): М — ISBsina. Поворот рамки с током в магнитном поле используют в электроизмерительных приборах магнитоэлектрической системы, например в амперметрах. В магнитном поле между постоянным магнитом и цилиндром из мягкого железа располагается катушка, способная вращаться вокруг горизонтальной оси. При такой конструкции вращающий момент, действующий на катушку, максимален. Вращающий момент пропорционален силе измеряемого тока и числу витков в катушке. Измеряемая сила тока прямо пропорциональна углу отклонения стрелки.
Ответьте на вопросы к тексту:
1. Почему магнитное поле действует на проводник с током, находящий-
ся в этом магнитном поле?
Сформулируйте правило для определения направления силы Ампера.
В каких единицах измеряют магнитную индукцию?
Рис. 2
Рис. 1
Возможно ли использовать поворот рамки с током в магнитном поле в приборах для измерения напряжения в электрической цепи? Как называют такие приборы?
Текст по разделу «Электродинамика»,
содержащий описание опыта. Задание на определение (или формулировку) гипотезы опыта, условий его проведения и выводов
Разделение атомов в газовом разряде
На рис. представлена разрядная стеклянная трубка, в которую впаяны два электрода А и В в виде металлических пластин, между которыми подается высокое напряжение порядка 40 ООО В для создания сильного поля в области Y между электродами. Трубка наполнена газом при пониженном давлении. По обе стороны электродов впаяны по две, параллельные между собой, пластины, к которым подается постоянное напряжение.
Предполагается, что во внешних областях XиZгоризонтальное электрическое поле отсутствует. В области Y находится небольшое количество газа, в котором образуются электроны и положительные ионы. Большинство электронов, увлекаемые полем, ударяется в пластину В, но некоторые проходят через отверстие, образуя пучок в области Z. Вертикальное электрическое поле, создаваемое пластинами Рг и Р/г, отклоняет этот пучок вниз. В области Z действует и магнитное поле, перпендикулярное плоскости страницы; это поле также отклоняет пучок электронов вниз. Эти поля действуют и на положительные ионы, проходящие через отверстие в пластине А в область X. Наличие магнитного поля в области X приводит к тому, что в пучке движущихся зарядов происходит разделение зарядов. Отклонения зарядов будут пропорциональны значениям е. т,.
Ответьте на вопросы к тексту:
1. Между пластинами Рх, и Р’х действует такое же электрическое поле,
как между пластинами Рг и Р/г? В каком направлении будут отклоняться
положительные ионы электрическим полем?
2. В области X действует такое же магнитное поле, как и в области Z?
Куда это поле будет отклонять положительные ионы — вверх или вниз? Почему?
3. По какой траектории будут двигаться отклоняющиеся частицы?
4. По какой формуле можно рассчитать радиус кривизны траекторий частиц?
Текст по теме «Тепловые двигатели»,
содержащий информацию о воздействии тепловых двигателей на окружающую среду. Задание на понимание основных факторов, вызывающих загрязнение, и выявление мер по снижению воздействия тепловых двигателей на природу
«Грязный» транспорт
Число автомобилей на дорогах растет. Все возрастающая интенсивность движения приводит к увеличению вредных выбросов, что негативно отражается на качестве воздуха: 1 т бензина, сгорая, выделяет 500-800 кг вредных веществ. В атмосферу ежегодно выбрасывается порядка 5 млрд. т С02. В состав выхлопных газов входит 1 200 компонентов, в том числе оксид углерода, оксиды азота, углеводороды, альдегиды, оксиды металлов (наиболее вредный — оксид свинца), сажа и пр.
Молекулы оксида углерода способны поглощать инфракрасное излучение, поэтому увеличение концентрации углекислого газа в атмосфере изменяет ее прозрачность. Инфракрасное излучение, испускаемое земной поверхностью, все в большей мере поглощается в атмосфере. Дальнейшее увеличение концентрации углекислого газа в атмосфере может привести к так называемому «парниковому эффекту». Ежегодно температура атмосферы Земли повышается на 0,05 °С. При сжигании топлива уменьшается содержание кислорода в воздухе. Более половины всех загрязнений атмосферы создает транспорт. Кроме оксида углерода и соединений азота при работе двигателей сгорания ежегодно в атмосферу выбрасывается 2-3 млн. т свинца. Содержание серы в топливе напрямую влияет на выделение в окружающую среду диоксида серы. Диоксид серы вызывает образование сульфатных частиц, которые оказывают целый ряд негативных последствий на здоровье человека. Диоксид серы также может превращаться в высококоррозийную серную кислоту («кислотный дождь»), которая, среди прочего, способна повреждать даже здания. Так как автомобильные двигатели играют решающую роль в загрязнении окружающей среды в городах, то проблема их усовершенствования является одной из наиболее важных научно-технических задач. Один из путей уменьшения загрязнения атмосферы — использование дизелей вместо карбюраторных бензиновых двигателей, так как в дизельное топливо не добавляют свинец. В перспективе и другие способы уменьшения загрязнения окружающей среды, например, применение электродвигателей на транспорте или двигателей, в которых топливом является водород, создание автомобилей, работающих на солнечной энергии.
Ответьте на вопросы к тексту:
Какие еще тепловые двигатели, кроме двигателей внутреннего сгорания, оказывают отрицательное влияние на окружающую среду?
К каким последствиям приводит широкое применение тепловых машин в энергетике и транспорте?
К чему может привести повышение температуры Земли?
Что предпринимается для охраны природы?