Как избавиться от дроби в уравнении: Как избавиться от знаменателя в дроби. Математика, которая мне нравится

Содержание

Системы уравнений. Добыть однородность | Партизанская математика

Перечисляя типичные ходы при решении систем уравнений, мы упомянули про необычный способ поиска решений, который обобщает сразу несколько методов.

Итак, давайте поговорим про него и узнаем, как можно добывать однородность.

***********

Для начала нам нужно четко понимать, какие системы мы уже умеем решать.

Например, если в системе есть однородное уравнение, то в решении можно использовать эту самую однородность.

В первом уравнении нужно просто разделить на старшую степень одной из переменных (например, на y²≠0) и тем самым перейти к решению рационального уравнения относительно x/y.

Также мы умеем решать уравнения вот такого вида:

После замены t =x/y задача сводится к дробно-рациональному уравнению и решается стандартным способом.

Итак, если мы научимся приводить некоторые системы к уравнениям подобного вида относительно x/y, то это значительно упростит нам жизнь. Хотя, конечно, не факт, что так мы решим задачу, ведь в результате может оказаться уравнение довольно высокой степени.

Давайте посмотрим, как разглядеть в очень разных с виду системах возможность их приведения к подобному виду.

Возьмём систему, которую мы исследовали в конце прошлой статьи. Там мы намеренно шли не самым эффективным путём, чтобы уже здесь обсудить более корректный алгоритм.

Система, которая предлагалась на экзаменах в МФТИ в 2000 году:

Мы видим какие-то совершенно несвязанные между собой дроби слева. Коэффициенты в уравнениях тоже слишком независимые, и не наталкивают на какие-либо размышления.

Но всё же здесь есть повод для оптимизма.

Внимательно посмотрим на дроби, а точнее на их окончательные степени. В первом уравнении у дроби x³/y² степень равна 3-2=1, а у дроби y/x степень нулевая. Во втором уравнении дробь имеет y/x² степень -1, а x/y имеет нулевую степень. Для свободных членов справа степени равны нулю.

Небольшое пояснение: в школе обычно принято работать с положительными степенями переменных и по ним определять степень соответствующих одночленов и многочленов. Например, 3x² имеет вторую степень, а 7xy³ имеет степень 5+3=8. Те же самые рассуждения можно распространить и на дроби, если представить деление на одночлен положительной степени как умножение на отрицательную степень. Таким образом, например, 6x⁴/y³=6xy⁻³ имеет первую степень (4-3=1).

Итак, для слагаемых первого уравнения степени равны 1, 0 и 0; для второго -1, 0 и 0.

А теперь очень важный момент.

Обратите внимание: во-первых, каждое уравнение состоит из слагаемых только двух (!) степеней; во-вторых, разница между этими степенями одинакова (!) и равна единице. Это позволит нам путём нехитрых преобразований прийти к уравнению, зависящему только от x/y.

Чтобы этого добиться, мы должны перенести все слагаемые с одинаковыми степенями в одну сторону. То есть получим следующую систему:

Далее для удобства избавимся от дробей. Очевидно, что x,y≠0, поэтому первое уравнение домножим на 4xy², а второе на x²y:

В принципе, избавиться от дробей можно было и сразу, без переноса слагаемых. И в таком случае для поиска однородности и подсчета степеней одночленов не нужно будет отвлекаться на отрицательные степени.

Далее переставим для удобства левую и правую часть первого уравнения:

Это нам нужно для того, чтобы левые части уравнений имели меньшую степень, чем правые.

Итак, в первом уравнении слева степени 3 и 3, а справа степень 4; во-втором слева степень 2, а справа степени 3 и 3.

Теперь сравняем степени уравнений. Для этого нужно будет домножить второе уравнение на одночлен первой степени. Можно домножить как на x , так и на y . Здесь уже нужно подбирать в зависимости от удобства дальнейших преобразований.

Кстати, если нам нужно было бы умножать на одночлен третьей степени, мы бы выбирали уже из четырёх вариантов: на y ³, на xy ², на x ²y или на x ³.

Итак, домножим на x второе уравнение:

Теперь важная промежуточная цель достигнута. В каждом уравнении системы находятся одночлены одной и той же степени (третьей), а справа — другой (четвёртой). Именно такую конструкцию мы держали в голове, проводя все эти преобразования. Мы получили то, к чему стремились.

Теперь остался последний шаг – делим уравнения друг на друга:

А дальше уже дело техники. Сокращаем дроби:

В итоге получили дроби, в которых числители и знаменатели однородны и имеют одинаковые степени.

Теперь финальный аккорд: делим числители и знаменатели дробей на старшую степень одной из переменных. Здесь тоже надо учитывать вид уравнений. В некоторых случая лучше делить на соответствующую степень y , в некоторых – на старшую степень x . Наша цель состоит в том, чтобы получить как можно более удобное для решения дробно-рациональное уравнение.

В нашем уравнении разделим числитель и знаменатель каждой дроби на x .

Далее делаем замену t=y/x и получаем легко решаемое дробно-рациональное уравнение, которое сводится к квадратному. Его корни t₁=2 и t₂=-8/15.

Получив зависимость y от x , решаем исходную систему методом подстановки.

***********

Давайте потренируемся на схожем примере, но уже без таких подробных комментариев.

Данная система была на экзаменах в МФТИ в 2006 году:

Лучше сразу избавиться от дробей, домножив первое уравнение на x ²≠0. После этого раскроем скобки слева:

В первом уравнении у одночленов только вторая и третья степени, во втором – первая и вторая. То есть два варианта для степеней у каждого уравнения. И разница между степенями одинакова, как нам и требуется.

Переносим одинаковые степени в одну сторону. Меньшие степени сделаем слева:

Сравняем степени левых и правых частей этих уравнений. Для этого домножим второе уравнение на y.

Делим левые и правые части (до этого нужно показать, что y≠0):

Справа числитель и знаменатель однородны и одной степени. Делим их на y³ и делаем замену x/y=t.

В конечно итоге получается кубическое уравнение, которое решается очевидным разложением на множители.

Получаем t₁=-1, t₂=1, t₃=-3/2, выражаем x через y и каждый случай решаем методом подстановки.

****************

Теперь небольшие комментарии.

Этот способ поначалу может показаться сложным. Но у него есть два неоспоримых преимущества.

Во-первых, он алгоритмичен. То есть при определённых начальных условиях, он рано или поздно позволит перейти к сравнительно простому уравнению относительно x/y или y/x. Единственное требование: нужно будет аккуратно подбирать множители, чтобы упростить себе вычисления.

Во-вторых, если вы его полностью поймёте и научитесь замечать удобные степени слагаемых в громоздких уравнениях, вы выработаете полезную привычку и в простых случаях будете сразу видеть решение. И здесь вас не будут смущать фразы «заметим, что» в решебниках, так как вы будете понимать, к чему нужно стремиться, что именно нужно замечать и на что смотреть в первую очередь.

Например, вот такая система не будет вызывать у вас трудностей, так как в ней сразу видна вторая и нулевая степень одночленов:

Можно, конечно, перенести одинаковые степени и делить по рассмотренному выше алгоритму. А можно не делить и после переноса просто алгебраическим способом избавиться от свободного члена. Это не важно. Главное, что, замечая подобную зависимость между степенями, вы понимаете принципиальную решаемость подобной системы и что рано или поздно вы её решите. А уж как вы это сделаете, зависит от вашей нарешанности.

Также использование этого метода может натолкнуть на какие-то дополнительные размышления. Не нужно думать, что перед вами серебряная пуля или какой-то сверхсекретный универсальный метод. Возможно, вы просто на пару шагов приблизитесь к решению. А может быть это ничего не даст.

Например, на прошлой неделе мы с учеником решали вот такую систему в натуральных числах:

Даже без раскрытия скобок легко заметить, что в каждом из уравнений есть слагаемые только первой и третьей степени. Переместив третьи степени в правую часть, получаем систему:

Делить уравнения не обязательно, можно просто избавиться от первых степеней слева. Домножим первое уравнение на a , а второе на b и вычтем.

Числа a и b натуральные, поэтому можно смело поделить на a²+b²≠0:

В итоге получили довольно интересное однородное выражение:

И хотя это преобразование не привело к решению задачи (исходная задача решается через свойства делимости), мы чётко увидели как подобные рассуждения могут привести к упрощению алгебраических выражений.

И наконец, данный подход может пригодиться составителям олимпиад. По сути, чтобы придумать задание с системой уравнений достаточно просто взять дробно-рациональное уравнение, сделать его относительно переменной x /y, домножить на какие-нибудь степени числители и знаменатели, а потом разбить на два уравнения. То есть, нужно пройти весь путь решения, но в обратную сторону.

что это? Отвечаем на вопрос. Определение термина, примеры

В курсе школьной математики, ребенок впервые слышит термин «уравнение». Что такое это, попробуем разобраться вместе. В данной статье рассмотрим виды и способы решения.

Математика. Уравнения

Для начала предлагаем разобраться с самим понятием, что это такое? Как гласят многие учебники математики, уравнение — это некоторые выражения, между которыми стоит обязательно знак равенства. В этих выражениях присутствуют буквы, так называемые переменные, значение которых и необходимо найти.

Что такое переменная? Это атрибут системы, который меняет свое значение. Наглядным примером переменных являются:

  • температура воздуха;
  • рост ребенка;
  • вес и так далее.

В математике они обозначаются буквами, например, х, а, b, с… Обычно задание по математике звучит следующим образом: найдите значение уравнения. Это значит, что необходимо найти значение данных переменных.

Разновидности

Уравнение (что такое, мы разобрали в предыдущем пункте) может быть следующего вида:

  • линейные;
  • квадратные;
  • кубические;
  • алгебраические;
  • трансцендентные.

Для более подробного знакомства со всеми видами, рассмотрим каждый в отдельности.

Линейное уравнение

Это первый вид, с которым знакомятся школьники. Они решаются довольно-таки быстро и просто. Итак, линейное уравнение, что такое? Это выражение вида: ах=с. Так не особо понятно, поэтому приведем несколько примеров: 2х=26; 5х=40; 1,2х=6.

Разберем примеры уравнений. Для этого нам необходимо все известные данные собрать с одной стороны, а неизвестные в другой: х=26/2; х=40/5; х=6/1,2. Здесь использовались элементарные правила математики: а*с=е, из этого с=е/а; а=е/с. Для того чтобы завершить решение уравнения, выполним одно действие (в нашем случае деление) х=13; х=8; х=5. Это были примеры на умножение, теперь просмотрим на вычитание и сложение: х+3=9; 10х-5=15. Известные данные переносим в одну сторону: х=9-3; х=20/10. Выполняем последнее действие: х=6; х=2.

Также возможны варианты линейных уравнений, где используется более одной переменной: 2х-2у=4. Для того чтобы решить, необходимо к каждой части прибавить 2у, у нас получается 2х-2у+2у=4-2у, как мы заметили, по левую часть знака равенства -2у и +2у сокращаются, при этом у нас остается: 2х=4-2у. Последним шагом делим каждую часть на два, получаем ответ: икс равен два минус игрек.

Задачи с уравнениями встречаются даже на папирусах Ахмеса. Вот одна из задач: число и четвертая его часть дают в сумме 15. Для ее решения мы записываем следующее уравнение: икс плюс одна четвертая икс равняется пятнадцати. Мы видим еще один пример линейного уравнения, по итогу решения, получаем ответ: х=12. Но эту задачу можно решить и другим способом, а именно египетским или, как его называют по-другому, способом предположения. В папирусе используется следующее решение: возьмите четыре и четвертую ее часть, то есть единицу. В сумме они дают пять, теперь пятнадцать необходимо разделить на сумму, мы получаем три, последним действием три умножаем на четыре. Мы получаем ответ: 12. Почему мы в решении пятнадцать делим на пять? Так узнаем, во сколько раз пятнадцать, то есть результат, который нам необходимо получить, меньше пяти. Таким способом решали задачи в средние века, он стал зваться методом ложного положения.

Квадратные уравнения

Кроме рассмотренных ранее примеров, существуют и другие. Какие именно? Квадратное уравнение, что такое? Они имеют вид ax2+bx+c=0. Для их решения необходимо ознакомиться с некоторыми понятиями и правилами.

Во-первых, нужно найти дискриминант по формуле: b2-4ac. Есть три варианта исхода решения:

  • дискриминант больше нуля;
  • меньше нуля;
  • равен нулю.

В первом варианте мы можем получить ответ из двух корней, которые находятся по формуле: -b+-корень из дискриминанта разделенные на удвоенный первый коэфициент, то есть 2а.

Во втором случае корней у уравнения нет. В третьем случае корень находится по формуле: -b/2а.

Рассмотрим пример квадратного уравнения для более подробного знакомства: три икс в квадрате минус четырнадцать икс минус пять равняется нулю. Для начала, как и писалось ранее, ищем дискриминант, в нашем случае он равен 256. Отметим, что полученное число больше нуля, следовательно, мы должны получить ответ состоящих из двух корней. Подставляем полученный дискриминант в формулу нахождения корней. В результате мы имеем: икс равняется пяти и минус одной третьей.

Особые случаи в квадратных уравнениях

Это примеры, в которых некоторые значения равны нулю (а, b или с), а возможно и несколько.

Для примера возьмем следующее уравнение, которое является квадратным: два икс в квадрате равняется нулю, здесь мы видим, что b и с равны нулю. Попробуем его решить, для этого обе части уравнения делим на два, мы имеем: х2=0. В итоге получаем х=0.

Другой случай 16х2-9=0. Здесь только b=0. Решим уравнение, свободный коэфициент переносим в правую часть: 16х2=9, теперь каждую часть делим на шестнадцать: х2= девять шестнадцатых. Так как у нас х в квадрате, то корень из 9/16 может быть как отрицательным, так и положительным. Ответ записываем следующим образом: икс равняется плюс/минус три четвертых.

Возможен и такой вариант ответа, как у уравнения корней вовсе нет. Посмотрим на такой пример: 5х2+80=0, здесь b=0. Для решения свободный член перекидываете в правую сторону, после этих действий получаем: 5х2=-80, теперь каждую часть делим на пять: х2= минус шестнадцать. Если любое число возвести в квадрат, то отрицательное значение мы не получим. По этому наш ответ звучит так: у уравнения корней нет.

Разложение трехчлена

Задание по квадратным уравнениям может звучать и другим образом: разложить квадратный трехчлен на множители. Это возможно осуществить, воспользовавшись следующей формулой: а(х-х1)(х-х2). Для этого, как и в другом варианте задания, необходимо найти дискриминант.

Рассмотрим следующий пример: 3х2-14х-5, разложите трехчлен на множетели. Находим дискриминант, пользуясь уже известной нам формулой, он получается равным 256. Сразу отмечаем, что 256 больше нуля, следовательно, уравнение будет иметь два корня. Находим их, как в предыдущем пункте, мы имеем: х= пять и минус одна третья. Воспользуемся формулой для разложения трехчлена на множетели: 3(х-5)(х+1/3). Во второй скобке мы получили знак равно, потому что в формуле стоит знак минуса, а корень тоже отрицательный, пользуясь элементарными знаниями математики, в сумме мы имеем знак плюса. Для упрощения, перемножим первый и третий член уравнения, чтобы избавиться от дроби: (х-5)(х+1).

Уравнения сводящиеся к квадратному

В данном пункте научимся решать более сложные уравнения. Начнем сразу с примера:

(x2 – 2x)2 – 2(x2 – 2x) – 3 = 0. Можем заметить повторяющиеся элементы: (x2 – 2x), нам для решения удобно заменить его на другую переменную, а далее решать обычное квадратное уравнение, сразу отмечаем, что в таком задании мы получим четыре корня, это не должно вас пугать. Обозначаем повторение переменной а. Мы получаем: а2-2а-3=0. Наш следующий шаг — это нахождение дискриминанта нового уравнения. Мы получаем 16, находим два корня: минус один и три. Вспоминаем, что мы делали замену, подставляем эти значения, в итоге мы имеем уравнения: x2 – 2x=-1; x2 – 2x=3. Решаем их в первом ответ: х равен единице, во втором: х равен минусу одному и трем. Записываем ответ следующим образом: плюс/минус один и три. Как правило, ответ записывают в порядке возрастания.

Кубические уравнения

Рассмотрим еще один возможный вариант. Речь пойдет о кубических уравнениях. Они имеют вид: ax 3 + b x 2 + cx + d =0. Примеры уравнений мы рассмотрим далее, а для начала немного теории. Они могут иметь три корня, так же существует формула для нахождения дискриминанта для кубического уравнения.

Рассмотрим пример: 3х3+4х2+2х=0. Как его решить? Для этого мы просто выносим х за скобки: х(3х2+4х+2)=0. Все что нам остается сделать — это вычислить корни уравнения в скобках. Дискриминант квадратного уравнения в скобках меньше нуля, исходя из этого, выражение имеет корень: х=0.

Алгебра. Уравнения

Переходим к следующему виду. Сейчас мы кратко рассмотрим алгебраические уравнения. Одно из заданий звучит следующим образом: методом группировки разложить на множетели 3х4+2х3+8х2+2х+5. Самым удобным способом будет следующая группировка: (3х4+3х2)+(2х3+2х)+(5х2+5). Заметим, что 8х2 из первого выражения мы представили в виде суммы 3х2 и 5х2. Теперь выносим из каждой скобки общий множитель 3х2(х2+1)+2х(х2+1)+5(х2+1). Мы видим, что у нас есть общий множитель: икс в квадрате плюс один, выносим его за скобки: (х2+1)(3х2+2х+5). Дальнейшее разложение невозможно, так как оба уравнения имеют отрицательный дискриминант.

Трансцендентные уравнения

Предлагаем разобраться со следующим типом. Это уравнения, которые содержат трансцендентные функции, а именно логарифмические, тригонометрические или показательные. Примеры: 6sin2x+tgx-1=0, х+5lgx=3 и так далее. Как они решаются вы узнаете из курса тригонометрии.

Функция

Завершающим этапом рассмотрим понятие уравнение функции. В отличии от предыдущих вариантов, данный тип не решается, а по нему строится график. Для этого уравнение стоит хорошо проанализировать, найти все необходимые точки для построения, вычислить точку минимума и максимума.

Область определения выражения под корнем

Среди всех иррациональных уравнений и неравенств, содержащих корень в знаменателе дроби, можно, в первую очередь, выделить те, которые содержат и , или подобные иррациональные выражения. Эти иррациональные уравнения аналогичны рациональным уравнениям из §II.3.

Задача заключается в выделении полного квадрата выражения . И перехода к квадратному уравнению с новой переменной.

Затем нужно выделить те уравнения и неравенства, где всю иррациональную дробь можно заменить на новую переменную, например, в уравнении:

Можно ввести замену и получить уравнение:t + 2/t = 3

Еще можно выделить уравнения и неравенства, в которых можно преобразовать дроби, содержащие корень, за счет различных алгебраических преобразований, среди которых наиболее популярна разность квадратов и нередко встречаются делители 1.

За счет этих преобразований нередко удается избавиться от иррациональности в знаменателе. Например уравнение:

За счет использования формулы разности квадратов в числителе дроби превращается в:

Если к уравнению или неравенству не удается применить ни один из описанных выше подходов, тогда, чаще всего, решение следует начинать с приведения всех слагаемых к общему знаменателю.

Причем если знаменатель содержит только корни, то его можно отбросить даже при решении неравенств, так как он является положительным. Например в неравенстве:

После приведения к общему знаменателю получим знаменатель , который можно отбросить и решать далее неравенство:

В некоторых простых случаях, особенно когда имеется одна дробь под знаком корня, предпочтительнее сначала возвести в квадрат, а потом приводить к общему знаменателю. (Приведение к общему знаменателю должно сопровождаться его выделением из под корня, что есть не вполне корректная операция. )

Внимание ловушка! Будьте внимательны при расчете ОДЗ уравнений и неравенств, содержащих дроби и корни:

  1. ОДЗ корня в знаменателе задается неравенством “Подкоренное выражение > 0”, а не “Подкоренное выражение ³ 0”, например в неравенстве:
    ОДЗ будет x О ( 0 ; 6 ), а не x О [ 0 ; 6 ].
  2. ОДЗ дроби под корнем, , отличается от ОДЗ отношения корней, , в первом случае ОДЗ задается системой неравенства во втором – системойЭто объясняется тем, что если числитель и знаменатель отрицательны, то сама дробь положительна и корень извлечь из нее можно, но при этом ни из числителя, ни из знаменателя корень извлечь нельзя. (И это несмотря на то, что при преобразовании выражений эти два выражения обычно считаются эквивалентными.) Например, ОДЗ для выражения будет , а для ОДЗ для будетx О ( 0 ;
    Ґ ).
  3. Отбрасывая знаменатель не забывайте, что он все таки влияет на ОДЗ.

Внимательными нужно быть и при расчете ДУ, возникающего при возведении в квадрат дробей и произведений многочленов.

Пошаговое решение квадратных уравнений. Квадратные уравнения

Квадратное уравнение – решается просто! *Далее в тексте «КУ». Друзья, казалось бы, что может быть в математике проще, чем решение такого уравнения. Но что-то мне подсказывало, что с ним у многих есть проблемы. Решил посмотреть сколько показов по запросу в месяц выдаёт Яндекс. Вот что получилось, посмотрите:


Что это значит? Это значит то, что около 70000 человек в месяц ищут данную информацию, при чём это лето, а что будет среди учебного года — запросов будет в два раза больше. Это и неудивительно, ведь те ребята и девчата, которые давно окончили школу и готовятся к ЕГЭ, ищут эту информацию, также и школьники стремятся освежить её в памяти.

Несмотря на то, что есть масса сайтов, где рассказывается как решать это уравнение, я решил тоже внести свою лепту и опубликовать материал. Во-первых, хочется чтобы по данному запросу и на мой сайт приходили посетители; во-вторых, в других статьях, когда зайдёт речь «КУ» буду давать ссылку на эту статью; в-третьих, расскажу вам о его решении немного больше, чем обычно излагается на других сайтах. Приступим! Содержание статьи:

Квадратное уравнение – это уравнение вида:

где коэффициенты a, b и с произвольные числа, при чём a≠0.

В школьном курсе материал дают в следующем виде – условно делается разделение уравнений на три класса:

1. Имеют два корня.

2. *Имеют только один корень.

3. Не имеют корней. Здесь стоит особо отметить, что не имеют действительных корней

Как вычисляются корни? Просто!

Вычисляем дискриминант. Под этим «страшным» словом лежит вполне простая формула:

Формулы корней имеют следующий вид:

*Эти формулы нужно знать наизусть.

Можно сразу записывать и решать:

Пример:


1. Если D > 0, то уравнение имеет два корня.

2. Если D = 0, то уравнение имеет один корень.

3. Если D

Давайте рассмотрим уравнение:


По данному поводу, когда дискриминант равен нулю, в школьном курсе говорится о том, что получается один корень, здесь он равен девяти. Всё правильно, так и есть, но…

Данное представление несколько несколько некорректно. На самом деле получается два корня. Да-да, не удивляйтесь, получается два равных корня, и если быть математически точным, то в ответе следует записывать два корня:

х 1 = 3 х 2 = 3

Но это так – небольшое отступление. В школе можете записывать и говорить, что корень один.

Теперь следующий пример:


Как нам известно – корень из отрицательного числа не извлекается, поэтому решения в данном случае нет.

Вот и весь процесс решения.

Квадратичная функция.

Здесь показано, как решение выглядит геометрически. Это крайне важно понимать (в дальнейшем в одной из статей мы подробно будем разбирать решение квадратного неравенства).

Это функция вида:

где х и у — переменные

a, b, с – заданные числа, при чём a ≠ 0

Графиком является парабола:

То есть, получается, что решая квадратное уравнение при «у» равном нулю мы находим точки пересечения параболы с осью ох. Этих точек может быть две (дискриминант положительный), одна (дискриминант равен нулю) и ни одной (дискриминант отрицательный). Подробно о квадратичной функции можете посмотреть статью у Инны Фельдман.

Рассмотрим примеры:

Пример 1: Решить 2x 2 +8 x –192=0

а=2 b=8 c= –192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Ответ: х 1 = 8 х 2 = –12

*Можно было сразу же левую и правую часть уравнения разделить на 2, то есть упростить его. Вычисления будут проще.

Пример 2: Решить x 2 –22 x+121 = 0

а=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Получили, что х 1 = 11 и х 2 = 11

В ответе допустимо записать х = 11.

Ответ: х = 11

Пример 3: Решить x 2 –8x+72 = 0

а=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Дискриминант отрицательный, решения в действительных числах нет.

Ответ: решения нет

Дискриминант отрицательный.

Решение есть!

Здесь речь пойдёт о решении уравнения в случае когда получается отрицательный дискриминант. Вы что-нибудь знаете о комплексных числах? Не буду здесь подробно рассказывать о том, почему и откуда они возникли и в чём их конкретная роль и необходимость в математике, это тема для большой отдельной статьи.

Понятие комплексного числа.

Немного теории.

Комплексным числом z называется число вида

z = a + bi

где a и b – действительные числа, i – так называемая мнимая единица.

a+bi – это ЕДИНОЕ ЧИСЛО, а не сложение.

Мнимая единица равна корню из минус единицы:

Теперь рассмотрим уравнение:


Получили два сопряжённых корня.

Неполное квадратное уравнение.

Рассмотрим частные случаи, это когда коэффициент «b» или «с» равен нулю (или оба равны нулю). Они решаются легко без всяких дискриминантов.

Случай 1. Коэффициент b = 0.

Уравнение приобретает вид:

Преобразуем:

Пример:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Случай 2. Коэффициент с = 0.

Уравнение приобретает вид:

Преобразуем, раскладываем на множители:

*Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю.

Пример:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 или x–5 =0

x 1 = 0 x 2 = 5

Случай 3. Коэффициенты b = 0 и c = 0.

Здесь понятно, что решением уравнения всегда будет х = 0.

Полезные свойства и закономерности коэффициентов.

Есть свойства, которые позволяют решить уравнения с большими коэффициентами.

а x 2 + bx + c

=0 выполняется равенство

a + b + с = 0, то

— если для коэффициентов уравнения а x 2 + bx + c =0 выполняется равенство

a + с = b , то

Данные свойства помогают решить определённого вида уравнения.

Пример 1: 5001 x 2 –4995 x – 6=0

Сумма коэффициентов равна 5001+( 4995)+( 6) = 0, значит

Пример 2: 2501 x 2 +2507 x +6=0

Выполняется равенство a + с = b , значит

Закономерности коэффициентов.

1. Если в уравнении ax 2 + bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 + (а 2 +1)∙х+ а= 0 = > х 1 = –а х 2 = –1/a.

Пример. Рассмотрим уравнение 6х 2 +37х+6 = 0.

х 1 = –6 х 2 = –1/6.

2. Если в уравнении ax 2 – bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 +1)∙х+ а= 0 = > х 1 = а х 2 = 1/a.

Пример. Рассмотрим уравнение 15х 2 –226х +15 = 0.

х 1 = 15 х 2 = 1/15.

3. Если в уравнении ax 2 + bx – c = 0 коэффициент «b» равен (a 2 – 1), а коэффициент «c» численно равен коэффициенту «a» , то его корни равны

аx 2 + (а 2 –1)∙х – а= 0 = > х 1 = – а х 2 = 1/a.

Пример. Рассмотрим уравнение 17х 2 +288х – 17 = 0.

х 1 = – 17 х 2 = 1/17.

4. Если в уравнении ax 2 – bx – c = 0 коэффициент «b» равен (а 2 – 1), а коэффициент с численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 –1)∙х – а= 0 = > х 1 = а х 2 = – 1/a.

Пример. Рассмотрим уравнение 10х 2 – 99х –10 = 0.

х 1 = 10 х 2 = – 1/10

Теорема Виета.

Теорема Виета называется по имени знаменитого французского математика Франсуа Виета. Используя теорему Виета, можно выразить сумму и произведение корней произвольного КУ через его коэффициенты.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

В сумме число 14 дают только 5 и 9. Это корни. При определённом навыке, используя представленную теорему, многие квадратные уравнения вы сможете решать сходу устно.

Теорема Виета, кроме того. удобна тем, что после решения квадратного уравнения обычным способом (через дискриминант) полученные корни можно проверять. Рекомендую это делать всегда.

СПОСОБ ПЕРЕБРОСКИ

При этом способе коэффициент «а» умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а ± b+c ≠ 0, то используется прием переброски, например:

2х 2 – 11х+ 5 = 0 (1) => х 2 – 11х+ 10 = 0 (2)

По теореме Виета в уравнении (2) легко определить, что х 1 = 10 х 2 = 1

Полученные корни уравнения необходимо разделить на 2 (так как от х 2 «перебрасывали» двойку), получим

х 1 = 5 х 2 = 0,5.

Каково обоснование? Посмотрите что происходит.

Дискриминанты уравнений (1) и (2) равны:

Если посмотреть на корни уравнений, то получаются только различные знаменатели, и результат зависит именно от коэффициента при х 2:


У второго (изменённого) корни получаются в 2 раза больше.

Потому результат и делим на 2.

*Если будем перебрасывать тройку, то результат разделим на 3 и т.д.

Ответ: х 1 = 5 х 2 = 0,5

Кв. ур-ие и ЕГЭ.

О его важности скажу кратко – ВЫ ДОЛЖНЫ УМЕТЬ РЕШАТЬ быстро и не задумываясь, формулы корней и дискриминанта необходимо знать наизусть. Очень многие задачи, входящие в состав заданий ЕГЭ, сводятся к решению квадратного уравнения (геометрические в том числе).

Что стоит отметить!

1. Форма записи уравнения может быть «неявной». Например, возможна такая запись:

15+ 9x 2 — 45x = 0 или 15х+42+9x 2 — 45x=0 или 15 -5x+10x 2 = 0.

Вам необходимо привести его к стандартному виду (чтобы не запутаться при решении).

2. Помните, что х это неизвестная величина и она может быть обозначена любой другой буквой – t, q, p, h и прочими.

В современном обществе умение производить действия с уравнениями, содержащими переменную, возведённую в квадрат, может пригодиться во многих областях деятельности и широко применяется на практике в научных и технических разработках. Свидетельством тому может служить конструирование морских и речных судов, самолётов и ракет. При помощи подобных расчётов определяют траектории перемещения самых разных тел, в том числе и космических объектов. Примеры с решением квадратных уравнений находят применение не только в экономическом прогнозировании, при проектировании и строительстве зданий, но и в самых обычных житейских обстоятельствах. Они могут понадобиться в туристических походах, на спортивных состязаниях, в магазинах при совершении покупок и в других весьма распространённых ситуациях.

Разобьём выражение на составляющие множители

Степень уравнения определяется максимальным значением степени у переменной, которую содержит данное выражение. В случае, если она равна 2, то подобное уравнение как раз и называется квадратным.

Если изъясняться языком формул, то указанные выражения, как бы они ни выглядели, всегда можно привести к виду, когда левая часть выражения состоит из трёх слагаемых. Среди них: ax 2 (то есть переменная, возведённая в квадрат со своим коэффициентом), bx (неизвестное без квадрата со своим коэффициентом) и c (свободная составляющая, то есть обычное число). Всё это в правой части приравнивается 0. В случае, когда у подобного многочлена отсутствует одно из его составляющих слагаемых, за исключением ax 2 , оно называется неполным квадратным уравнением. Примеры с решением таких задач, значение переменных в которых найти несложно, следует рассмотреть в первую очередь.

Если выражение на вид выглядит таким образом, что слагаемых у выражения в правой части два, точнее ax 2 и bx, легче всего отыскать х вынесением переменной за скобки. Теперь наше уравнение будет выглядеть так: x(ax+b). Далее становится очевидно, что или х=0, или задача сводится к нахождению переменной из следующего выражения: ax+b=0. Указанное продиктовано одним из свойств умножения. Правило гласит, что произведение двух множителей даёт в результате 0, только если один из них равен нулю.

Пример

x=0 или 8х — 3 = 0

В результате получаем два корня уравнения: 0 и 0,375.

Уравнения такого рода могут описывать перемещение тел под действием силы тяжести, начавших движение из определённой точки, принятой за начало координат. Здесь математическая запись принимает следующую форму: y = v 0 t + gt 2 /2. Подставив необходимые значения, приравняв правую часть 0 и найдя возможные неизвестные, можно узнать время, проходящее с момента подъёма тела до момента его падения, а также многие другие величины. Но об этом мы поговорим позднее.

Разложение выражения на множители

Описанное выше правило даёт возможность решать указанные задачи и в более сложных случаях. Рассмотрим примеры с решением квадратных уравнений такого типа.

X 2 — 33x + 200 = 0

Этот квадратный трёхчлен является полным. Для начала преобразуем выражение и разложим его на множители. Их получается два: (x-8) и (x-25) = 0. В результате имеем два корня 8 и 25.

Примеры с решением квадратных уравнений в 9 классе позволяют данным методом находить переменную в выражениях не только второго, но даже третьего и четвёртого порядков.

Например: 2x 3 + 2x 2 — 18x — 18 = 0. При разложении правой части на множители с переменной, их получается три, то есть (x+1),(x-3) и (x+3).

В результате становится очевидно, что данное уравнение имеет три корня: -3; -1; 3.

Извлечение квадратного корня

Другим случаем неполного уравнения второго порядка является выражение, на языке букв представленное таким образом, что правая часть строится из составляющих ax 2 и c. Здесь для получения значения переменной свободный член переносится в правую сторону, а после этого из обеих частей равенства извлекается квадратный корень. Следует обратить внимание, что и в данном случае корней уравнения обычно бывает два. Исключением могут служить лишь только равенства, вообще не содержащие слагаемое с, где переменная равна нулю, а также варианты выражений, когда правая часть оказывается отрицательной. В последнем случае решений вообще не существует, так как указанные выше действия невозможно производить с корнями. Примеры решений квадратных уравнений такого типа необходимо рассмотреть.

В данном случае корнями уравнения окажутся числа -4 и 4.

Вычисление пощади земельного участка

Потребность в подобного рода вычислениях появилась в глубокой древности, ведь развитие математики во многом в те далёкие времена было обусловлено необходимостью определять с наибольшей точностью площади и периметры земельных участков.

Примеры с решением квадратных уравнений, составленных на основе задач такого рода, следует рассмотреть и нам.

Итак, допустим имеется прямоугольный участок земли, длина которого на 16 метров больше, чем ширина. Следует найти длину, ширину и периметр участка, если известно, что его площадь равна 612 м 2 .

Приступая к делу, сначала составим необходимое уравнение. Обозначим за х ширину участка, тогда его длина окажется (х+16). Из написанного следует, что площадь определяется выражением х(х+16), что, согласно условию нашей задачи, составляет 612. Это значит, что х(х+16) = 612.

Решение полных квадратных уравнений, а данное выражение является именно таковым, не может производиться прежним способом. Почему? Хотя левая часть его по-прежнему содержит два множителя, произведение их совсем не равно 0, поэтому здесь применяются другие методы.

Дискриминант

Прежде всего произведём необходимые преобразования, тогда внешний вид данного выражения будет выглядеть таким образом: x 2 + 16x — 612 = 0. Это значит, мы получили выражение в форме, соответствующей указанному ранее стандарту, где a=1, b=16, c=-612.

Это может стать примером решения квадратных уравнений через дискриминант. Здесь необходимые расчёты производятся по схеме: D = b 2 — 4ac. Данная вспомогательная величина не просто даёт возможность найти искомые величины в уравнении второго порядка, она определяет количество возможных вариантов. В случае, если D>0, их два; при D=0 существует один корень. В случае, если D

О корнях и их формуле

В нашем случае дискриминант равен: 256 — 4(-612) = 2704. Это говорит о том, что ответ у нашей задачи существует. Если знать, к , решение квадратных уравнений нужно продолжать с применением ниже приведённой формулы. Она позволяет вычислить корни.

Это значит, что в представленном случае: x 1 =18, x 2 =-34. Второй вариант в данной дилемме не может являться решением, потому что размеры земельного участка не могут измеряться в отрицательных величинах, значит х (то есть ширина участка) равна 18 м. Отсюда вычисляем длину: 18+16=34, и периметр 2(34+18)=104(м 2).

Примеры и задачи

Продолжаем изучение квадратных уравнений. Примеры и подробное решение нескольких из них будут приведены далее.

1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

Перенесём всё в левую часть равенства, сделаем преобразование, то есть получим вид уравнения, который принято именовать стандартным, и приравняем его нулю.

15x 2 + 20x + 5 — 12x 2 — 27x — 1 = 0

Сложив подобные, определим дискриминант: D = 49 — 48 = 1. Значит у нашего уравнения будет два корня. Вычислим их согласно приведённой выше формуле, а это значит, что первый из них буде равен 4/3, а второй 1.

2) Теперь раскроем загадки другого рода.

Выясним, есть ли вообще здесь корни x 2 — 4x + 5 = 1? Для получения исчерпывающего ответа приведём многочлен к соответствующему привычному виду и вычислим дискриминант. В указанном примере решение квадратного уравнения производить не обязательно, ведь суть задачи заключается совсем не в этом. В данном случае D = 16 — 20 = -4, а значит, корней действительно нет.

Теорема Виета

Квадратные уравнения удобно решать через указанные выше формулы и дискриминант, когда из значения последнего извлекается квадратный корень. Но это бывает не всегда. Однако способов для получения значений переменных в данном случае существует множество. Пример: решения квадратных уравнений по теореме Виета. Она названа в честь который жил в XVI веке во Франции и сделал блестящую карьеру благодаря своему математическому таланту и связям при дворе. Портрет его можно увидеть в статье.

Закономерность, которую заметил прославленный француз, заключалась в следующем. Он доказал, что корни уравнения в сумме численно равны -p=b/a, а их произведение соответствует q=c/a.

Теперь рассмотрим конкретные задачи.

3x 2 + 21x — 54 = 0

Для простоты преобразуем выражение:

x 2 + 7x — 18 = 0

Воспользуемся теоремой Виета, это даст нам следующее: сумма корней равна -7, а их произведение -18. Отсюда получим, что корнями уравнения являются числа -9 и 2. Сделав проверку, убедимся, что эти значения переменных действительно подходят в выражение.

График и уравнение параболы

Понятия квадратичная функция и квадратные уравнения тесно связаны. Примеры подобного уже были приведены ранее. Теперь рассмотрим некоторые математические загадки немного подробнее. Любое уравнение описываемого типа можно представить наглядно. Подобная зависимость, нарисованная в виде графика, называется параболой. Различные её виды представлены на рисунке ниже.

Любая парабола имеет вершину, то есть точку, из которой выходят её ветви. В случае если a>0, они уходят высоко в бесконечность, а когда a

Наглядные изображения функций помогают решать любые уравнения, в том числе и квадратные. Этот метод называется графическим. А значением переменной х является координата абсцисс в точках, где происходит пересечение линии графика с 0x. Координаты вершины можно узнать по только что приведённой формуле x 0 = -b/2a. И, подставив полученное значение в изначальное уравнение функции, можно узнать y 0 , то есть вторую координату вершины параболы, принадлежащую оси ординат.

Пересечение ветвей параболы с осью абсцисс

Примеров с решением квадратных уравнений очень много, но существуют и общие закономерности. Рассмотрим их. Понятно, что пересечение графика с осью 0x при a>0 возможно только если у 0 принимает отрицательные значения. А для a0. В противном случае D

По графику параболы можно определить и корни. Верно также обратное. То есть если получить наглядное изображение квадратичной функции нелегко, можно приравнять правую часть выражения к 0 и решить полученное уравнение. А зная точки пересечения с осью 0x, легче построить график.

Из истории

С помощью уравнений, содержащих переменную, возведённую в квадрат, в старину не только делали математические расчёты и определяли площади геометрических фигур. Подобные вычисления древним были нужны для грандиозных открытий в области физики и астрономии, а также для составления астрологических прогнозов.

Как предполагают современные деятели науки, одними из первых решением квадратных уравнений занялись жители Вавилона. Произошло это за четыре столетия до наступления нашей эры. Разумеется, их вычисления в корне отличались от ныне принятых и оказывались гораздо примитивней. К примеру, месопотамские математики понятия не имели о существовании отрицательных чисел. Незнакомы им были также другие тонкости из тех, которые знает любой школьник современности.

Возможно, ещё раньше учёных Вавилона решением квадратных уравнений занялся мудрец из Индии Баудхаяма. Произошло это примерно за восемь столетий до наступления эры Христа. Правда, уравнения второго порядка, способы решения которых он привёл, были самыми наипростейшими. Кроме него, подобными вопросами интересовались в старину и китайские математики. В Европе квадратные уравнения начали решать лишь в начале XIII столетия, но зато позднее их использовали в своих работах такие великие учёные, как Ньютон, Декарт и многие другие.

Копьевская сельская средняя общеобразовательная школа

10 способов решения квадратных уравнений

Руководитель: Патрикеева Галина Анатольевна,

учитель математики

с.Копьево, 2007

1. История развития квадратных уравнений

1.1 Квадратные уравнения в Древнем Вавилоне

1. 2 Как составлял и решал Диофант квадратные уравнения

1.3 Квадратные уравнения в Индии

1.4 Квадратные уравнения у ал- Хорезми

1.5 Квадратные уравнения в Европе XIII — XVII вв

1.6 О теореме Виета

2. Способы решения квадратных уравнений

Заключение

Литература

1. История развития квадратных уравнений

1.1 Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

X 2 + X = ¾; X 2 X = 14,5

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

1.2 Как составлял и решал Диофант квадратные уравнения.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение — 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х , другое же меньше, т.е. 10 — х . Разность между ними .

Отсюда уравнение:

(10 + х)(10 — х) = 96

100 — х 2 = 96

х 2 — 4 = 0 (1)

Отсюда х = 2 . Одно из искомых чисел равно 12 , другое 8 . Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

у(20 — у) = 96,

у 2 — 20у + 96 = 0. (2)

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

1.3 Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ах 2 + b х = с, а > 0. (1)

В уравнении (1) коэфиценты, кроме а , могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Задача 13.

«Обезьянок резвых стая А двенадцать по лианам…

Власть поевши, развлекалась. Стали прыгать, повисая…

Их в квадрате часть восьмая Сколько ж было обезьянок,

На поляне забавлялась. Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).

Соответствующее задаче 13 уравнение:

( x /8) 2 + 12 = x

Бхаскара пишет под видом:

х 2 — 64х = -768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

х 2 — 64х + 32 2 = -768 + 1024,

(х — 32) 2 = 256,

х — 32 = ± 16,

х 1 = 16, х 2 = 48.

1.4 Квадратные уравнения у ал – Хорезми

В алгебраическом трактате ал — Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корнями», т.е. ах 2 + с = b х.

2) «Квадраты равны числу», т.е. ах 2 = с.

3) «Корни равны числу», т.е. ах = с.

4) «Квадраты и числа равны корням», т. е. ах 2 + с = b х.

5) «Квадраты и корни равны числу», т.е. ах 2 + bx = с.

6) «Корни и числа равны квадратам», т.е. bx + с = ах 2 .

Для ал — Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал — джабр и ал — мукабала. Его решения, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида

ал — Хорезми, как и все математики до XVII в., е учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал — Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.

Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат ал — Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

1.5 Квадратные уравнения в Европе XIII XVII вв

Формулы решения квадратных уравнений по образцу ал — Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду:

х 2 + bx = с,

при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

1.6 О теореме Виета

Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D , умноженное на A A 2 , равно BD , то A равно В и равноD ».

Чтобы понять Виета, следует вспомнить, что А , как и всякая гласная буква, означало у него неизвестное (наше х ), гласные же В, D — коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место

(а + b )х — х 2 = ab ,

х 2 — (а + b )х + а b = 0,

х 1 = а, х 2 = b .

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и по этому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

2. Способы решения квадратных уравнений

Квадратные уравнения — это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза.

Поработаем с квадратными уравнениями . Это очень популярные уравнения! В самом общем виде квадратное уравнение выглядит так:

Например:

Здесь а =1; b = 3; c = -4

Здесь а =2; b = -0,5; c = 2,2

Здесь а =-3; b = 6; c = -18

Ну, вы поняли…

Как решать квадратные уравнения? Если перед вами квадратное уравнение именно в таком виде, дальше уже всё просто. Вспоминаем волшебное слово дискриминант . Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении. Итак, формула для нахождения корней квадратного уравнения выглядит так:

Выражение под знаком корня – и есть тот самый дискриминант . Как видим, для нахождения икса, мы используем только a, b и с . Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с в это формулу и считаем. Подставляем со своими знаками! Например, для первого уравнения а =1; b = 3; c = -4. Вот и записываем:

Пример практически решён:

Вот и всё.

Какие случаи возможны при использовании этой формулы? Всего три случая.

1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.

2. Дискриминант равен нулю. Тогда у вас одно решение. Строго говоря, это не один корень, а два одинаковых . Но это играет роль в неравенствах, там мы поподробнее вопрос изучим.

3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.

Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же…
Самые распространённые ошибки – путаница со знаками значений a, b и с . Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте !

Предположим, надо вот такой примерчик решить:

Здесь a = -6; b = -5; c = -1

Допустим, вы знаете, что ответы у вас редко с первого раза получаются.

Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится . Вот и пишем подробно, со всеми скобочками и знаками:

Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно? Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!

Итак, как решать квадратные уравнения через дискриминант мы вспомнили. Или научились, что тоже неплохо. Умеете правильно определять a, b и с . Умеете внимательно подставлять их в формулу корней и внимательно считать результат. Вы поняли, что ключевое слово здесь – внимательно?

Однако частенько квадратные уравнения выглядят слегка иначе. Например, вот так:

Это неполные квадратные уравнения . Их тоже можно решать через дискриминант. Надо только правильно сообразить, чему здесь равняются a, b и с .

Сообразили? В первом примере a = 1; b = -4; а c ? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0 ! Вот и всё. Подставляем в формулу ноль вместо c, и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с , а b !

Но неполные квадратные уравнения можно решать гораздо проще. Безо всякого дискриминанта. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.

И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!
Не получается? То-то…
Следовательно, можно уверенно записать: х = 0 , или х = 4

Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем через дискриминант.

Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:

Остаётся корень извлечь из 9, и всё. Получится:

Тоже два корня. х = +3 и х = -3 .

Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня.
Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…

А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности.… За которые потом бывает больно и обидно…

Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает?
Допустим, после всяких преобразований вы получили вот такое уравнение:

Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:

А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

Приём второй. Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1 , проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т. е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком . Если не получилось – значит уже где-то накосячили. Ищите ошибку. Если получилось — надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b с противоположным знаком. В нашем случае -1+2 = +1. А коэффициент b , который перед иксом, равен -1. Значит, всё верно!
Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1. Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.

Приём третий . Если в вашем уравнении есть дробные коэффициенты, — избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в предыдущем разделе. При работе с дробями ошибки, почему-то так и лезут…

Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.

Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:

Вот и всё! Решать – одно удовольствие!

Итак, подытожим тему.

Практические советы:

1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .

2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.

3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.

4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!

Дробные уравнения. ОДЗ.

Продолжаем осваивать уравнения. Мы уже в курсе, как работать с линейными уравнениями и квадратными. Остался последний вид – дробные уравнения . Или их ещё называют гораздо солиднее – дробные рациональные уравнения . Это одно и то же.

Дробные уравнения.

Как ясно из названия, в этих уравнениях обязательно присутствуют дроби. Но не просто дроби, а дроби, у которых есть неизвестное в знаменателе . Хотя бы в одном. Например:

Напомню, если в знаменателях только числа , это линейные уравнения.

Как решать дробные уравнения ? Прежде всего – избавиться от дробей! После этого уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы знаем, что делать… В некоторых случаях оно может превратиться в тождество, типа 5=5 или неверное выражение, типа 7=2. Но это редко случается. Ниже я про это упомяну.

Но как избавиться от дробей!? Очень просто. Применяя всё те же тождественные преобразования.

Нам надо умножить всё уравнение на одно и то же выражение. Так, чтобы все знаменатели посокращались! Всё сразу станет проще. Поясняю на примере. Пусть нам требуется решить уравнение:

Как учили в младших классах? Переносим все в одну сторону, приводим к общему знаменателю и т.д. Забудьте, как страшный сон! Так нужно делать, когда вы складываете или вычитаете дробные выражения. Или работаете с неравенствами. А в уравнениях мы сразу умножаем обе части на выражение, которое даст нам возможность сократить все знаменатели (т. е., в сущности, на общий знаменатель). И какое же это выражение?

В левой части для сокращения знаменателя требуется умножение на х+2 . А в правой требуется умножение на 2. Значит, уравнение надо умножать на 2(х+2) . Умножаем:

Это обычное умножение дробей, но распишу подробно:

Обратите внимание, я пока не раскрываю скобку (х + 2) ! Так, целиком, её и пишу:

В левой части сокращается целиком (х+2) , а в правой 2. Что и требовалось! После сокращения получаем линейное уравнение:

А это уравнение уже решит всякий! х = 2 .

Решим ещё один пример, чуть посложнее:

Если вспомнить, что 3 = 3/1, а 2х = 2х/ 1, можно записать:

И опять избавляемся от того, что нам не очень нравится – от дробей.

Видим, что для сокращения знаменателя с иксом, надо умножить дробь на (х – 2) . А единицы нам не помеха. Ну и умножаем. Всю левую часть и всю правую часть:

Опять скобки (х – 2) я не раскрываю. Работаю со скобкой в целом, как будто это одно число! Так надо делать всегда, иначе ничего не сократится.

С чувством глубокого удовлетворения сокращаем (х – 2) и получаем уравнение безо всяких дробей, в линеечку!

А вот теперь уже раскрываем скобки:

Приводим подобные, переносим всё в левую часть и получаем:

Классическое квадратное уравнение. Но минус впереди – нехорош. От него можно всегда избавиться, умножением или делением на -1. Но если присмотреться к примеру, можно заметить, что лучше всего это уравнение разделить на -2! Одним махом и минус исчезнет, и коэффициенты посимпатичнее станут! Делим на -2. В левой части – почленно, а в правой – просто ноль делим на -2, ноль и получим:

Решаем через дискриминант и проверяем по теореме Виета. Получаем х = 1 и х = 3 . Два корня.

Как видим, в первом случае уравнение после преобразования стало линейным, а здесь – квадратным. Бывает так, что после избавления от дробей, все иксы сокращаются. Остаётся что-нибудь, типа 5=5. Это означает, что икс может быть любым . Каким бы он не был, всё равно сократится. И получится чистая правда, 5=5. Но, после избавления от дробей, может получиться и совсем неправда, типа 2=7. А это означает, что решений нет ! При любом иксе получается неправда.

Осознали главный способ решения дробных уравнений ? Он прост и логичен. Мы меняем исходное выражение так, чтобы исчезло всё то, что нам не нравится. Или мешает. В данном случае это – дроби. Точно так же мы будем поступать и со всякими сложными примерами с логарифмами, синусами и прочими ужасами. Мы всегда будем от всего этого избавляться.

Однако менять исходное выражение в нужную нам сторону надо по правилам , да… Освоение которых и есть подготовка к ЕГЭ по математике. Вот и осваиваем.

Сейчас мы с вами научимся обходить одну из главных засад на ЕГЭ ! Но для начала посмотрим, попадаете вы в неё, или нет?

Разберём простой пример:

Дело уже знакомое, умножаем обе части на (х – 2) , получаем:

Напоминаю, со скобками (х – 2) работаем как с одним, цельным выражением!

Здесь я уже не писал единичку в знаменателях, несолидно… И скобки в знаменателях рисовать не стал, там кроме х – 2 ничего нет, можно и не рисовать. Сокращаем:

Раскрываем скобки, переносим всё влево, приводим подобные:

Решаем, проверяем, получаем два корня. х = 2 и х = 3 . Отлично.

Предположим в задании сказано записать корень, или их сумму, если корней больше одного. Что писать будем?

Если решите, что ответ 5, – вы попали в засаду . И задание вам не засчитают. Зря трудились… Правильный ответ 3.

В чём дело?! А вы попробуйте проверку сделать. Подставить значения неизвестного в исходный пример. И если при х = 3 у нас всё чудненько срастётся, получим 9 = 9, то при х = 2 получится деление на ноль! Чего делать нельзя категорически. Значит х = 2 решением не является, и в ответе никак не учитывается. Это так называемый посторонний или лишний корень. Мы его просто отбрасываем. Окончательный корень один. х = 3 .

Как так?! – слышу возмущённые возгласы. Нас учили, что уравнение можно умножать на выражение! Это тождественное преобразование!

Да, тождественное. При маленьком условии – выражение, на которое умножаем (делим) – отлично от нуля . А х – 2 при х = 2 равно нулю! Так что всё честно.

И что теперь делать?! Не умножать на выражение? Каждый раз проверку делать? Опять непонятно!

Спокойно! Без паники!

В этой тяжелой ситуации нас спасут три магических буквы. Я знаю, о чем вы подумали. Правильно! Это ОДЗ . Область Допустимых Значений.

2.3: Очистка дробей и десятичных знаков

В этом разделе мы познакомимся с методами, которые удаляют дроби и десятичные знаки из уравнений, что значительно упрощает решение полученного уравнения. При очистке дробей от уравнения вам нужно будет упростить продукты, подобные тем, которые представлены в следующих примерах.

Пример \(\PageIndex{1}\)

Упростить: \(12\влево(\dfrac{2}{3} x\вправо)\).

Раствор

Когда мы умножаем три числа, например \(12\), \(2/3\) и \(x\), ассоциативное свойство умножения говорит нам, что не имеет значения, какие два числа мы умножаем первыми. Мы используем свойство ассоциативности для перегруппировки, затем перемножаем числители и знаменатели и упрощаем результат.

\[\begin{align} 12\left(\dfrac{2}{3} x\right) &=\left(12 \cdot \dfrac{2}{3}\right) x \quad \color{Red } \text{Ассоциативное свойство умножения.}\\ &=\dfrac{24}{3} x \quad \color{Red} \text { Умножение: } 12 \cdot 2=24 \\ &=8 x \quad \color{Red} \text { Разделить: } 24 / 3=8 \end{aligned} \nonumber \]

Упражнение \(\PageIndex{1}\)

Упростить: \(15\влево(\dfrac{3}{5} x\вправо)\).

Ответить

\(9x\)

Пример \(\PageIndex{1}\) показывает все шаги, необходимые для получения ответа. Однако целью этого раздела является выполнение этого расчета в уме. Поэтому мы просто «умножаем \(12\) и \(2\), чтобы получить \(24\), затем делим \(24\) на \(3\), чтобы получить \(8\)». Такой подход позволяет нам записать ответ, не выполняя никакой работы.

\[12\влево(\dfrac{2}{3} х\вправо)=8 х \номер\]

Вы должны практиковаться в этом вычислении в уме, пока не сможете записать ответ, не записывая шагов.

Пример \(\PageIndex{2}\)

Упростить: \(18 \влево(\dfrac{2}{9} x\вправо)\).

Раствор

На этот раз мы производим расчеты в уме. Умножьте \(18\) и \(2\), чтобы получить \(36\), затем разделите \(36\) на \(9\), чтобы получить \(4\).

\[18\влево(\dfrac{2}{9} x\вправо)=4 x \не число \] 

Упражнение \(\PageIndex{2}\)

Упростить: \(14 \влево(\dfrac{3}{7} x\вправо)\).

Ответить

\(6x\)

Когда числа становятся больше, вычисления в уме становятся сложнее.Например, рассмотрим \[72\left(\dfrac{8}{9} x\right) \nonumber \]

В этом случае работа «умножить \(72\) и \(8\), чтобы получить \(576\), затем разделить \(576\) на \(9\), чтобы получить \(64\)» немного трудно держать в голове. Однако тут на помощь приходит калькулятор.

Пример \(\PageIndex{3}\)

Используйте калькулятор, чтобы упростить \(72 \left(\dfrac{8}{9} x\right)\).

Раствор

С помощью калькулятора умножьте \(72\) и \(8\), затем разделите на \(9\).Введите 72*8/9 и нажмите клавишу ENTER.

Таким образом, \(72\влево(\dfrac{8}{9} x\вправо)=64 x\).

Упражнение \(\PageIndex{3}\)

Используйте калькулятор, чтобы упростить: \(81 \влево(\frac{5}{9} x\вправо)\).

Ответить

\(45х\)

Отмена более эффективна

В примерах \(\PageIndex{1}\), \(\PageIndex{2}\) и \(\PageIndex{3}\) мы умножали числители, а затем делили на единственный знаменатель.Мы также увидели, что немного трудно удерживать работу в голове, когда числа становятся все больше. В главе 1, разделе 3 мы видели, что отмена уменьшает размер чисел и упрощает работу.

Пример \(\PageIndex{4}\)

Упростить: \(72 \влево(\dfrac{8}{9} x\вправо)\).

Раствор

В примере \(\PageIndex{3}\) мы использовали наш калькулятор для умножения \(72\) и \(8\), чтобы получить \(576\), затем разделили \(576\) на \(9\ ), чтобы получить \(64\). В этом решении мы делим \(9\) на \(72\), чтобы получить \(8\), затем умножаем \(8\) на \(8\), чтобы получить \(64\).Мы получаем тот же ответ, но поскольку промежуточные числа намного меньше, вычисления в уме проводить намного проще.

\[\begin{align} 72\left(\dfrac{8}{9} x\right) &=\left(72 \cdot \dfrac{8}{9}\right) x \quad \color{Red } \text{Ассоциативное свойство умножения}\\ &=(8 \cdot 8) x \quad \color{Red} \text { Разделить: } 72 / 9=8 \\ &=64 x \quad \color{Red } \text { Умножить: } 8 \cdot 8=64 \end{выровнено} \nonumber \]

Упражнение \(\PageIndex{4}\)

Упростить: \(64 \влево(\dfrac{5}{8} x\вправо)\).

Ответить

\(40х\)

Пример \(\PageIndex{4}\) показывает все шаги, необходимые для получения ответа. Опять же, цель этого раздела состоит в том, чтобы выполнить это вычисление в уме, поэтому мы просто «разделим \(9\) на \(72\), чтобы получить \(8\), затем умножим \(8\) на \(8\). ), чтобы получить \(644\)».

\[72\влево(\frac{8}{9} x\вправо)=64 x \не число \]

Такой подход не только позволяет нам записать ответ без выполнения какой-либо работы, но и в численных расчетах используются меньшие числа.Вы должны практиковать этот умственный расчет, пока не сможете записать ответ, не записывая никаких шагов.

Пример \(\PageIndex{5}\)

Упростить: \(27\влево(\dfrac{5}{9} x\вправо)\).

Раствор

Разделите \(9\) на \(27\), чтобы получить \(3\), затем умножьте \(3\) на \(5\), чтобы получить \(15\). \[27\left(\dfrac{5}{9} x\right)=15 x \nonnumber \] 

Упражнение \(\PageIndex{5}\)

Упростить: \(18\влево(\dfrac{3}{2} x\вправо)\).

Ответить

\(27х\)

Примечание

Метод, показанный в примерах \(\PageIndex{4}\) и \(\PageIndex{5}\), — это метод, который мы будем использовать в оставшейся части этого раздела. Деление (сокращение) сначала гораздо эффективнее, поскольку меньшие числа позволяют нам производить вычисления в уме.

Удаление дробей из уравнения

Теперь, когда мы выполнили необходимую работу с дробями, мы можем сосредоточиться на очистке дробей от уравнения.Как только дроби удалены из уравнения, полученное эквивалентное уравнение решить намного проще, чем исходное.

Очистка дробей из уравнения

Чтобы убрать дроби из уравнения, умножьте обе части уравнения на наименьший общий знаменатель.

Пример \(\PageIndex{6}\)

Добавьте сюда текст.

Раствор

Добавьте сюда текст.

Упражнение \(\PageIndex{6}\)

Добавьте сюда текст упражнений.

Ответить

Добавьте сюда текст. Не удаляйте этот текст первым.

 

 

 

 

 

 

 

 

 

Уравнения и неравенства с исключением дробей

Ой. .. что они с тобой сделали?

Если используется много дробей, есть еще один способ упростить уравнение перед его решением: избавиться от дробей.Сметите их, упакуйте в мешки для мусора и выбросьте в залив. Но не совсем, потому что это мусор. Чтобы избавиться от дробей, мы выбираем полезное число и умножаем обе части уравнения на это число. Это число полезно, если при умножении удаляются все дроби.

Кроме того, если число достаточно хорошо справляется с очисткой дробей, может быть, мы увидим, как оно работает с нашей спальней.

Пример задачи

Решите уравнение .

Способ 1: Вычтите 2 / 3 с каждой стороны, а затем упростите эту правую сторону.

Способ 2: Найдите ЖК дробей — в данном случае 6. Умножьте левую часть уравнения на 6 и правую часть уравнения на 6, чтобы получить:

Oy . Столько дробей и скобок, надо бы упростить этот лох. К счастью, это упрощается до:

4 + 6 x = 1

Гораздо лучше. Обратите внимание, что в уравнении больше нет дробей, не говоря уже о том, что исчезли и круглые скобки, что является приятным бонусом.Теперь вычтите 4 с обеих сторон.

6 x = -3

Таково решение уравнения. В любом случае мы получили часть, но было приятно побыть без них хотя бы некоторое время.

Убедитесь, что вы понимаете, что избавление от дробей — это не то же самое, что «упрощение». Когда мы «упрощаем», мы переписываем выражения по обе стороны от знака =, чтобы сделать их более аккуратными, но не меняем значение ни одного из выражений. Когда мы исключаем дроби, мы умножаем обе части выражения на одно и то же число и, следовательно, меняем значения обоих выражений, но таким образом, чтобы шкала оставалась сбалансированной.Каждая сторона намного, намного тяжелее. На самом деле, нам, вероятно, следует положить все это на более прочный стол.

Как найти переменную в составе дроби

Если вы считаете, что контент, доступный с помощью Веб-сайта (как это определено в наших Условиях обслуживания), нарушает одно или более ваших авторских прав, пожалуйста, сообщите нам, предоставив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному агенту, указанному ниже. Если университетские наставники примут меры в ответ на ан Уведомление о нарушении, он предпримет добросовестную попытку связаться со стороной, предоставившей такой контент средства самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении может быть направлено стороне, предоставившей контент, или третьим лицам, таким как в виде ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатов), если вы существенно искажать информацию о том, что продукт или деятельность нарушают ваши авторские права.Таким образом, если вы не уверены, что содержимое находится на Веб-сайте или на который ссылается Веб-сайт, нарушает ваши авторские права, вам следует сначала обратиться к адвокату.

Чтобы подать уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись владельца авторских прав или лица, уполномоченного действовать от его имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, как вы утверждаете, нарушает ваши авторские права, в \ достаточно подробно, чтобы преподаватели университета могли найти и точно идентифицировать этот контент; например, мы требуем а ссылку на конкретный вопрос (а не только название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; и Заявление от вас: (а) что вы добросовестно полагаете, что использование контента, который, как вы утверждаете, нарушает ваши авторские права не разрешены законом или владельцем авторских прав или его агентом; б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство вы либо владельцем авторских прав, либо лицом, уполномоченным действовать от их имени.

Отправьте жалобу нашему назначенному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
Сент-Луис, Миссури 63105

Или заполните форму ниже:

 

РЕШЕНИЕ УРАВНЕНИЙ С ДРОБЯМИ

РЕШЕНИЕ УРАВНЕНИЙ С ДРОБЯМИ

УРАВНЕНИЯ, ВКЛЮЧАЮЩИЕ Дроби (рациональные уравнения)

Примечание:

  • Рациональное уравнение – это уравнение, в котором хотя бы один знаменатель содержит переменную.
  • Когда знаменатель содержит переменную, существует ограничение на домен. Переменная не может принимать любое число, которое вызвало бы знаменатель равен нулю.
  • Первым шагом решения рационального уравнения является преобразование уравнение к уравнению без знаменателей. Это новое уравнение может быть эквивалентны (те же решения, что и исходное уравнение) или могут не совпадать эквивалентные (посторонние решения).
  • Следующим шагом является установка уравнения равным нулю и решение.
  • Помните, что вы пытаетесь изолировать переменную.
  • В зависимости от проблемы существует несколько способов помочь вы решаете проблему.

Если вы хотите получить более подробный обзор дробей, нажмите «Дроби».


Найдите x в следующем уравнении.


Пример 2:

Напомним, что на ноль делить нельзя. Поэтому мы должны устранить любые значений x, которые приведут к тому, что знаменатель будет иметь нулевое значение. Мы определить эти значения, приравняв знаменатель к нулю и решив для х.

Произведение равно нулю только в том случае, если хотя бы один из множителей равен нуль.

Если какое-либо из решений окажется либо 8, либо 3, мы отбросим их как посторонние решения.

Упростите исходное уравнение, вычитая 2 x с обеих сторон уравнение.

Упростите уравнение, умножив обе части уравнения на x 2 -5 x -24 и упрощение результатов.

Произведение может быть равно нулю только в том случае, если хотя бы один из множителей равен нулю.

Поскольку это не действительное число, единственными реальными решениями являются x = 10.

Проверьте решение x = 10 в исходном уравнении для x. Если левая сторона уравнения равен правой части уравнения после замена, вы нашли правильный ответ.

  • Левая сторона:
  • Правая сторона:

Так как левая часть исходного уравнения равна правой части исходное уравнение после того, как мы подставим значение 10 вместо x, тогда x = 10является решением.

Вы также можете проверить свой ответ, построив график

. . (образуется вычитанием правой части исходного уравнения из левой части). Посмотрите, где график пересекает ось x; это будет настоящим решением. Обратите внимание, что график пересекает ось x в одном месте, 10.


Это означает, что существует одно действительное решение, и решение равно x = 10.



Если вы хотите работать с другим примером, нажмите «Пример».


Если вы хотите проверить себя, решив некоторые задачи, подобные этой например, нажмите Проблема


Если вы хотите вернуться к содержанию уравнения, нажмите Содержание

[Алгебра] [Тригонометрия] [Геометрия] [Дифференциальные уравнения] [Исчисление] [Комплексные переменные] [Матричная алгебра]

С.Домашняя страница OS MATHematics


Вам нужна дополнительная помощь? Пожалуйста, разместите свой вопрос на нашем S.O.S. Математика CyberBoard.

Автор: Нэнси Маркус
Copyright 1999-2022 MathMedics, LLC. Все права защищены.
Свяжитесь с нами
Математика Медикс, ООО. — П.О. Box 12395 — Эль-Пасо, Техас 79913 — США
пользователей онлайн за последний час

Изоляция переменной | GMAT бесплатно

Когда у вас есть уравнение с одной переменной и вам нужно знать значение этой переменной, ваша задача состоит в том, чтобы выделить переменную x. Это называется «изолирующим», потому что в конце процесса переменная остается одна на одной стороне уравнения (и мы можем видеть, чему она равна).

Основной метод изоляции переменной состоит в том, чтобы «действовать с обеими частями» уравнения, например складывать, вычитать, умножать или делить обе части уравнения на одно и то же число. Повторяя этот процесс, мы можем выделить переменную в одной части уравнения. Хитрость заключается в том, чтобы знать, какие операции выполнять в каком порядке.

Например, если мы начнем с решения уравнения:

Вычитаем по 4 с обеих сторон:

Затем мы объединяем члены, чтобы получить:

Наконец делим на коэффициент х :

Когда вам дают более сложные уравнения, верный способ изолировать переменную состоит в том, чтобы выполнить следующие шаги:

1. Исключите любые дробей присутствующих путем умножения обеих частей на любые присутствующие знаменатели.

2. Получите все члены с переменной в левой части уравнения и все члены без переменной в другой части.

3. Объедините условия с левой стороны, если это возможно.

4. Умножьте на переменную слева, если это необходимо.

5. Разделите на обе части на коэффициент переменной, оставив переменную изолированной.

В пять шагов этот процесс может показаться трудоемким. Если вы не забываете сначала исключать дроби, а делить в последнюю очередь, это хорошее начало. По этой причине, а также поскольку изоляция является обычной процедурой на GMAT, хороший способ попрактиковаться — сразу же погрузиться в некоторые реалистичные вопросы.

Практические вопросы

Переменная в знаменателе:
http://www.gmatfree.com/variable-in-a-знаменатель

Ненужная переменная:
http://www. gmatfree.com/needless-variable

Линейные уравнения с дробями:
http://www.gmatfree.com/linear-equations-with-fractions

Решение уравнений с дробями и десятичными знаками методом «Очистка»

Концепция (1)

Дроби могут значительно усложнить решение, поэтому один из вариантов, который следует рассмотреть, — избавиться от всех дробей математически обоснованным способом перед решением.Вы можете умножить все в уравнении (обе части, все члены) на наименьшее общее кратное всех знаменателей. Если все сделано правильно, вы не измените достоверность уравнения, а будете работать только с целыми числами. Точно так же вы можете умножить уравнение с десятичными дробями на степень десяти, чтобы работать только с целыми числами. Все это математически верно из-за мультипликативного свойства равенства.

Примеры проблем (3)

Нужна помощь с задачами «Решение уравнений с дробями и десятичными знаками путем «Очищения»»? Наблюдайте за тем, как опытные преподаватели решают аналогичные задачи, чтобы развивать свои навыки.

Проблема 1

Решение уравнения путем очистки знаменателя, чтобы избавиться от дробей

Задача 2

Очистка знаменателя, чтобы избавиться от уравнения дробей

Задача 3

Решение текстовой задачи с деньгами, умножение всех членов на 100, чтобы избавиться от всех десятичных знаков

Алгебраические дроби

Пример

Упростить

 

Здесь задача состоит в том, чтобы найти способ разбить дробь так, чтобы ее можно было разделить на общий множитель.

 

Здесь существует общий делитель 4

верх и низ теперь делятся на 2

оставляя 2(x +2) в качестве ответа.

 

Аналогично,

Иногда линию необходимо сначала разложить на множители, используя при необходимости разницу в два квадрата:

или

 

Решение уравнений с алгебраическими дробями

Пример

Избавьтесь от нижних чисел (знаменателей) путем умножения с обеих сторон:

 

 

Операции над алгебраическими дробями

Используйте обычные правила для дробей.

Чтобы складывать или вычитать дроби, знаменатели должны совпадать.

Примеры

Упростить

Нормальный способ,

 

Ведический способ,

Умножение нижних чисел (знаменателей), перекрестное умножение и сложение:

 

Пример

снова, тот же вопрос, но сделанный ведическим способом:

 

В действии

Помните, что для умножения дробей нужно просто умножить верхние части (числители), а затем умножить нижние части (знаменатели).

Не забудьте упростить, если это возможно.

Пример

Упростить

 

Другой пример,

При делении дробей не забудьте перевернуть вторую дробь и превратить сумму в умножение.

 

Примеры

Или альтернативный способ:

 

 

Сложные дроби, такие как

 
можно упростить с помощью мультипликативного идентификатора

.

  • Умножьте числитель и знаменатель дроби на НОК.

         

  • Затем раскройте скобки, разложите на множители и упростите, как обычно.

         

     Примеры

      1.  

    2.

  3.

 

В качестве альтернативы можно использовать комбинацию добавления ведической дроби
и альтернативного
метод дробного деления :

1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *