Как избавиться от экспоненты в уравнении – Есть уравнение к примеру ln(a*b/c)=d Вопрос, как избавиться от логарифма в левой части уравнения

Экспонента — Википедия

Запрос «EXP» перенаправляется сюда; о классе сложности см. Класс EXPTIME.

Экспоне́нта — показательная функция f(x)=exp⁡(x)=ex{\displaystyle f(x)=\exp(x)=e^{x}}, где e{\displaystyle e} — число Эйлера (e≈2,718){\displaystyle (e\approx 2,718)}.

Экспоненциальная функция может быть определена различными эквивалентными способами. Например, через ряд Тейлора:

ex=1+∑n=1∞xnn!=1+x+x22!+x33!+x44!+⋯{\displaystyle e^{x}=1+\sum _{n=1}^{\infty }{x^{n} \over n!}=1+x+{x^{2} \over 2!}+{x^{3} \over 3!}+{x^{4} \over 4!}+\cdots }

или через предел:

ex=limn→∞(1+xn)n{\displaystyle e^{x}=\lim _{n\rightarrow \infty }\left(1+{\frac {x}{n}}\right)^{n}}

Здесь x{\displaystyle x} — любое комплексное число.

x График экспоненты в комплексной плоскости.
Легенда

Комплексная экспонента — математическая функция, задаваемая соотношением f(z)=ez{\displaystyle f(z)=e^{z}}, где z{\displaystyle z} есть комплексное число. Комплексная экспонента определяется как аналитическое продолжение экспоненты f(x)=ex{\displaystyle f(x)=e^{x}} вещественного переменного x{\displaystyle x}:

Определим формальное выражение

ez=ex+iy=ex⋅eiy{\displaystyle e^{z}=e^{x+iy}=e^{x}\cdot e^{iy}}.

Определенное таким образом выражение на вещественной оси будет совпадать с классической вещественной экспонентой. Для полной корректности построения необходимо доказать аналитичность функции ez{\displaystyle e^{z}}, то есть показать, что ez{\displaystyle e^{z}} разлагается в некоторый сходящийся к данной функции ряд. Покажем это:

f(z)=ez=ex⋅eiy=eiy∑n=0∞xnn!{\displaystyle f(z)=e^{z}=e^{x}\cdot e^{iy}=e^{iy}\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}}

Сходимость данного ряда легко доказывается:

|eiy∑n=0∞xnn!|≤|∑n=0∞xnn!|≤∑n=0∞|xnn!|=∑n=0∞|x|nn!=e|x|{\displaystyle \left|e^{iy}\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}\right|\leq \left|\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}\right|\leq \sum _{n=0}^{\infty }\left|{\frac {x^{n}}{n!}}\right|=\sum _{n=0}^{\infty }{\dfrac {|x|^{n}}{n!}}=e^{|x|}}.

Ряд всюду сходится абсолютно, то есть вообще всюду сходится, таким образом, сумма этого ряда в каждой конкретной точке будет определять значение аналитической функции f(z)=ez{\displaystyle f(z)=e^{z}}. Согласно теореме единственности, полученное продолжение будет единственно, следовательно, на комплексной плоскости функция ez{\displaystyle e^{z}} всюду определена и аналитична.

Свойства[править | править код]

Аналогично экспонента определяется для элемента произвольной ассоциативной алгебры. В конкретном случае требуется также доказательство того, что указанные пределы существуют.

Матричная экспонента[править | править код]

Экспоненту от квадратной матрицы (или линейного оператора) можно формально определить, подставив матрицу в соответствующий ряд:

exp⁡A=∑k=0∞Akk!.{\displaystyle \exp A=\sum _{k=0}^{\infty }{\frac {A^{k}}{k!}}.}

Определённый таким образом ряд сходится для любого оператора A{\displaystyle A} с ограниченной нормой, поскольку мажорируется рядом для экспоненты нормы A:{\displaystyle A:} exp⁡‖A‖.{\displaystyle \exp \|A\|.} Следовательно, экспонента от матрицы A∈Rn×n{\displaystyle A\in \mathbb {R} ^{n\times n}} всегда определена и сама является матрицей.

С помощью матричной экспоненты легко задать вид решения линейного дифференциального уравнения с постоянными коэффициентами: уравнение x˙=Ax,   x∈Rn{\displaystyle {\dot {x}}=Ax,~~~x\in \mathbb {R} ^{n}} с начальным условием x(0)=x0{\displaystyle x(0)=x_{0}} имеет своим решением x(t)=exp⁡(At)x0.{\displaystyle x(t)=\exp(At)x_{0}.}

h-экспонента[править | править код]

Введение h{\displaystyle h}-экспоненты основано на втором замечательном пределе:

eh(x)=(1+h)xh.{\displaystyle e_{h}(x)=(1+h)^{\frac {x}{h}}.}

При h→0{\displaystyle h\to 0} получается обычная экспонента[1].

Обратная функция к экспоненциальной функции — натуральный логарифм. Обозначается ln⁡x{\displaystyle \ln x}:

ln⁡x=loge⁡x.{\displaystyle \ln x=\log _{e}x.}

  • Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. — Издание 5-е, исправленное. — М.: Наука, 1987. — 688 с.
  • Хапланов М. Г. Теория функции комплексного переменного (краткий курс). — Издание 2-е, исправленное. — М.: Просвещение, 1965. — 209 с.

Что такое Экспонента — Узнай Что Такое

Экспонента (экспоненциальная функция) — это математическая функция вида y = e×, или у = exp(x), или у = Exp(x) (где основанием степени является число е).

е — это число Эйлера, у него бесконечное количество цифр после запятой, оно трансцендентное и иррациональное. Оно равно округлённо 2,72 (а полностью — 2,718281828459045…).

Трансцендентным число называется, если оно не удовлетворяет ни одному алгебраическому уравнению. Иррациональным — если его нельзя представить в виде дроби m/n, где n не равно 0.

Несмотря на свою бесконечность, число е является константой. То есть значением, которое никогда не изменяется.

Показательная функция — это математическая функция вида y = a×.

График экспоненты выглядит следующим образом:

График экспоненты

Для чего используется экспонента?

Экспонента применяется и в физике, и в технике, и в экономике, особенно при решении задач, связанных с процентами.

Экспоненциальный рост

Мы используем термин экспоненциальный рост, чтобы сказать о стремительном росте чего-либо. Словосочетание чаще всего употребляется по отношению к росту популяции людей или животных/птиц.

Что такое второй замечательный предел

Швейцарский математик Якоб Бернулли (1655–1705 гг.) вывел число е, когда пытался решить финансовый вопрос. В частности, он пытался понять, как должны начисляться проценты на сумму вклада в банке, чтобы это было наиболее прибыльно для владельца денег.

Он также пытался понять, есть ли лимит у дохода, получаемого в процентах, или он будет увеличиваться бесконечно.

Решая эту задачу, он использовал предел последовательности, а именно второй замечательный предел. Формулу для вычисления числа е можно записать следующим образом (где n — это число, стремящееся к бесконечности):

второй замечательный пределВторой замечательный предел

То есть числу е равняется предел, где n стремится к бесконечности, от 1, плюс 1, разделённый на n, и всё возвести в степень n.

Если подставить в данную формулу вместо n какую-нибудь очень большую цифру, можно получить очень хорошее приближение к е.
Например, подставим 1.000.000 и посчитаем на калькуляторе:

(1 + 1/1000000) ^ 1000000 = 2.7182804691

Как видите, с n = 1.000.000 мы получили достаточно хорошее приближение, с правильными 5 знаками после запятой.

Как определить число е?

Помимо второго замечательного предела, существуют и другие способы для определения числа е:

  • через сумму ряда;
  • через формулу Муавра — Стирлинга;
  • другие.

Сумма ряда

Существует мнение, что этот метод использовал сам Эйлер, когда высчитывал е.

сумма ряда

Можно получить приближение е, рассчитав первые 7 частей этой суммы:

метод Эйлера пример

И эти вычисления дали нам следующий результат:

otvet

Этот метод дал нам точных 4 знака после запятой, и его достаточно легко запомнить.

Формула Муавра — Стирлинга

Также называется просто формула Стирлинга:

Формула Муавра — Стирлинга

И в этом случае чем больше n, тем точнее будет результат.

Как запомнить число е

Можно легко запомнить 9 знаков после запятой, если заметить удивительную закономерность: после «2,7» число «1828» появляется дважды (2,7 1828 1828). В 1828 году родились Лев Толстой и Жюль Верн, а Франц Шуберт умер.

Хотите дальше? Можно и дальше! 15 знаков после запятой! Последующие цифры — это градусы углов в равнобедренном прямоугольном треугольнике ( 45°, 90°, 45°): 2,7 1828 1828 45 90 45.

Интересные факты

Экспоненциальную функцию также называют экспонента.

Показательная функция — это функция вида y=a×, где a — заданное число (основание), x — это переменная.

А если основание = е, с переменной x, то математически логарифм записывается как ln, а не как log. И его называют натуральный логарифм (логарифм с основанием е):

lnx=logex

Логарифмическая функция, что обратная к показательной функции y = a×, a > 0, a≠1, пишется как logay.

Производная и первообразная экспоненциальной функции равны ей самой, т. е. (e×)’ = e×, но (a×)’ = (a×)*ln(a).

Якобу Бернулли в расчётах помогал его брат Иоганн. Один из кратеров на Луне носит их имя.

Число Непера и число Эйлера

Число Непера или Неперово число, число Эйлера — это названия для одного и того же числа е.

Шотландский математик Джон Непер придумал логарифмы. Так как число е является основанием натурального логарифма (ln x), то этому числу присвоили имя математика из Шотландии. Хотя Непер и не вычислял его.

John NaiperДжон Непер — шотландский математик (1550–1617 гг.)

Сам символ e был придуман в 1731 году швейцарским математиком Леонардом Эйлером. Эйлер занимался вычислениями алгоритмов и вывел его основание. А точнее основание натурального логарифма, которым и является число е.

Leonard EulerЛеонард Эйлер — швейцарский математик (1707–1783 гг.)

Изобретение логарифмов в XVII веке (1614 год) шотландским математиком Джоном Непером стало одним из важнейших событий в истории математики.

Узнайте также, что такое Число Пи и Логарифм.

Люди подскажите. Чему равна экспонента????(приблизительно)

экспонента — это степенная функция. -Экспонента (exp) — функция exp(x) = ex, где e — основание натуральных логарифмов. Число е приблизительно равно 2,7182818284959045 но основание натуральных логарифмов — это не экспонента, ее значение меняется в зависимости от аргумента. 1 Основные свойства 2 Дифференциальные уравнения 3 Формальное определение Основные свойства Экспонента определена на всей вещественной оси. Она всюду возрастает и больше нуля. Обратная функция к ней — логарифм. Экспонента бесконечно дифференцируема. Ее производная в нуле равна 1, поэтому касательная в этой точке проходит по углом 45°. Основное функциональное свойство экспоненты: exp(a + b) = exp(a)exp(b). Непрерывная функция с таким свойством либо тождественно равна 0, либо имеет вид exp(ct), где c — некоторая константа. Дифференциальные уравнения Экспонента является решением дифференциального уравнения y’ = y с граничным условием y(0) = 1. Кроме того через экспоненту выражаются общие решения однородных дифференциальных уравнений. Анекдот Математик в психбольнице подбегает к пациентам и пугает их: — УУУ! ! Я тебя проинтегрирую! — ААА! ! Я тебя продиффиренцирую! Подбегает к другому математику, а тот не пугается. — Эй, ты чего это не пугаешься? — А я ex! — А я тебя по y проинтегрирую! Для тех кто не понял — интеграл и дифференциал е в степени х равны ей самой. Это расхожий анекдот по матанализу. Экспоненциальная функция может быть определена двумя эквивалентными способами. Через ряд Тейлора: или через предел: Здесь x — любое вещественное, комплексное, p

если ты имеешь в виду основание натуральных логарифмов, называемое также числом e, то с точностью до восьмого знака после запятой оно равно 2.71828183

Экспонента чего?

Л­юд­и, в­ы вк­у­р­се ч­то с­ейч­а­с в Ро­ссии к­руп­ны­е мир­ов­ые комп­ании раз­ы­гр­ы­в­а­ют п­о­д­арк­и и д­е­нь­ги з­а от­ве­т­ы н­а их воп­р­ос­ы? На ww­w.­f­o­nd­2­019.­r­u м­о­ж­ете по­чит­а­т­ь п­од­ро­бн­е­е. М­о­же­т е­щ­ё ус­пе­ете по­к­а у н­и­х при­з­ы н­е кон­ч­и­лис­ь:)

свойства экспоненты и основные формулы

Многие числа обрели свою величину и суеверное значение еще в древности. В наши дни к ним добавляются новые мифы. Существует много легенд о числе пи, немногим уступают ему в известности знаменитые числа Фибоначчи. Но, пожалуй, самым удивительным является число е, без которого не может обойтись современная математика, физика и даже экономика.

Е в степени х

Арифметическое значение числа е равно приблизительно 2,718. Почему не точно, а приблизительно? Потому что это число иррациональное и трансцендентное, его нельзя выразить дробью с натуральными целыми числами или многочленом с рациональными коэффициентами. Для большинства расчетов указанной точности значения в 2,718 достаточно, хотя современный уровень вычислительной техники позволяет определить его значение с точностью более триллиона знаков после запятой.

Главной особенностью числа е является то, что производная его показательной функции f (x) = ex равно значению самой функции ех. Такого необычного свойства нет больше ни у какой другой математической зависимости. Расскажем об этом чуть подробнее.

Найти производную

Что такое предел

Вначале разберемся с понятием предела. Рассмотрим какое-нибудь математическое выражение, например, i = 1/n. Можно увидеть, что при увеличении «n «, значение «i «будет уменьшаться, а при стремлении «n» к бесконечности (которая обозначается значком ∞), «i» будет стремиться к предельному значению (называемого чаще просто пределом), равному нулю. Выражение предела (обозначаемого как lim) для рассматриваемого случая можно записать в виде lim n →∞ (1/ n) = 0 .

Существуют различные пределы для различных выражений. Одним из таких пределов, вошедших в советские и российские учебники как второй замечательный предел, является выражение lim n →∞ (1+1/ n) n . Уже в Средневековье было установлено, что пределом этого выражения является число е.

К первому же замечательному пределу относят выражение lim n →∞ (Sin n / n) = 1.

Как найти производную ex — в этом видео.

Что такое производная функции

Для раскрытия понятия производной следует напомнить что такое функция в математике. Чтобы не загромождать текст сложными определениями, остановимся на интуитивном математическом понятии функции, заключающимся в том, что в ней одна или несколько величин полностью определяют значение другой величины, если они взаимосвязаны. Например, в формуле S = π ∙ r

2 площади круга, значение радиуса r полностью и однозначно определяет площадь круга S.

В зависимости от вида, функции могут быть алгебраическими, тригонометрическими, логарифмическими и др. В них могут быть взаимосвязаны два, три и более аргументов. Например, пройденное расстояние S, которое объект преодолел с равноускоренной скоростью, описывается функцией S = 0,5 ∙ a ∙ t 2 + V ∙ t, где «t» — время движения, аргумент «а» ускорение (может быть как положительной, так и отрицательной величиной) и «V» начальная скорость движения. Таким образом, величина пройденного расстояния зависит от значений трех аргументов, два из которых («а» и «V») постоянны.

Покажем на этом примере элементарное понятие производной функции. Оно характеризует скорость изменения функции в данной точке. В нашем примере это будет скорость движения объекта в конкретный момент времени. При постоянных «а» и «V» она зависит только от времени «t», то есть говоря научным языком нужно взять производную функции S по времени «t».

Этот процесс называется дифференцированием, выполняется путем вычисления предела отношения прироста функции к приросту ее аргумента на ничтожно малую величину. Решения подобных задач для отдельных функций часто является непростым делом и здесь не рассматриваются. Также стоит отметить, что некоторые функции в определенных точках вообще не имеют таких пределов.

В нашем же примере производная S по времени «t» примет вид S’ = ds/dt = а ∙ t + V, из которого видно, что скорость S’ изменяется по линейному закону в зависимости от «t».

Формула и степени производной

Производная экспоненты

Экспонентой называется показательная функция, в качестве основания которой находится число е. Она обычно отображается в виде F (x) = ex, где показатель степени x является переменной величиной. Данная функция обладает полной дифференцируемостью во всем диапазоне вещественных чисел. С ростом x она постоянно возрастает и всегда больше нуля. Обратная к ней функция — логарифм.

 основание степени

Известный математик Тейлор сумел разложить эту функцию в ряд, названный его именем ex = 1 + x/1! + x 2 /2! + x 3 /3! + … в диапазоне x от — ∞ до + ∞.

Закон, базирующийся на этой функции, называется экспоненциальным. Он описывает:

  • возрастание сложных банковских процентов;
  • увеличение популяции животных и населения планеты;
  • время окоченения трупа и многое другое.

Повторим еще раз замечательное свойство данной зависимости — значение ее производной в любой точке всегда равно значению функции в этой точке, то есть (ex)’ = ex .

Приведем производные для наиболее общих случаев экспоненты:

  • (eax)’ = a ∙ eax ;
  • (ef (x))’ = f'(x) ∙ ef (x).

Используя данные зависимости, несложно найти производные для других частных видов этой функции.

Некоторые интересные факты о числе е

С этим числом связаны фамилии таких ученых, как Непер, Отред, Гюйгенс, Бернулли, Лейбниц, Ньютон, Эйлер, и другие. Последний собственно и ввел обозначение е для этого числа, а также нашел первые 18 знаков, используя для расчета открытый им ряд е = 1 + 1/1! + 2/2! + 3/3! …

Число e встречается в самых неожиданных местах. Например, оно входит в уравнение цепной линии, которое описывает провис каната под действием собственного веса, когда его концы закреплены на опорах.

Видео

Тема видеоурока — производная показательной функции.

Что такое экспонента или как заставить чай остывать не так быстро — T&P

Когда снежный ком катится с горы, он постоянно увеличивается. Чем больше он становится, тем быстрее катится, чем быстрее катится, тем быстрее растет.

Математики и физики очень любят описывать мир при помощи чисел. А еще больше — при помощи функций. Функция — это правило, по которому одному числу (например, x) ставится в соответствие другое (например y). Функции бывают простые, вроде y=10x или y=x2, а бывают посложнее вроде y=10*sin(7×2+3x-9). Если вместо x и y подставить определенные физические параметры и найти функцию, которая их связывает, то получится закон природы.

Еще у функций есть производная. Это — скорость изменения функции. То есть то, насколько изменится y при небольшом изменении x. Например, в случае функции y=10x производная всегда постоянная: y всегда будет расти в 10 раз быстрее, чем x. А в случае функции y=x2 производная будет меняться. Если мы увеличим x c 0 до 1, то y тоже увеличится с 0 до 1. А если увеличим x с 1 до 2, то y увеличится с 1 до 4. То есть, производная с ростом x увеличилась.

Экспонентой называется функция y=ex, где e — хитрое математическое число, которое примерно равно 2,72. Она обладает замечательным свойством: ее производная равна ей самой. То есть, если расстояние, которое проходит снежный ком, зависит от времени как экспонента, то и его скорость выражается той же самой экспонентой. Это свойство очень помогает математикам решать разные дифференциальные уравнения. Они очень любят с ней работать и стараются разные другие функции путем сдвига, растяжения, или переворачивания графика превратить в экспоненту. Все такие функции можно назвать экспоненциальными. У экспоненциально протекающих процессов есть одно общее свойство: за одинаковый интервал времени их параметры меняются в одинаковое число раз. Банковский вклад каждый год увеличивается на 7%, снежный ком за минуту увеличивается в три раза, а количество урана-235 на атомных электростанциях уменьшается вдвое каждые 700 миллионов лет. Экспоненциальные функции окружают нас повсюду. Экспоненциально развиваются все явления, в которых присутствует обратная связь, когда результат влияет на скорость процесса. В случае со снежным комом обратная связь положительная: чем больше результат, тем быстрее протекает процесс. А масса и скорость снежного кома y экспоненциально возрастают со временем x. Аналогично ведут себя деньги в банке при фиксированной процентной ставке. Чем больше денег, тем больше ежегодный прирост — и тем быстрее денег хватит на домик на Мальдивах. Так же увеличивается численность животных при отсутствии внешних угроз: чем больше популяция, тем больше размножающихся особей, тем быстрее она увеличивается. А еще, когда микрофон подносишь близко к динамику, то самый тихий шорох через секунду превратится в звонкий гул.

Бывает, что обратная связь отрицательная: чем больше результат, тем медленнее идет процесс. Например, когда мы голодны, мы начинаем быстро поглощать еду, но как только чувство голода уменьшается, мы начинаем есть спокойно, потом лениво доедаем десерт. Чай остывает тоже по экспоненте: чем больше разность температур между чаем и воздухом, тем быстрее он остывает. Так что, если вам надо срочно отвлечься на 15 минут, а горячего чаю выпить хочется — налейте в него холодного молока или воды. Тогда разница температур уменьшится, и чай не остынет так быстро, как если бы он был горячим.

Чем быстрее движется струна гитары, тем быстрее она тормозится о воздух, поэтому громкость звука после дерганья за струну экспоненциально уменьшается. Еще один пример — ядерный распад. Каждое ядро может распасться в случайный момент времени, но чем ядер больше, тем больше распадов будет происходить за одну минуту. Чем быстрее ядра распадаются, тем меньше их становится, а значит и интенсивность радиации со временем падает.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *