Как найти среднюю скорость физика – Основные понятия кинематики. Скорость. Средняя скорость. Относительная скорость. Сложение перемещений и скоростей

Средняя скорость — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июня 2019; проверки требуют 13 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июня 2019; проверки требуют 13 правок.

Сре́дняя ско́рость — это скорость, определяемая отношением перемещения (S) при неравномерном движении к промежутку времени, за который это перемещение произошло.

В кинематике, некоторая усреднённая характеристика скорости, движущегося тела (или материальной точки). Различают два основных определения средней скорости, соответствующие рассмотрению скорости как скалярной либо векторной величины: средняя путевая скорость (скалярная величина) и средняя скорость по перемещению (векторная величина). При отсутствии дополнительных уточнений, под средней скоростью обычно понимают среднюю путевую скорость.

Средняя (путевая) скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден:

vcp=ΣsΣt.{\displaystyle v_{cp}={\frac {\Sigma s}{\Sigma t}}.}


Средняя скорость равна среднему арифметическому от скоростей тела во время движения только в том случае, когда тело двигалось с этими скоростями одинаковые промежутки времени. (В случае, если тело двигалось с разными скоростями неодинаковые промежутки времени, среднюю скорость можно вычислить как взвешенное среднее арифметическое этих скоростей с весами, равными соответствующим промежуткам времени.)

В то же время если, например, половину пути автомобиль двигался со скоростью 180 км/ч, а вторую половину со скоростью 20 км/ч, то средняя скорость будет 36 км/ч. В примерах, подобных этому, средняя скорость равна среднему гармоническому всех скоростей на отдельных, равных между собой, участках пути. Если участки пути, по которому двигалось тело с разными скоростями, не равны между собой, то средняя скорость будет равна взвешенному среднему гармоническому всех скоростей с весами — длинами соответствующих этим скоростям участков пути.

Можно также ввести среднюю скорость по перемещению, которая будет вектором, равным отношению перемещения ко времени, за которое оно совершено:

v→cp=r→Δt.{\displaystyle {\vec {v}}_{cp}={\frac {\vec {r}}{\Delta t}}.}

Средняя скорость, определённая таким образом, может равняться нулю даже в том случае, если точка (тело) реально двигалась (но в конце промежутка времени вернулась в исходное положение).

Если перемещение происходило по прямой (причём в одном направлении), то средняя путевая скорость равна модулю средней скорости по перемещению.

Скорость — Википедия

Скорость
v→=dr→dt{\displaystyle {\vec {v}}={\frac {\mathrm {d} {\vec {r}}}{\mathrm {d} t}}}
Размерность LT−1
СИ м/с
СГС см/с
вектор

Ско́рость (часто обозначается v→{\displaystyle {\vec {v}}}, от англ. velocity или фр. vitesse, исходно от лат. vēlōcitās) — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта; по определению, равна производной радиус-вектора точки по времени[1]. Этим же словом называют и скалярную величину — либо модуль вектора скорости, либо алгебраическую скорость точки, то есть проекцию этого вектора на касательную к траектории точки[2].

Термин «скорость» используют в науке и в широком смысле, понимая под ним быстроту изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще подразумеваются изменения во времени, но также в пространстве или любой другой). Так, например, говорят об угловой скорости, скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения и т. д. Математически «быстрота изменения» характеризуется производной рассматриваемой величины.

Расширениями понятия скорости являются четырёхмерная скорость, или скорость в релятивистской механике, и обобщённая скорость, или скорость в обобщённых координатах.

Скорость точки в классической механике[править | править код]

Вектор скорости материальной точки в каждый момент времени определяется как производная по времени радиус-вектора r→{\displaystyle {\vec {r}}} текущего положения этой точки, так что[3]:

v→=dr→dt≡vττ→,{\displaystyle {\vec {v}}={\mathrm {d} {\vec {r}} \over \mathrm {d} t}\equiv v_{\tau }{\vec {\tau }},}

где τ→≡dr→/ds{\displaystyle {\vec {\tau }}\equiv \mathrm {d} {\vec {r}}/\mathrm {d} s} — единичный вектор касательной, проходящей через текущую точку траектории (он направлен в сторону возрастания дуговой координаты s{\displaystyle s} движущейся точки), а vτ≡s˙{\displaystyle v_{\tau }\equiv {\dot {s}}} — проекция вектора скорости на направление упомянутого единичного вектора, равная производной дуговой координаты по времени и именуемая

алгебраической скоростью точки. В соответствии с приведёнными формулами, вектор скорости точки всегда направлен вдоль касательной, а алгебраическая скорость точки может отличаться от модуля v{\displaystyle v} этого вектора лишь знаком[4]. При этом:

  • если дуговая координата возрастает, то векторы v→{\displaystyle {\vec {v}}} и τ→{\displaystyle {\vec {\tau }}} сонаправлены, а алгебраическая скорость положительна;
  • если дуговая координата убывает, то векторы v→{\displaystyle {\vec {v}}} и τ→{\displaystyle {\vec {\tau }}} противонаправлены, а алгебраическая скорость отрицательна.

Не следует смешивать дуговую координату и пройденный точкой путь. Путь s~{\displaystyle {\tilde {s}}}, пройденный точкой за промежуток времени от t0{\displaystyle t_{0}} до t{\displaystyle t}, может быть найден так:

s~=∫t0t|s˙|dt;{\displaystyle {\tilde {s}}=\int _{t_{0}}^{t}|{\dot {s}}|\,\mathrm {d} t\;;}

лишь в случае, когда алгебраическая скорость точки всё время неотрицательна, связь пути и дуговой координаты достаточно проста: путь совпадает с приращением дуговой координаты за время от t0{\displaystyle t_{0}} до t{\displaystyle t} (если же при этом начало отсчёта дуговой координаты совпадает с начальным положением движущейся точки, то s~{\displaystyle {\tilde {s}}} будет совпадать с s{\displaystyle s}).

Если алгебраическая скорость точки не меняется с течением времени (или, что то же самое, модуль скорости постоянен), то движение точки называется[5]равномерным (алгебраическое касательное ускорение s¨{\displaystyle {\ddot {s}}} при этом тождественно равно нулю).

Предположим, что s¨⩾0{\displaystyle {\ddot {s}}\geqslant {0}}. Тогда при равномерном движении скорость точки (алгебраическая) будет равна отношению пройденного пути s~{\displaystyle {\tilde {s}}} к промежутку времени t−t0{\displaystyle t-t_{0}}, за который этот путь был пройден:

s˙cp=s~t−t0.{\displaystyle {\dot {s}}^{\,\mathrm {cp} }={{\tilde {s}} \over t-t_{0}}\;.}

В общем же случае аналогичные отношения

v→cp=r→−r→0t−t0≡Δr→Δt{\displaystyle {\vec {v}}^{\,\,\mathrm {cp} }={{\vec {r}}-{\vec {r}}_{0} \over t-t_{0}}\equiv {\Delta {\vec {r}} \over \Delta {t}}}     и     s˙cp=s−s0t−t0≡ΔsΔt{\displaystyle {\dot {s}}^{\,\mathrm {cp} }={s-s_{0} \over t-t_{0}}\equiv {\Delta {s} \over \Delta {t}}}

определяют соответственно среднюю скорость точки[6] и её среднюю алгебраическую скорость; если термином «средняя скорость» пользуются, то о величинах v→{\displaystyle {\vec {v}}} и s˙{\displaystyle {\dot {s}}} говорят (чтобы избежать путаницы) как о мгновенных скоростях.

{\dot  {s}} Иллюстрация средней и мгновенной скорости

Не следует смешивать два введённых выше понятия средней скорости. Во-первых, v→cp{\displaystyle {\vec {v}}^{\,\,\mathrm {cp} }} — вектор, а s˙cp{\displaystyle {\dot {s}}^{\,\mathrm {cp} }} — скаляр. Во-вторых, эти величины могут не совпадать по модулю. Так, пусть точка движется движется по винтовой линии и за время своего движения проходит один виток; тогда модуль средней скорости этой точки будет равен отношению шага винтовой линии (то есть расстояния между её витками) ко времени движения, а модуль средней алгебраической скорости — отношению длины витка ко времени движения.

Для тела протяжённых размеров понятие «скорости» (тела как такового, а не одной из его точек) не может быть определено; исключение составляет случай мгновенно-поступательного движения. Говорят, что абсолютно твёрдое тело совершает мгновенно-поступательное движение, если в данный момент времени скорости всех составляющих его точек равны[7]; тогда можно, разумеется, положить скорость тела равной скорости любой из его точек. Так, например, равны скорости всех точек кабинки колеса обозрения (если, конечно, пренебречь колебаниями кабинки).

В общем же случае скорости точек, образующих твёрдое тело, не равны между собой. Так, например, для катящегося без проскальзывания колеса модули скоростей точек на ободе относительно дороги принимают значения от нуля (в точке касания с дорогой) до удвоенного значения скорости центра колеса (в точке, диаметрально противоположной точке касания). Распределение скоростей точек абсолютно твёрдого тела описывается кинематической формулой Эйлера.

В декартовых координатах[править | править код]

В прямоугольной декартовой системе координат[8]:

v=vxi+vyj+vzk.{\displaystyle \mathbf {v} =v_{x}\mathbf {i} +v_{y}\mathbf {j} +v_{z}\mathbf {k} .}

В то же время r=xi+yj+zk,{\displaystyle \mathbf {r} =x\mathbf {i} +y\mathbf {j} +z\mathbf {k} ,} поэтому

v=d(xi+yj+zk)dt=dxdti+dydtj+dzdtk.{\displaystyle \mathbf {v} ={\frac {\mathrm {d} (x\mathbf {i} +y\mathbf {j} +z\mathbf {k} )}{\mathrm {d} t}}={\frac {\mathrm {d} x}{\mathrm {d} t}}\mathbf {i} +{\frac {\mathrm {d} y}{\mathrm {d} t}}\mathbf {j} +{\frac {\mathrm {d} z}{\mathrm {d} t}}\mathbf {k} .}

Таким образом, координаты вектора скорости — это скорости изменения соответствующей координаты материальной точки[8]:

vx=dxdt;vy=dydt;vz=dzdt.{\displaystyle v_{x}={\frac {\mathrm {d} x}{\mathrm {d} t}};v_{y}={\frac {\mathrm {d} y}{\mathrm {d} t}};v_{z}={\frac {\mathrm {d} z}{\mathrm {d} t}}.}

В цилиндрических координатах[править | править код]

{\displaystyle v_{x}={\frac {\mathrm {d} x}{\mathrm {d} t}};v_{y}={\frac {\mathrm {d} y}{\mathrm {d} t}};v_{z}={\frac {\mathrm {d} z}{\mathrm {d} t}}.} Скорость в полярных координатах

В цилиндрических координатах R,φ,z{\displaystyle R,\varphi ,z}[8]:

vR=dRdt;vφ=Rdφdt;vz=dzdt.{\displaystyle v_{R}={\frac {\mathrm {d} R}{\mathrm {d} t}};v_{\varphi }=R{\frac {\mathrm {d} \varphi }{\mathrm {d} t}};v_{z}={\frac {\mathrm {d} z}{\mathrm {d} t}}.}

vφ{\displaystyle v_{\varphi }} носит название поперечной скорости, vR{\displaystyle v_{R}} — радиальной.

В сферических координатах[править | править код]

В сферических координатах R,φ,θ{\displaystyle R,\varphi ,\theta }[8]:

vR=dRdt;vφ=Rsin⁡θdφdt;vθ=Rdθdt.{\displaystyle v_{R}={\frac {\mathrm {d} R}{\mathrm {d} t}};v_{\varphi }=R\sin \theta {\frac {\mathrm {d} \varphi }{\mathrm {d} t}};v_{\theta }=R{\frac {\mathrm {d} \theta }{\mathrm {d} t}}.}

Обобщениями понятия скорости является четырёхмерная скорость, или скорость в релятивистской механике, и обобщённая скорость, или скорость в обобщённых координатах[8].

Четырёхмерная скорость[править | править код]

В специальной теории относительности каждому событию ставится в соответствие точка пространства Минковского, три координаты которого представляют собой декартовы координаты трёхмерного евклидова пространства, а четвёртая ― временну́ю коодинату ct{\displaystyle ct}, где c{\displaystyle c} ― скорость света, t{\displaystyle t} ― время события. Компоненты четырёхмерного вектора скорости связаны с проекциями трёхмерного вектора скорости следующим образом[8]:

v0=c1−v2c2;v1=vx1−v2c2;v2=vy1−v2c2;v3=vz1−v2c2.{\displaystyle v_{0}={\frac {c}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{1}={\frac {v_{x}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{2}={\frac {v_{y}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};v_{3}={\frac {v_{z}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}.}

Четырёхмерный вектор скорости является времениподобным вектором, то есть лежит внутри светового конуса[8].

В обобщённых координатах[править | править код]

Следует различать координатную и физическую скорости. При введении криволинейных или обобщённых координат положение тел описывается их зависимостью от времени. Производные от координат тела по времени при этом называются координатными скоростями.

В классической механике Ньютона скорости преобразуются при переходе из одной инерциальной системы отсчёта в другую согласно преобразованиям Галилея. Если скорость тела в системе отсчёта S{\displaystyle S} была равна v→{\displaystyle {\vec {v}}}, а скорость системы отсчёта S′{\displaystyle S’} относительно системы отсчёта S{\displaystyle S} равна u→{\displaystyle {\vec {u}}}, то скорость тела при переходе в систему отсчёта S′{\displaystyle S’} будет равна[8]

v→′=v→−u→.{\displaystyle {\vec {v}}’={\vec {v}}-{\vec {u}}.}

Для скоростей, близких к скорости света преобразования Галилея становятся несправедливы. При переходе из системы S{\displaystyle S} в систему S′{\displaystyle S’} необходимо использовать преобразования Лоренца для скоростей[8]:

vx′=vx−u1−(vxu)/c2,vy′=vy1−u2c21−(vxu)/c2,vz′=vz1−u2c21−(vxu)/c2,{\displaystyle v_{x}’={\frac {v_{x}-u}{1-(v_{x}u)/c^{2}}},v_{y}’={\frac {v_{y}{\sqrt {1-{\frac {u^{2}}{c^{2}}}}}}{1-(v_{x}u)/c^{2}}},v_{z}’={\frac {v_{z}{\sqrt {1-{\frac {u^{2}}{c^{2}}}}}}{1-(v_{x}u)/c^{2}}},}

в предположении, что скорость u→{\displaystyle {\vec {u}}} направлена вдоль оси x{\displaystyle x} системы S{\displaystyle S}. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Ряд понятий классической механики выражаются через скорость.

Импульс, или количество движения, — это мера механического движения точки, которая определяется как произведение массы точки на его скорость p→=mv→{\displaystyle {\vec {p}}=m{\vec {v}}}. Импульс является векторной величиной, его направление совпадает с направлением скорости. Для замкнутой системы выполняется закон сохранения импульса. Обобщением импульса в релятивистских системах является четырёхимпульс, временная компонента которого равна E/c{\displaystyle E/c}. Для обобщённого импульса также выполняется равенство[9]:

pμ=mUμ,{\displaystyle p^{\mu }=m\,U^{\mu }\!,}

где Uμ{\displaystyle U^{\mu }} — обобщённая четырёхмерная скорость.

От скорости также зависит кинетическая энергия механической системы. Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения[10][11]:

T=mv22+Iω→22,{\displaystyle T={\frac {mv^{2}}{2}}+{\frac {{\mathcal {I}}{\vec {\omega }}^{2}}{2}},}

Средняя скорость при равноускоренном движении

Чтобы определить среднюю путевую скорость, нужно разделить весь путь на все время. Это справедливо и для равноускоренного движения. Модуль средней скорости по перемещению определяется как модуль перемещения, деленный на все время движения. Также перемещение – векторная величина, и имеет направление, следовательно, можно определить и угол, под которым средняя скорость будет направлена к горизонту.

Задача 1.  Тело падает без начальной скорости с высоты h=45 м. Найти среднюю скорость падения на второй половине пути.

Чтобы определить среднюю скорость, нужно разделить путь, пройденный телом, на время его движения.

Длина первой половины пути – S_1=\frac{S}{2}.

Тогда можно записать, что S_1=\frac{gt_1^2}{2}, где t_1 – время прохождения телом первой половины пути, его можно найти:

    \[t_1=\sqrt{\frac{2S_1}{g}}=\sqrt{\frac{S}{g}}\]

Полное время падения тоже легко определить:

    \[S=\frac{gt^2}{2}\]

    \[t=\sqrt{\frac{2S}{g}}\]

Тогда определим время, за которое тело прошло вторую половину пути:

    \[t_2=t-t_1=\sqrt{\frac{2S}{g}}-\sqrt{\frac{S}{g}}\]

Определим среднюю скорость:

    \[\upsilon_{sr}=\frac{\frac{S}{2}}{\sqrt{\frac{2S}{g}}-\sqrt{\frac{S}{g}}}=\frac{S}{2\sqrt{\frac{2S}{g}}-2\sqrt{\frac{S}{g}}}=\frac{45}{2\sqrt{9}-2\sqrt{4,5}}=\frac{45}{6-4,24}=25,6\]

Ответ: средняя скорость на второй половине пути равна 25,6 м/c.

 

Задача 2.  Тело брошено со скоростью \upsilon_0=14,7 м/с вертикально вверх с высоты h=19,6 м над поверхностью земли. Определить среднюю скорость \upsilon_{sr} и среднюю путевую скорость \upsilon за время полета.

Так как найти надо среднюю путевую и среднюю скорость по перемещению, то необходимо знать как путь, так и перемещение тела. Очевидно, что точку старта и точку финиша тела разделяет высота h, с которой тело было сброшено, так как в конце оно окажется на земле. Итак, h – это перемещение тела.

Чтобы определить путь, потребуется найти высоту, до которой тело смогло подняться. Путь тела тогда будет равен

    \[S=2h_{max}+h\]

Максимальная высота подъема тела равна h_{max}=\frac{\upsilon_0^2}{2g}, следовательно,

    \[S=2 h_{max}+h=\frac{\upsilon_0^2}{g}+h=\frac{\upsilon_0^2+gh}{g}\]

Также для определения средней скорости надо знать время движения тела. Это время будет складываться из времени взлета t_{vzl} и времени падения t_{pad}.

Время взлета найдем из условия равенства нулю скорости тела:

    \[\upsilon=\upsilon_0-gt_{vzl}=0\]

    \[t_{vzl}=\frac{\upsilon_0}{g}\]

Время падения тоже легко определить, зная, что тело падало с высоты h+h_{max}:

    \[\frac{g t_{pad}^2}{2}= h+h_{max}\]

    \[t_{pad}^2= \frac{ 2(h+h_{max})}{g} =\frac{2h+\frac{\upsilon_0^2}{g}}{g}=\frac{2gh+ \upsilon_0^2}{g^2}\]

    \[t_{pad}=\sqrt{\frac{2gh+ \upsilon_0^2}{g^2}}=\frac{\sqrt{2gh+ \upsilon_0^2}}{g}\]

Теперь, зная время взлета и время падения, можем определить общее время движения тела:

    \[t= t_{vzl}+ t_{pad}=\frac{\upsilon_0+\sqrt{2gh+ \upsilon_0^2}}{g}\]

Осталось разделить путь на это время – и получим среднюю путевую скорость:

    \[\upsilon_{sr}=\frac{S}{t}=\frac{\frac{\upsilon_0^2+gh}{g}}{\frac{\upsilon_0+\sqrt{2gh+ \upsilon_0^2}}{g}}=\frac{\upsilon_0^2+gh }{\upsilon_0+\sqrt{2gh+ \upsilon_0^2}}=\frac{14,7^2+196 }{14,7+\sqrt{20\cdot19,6+ 14,7^2}}=10,47\]

Средняя скорость по перемещению равна (или модуль средней скорости):

    \[\upsilon_{sr}=\frac{h}{t}=\frac{gh}{\upsilon_0+\sqrt{2gh+ \upsilon_0^2}}=\frac{196}{14,7+\sqrt{20\cdot19,6+ 14,7^2}}=\frac{19,6}{39,35}=4,98\]

Задача 3. Мячик брошен с высоты h=5 м над поверхностью земли с начальной скоростью \upsilon_0=20 м/с под углом \alpha=30^{\circ} к горизонту. Найти модуль и направление его средней скорости за все время полета.

В этой задаче необходимо, по сути, определить вектор средней скорости тела по перемещению: его длину (модуль) и направление. Очевидно, для этого потребуется знать, как далеко тело улетело и сколько на это понадобилось времени.  Мы помним, что проекция скорости тела на горизонтальную ось остается неизменной во времени и равной \upsilon_x=\upsilon_0 \cos{\alpha}. Если удастся найти время полета тела – то мы узнаем, как далеко оно шлепнулось о землю.

Давайте запишем закон движения тела по оси y:

    \[y=y_0+\upsilon_0 \sin{\alpha} t-\frac{gt^2}{2}\]

Так как в итоге ордината тела оказалась равной 0, то приравняем y=0 и решим полученное квадратное уравнение:

    \[y_0+\upsilon_0 \sin{\alpha} t-\frac{gt^2}{2}=0\]

    \[D=\upsilon_0^2 \sin^2{\alpha}+2g y_0\]

    \[t_{1,2}=\frac{-\upsilon_0 \sin{\alpha} \pm \sqrt{D}}{-g}\]

Один из корней  – отрицательный – отбросим, как неудовлетворяющий смыслу задачи.

Тело улетит от точки старта по горизонтали на расстояние:

    \[S_x=\upsilon_x t=\upsilon_0 \cos{\alpha}\frac{\upsilon_0 \sin{\alpha} + \sqrt{D}}{g}=\frac{\frac{1}{2}\upsilon_0^2\sin{2\alpha}+\upsilon_0 \cos{\alpha}\sqrt{D} }{g}\]

Теперь определим перемещение тела по теореме Пифагора:

    \[L=\sqrt{S_x^2+y_0^2}\]

Разделив перемещение тела на время, получим среднюю скорость по перемещению:

    \[\upsilon_{sr}=\frac{L}{t}=\frac{g\sqrt{S_x^2+y_0^2}}{\upsilon_0 \sin{\alpha} + \sqrt{D}}\]

    \[\upsilon_{sr}=\frac{\sqrt{(\frac{1}{2}\upsilon_0^2\sin{2\alpha}+\upsilon_0 \cos{\alpha}\sqrt{D})^2+y_0^2g^2}}{\upsilon_0 \sin{\alpha} + \sqrt{D}}\]

Определим D численно, чтобы потом проще было при подсчетах:

    \[D=400 \frac{1}{2}+20\cdot 5=300\]

Теперь рассчитаем среднюю скрость:

    \[\upsilon_{sr}=\frac{\sqrt{(200\cdot\frac{\sqrt{3}}{2}+20 \frac{\sqrt{3}}{2}\sqrt{300})^2+5^2\cdot10^2}}{10 + \sqrt{300}}=10\sqrt{3}=17,3\]

Найдем, под каким углом к горизонту был направлен вектор средней скорости:

    \[\beta=\operatorname{arctg} \frac{y_0}{S_x}=\operatorname{arctg} \frac{y_0}{\frac{\frac{1}{2}\upsilon_0^2\sin{2\alpha}+\upsilon_0 \cos{\alpha}\sqrt{D} }{g}}=\operatorname{arctg} {\frac{ gy_0}{\frac{1}{2}\upsilon_0^2\sin{2\alpha}+\upsilon_0 \cos{\alpha}\sqrt{D}}}\]

    \[\beta=\operatorname{arctg} \frac{5}{41,8}=6,8^{\circ}\]

Ответ: модуль средней скорости равен 17,3 м/с, она направлена под углом \beta=6,8^{\circ} к горизонту.

Скорость движения в физике

Скорость является одной из основных характеристик механического движения. Она выражает саму суть движения, т.е. определяет то отличие, которое имеется между телом неподвижным и телом движущимся.

Единицей измерения скорости в системе СИ является м/с.

Важно помнить, что скорость – величина векторная. Направление вектора скорости определяется по траектории движения. Вектор скорости всегда направлен по касательной к траектории в той точке, через которую проходит движущееся тело (рис.1).

К примеру, рассмотрим колесо движущегося автомобиля. Колесо вращается и все точки колеса движутся по окружностям. Брызги, разлетающиеся от колеса, будут лететь по касательным к этим окружностям, указывая направления векторов скоростей отдельных точек колеса.

Таким образом, скорость характеризует направление движения тела (направление вектора скорости) и быстроту его перемещения (модуль вектора скорости).

Отрицательная скорость

Может ли скорость тела быть отрицательной? Да, может. Если скорость тела отрицательна, это значит, что тело движется в направлении, противоположном направлению оси координат в выбранной системе отсчета. На рис.2 изображено движение автобуса и автомобиля. Скорость автомобиля отрицательна, а скорость автобуса положительна. Следует помнить, что говоря о знаке скорости, мы имеем ввиду проекцию вектора скорости на координатную ось.

Равномерное и неравномерно движение

В общем случае скорость зависит от времени. По характеру зависимости скорости от времени, движение бывает равномерное и неравномерно.

В случае неравномерного движения говорят о средней скорости:

   

Примеры решения задач по теме «Скорость»

Понравился сайт? Расскажи друзьям!

Добавить комментарий

Ваш адрес email не будет опубликован.