Как называлась планета обнаруженная по вычислениям математика гаусса: Ничего не найдено для %25D0%25Ba%25D0%25B0%25D0%25Ba %25D0%25Bd%25D0%25B0%25D0%25B7%25D1%258B%25D0%25B2%25D0%25B0%25D0%25Bb%25D0%25B0%25D1%2581%25D1%258C %25D0%25Bf%25D0%25Bb%25D0%25B0%25D0%25Bd%25D0%25B5%25D1%2582%25D0%25B0 %25D0%25Be%25D0%25B1%25D0%25Bd%25D0%25B0%25D1%2580%25D1%2583%25D0%25B6%25D0%25B5%25D0%25Bd%25D0%25Bd%25D0%25B0%25D1%258F

Содержание

биография, фото, открытия Годы жизни гаусса

Иоганна Карла Фридриха Гаусса называют королем математиков. Его открытия в алгебре и геометрии дали направление развития науки 19 века. Кроме того, он сделал существенный вклад в астрономию, геодезию и физику.

Родился Карл Гаусс 30 апреля 1777 года в немецком герцогстве Брауншвейг в семье бедного смотрителя каналов. Примечательно, что точной даты появления на свет его родители не помнили — Карл сам вывел ее в будущем.

Уже в 2 года родственники мальчика признали его гением. В 3 года он читал, писал и исправлял счетные ошибки отца. Позже Гаусс вспоминал, что считать научился раньше, чем разговаривать.

В школе гениальность мальчика подметил его учитель Мартин Бартельс, который позже обучал Николая Лобачевского. Педагог направил ходатайство герцогу Брауншвейгскому и добился для юноши стипендии в крупнейшем техническом университете Германии.

С 1792 по 1795 год Карл Гаусс провел в стенах Брауншвейгского университета, где изучал труды Лагранжа, Ньютона, Эйлера. Следующие 3 года он проучился в Гёттингенском университете. Его учителем стал выдающийся немецкий математик Авраам Кестнер.

На втором году обучения ученый начинает вести дневник наблюдений. Позже биографы почерпнут из него много открытий, которые Гаусс не оглашал при жизни.

В 1798 году Карл возвращается на родину. Герцог оплачивает публикацию докторской диссертации ученого и жалует ему стипендию. В Брауншвейге Гаусс остается до 1807 года. В этот период он занимает должность приват-доцента местного университета.

В 1806 году на войне гибнет покровитель молодого ученого. Но Карл Гаусс уже сделал себе имя. Его наперебой приглашают в разные страны Европы. Математик переходит на работу в немецкий университетский город Гёттинген.

На новом месте он получает должность профессора и директора обсерватории. Здесь он остается вплоть до самой смерти.

Широкое признание Карл Гаусс получил еще при жизни. Он был членом-корреспондентом АН в Петербурге, награжден премией Парижской АН, золотой медалью Лондонского королевского общества, стал лауреатом медали Копли и членом Шведской АН.

Математические открытия

Карл Гаусс сделал фундаментальные открытия почти во всех областях алгебры и геометрии. Самым плодотворным периодом считается время его обучения в Гёттингенском университете.

Находясь в коллегиальном колледже он доказал закон взаимности квадратичных вычетов. А в университете математик сумел построить правильный семнадцатиугольник с помощью линейки и циркуля и решил проблему построения правильных многоугольников. Этим достижением ученый дорожил больше всего. Настолько, что пожелал выгравировать на его посмертном памятнике круг, в котором бы находилась фигура с 17 углами.

В 1801 году Клаус издает труд «Арифметические исследования». Через 30 лет на свет появится очередной шедевр немецкого математика — «Теория биквадратичных вычетов». В нем приводятся доказательства важных арифметических теорем для вещественных и комплексных чисел.

Гаусс стал первым, кто представил доказательства основной теоремы алгебры и начал изучать внутреннюю геометрию поверхностей. Он также открыл кольцо целых комплексных гауссовых чисел, решил много математических проблем, вывел теорию сравнений, заложил основы римановой геометрии.

Достижения в других научных сферах

Вице-гелиотроп. Латунь, золото, стекло, красное дерево (создан до 1801 года). С рукописной надписью: «Собственность господина Гаусса». Находится в Университете Гёттингена, первый Физический институт.

Настоящую известность Карлу Гауссу принесли вычисления, с помощью которых он определил положение , открытой в 1801 году.

В последующем ученый не раз возвращается к астрономическим исследованиям. В 1811 году он рассчитывает орбиту новообнаруженной кометы, делает вычисления для определения расположения кометы «пожара Москвы» в 1812 году.

В 20-х годах 19 века Гаусс работает в сфере геодезии. Именно он создал новую науку — высшую геодезию. Также разрабатывает вычислительные методы для проведения геодезической съемки, издает цикл трудов по теории поверхностей, вошедших в публикацию «Исследования относительно кривых поверхностей» в 1822 году.

Обращается ученый и к физике. Он развивает теории капиллярности и системы линз, закладывает основы электромагнетизма. Совместно с Вильгельмом Вебером изобретает электрический телеграф.

Личность Карла Гаусса

Карл Гаусс был максималистом. Он никогда не публиковал сырые, даже гениальные труды, считая их несовершенными. Из-за этого в ряде многих открытий его опередили другие математики.

Ученый также был полиглотом. Он свободно разговаривал и писал на латыни, английском, французском. А в 62 года освоил русский, чтобы читать в оригинале труды Лобачевского.

Гаусс был дважды женат, стал отцом для шести детей. К сожалению, обе супруги умерли рано, а один из детей погиб в младенчестве.

Скончался Карл Гаусс в Гёттингене 23 февраля 1855 года. В его честь по приказу Короля Ганновера Георга V отчеканили медаль с портретом ученого и его титулом — «король математиков».

Многих ли выдающихся математиков Вы можете вспомнить не задумываясь? А можете ли Вы назвать тех из них, кто при жизни получил заслуженное звание «король математиков»? Одним из немногих этой почести удостоился Карл Гаусс – немецкий математик, физик и астроном.

Мальчик, который рос в бедной семье, уже с двухлетнего возраста проявил незаурядные способности вундеркинда. В три года ребенок отлично считал и даже помогал отцу выявлять неточности в проделанных математических операциях. По преданию, учитель математики задал школьникам задачу сосчитать сумму чисел от 1 до 100, чтобы чем-то занять ребят. С этой задачей блестяще справился маленький Гаусс, заметив, что попарные суммы в противоположных концов одинаковы. С детства и пошла привычка Гаусса любые вычисления проводить в уме.

Будущему математику всегда везло с учителями: они были чутки к способностям юноши и всячески ему помогали. Одним из таких наставников был Бартельс, который посодействовал Гауссу в получении стипендии от герцога, что оказалось значительным подспорьем при обучении юноши в колледже.

Исключителен Гаусс и тем, что долгое время он пытался сделать выбор между филологией и математикой. Гаусс владел многими языками (а особенно любил латынь) и мог быстро выучить любой из них, он понимал литературу; уже в преклонном возрасте математик смог выучить далеко не легкий русский язык, чтобы ознакомиться с трудами Лобачевского в оригинале. Как мы знаем, выбор Гаусса все же пал на математику.

Уже в колледже Гаусс смог доказать закон взаимности квадратичных вычетов, что не удавалось его знаменитым предшественникам – Эйлеру и Лежандру. В это же время Гаусс создает метод наименьших квадратов.

Позже Гаусс доказал возможность построения правильного 17-угольника с помощью циркуля и линейки, а также в общем обосновал критерий такого построения правильных многоугольников. Это открытие было особенно дорого ученому, поэтому он завещал изобразить на своей могиле вписанный в круг 17-угольник.

Математик требовательно относился к своим достижением, поэтому публиковал только те исследования, которыми был доволен: недоработанных и «сырых» результатов в трудах Гаусса мы не найдем. Многие из неопубликованных идей после воскресли в трудах других ученых.

Большую часть времени математик посвятил разработке теории чисел, которую он считал «царицей математики». В рамках исследований им была обоснована теория сравнений, исследованы квадратичные формы и корни из единицы, изложены свойства квадратичных вычетов и др.

В своей докторской диссертации Гаусс доказал основную теорему алгебры, а позже разработал еще 3 ее доказательства разными способами.

Гаусс-астроном прославился «поиском» планеты-беглянки Цереры. За несколько часов математик проделал вычисления, которые позволили точно указать место нахождения «сбежавшей планеты», где она и была обнаружена. Продолжая свои исследования, Гаусс пишет «Теорию небесных тел», где излагает теорию учета возмущений орбит. Вычисления Гаусса позволили наблюдать комету «пожара Москвы».

Велики заслуги Гаусса и в геодезии: «гауссова кривизна», метод конформного отображения и др.

Исследование магнетизма Гаусс проводит со своим молодым другом Вебером. Гауссу принадлежит открытие пушки Гаусса – одной из разновидностей электромагнитного ускорителя масс.Совместно с Вебером Гауссом была разработана также действующая модель сконструированного им же электрического телеграфа.

Метод решения системных уравнений, открытый ученым, был назван методом Гаусса. Метод состоит в последовательном исключении переменных до приведения уравнения к ступенчатому виду. Решение методом Гаусса считается классическим и активно используется и сейчас.

Имя Гаусса известно почти во всех областях математики, а также в геодезии, астрономии, механике. За глубину и оригинальность мысли, за требовательность к себе и гениальность ученый и получил звание «король математиков». Ученики Гаусса стали не менее выдающимися учеными, нежели их наставник: Риман, Дедекинд, Бессель, Мебиус.

Память о Гауссе навсегда осталась в математических и физических терминах (метод Гаусса, дискриминанты Гаусса, прямая Гаусса, Гаусс – единица измерения магнитной индукции и др.). Имя Гаусса носит лунный кратер, вулкан в Антарктиде и малая планета.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Математик Гаусс был замкнутым человеком. Эрик Темпл Белл, который изучал его биографию, считает, что если бы Гаусс опубликовал все свои исследования и открытия в полном объеме и вовремя, то могло бы прославиться еще с полдюжины математиков. А так им пришлось потратить львиную долю времени, чтобы узнать, каким образом ученый получил те или другие данные. Ведь он редко публиковал методы, его всегда интересовал только результат. Выдающийся математик, и неподражаемая личность — это все Карл Фридрих Гаусс.

Ранние годы

Будущий математик Гаусс родился 30.04.1777 г. Это, конечно, странное явление, но выдающиеся люди чаще всего рождаются в бедных семьях. Так случилось и в этот раз. Его дедушка был обычным крестьянином, а отец работал в герцогстве Брауншвейг садовником, каменщиком или водопроводчиком. Родители узнали, что их ребенок вундеркинд, когда малышу исполнилось два года. Спустя год Карл уже умеет считать, писать и читать.

В школе его способности заметил учитель, когда дал задание подсчитать сумму чисел от 1 до 100. Гауссу быстро удалось понять, что все крайние числа в паре составляют 101, и за считанные секунды он решил это уравнение, умножив 101 на 50.

Юному математику несказанно повезло с учителем. Тот помогал ему во всем, даже похлопотал за то, чтобы начинающему дарованию выплачивали стипендию. С ее помощью Карл сумел окончить колледж (1795 год).

Студенческие годы

После колледжа Гаусс учится в Геттингенском университете. Этот период жизни биографы обозначают как самый плодотворный. В это время ему удалось доказать, что начертить правильный семнадцатиугольник, используя лишь циркуль, представляется возможным. Он уверяет: можно нарисовать не только семнадцатиугольник, но и другие правильные многоугольники, пользуясь только циркулем и линейкой.

В университете Гаусс начинает вести специальную тетрадь, куда заносит все записи, которые касаются его исследований. Большинство из них были скрыты от глаз общественности. Для друзей он всегда повторял, что не сможет опубликовать исследование или формулу, в которых не уверен на 100%. По этой причине большинство из его идей были открыты другими математиками спустя 30 лет.

«Арифметические исследования»

Вместе с окончанием университета математик Гаусс закончил свой выдающийся труд «Арифметические исследования» (1798), но его напечатали лишь спустя два года.

Это обширное сочинение определило дальнейшее развитие математики (в частности, алгебры и высшей арифметики). Основная часть работы сосредоточена на описании абиогенеза квадратичных форм. Биографы уверяют, что именно с него начинаются открытия Гаусса в математике. Ведь он был первым математиком, у кого получилось вычислять дроби и переводить их в функции.

Также в книге можно отыскать полную парадигму равенств деления круга. Гаусс умело применяет эту теорию, пытаясь решить проблему начертания многоугольников при помощи линейки и циркуля. Доказывая эту вероятность, Карл Гаусс (математик) вводит ряд чисел, которые называют числами Гаусса (3, 5, 17, 257, 65337). Это значит, что при помощи простых канцелярских предметов можно построить 3-угольник, 5-угольник, 17-угольник и т.д. А вот 7-угольник построить не получится, ведь 7 не является «числом Гаусса». К «своим» числа математик также относит двойки, что умноженные на любую степень его ряда чисел (2 3 , 2 5 и т.д.)

Этот результат можно назвать «чистой теоремой существования». Как уже было сказано вначале, Гаусс любил публиковать итоговые результаты, но никогда не указывал методы. Так же и в этом случае: математик утверждает, что построить вполне реально, вот только не уточняет, как именно это сделать.

Астрономия и царица наук

в 1799 году Карл Гаусс (математик) получает титул приват-доцента Брауншвейнского университета. Спустя два года ему предоставляют место в Петербургской Академии наук, где он выступает в качестве корреспондента. Он все еще продолжает изучать теорию чисел, но круг его интересов расширяется после открытия небольшой планеты. Гаусс пытается вычислить и указать ее точное местонахождение. Многие задаются вопросом, как называлась планета по вычислениям математика Гаусса. Однако немногим известно, что Церера — не единственная планета, с которой работал ученый.

В 1801 году впервые было обнаружено новое небесное тело. Это случилось неожиданно и внезапно, точно так же неожиданно планета была утеряна. Гаусс попытался обнаружить ее, применяя математические методы, и, как ни странно, она была именно там, куда указал ученный.

Астрономией ученый занимается более двух десятилетий. Всемирную известность получает метод Гаусса (математика, которому принадлежит множество открытий) для определения орбиты с помощью трех наблюдений. Три наблюдения — это место, в котором располагается планета в разный период времени. С помощью этих показателей была вновь найдена Церера. Точно таким же образом обнаружили еще одну планету. С 1802 года на вопрос, как называется планета, обнаруженная математиком Гаусса, можно было отвечать: «Паллада». Забегая немного вперед, стоит отметить, что в 1923 году именем известного математика назвали крупный астероид, вращающийся вокруг Марса. Гауссия, или астероид 1001, — это официально признанная планета математика Гаусса.

Это были первые исследования в области астрономии. Возможно, созерцание звездного неба стало причиной того, что человек, увлеченный числами, принимает решение обзавестись семьей. В 1805 году берет в жены Иоганну Остгоф. В этом союзе у пары рождается трое детей, но младший сын умирает в младенчестве.

В 1806 году скончался герцог, который покровительствовал математику. Страны Европы наперебой начинают приглашать Гаусса к себе. С 1807 года и до последних своих дней Гаусс возглавляет кафедру в Геттингенском университете.

В 1809 году умирает первая жена математика, в этом же году Гаусс издает свое новое творение — книгу под названием «Парадигма перемещения небесных тел». Методы для вычисления орбит планет, что изложены в этом труде, актуальны и сегодня (правда, с небольшими поправками).

Главная теорема алгебры

Начало ХІХ века Германия встретила в состоянии анархии и упадка. Эти годы были тяжелыми для математика, но он продолжает жить дальше. В 1810 году Гаусс второй раз связывает себя узами брака — с Минной Вальдек. В этом союзе у него появляется еще трое детей: Тереза, Вильгельм и Ойген. Также 1810 год был ознаменован получением престижной премии и золотой медали.

Гаусс продолжает свою работу в областях астрономии и математики, исследуя все больше и больше неизвестных составляющих этих наук. Его первая публикация, посвященная основной теореме алгебры, датируется 1815 годом. Главная идея заключается в следующем: число корней многочлена прямопропорциональна его степени. Позже высказывание приобрело несколько иной вид: любое число в степени, не равной нолю, априори имеет как минимум один корень.

Впервые он доказал это еще в 1799 году, но не был доволен своей работой, поэтому публикация вышла в свет спустя 16 лет, с некоторыми поправками, дополнениями и вычислениями.

Неевклидова теория

Согласно данным, в 1818 году Гауссу первому удалось построить базу для неевклидовой геометрии, теоремы которой были бы возможны в реальности. Неевклидовая геометрия представляет собой область науки, отличимой от евклидовой. Основная особенность евклидовой геометрии — в наличии аксиом и теорем, которые не требуют подтверждений. В своей книге «Начала» Евклид вывел утверждения, которые должны приниматься без доказательств, ведь они не могут быть изменены. Гаусс был первым, кому удалось доказать, что теории Евклида не всегда могут восприниматься без обоснований, так как в определенных случаях они не имеют прочной базы доказательств, которая удовлетворяет всем требованиям эксперимента. Так появилась неевклидова геометрия. Конечно, основные геометрические системы были открыты Лобачевским и Риманом, но метод Гаусса — математика, умеющего смотреть вглубь и находить истину, — положил начало этому разделу геометрии.

Геодезия

В 1818 году правительство Ганновера решает, что назрела необходимость измерить королевство, и это задание получил Карл Фридрих Гаусс. Открытия в математике на этом не закончились, а лишь приобрели новый оттенок. Он разрабатывает необходимые для выполнения задания вычислительные комбинации. В их число вошла гауссова методика «малых квадратов», которая подняла геодезию на новый уровень.

Ему пришлось составлять карты и организовывать съемку местности. Это позволило приобрести новые знания и поставить новые эксперименты, поэтому в 1821 году он начинает писать работу, посвященную геодезии. Этот труд Гаусса опубликовали в 1827, под названием «Общий анализ неровных плоскостей». В основу этой работы были положены засады внутренней геометрии. Математик считал, что необходимо рассматривать предметы, которые находятся на поверхности, как свойства самой поверхности, обращая внимание на длину кривых, игнорируя при этом данные объемлющего пространства. Несколько позже эта теория была дополнена трудами Б. Римана и А. Александрова.

Благодаря этому труду в научных кругах начало появляться понятие «гауссова кривизна» (определяет меру искривления плоскости в определенной точке). Начинает свое существование дифференциальная геометрия. И чтобы результаты наблюдений были достоверными, Карл Фридрих Гаусс (математик) выводит новые методы получения величин с высоким уровнем вероятности.

Механика

В 1824 году Гаусс был заочно включен в состав членов Петербургской Академии наук. На этом его достижения не заканчиваются, он все так же упорно занимается математикой и презентует новое открытие: «целые числа Гаусса». Под ними подразумевают числа, имеющие мнимую и вещественную часть, которые являются целыми числами. По сути, своими свойствами гауссовские числа напоминают обычные целые, но те небольшие отличительные характеристики позволяют доказать биквадратичный закон взаимности.

В любое время он был неподражаем. Гаусс — математик, открытия которого так тесно переплетены с жизнью, — в 1829 году внес новые коррективы даже в механику. В это время вышел его небольшой труд «О новом универсальном принципе механики». В нем Гаусс доказывает, что принцип малого воздействия, можно по праву считать новой парадигмой механики. Ученный уверяет, что этот принцип можно применять ко всем механическим системам, которые связаны между собой.

Физика

С 1831 года Гаусс начинает страдать от тяжелой бессонницы. Болезнь проявилась после смерти второй супруги. Он ищет утешения в новых исследованиях и знакомствах. Так, благодаря его приглашению в Геттинген приехал В. Вебер. С молодой талантливой личностью Гаусс быстро находит общий язык. Они оба увлечены наукой, и жажду знаний приходится унимать, обмениваясь своими наработками, догадками и опытом. Эти энтузиасты быстро принимаются за дело, посвящая свое время исследованию электромагнетизма.

Гаусс, математик, биография которого имеет большую научную ценность, в 1832 году создал абсолютные единицы, которыми и сегодня пользуются в физике. Он выделял три основные позиции: время, вес и расстояние (длина). Наряду с этим открытием в 1833 году, благодаря совместным исследованиям с физиком Вебером, Гауссу удалось изобрести электромагнитный телеграф.

1839 год ознаменован выходом еще одного сочинения — «Об общем абиогенезе сил тяготения и отталкивания, что действуют прямопропорционально расстоянию». На страницах подробно описан знаменитый закон Гаусса (еще известный как теорема Гаусса-Остроградского, или просто Этот закон является одним из основных в электродинамике. Он определяет связь между электрическим потоком и суммой заряда поверхности, делимые на электрическую постоянную.

В этом же году Гаусс освоил русский язык. Он направляет письма в Петербург с просьбой выслать ему русские книги и журналы, особенно желал он ознакомиться с произведением «Капитанская дочка». Этот факт биографии доказывает, что, помимо способностей к вычислению, у Гаусса было множество других интересов и увлечений.

Просто человек

Гаусс никогда не спешил публиковаться. Он долго и кропотливо проверял каждую свою работу. Для математика все имело значение: начиная от правильности формулы и заканчивая изяществом и простотой слога. Он любил повторять, что его работы — как только что построенный дом. Владельцу показывают только конечный результат работы, а не остатки леса, которые раньше были на месте жилого помещения. Также и с его работами: Гаусс был уверен, что никому не стоит показывать черновые наброски исследования, только готовые данные, теории, формулы.

Гаусс всегда проявлял живой интерес к наукам, но особенно его интересовала математика, которую он считал «царицей всех наук». И природа не обделила его умом и талантами. Даже находясь в преклонном возрасте, он, по обычаю, проводил большую часть сложных вычислений в уме. Математик никогда заранее не распространялся о своих работах. Как и каждый человек, он боялся, что его не поймут современники. В одном из своих писем Карл говорит о том, что устал вечно балансировать на грани: с одной стороны, он с удовольствием поддержит науку, но, с другой, ему не хотелось ворошить «осиное гнездо непонятливых».

Всю свою жизнь Гаусс провел в Геттингене, только один раз ему удалось побывать в Берлине на научной конференции. Он мог длительное время проводить исследования, опыты, вычисления или измерения, но очень не любил читать лекции. Этот процесс он считал лишь досадной необходимостью, но если у него в группе появлялись талантливые ученики, он не жалел для них ни времени, ни сил и долгие годы поддерживал переписку обсуждая важные научные вопросы.

Карл Фридрих Гаусс, математик, фото, которого размещены в этой статье, был поистине удивительным человеком. Выдающимися знаниями мог похвастаться не только в области математики, но и с иностранными языками «дружил». Свободно разговаривал на латыни, английском и французском, освоил даже русский. Математик читал не только научные мемуары, но и обычную художественную литературу. Особенно ему нравились произведения Диккенса, Свифта и Вальтера Скотта. После того как его младшие сыновья эмигрировали в США, Гаусс начал интересоваться американскими писателями. Со временем пристрастился к датским, шведским, итальянским и испанским книгам. Все произведения математик непременно читал в оригинале.

Гаусс занимал весьма консервативную позицию в общественной жизни. С ранних лет он ощущал зависимость от людей, наделенных властью. Даже когда в 1837 году в университете начался протест против короля, который урезал профессорам содержание, Карл не стал вмешиваться.

Последние годы

В 1849 год Гаусс отмечает 50-летие присвоения докторской степени. К нему приехали и это обрадовало его намного больше, чем присвоение очередной награды. В последние годы своей жизни уже много болел Карл Гаусс. Математику было сложно передвигаться, но ясность и острота разума от этого не пострадали.

Незадолго до смерти здоровье Гаусса ухудшилось. Врачи диагностировали болезнь сердца и нервное перенапряжение. Лекарства практически не помогали.

Математик Гаусс умер 23 февраля 1855 года, в возрасте семидесяти восьми лет. похоронили в Геттингене и, согласно его последней воле, выгравировали на надгробной плите правильный семнадцатиугольник. Позже его портреты напечатают на почтовых марках и денежных купюрах, страна навсегда запомнит своего лучшего мыслителя.

Таким был Карл Фридрих Гаусс — странным, умным и увлеченным. И если спросят, как называется планета математика Гаусса, можно не спеша ответить: «Вычисления!», ведь именно им он посвятил всю свою жизнь.

(1777-1855) немецкий математик и астроном

Карл Фридрих Гаусс родился 30 апреля 1777 года в Германии, в городе Брауншвейге, в семье ремесленника. Отец, Герхард Дидерих Гаусс, имел много различных профессий, поскольку из-за нехватки денег ему приходилось заниматься всем, начиная от устройства фонтанов и кончая садоводством. Мать Карла, Доротея, была также из простой семьи каменотесов. Ее отличал веселый характер, она была женщина умная, веселая и решительная, любила своего единственного сына и гордилась им.

В детстве Гаусс очень рано научился считать. Однажды летом отец взял трехлетнего Карла на работу в каменоломню. Когда рабочие закончили работу, Герхард, отец Карла, стал производить расчеты с каждым работником. После утомительных расчетов, где учитывалось количество часов, выработка, условия работы и т.п., отец зачитал ведомость, из которой следовало, кому сколько причитается. И вдруг маленький Карл произнес, что счет неверен, что имеется ошибка. Проверили, и мальчик оказался прав. Стали говорить, что маленький Гаусс научился считать раньше, чем говорить.

Когда Карлу исполнилось 7 лет, его определили в Екатерининскую школу, которой заведовал Бюттнер. Он сразу обратил внимание на мальчика, который быстрее всех решал примеры. В школе Гаусс познакомился и подружился с молодым человеком, помощником Бюттнера, которого звали Иоганн Мартин Христиан Бартельс. Вместе с Бартельсом 10-летний Гаусс занялся математическим преобразованием, изучением классических трудов. Благодаря Бартельсу на юное дарование обратили внимание герцог Карл Вильгельм Фердинанд и знатные особы Брауншвейга. Иоганн Мартин Христиан Бартельс в дальнейшем учился в Гельмштедтском и Гёттингенском университетах, а впоследствии приехал в Россию и был профессором Казанского университета, его лекции слушал Николай Иванович Лобачевский.

Тем временем Карл Гаусс в 1788 году поступил учиться в Екатерининскую гимназию. Бедный мальчик никогда бы не смог учиться в гимназии, а потом и в университете без помощи и покровительства герцога Брауншвейгского, которому Гаусс был предан и благодарен в течение всей жизни. Герцог всегда помнил о застенчивом юноше необыкновенных способностей. Карл Вильгельм Фердинанд отпустил необходимые средства для продолжения образования юноши уже в Каролинской Коллегии, которая готовила к поступлению в университет.

В 1795 году Карл Гаусс поступил учиться в Гёттингенс-кий университет. Среди университетских друзей молодого математика был Фаркаш Бойяи, отец Яноша Бойяи, великого венгерского математика. В 1798 году он закончил университет и возвратился на родину.

В родном Брауншвейге в течение десяти лет Гаусс переживает своеобразную «болдинскую осень» — период кипучего творчества и великих открытий. Область математики, где он работает, называется «три великих А»: арифметика, алгебра и анализ.

Началось все с искусства счета. Гаусс считает постоянно, он проводит вычисления с десятичными числами с невероятным количеством знаков после запятой. В течение жизни он становится виртуозом в численных расчетах. Гаусс накапливает информацию о различных суммах чисел, расчетах бесконечных рядов. Это похоже на игру, где гений ученого приходит к гипотезам и открытиям. Он подобен гениальному старателю, чувствует, когда его кирка попадет в золотой самородок.

Гаусс составляет таблицы обратных величин. Он решил проследить, как изменяется период десятичной дроби в зависимости от натурального числа р.

Он доказал, что правильный семнадцатиугольник может быть построен с помощью циркуля и линейки, т.е. что уравнение:

или уравнение

разрешимо в квадратичных радикалах.

Он дал полное решение задачи построения правильных семиугольников и девятиугольников. Ученые трудились над этой задачей 2000 лет.

Гаусс начинает вести дневник. Читая его, мы видим, как начинает разворачиваться завораживающее математическое действо, рождается шедевр ученого, его «Арифметические исследования».

Он доказал основную теорему алгебры, в теории чисел доказал закон взаимности, который был открыт великим Леонардом Эйлером, но тот не смог его доказать. Карл Гаусс занимается в геометрии теорией поверхностей, из которой следует, что геометрия строится на любой поверхности, а не только на плоскости, как в планиметрии Евклида или сферической геометрии. Ему удалось построить на поверхности линии, которые играют роль прямых, удалось измерять расстояния на поверхности.

Прикладная астрономия прочно входит в сферу его научных интересов. Это экспериментально-математическая работа, состоящая из наблюдений, исследований экспериментальных точек, математических методов обработки результатов наблюдений, численных расчетов. Известен интерес Гаусса к практической астрономии, а утомительные вычисления он никому не доверял.

Славу самого знаменитого астронома Европы ему принесло открытие малой планеты Цереры. А дело было так. Сначала Д. Пиацци открыл малую планету и назвал ее Церерой. Но определить ее точное местоположение ему не удалось, поскольку небесное тело скрылось за плотными облаками. Гаусс же «на кончике пера», за письменным столом вновь открыл Цереру. Он рассчитал орбиту малой планеты и в письме к Пиацци указал, где и когда можно наблюдать Цереру. Когда астрономы направили свои телескопы в указанную точку, они увидели Цереру, которая вновь появилась. Их изумлению не было конца.

Молодого ученого прочат в директора Гёттингенской обсерватории. О нем писали следующее: «Слава Гаусса вполне заслужена, и молодой 25-летний человек идет уже впереди всех современных математиков…».

22 ноября 1804 года Карл Гаусс женился на Иоанне Ост-гоф из Брауншвейга. Он писал своему другу Бойяи: «Жизнь представляется мне вечной весной со всеми новыми яркими цветами». Он счастлив, но это длится недолго. Через пять лет Иоанна умирает после рождения третьего ребенка, сына Луи, который, в свою очередь, прожил недолго, всего полгода. Карл Гаусс остается один с двумя детьми — сыном Иосифом и дочерью Минной. А следом произошло другое несчастье: внезапно умирает герцог Брауншвейгский, влиятельный друг и покровитель. Герцог умер от ран, полученных в боевых сражениях, причем им проигранных, при Ауерштедте и Иене.

Тем временем ученого приглашает Гёттингенский университет. Тридцатилетний Гаусс получает кафедру математики и астрономии, а затем и должность директора Гёттингенской астрономической обсерватории, которую занимал до конца жизни.

4 августа 1810 года он женился на любимой подруге своей покойной жены, дочери гёттингенского советника Валь-дека. Звали ее Минной, она родила Гауссу дочь и двух сыновей. В домашней обстановке Карл был строгим, не терпящим никаких нововведений консерватором. Он обладал железным характером, а выдающиеся способности и гениальность сочетались в нем с истинно детской скромностью. Был он глубоко религиозен, твердо верил в загробную жизнь. Обстановка его маленького кабинета в течение всей жизни ученого говорила о непритязательных вкусах его хозяина: небольшой рабочий стол, конторка, выкрашенная белой масляной краской, узкая софа и единственное кресло. Тускло горит свеча, в комнате весьма умеренная температура. Это обитель «короля математиков», как называли Гаусса, «гёттингенского колосса».

В творческой личности ученого очень сильна гуманитарная составляющая: он интересуется языками, историей, философией и политикой. Он выучил русский язык, в письмах друзьям в Петербург просил прислать ему книги и журналы на русском языке и даже «Капитанскую дочку» Пушкина.

Карлу Гауссу предлагают занять кресло в Берлинской академии наук, но его так захлестнула личная жизнь, ее проблемы (ведь только что состоялась помолвка с его второй женой), что он отказался от заманчивого предложения. Уже после непродолжительного пребывания в Гёттингене у Гаусса образовался круг учеников, они боготворили своего учителя, преклонялись перед ним и впоследствии сами стали знаменитыми учеными. Это Шумахер, Герлин, Николаи, Мёбиус, Струве и Энке. Дружба возникла на ниве прикладной астрономии. Все они становятся директорами обсерваторий.

Работа Карла Гаусса в университете, конечно, была связана с преподаванием. Как ни странно, отношение его к этой деятельности весьма и весьма негативное. Он считал, что это потеря времени, которое отнимается от научной работы, от исследований. Однако при этом все отмечали высокое качество его лекций и их научную ценность. А так как по своей натуре Карл Гаусс был человеком добрым, отзывчивым и внимательным, то студенты платили ему почтением и любовью.

Исследования по диоптрике и практическая астрономия привели его к практическим приложениям, в частности, к тому, как усовершенствовать телескоп. Он провел необходимые расчеты, но никто не обратил на них внимания. Прошло полстолетия, и Штейнгель воспользовался расчетами и формулами Гаусса и создал улучшенную конструкцию телескопа.

В 1816 году была построена новая обсерватория, и Гаусс переехал в новую квартиру как директор Гёттингенской обсерватории. Теперь у руководителя важные заботы — нужно заменить инструменты, которые давно морально устарели, особенно телескопы. Гаусс заказывает знаменитым мастерам Рейхенбаху, Фрауенгоферу, Утцшнейдеру и Эртелю два новых меридианных инструмента, которые были готовы в 1819 и 1821 годах. Гёттингенская обсерватория под руководством Гаусса начинает производить самые точные измерения.

Ученый изобрел гелиотрон. Это несложный и дешевый прибор, состоящий из зрительной трубы и двух плоских зеркал, поставленных нормально. Говорят, что все гениальное просто, это касается и гелиотрона. Прибор оказался совершенно необходимым при геодезических измерениях.

Гаусс рассчитывает влияние силы тяжести на поверхности планет. Оказывается, что на Солнце могут жить только существа очень маленького роста, так как сила тяжести там в 28 раз превышает земную.

В физике он интересуется магнетизмом и электричеством. В 1833 году был продемонстрирован электромагнитный телеграф, изобретенный им. Это был прообраз современного телеграфа. Проводник, по которому шел сигнал, был выполнен из железа толщиной в 2 или 3 миллиметра. На этом первом телеграфе сначала передавались отдельные слова, а потом и целые фразы. Общественный интерес к электромагнитному телеграфу Гаусса был весьма велик. Герцог Кембриджский специально приезжал в Гёттинген, чтобы познакомиться с ним.

«Если бы были деньги, — писал Гаусс Шумахеру, — то электромагнитная телеграфия могла бы быть приведена к такому совершенству и к таким размерам, перед которыми фантазия просто приходит в ужас». После успешных опытов в Гёттингене саксонский государственный министр Линденау предложил лейпцигскому профессору Эрнсту Генриху Веберу, который вместе с Гауссом продемонстрировал телеграф, представить доклад об «устройстве электромагнитного телеграфа между Дрезденом и Лейпцигом». В докладе Эрнста Генриха Вебера прозвучали пророческие слова: «…если когда-нибудь земля покроется сетью железных дорог с телеграфными линиями, то это будет напоминать нервную систему в человеческом теле…». Вебер принял активное участие в проекте, внес много усовершенствований, и первый телеграф Гаусса-Вебера просуществовал десять лет, пока 16 декабря 1845 года после сильной молнии не сгорела большая часть его проволочной линии. Оставшийся кусок провода стал музейным экспонатом и хранится в Гёттингене.

Гаусс и Вебер провели знаменитые эксперименты в области магнитных и электрических единиц, измерения магнитных полей. Результаты их исследований легли в основу теории потенциала, в основу современной теории ошибок.

Когда Гаусс занимался кристаллографией, он изобрел приспособление, с помощью которого можно было с высокой точностью измерять 12-дюймовым рейхенбаховским теодолитом углы кристалла, при этом он изобрел новый способ обозначения кристаллов.

Интересна страница его наследия, связанная с основаниями геометрии. Говорили, что великий Гаусс занимался теорией параллельных прямых и пришел к новой, совершенно другой геометрии. Постепенно вокруг него образовалась группа математиков, которые обменивались идеями в этой области. Началось все с того, что молодой Гаусс, так же как и другие математики, пытался доказать теорему о параллельных исходя из аксиом. Отвергнув все псевдодоказательства, он понял, что на этом пути ничего создать не удастся. Неевклидова гипотеза его испугала. Публиковать эти мысли нельзя — ученого предали бы анафеме. Но мысль остановить нельзя, и гауссова неевклидова геометрия — вот она перед нами, в дневниках. Это его тайна, скрытая от широкой публики, но известная его ближайшим друзьям, так как у математиков существует традиция переписки, традиция обмениваться мыслями и идеями.

Фаркаш Бойяи, профессор математики, друг Гаусса, воспитывая сына Яноша, талантливого математика, уговаривал его не заниматься в геометрии теорией параллельных, говорил, что эта тема проклята в математике и, кроме несчастия, она ничего не принесет. И то, чего не сказал Карл Гаусс, сказали в дальнейшем Лобачевский и Бойяи. Поэтому абсолютная неевклидова геометрия названа их именами.

С годами у Гаусса исчезает нерасположенность к педагогической деятельности, к чтению лекций. К этому времени его окружают ученики и друзья. 16 июля 1849 года в Гёттингене праздновали пятидесятилетний юбилей получения Гауссом докторской степени. Собрались многочисленные ученики и почитатели, коллеги и друзья. Ему вручили дипломы почетного гражданина Гёттингена и Брауншвейга, ордена различных государств. Состоялся торжественный обед, на котором он сказал, что в Гёттингене существуют все условия для развития таланта, здесь помогают и в житейских трудностях, и в науке, и еще, что «…банальные фразы никогда не имели силы в Гёттингене».

Карл Гаусс постарел. Теперь он работает менее интенсивно, но круг его занятий по-прежнему широк: сходимость рядов, практическая астрономия, физика.

Зима 1852 года была для него очень тяжелой, резко ухудшается его здоровье. Он никогда не обращался к врачам, так как ие доверял медицинской науке. Его друг, профессор Баум, осмотрел ученого и сказал, что положение очень тяжелое и это связано с сердечной недостаточностью. Здоровье великого математика неуклонно ухудшается, он перестает ходить и 23 февраля 1855 года умирает.

Современники Карла Гаусса чувствовали превосходство гения. На медали, отчеканенной в 1855 году, выгравировано: Mathematicorum princeps (Принцепс математиков). В астрономии память о нем осталась в названии одной из фундаментальных постоянных, система единиц, теорема, принцип, формулы — все это носит имя Карла Гаусса.

Если бы люди могли жить несколько столетий, то в этом году известный немецкий математик Иоганн Карл Фридрих Гаусс отметил бы свой 242 год рождения. И кто знает, какие бы еще открытия он сделал… Но, к сожалению, так не бывает.

Родился Гаусс 30 апреля 1777 года в немецком городе Брауншвейге. Его родители были самыми обычными людьми. Его отец имел много специальностей, потому что для того, чтобы хоть как-то свести концы с концами ему приходилось работать и каменщиком, и садовником, и обустраивать фонтаны.

Фото: Scanned by User:Brunswyk, picture taken before 1914, Wikimedia (public domain)

Карл был совсем маленьким, когда окружающим стало ясно, что он гениален. В три года ребенок уже умел читать и считать. Однажды он даже сумел найти ошибку в расчетах отца. И на протяжении всей своей жизни большую часть вычислений он производил в уме.

В 7-летнем возрасте мальчика определили в школу. Там на него сразу обратили внимание, так как он лучше всех решал примеры. Еще во время занятий в школе он начал изучать классические труды по математике.

Его удивительные математические способности заметил и герцог Карл Вильгельм Фердинанд. Он выделил средства на обучение мальчика сначала в гимназии, а потом и в университете. В те времена ребенок из рабочей семьи вряд ли смог бы получить такое образование.

Фото: By Siegfried Detlev Bendixen (published in “Astronomische Nachrichten” 1828), via Wikimedia Commons (Public domain)

В 1798 году он закончил свои «Арифметические исследования». В то время ему был всего 21 год. В университете Гаусс не просто изучает различные дисциплины. Он доказал много значимых теорем и совершил важные открытия.

В 1799 году Гаусс защитил докторскую диссертацию, в которой впервые доказал основную теорему алгебры. Печать диссертации оплатил герцог, который все время наблюдал за деятельностью молодого гения.

Со временем Гаусс расширил сферу своих исследований. Он занялся астрономией. Поводом послужило то, что астроном Д. Пиацци открыл новую планету, и назвал ее Церерой. Но вскоре после обнаружения планета исчезла из поля зрения. Гаусс, пользуясь своим новым вычислительным методом, за несколько часов проделал сложнейшие вычисления, и точно указал место, где планета появится. И ее действительно там обнаружили. Это принесло Гауссу общеевропейскую славу. Он становится членом многих научных обществ.

Фото: (Public domain)

В 1806 году он становится директором Геттингенской обсерватории. А в 1809 году был завершен труд «Теория движения небесных тел». В 1810 году он получил премию Парижской академии наук и золотую медаль Лондонского королевского общества.

Большое внимание уделял Гаусс печатанию своих трудов. Он никогда не публиковал те работы, которые, по его мнению, еще не завершены.

Умер гений математики 23 февраля 1855 года в Геттингене. По приказу короля Ганновера Георга V в его честь была отчеканена медаль, на которой выгравирован портрет Гаусса и его почетный титул – «Король математиков».

И сегодня мы пользуемся плодами гения короля математиков. Так, например, Иоганн Карл Фридрих Гаусс предложил алгоритм вычисления даты Пасхи. Как известно, дата Пасхи каждый год приходится на разные числа и этот алгоритм позволяет рассчитать даты на любой год в прошлом и в будущем.

Также благодаря значительному вкладу ученого в исследования электромагнетизма, в английском языке действия по размагничиванию морских судов, а также во время широкого распространения телевизоров и мониторов с кинескопами – размагничивание электронно-лучевой трубки назвали просто и емко: дегаусс.

Любители повозиться с электроникой также наверняка знакомы с интересным устройством, способным с помощью электромагнитного поля придавать мощное ускорение телам, известным как “пушка Гаусса”.

Фото на главной: Christian Albrecht Jensen, via Wikimedia Commons (Public domain)

Навигация по записям

Вам также будет интересно

Милан: после того, как люди исчезли с улиц, городские парки заполонили дикие кролики
10 душевных фильмов из «нулевых», которые стоит пересмотреть

Блогер проник в самый эпицентр распространения вируса и снял эти кадры

Имя гаусса. Гаусс и астрономия

Многих ли выдающихся математиков Вы можете вспомнить не задумываясь? А можете ли Вы назвать тех из них, кто при жизни получил заслуженное звание «король математиков»? Одним из немногих этой почести удостоился Карл Гаусс – немецкий математик, физик и астроном.

Мальчик, который рос в бедной семье, уже с двухлетнего возраста проявил незаурядные способности вундеркинда. В три года ребенок отлично считал и даже помогал отцу выявлять неточности в проделанных математических операциях. По преданию, учитель математики задал школьникам задачу сосчитать сумму чисел от 1 до 100, чтобы чем-то занять ребят. С этой задачей блестяще справился маленький Гаусс, заметив, что попарные суммы в противоположных концов одинаковы. С детства и пошла привычка Гаусса любые вычисления проводить в уме.

Будущему математику всегда везло с учителями: они были чутки к способностям юноши и всячески ему помогали. Одним из таких наставников был Бартельс, который посодействовал Гауссу в получении стипендии от герцога, что оказалось значительным подспорьем при обучении юноши в колледже.

Исключителен Гаусс и тем, что долгое время он пытался сделать выбор между филологией и математикой. Гаусс владел многими языками (а особенно любил латынь) и мог быстро выучить любой из них, он понимал литературу; уже в преклонном возрасте математик смог выучить далеко не легкий русский язык, чтобы ознакомиться с трудами Лобачевского в оригинале. Как мы знаем, выбор Гаусса все же пал на математику.

Уже в колледже Гаусс смог доказать закон взаимности квадратичных вычетов, что не удавалось его знаменитым предшественникам – Эйлеру и Лежандру. В это же время Гаусс создает метод наименьших квадратов.

Позже Гаусс доказал возможность построения правильного 17-угольника с помощью циркуля и линейки, а также в общем обосновал критерий такого построения правильных многоугольников. Это открытие было особенно дорого ученому, поэтому он завещал изобразить на своей могиле вписанный в круг 17-угольник.

Математик требовательно относился к своим достижением, поэтому публиковал только те исследования, которыми был доволен: недоработанных и «сырых» результатов в трудах Гаусса мы не найдем. Многие из неопубликованных идей после воскресли в трудах других ученых.

Большую часть времени математик посвятил разработке теории чисел, которую он считал «царицей математики». В рамках исследований им была обоснована теория сравнений, исследованы квадратичные формы и корни из единицы, изложены свойства квадратичных вычетов и др.

В своей докторской диссертации Гаусс доказал основную теорему алгебры, а позже разработал еще 3 ее доказательства разными способами.

Гаусс-астроном прославился «поиском» планеты-беглянки Цереры. За несколько часов математик проделал вычисления, которые позволили точно указать место нахождения «сбежавшей планеты», где она и была обнаружена. Продолжая свои исследования, Гаусс пишет «Теорию небесных тел», где излагает теорию учета возмущений орбит. Вычисления Гаусса позволили наблюдать комету «пожара Москвы».

Велики заслуги Гаусса и в геодезии: «гауссова кривизна», метод конформного отображения и др.

Исследование магнетизма Гаусс проводит со своим молодым другом Вебером. Гауссу принадлежит открытие пушки Гаусса – одной из разновидностей электромагнитного ускорителя масс.Совместно с Вебером Гауссом была разработана также действующая модель сконструированного им же электрического телеграфа.

Метод решения системных уравнений, открытый ученым, был назван методом Гаусса. Метод состоит в последовательном исключении переменных до приведения уравнения к ступенчатому виду. Решение методом Гаусса считается классическим и активно используется и сейчас.

Имя Гаусса известно почти во всех областях математики, а также в геодезии, астрономии, механике. За глубину и оригинальность мысли, за требовательность к себе и гениальность ученый и получил звание «король математиков». Ученики Гаусса стали не менее выдающимися учеными, нежели их наставник: Риман, Дедекинд, Бессель, Мебиус.

Память о Гауссе навсегда осталась в математических и физических терминах (метод Гаусса, дискриминанты Гаусса, прямая Гаусса, Гаусс – единица измерения магнитной индукции и др.). Имя Гаусса носит лунный кратер, вулкан в Антарктиде и малая планета.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Математик Гаусс был замкнутым человеком. Эрик Темпл Белл, который изучал его биографию, считает, что если бы Гаусс опубликовал все свои исследования и открытия в полном объеме и вовремя, то могло бы прославиться еще с полдюжины математиков. А так им пришлось потратить львиную долю времени, чтобы узнать, каким образом ученый получил те или другие данные. Ведь он редко публиковал методы, его всегда интересовал только результат. Выдающийся математик, и неподражаемая личность — это все Карл Фридрих Гаусс.

Ранние годы

Будущий математик Гаусс родился 30.04.1777 г. Это, конечно, странное явление, но выдающиеся люди чаще всего рождаются в бедных семьях. Так случилось и в этот раз. Его дедушка был обычным крестьянином, а отец работал в герцогстве Брауншвейг садовником, каменщиком или водопроводчиком. Родители узнали, что их ребенок вундеркинд, когда малышу исполнилось два года. Спустя год Карл уже умеет считать, писать и читать.

В школе его способности заметил учитель, когда дал задание подсчитать сумму чисел от 1 до 100. Гауссу быстро удалось понять, что все крайние числа в паре составляют 101, и за считанные секунды он решил это уравнение, умножив 101 на 50.

Юному математику несказанно повезло с учителем. Тот помогал ему во всем, даже похлопотал за то, чтобы начинающему дарованию выплачивали стипендию. С ее помощью Карл сумел окончить колледж (1795 год).

Студенческие годы

После колледжа Гаусс учится в Геттингенском университете. Этот период жизни биографы обозначают как самый плодотворный. В это время ему удалось доказать, что начертить правильный семнадцатиугольник, используя лишь циркуль, представляется возможным. Он уверяет: можно нарисовать не только семнадцатиугольник, но и другие правильные многоугольники, пользуясь только циркулем и линейкой.

В университете Гаусс начинает вести специальную тетрадь, куда заносит все записи, которые касаются его исследований. Большинство из них были скрыты от глаз общественности. Для друзей он всегда повторял, что не сможет опубликовать исследование или формулу, в которых не уверен на 100%. По этой причине большинство из его идей были открыты другими математиками спустя 30 лет.

«Арифметические исследования»

Вместе с окончанием университета математик Гаусс закончил свой выдающийся труд «Арифметические исследования» (1798), но его напечатали лишь спустя два года.

Это обширное сочинение определило дальнейшее развитие математики (в частности, алгебры и высшей арифметики). Основная часть работы сосредоточена на описании абиогенеза квадратичных форм. Биографы уверяют, что именно с него начинаются открытия Гаусса в математике. Ведь он был первым математиком, у кого получилось вычислять дроби и переводить их в функции.

Также в книге можно отыскать полную парадигму равенств деления круга. Гаусс умело применяет эту теорию, пытаясь решить проблему начертания многоугольников при помощи линейки и циркуля. Доказывая эту вероятность, Карл Гаусс (математик) вводит ряд чисел, которые называют числами Гаусса (3, 5, 17, 257, 65337). Это значит, что при помощи простых канцелярских предметов можно построить 3-угольник, 5-угольник, 17-угольник и т.д. А вот 7-угольник построить не получится, ведь 7 не является «числом Гаусса». К «своим» числа математик также относит двойки, что умноженные на любую степень его ряда чисел (2 3 , 2 5 и т.д.)

Этот результат можно назвать «чистой теоремой существования». Как уже было сказано вначале, Гаусс любил публиковать итоговые результаты, но никогда не указывал методы. Так же и в этом случае: математик утверждает, что построить вполне реально, вот только не уточняет, как именно это сделать.

Астрономия и царица наук

в 1799 году Карл Гаусс (математик) получает титул приват-доцента Брауншвейнского университета. Спустя два года ему предоставляют место в Петербургской Академии наук, где он выступает в качестве корреспондента. Он все еще продолжает изучать теорию чисел, но круг его интересов расширяется после открытия небольшой планеты. Гаусс пытается вычислить и указать ее точное местонахождение. Многие задаются вопросом, как называлась планета по вычислениям математика Гаусса. Однако немногим известно, что Церера — не единственная планета, с которой работал ученый.

В 1801 году впервые было обнаружено новое небесное тело. Это случилось неожиданно и внезапно, точно так же неожиданно планета была утеряна. Гаусс попытался обнаружить ее, применяя математические методы, и, как ни странно, она была именно там, куда указал ученный.

Астрономией ученый занимается более двух десятилетий. Всемирную известность получает метод Гаусса (математика, которому принадлежит множество открытий) для определения орбиты с помощью трех наблюдений. Три наблюдения — это место, в котором располагается планета в разный период времени. С помощью этих показателей была вновь найдена Церера. Точно таким же образом обнаружили еще одну планету. С 1802 года на вопрос, как называется планета, обнаруженная математиком Гаусса, можно было отвечать: «Паллада». Забегая немного вперед, стоит отметить, что в 1923 году именем известного математика назвали крупный астероид, вращающийся вокруг Марса. Гауссия, или астероид 1001, — это официально признанная планета математика Гаусса.

Это были первые исследования в области астрономии. Возможно, созерцание звездного неба стало причиной того, что человек, увлеченный числами, принимает решение обзавестись семьей. В 1805 году берет в жены Иоганну Остгоф. В этом союзе у пары рождается трое детей, но младший сын умирает в младенчестве.

В 1806 году скончался герцог, который покровительствовал математику. Страны Европы наперебой начинают приглашать Гаусса к себе. С 1807 года и до последних своих дней Гаусс возглавляет кафедру в Геттингенском университете.

В 1809 году умирает первая жена математика, в этом же году Гаусс издает свое новое творение — книгу под названием «Парадигма перемещения небесных тел». Методы для вычисления орбит планет, что изложены в этом труде, актуальны и сегодня (правда, с небольшими поправками).

Главная теорема алгебры

Начало ХІХ века Германия встретила в состоянии анархии и упадка. Эти годы были тяжелыми для математика, но он продолжает жить дальше. В 1810 году Гаусс второй раз связывает себя узами брака — с Минной Вальдек. В этом союзе у него появляется еще трое детей: Тереза, Вильгельм и Ойген. Также 1810 год был ознаменован получением престижной премии и золотой медали.

Гаусс продолжает свою работу в областях астрономии и математики, исследуя все больше и больше неизвестных составляющих этих наук. Его первая публикация, посвященная основной теореме алгебры, датируется 1815 годом. Главная идея заключается в следующем: число корней многочлена прямопропорциональна его степени. Позже высказывание приобрело несколько иной вид: любое число в степени, не равной нолю, априори имеет как минимум один корень.

Впервые он доказал это еще в 1799 году, но не был доволен своей работой, поэтому публикация вышла в свет спустя 16 лет, с некоторыми поправками, дополнениями и вычислениями.

Неевклидова теория

Согласно данным, в 1818 году Гауссу первому удалось построить базу для неевклидовой геометрии, теоремы которой были бы возможны в реальности. Неевклидовая геометрия представляет собой область науки, отличимой от евклидовой. Основная особенность евклидовой геометрии — в наличии аксиом и теорем, которые не требуют подтверждений. В своей книге «Начала» Евклид вывел утверждения, которые должны приниматься без доказательств, ведь они не могут быть изменены. Гаусс был первым, кому удалось доказать, что теории Евклида не всегда могут восприниматься без обоснований, так как в определенных случаях они не имеют прочной базы доказательств, которая удовлетворяет всем требованиям эксперимента. Так появилась неевклидова геометрия. Конечно, основные геометрические системы были открыты Лобачевским и Риманом, но метод Гаусса — математика, умеющего смотреть вглубь и находить истину, — положил начало этому разделу геометрии.

Геодезия

В 1818 году правительство Ганновера решает, что назрела необходимость измерить королевство, и это задание получил Карл Фридрих Гаусс. Открытия в математике на этом не закончились, а лишь приобрели новый оттенок. Он разрабатывает необходимые для выполнения задания вычислительные комбинации. В их число вошла гауссова методика «малых квадратов», которая подняла геодезию на новый уровень.

Ему пришлось составлять карты и организовывать съемку местности. Это позволило приобрести новые знания и поставить новые эксперименты, поэтому в 1821 году он начинает писать работу, посвященную геодезии. Этот труд Гаусса опубликовали в 1827, под названием «Общий анализ неровных плоскостей». В основу этой работы были положены засады внутренней геометрии. Математик считал, что необходимо рассматривать предметы, которые находятся на поверхности, как свойства самой поверхности, обращая внимание на длину кривых, игнорируя при этом данные объемлющего пространства. Несколько позже эта теория была дополнена трудами Б. Римана и А. Александрова.

Благодаря этому труду в научных кругах начало появляться понятие «гауссова кривизна» (определяет меру искривления плоскости в определенной точке). Начинает свое существование дифференциальная геометрия. И чтобы результаты наблюдений были достоверными, Карл Фридрих Гаусс (математик) выводит новые методы получения величин с высоким уровнем вероятности.

Механика

В 1824 году Гаусс был заочно включен в состав членов Петербургской Академии наук. На этом его достижения не заканчиваются, он все так же упорно занимается математикой и презентует новое открытие: «целые числа Гаусса». Под ними подразумевают числа, имеющие мнимую и вещественную часть, которые являются целыми числами. По сути, своими свойствами гауссовские числа напоминают обычные целые, но те небольшие отличительные характеристики позволяют доказать биквадратичный закон взаимности.

В любое время он был неподражаем. Гаусс — математик, открытия которого так тесно переплетены с жизнью, — в 1829 году внес новые коррективы даже в механику. В это время вышел его небольшой труд «О новом универсальном принципе механики». В нем Гаусс доказывает, что принцип малого воздействия, можно по праву считать новой парадигмой механики. Ученный уверяет, что этот принцип можно применять ко всем механическим системам, которые связаны между собой.

Физика

С 1831 года Гаусс начинает страдать от тяжелой бессонницы. Болезнь проявилась после смерти второй супруги. Он ищет утешения в новых исследованиях и знакомствах. Так, благодаря его приглашению в Геттинген приехал В. Вебер. С молодой талантливой личностью Гаусс быстро находит общий язык. Они оба увлечены наукой, и жажду знаний приходится унимать, обмениваясь своими наработками, догадками и опытом. Эти энтузиасты быстро принимаются за дело, посвящая свое время исследованию электромагнетизма.

Гаусс, математик, биография которого имеет большую научную ценность, в 1832 году создал абсолютные единицы, которыми и сегодня пользуются в физике. Он выделял три основные позиции: время, вес и расстояние (длина). Наряду с этим открытием в 1833 году, благодаря совместным исследованиям с физиком Вебером, Гауссу удалось изобрести электромагнитный телеграф.

1839 год ознаменован выходом еще одного сочинения — «Об общем абиогенезе сил тяготения и отталкивания, что действуют прямопропорционально расстоянию». На страницах подробно описан знаменитый закон Гаусса (еще известный как теорема Гаусса-Остроградского, или просто Этот закон является одним из основных в электродинамике. Он определяет связь между электрическим потоком и суммой заряда поверхности, делимые на электрическую постоянную.

В этом же году Гаусс освоил русский язык. Он направляет письма в Петербург с просьбой выслать ему русские книги и журналы, особенно желал он ознакомиться с произведением «Капитанская дочка». Этот факт биографии доказывает, что, помимо способностей к вычислению, у Гаусса было множество других интересов и увлечений.

Просто человек

Гаусс никогда не спешил публиковаться. Он долго и кропотливо проверял каждую свою работу. Для математика все имело значение: начиная от правильности формулы и заканчивая изяществом и простотой слога. Он любил повторять, что его работы — как только что построенный дом. Владельцу показывают только конечный результат работы, а не остатки леса, которые раньше были на месте жилого помещения. Также и с его работами: Гаусс был уверен, что никому не стоит показывать черновые наброски исследования, только готовые данные, теории, формулы.

Гаусс всегда проявлял живой интерес к наукам, но особенно его интересовала математика, которую он считал «царицей всех наук». И природа не обделила его умом и талантами. Даже находясь в преклонном возрасте, он, по обычаю, проводил большую часть сложных вычислений в уме. Математик никогда заранее не распространялся о своих работах. Как и каждый человек, он боялся, что его не поймут современники. В одном из своих писем Карл говорит о том, что устал вечно балансировать на грани: с одной стороны, он с удовольствием поддержит науку, но, с другой, ему не хотелось ворошить «осиное гнездо непонятливых».

Всю свою жизнь Гаусс провел в Геттингене, только один раз ему удалось побывать в Берлине на научной конференции. Он мог длительное время проводить исследования, опыты, вычисления или измерения, но очень не любил читать лекции. Этот процесс он считал лишь досадной необходимостью, но если у него в группе появлялись талантливые ученики, он не жалел для них ни времени, ни сил и долгие годы поддерживал переписку обсуждая важные научные вопросы.

Карл Фридрих Гаусс, математик, фото, которого размещены в этой статье, был поистине удивительным человеком. Выдающимися знаниями мог похвастаться не только в области математики, но и с иностранными языками «дружил». Свободно разговаривал на латыни, английском и французском, освоил даже русский. Математик читал не только научные мемуары, но и обычную художественную литературу. Особенно ему нравились произведения Диккенса, Свифта и Вальтера Скотта. После того как его младшие сыновья эмигрировали в США, Гаусс начал интересоваться американскими писателями. Со временем пристрастился к датским, шведским, итальянским и испанским книгам. Все произведения математик непременно читал в оригинале.

Гаусс занимал весьма консервативную позицию в общественной жизни. С ранних лет он ощущал зависимость от людей, наделенных властью. Даже когда в 1837 году в университете начался протест против короля, который урезал профессорам содержание, Карл не стал вмешиваться.

Последние годы

В 1849 год Гаусс отмечает 50-летие присвоения докторской степени. К нему приехали и это обрадовало его намного больше, чем присвоение очередной награды. В последние годы своей жизни уже много болел Карл Гаусс. Математику было сложно передвигаться, но ясность и острота разума от этого не пострадали.

Незадолго до смерти здоровье Гаусса ухудшилось. Врачи диагностировали болезнь сердца и нервное перенапряжение. Лекарства практически не помогали.

Математик Гаусс умер 23 февраля 1855 года, в возрасте семидесяти восьми лет. похоронили в Геттингене и, согласно его последней воле, выгравировали на надгробной плите правильный семнадцатиугольник. Позже его портреты напечатают на почтовых марках и денежных купюрах, страна навсегда запомнит своего лучшего мыслителя.

Таким был Карл Фридрих Гаусс — странным, умным и увлеченным. И если спросят, как называется планета математика Гаусса, можно не спеша ответить: «Вычисления!», ведь именно им он посвятил всю свою жизнь.

Карл Фридрих Гаусс, сын бедняка и необразованной матери, самостоятельно разгадал загадку даты собственного рождения и определил её как 30 апреля 1777 г. Гаусс с детства проявлял все признаки гениальности. Главный труд всей своей жизни, «Арифметические исследования», юноша закончил ещё в 1798 г., когда ему был всего 21 год, хотя издан он будет лишь в 1801 г. Работа эта имела первостепенную важность для совершенствования теории чисел как научной дисциплины, и представила эту область знаний в том виде, в каком мы знаем её сегодня. Потрясающие способности Гаусса так поразили герцога Брауншвейгского, что он отправляет Карла на обучение в Карлов коллегиум (ныне – Брауншвейгский технический университет), который Гаусс посещает с 1792 г. по 1795 г. В 1795-1798 г.г. Гаусс переходит в Гёттингский университет. За свои университетские годы математик доказал немало значимых теорем.

Начало трудовой деятельности

1796 г. оказывается самым успешным как для самого Гаусса, так и для его теории чисел. Одно за другим, он совершает важные открытия. 30 марта, например, он открывает правила построения правильного семнадцатиугольника. Он совершенствует модулярную арифметику и в значительной мере упрощает манипуляции в теории чисел. 8 апреля Гаусс доказывает закон взаимности квадратичных вычетов, что позволяет математикам найти решение любого квадратичного уравнения модулярной арифметики. 31 мая он предлагает теорему простых чисел, давая тем самым доступное объяснение каким образом простые числа распределяются среди целых чисел. 10 июля учёный делает открытие, что любое целое положительное число может быть выражено суммой не более трёх треугольных чисел.

В 1799 г. Гаусс заочно защищает диссертацию, в которой приводит новые доказательства теоремы, гласящей, что каждая целая рациональная алгебраическая функция с одной переменной может быть представлена произведением действительных чисел первой и второй степени. Он подтверждает фундаментальную теорему алгебры, которая гласит, что каждый непостоянный многочлен от одной переменной со сложными коэффициентами имеет хотя бы один комплексный корень. Его усилия в значительной мере упрощают концепцию комплексных чисел.

А в это время итальянский астроном Джузеппе Пиацци открывает карликовую планету Цереру, которая мгновенно исчезает в солнечном свечении, но, через несколько месяцев, когда Пиацци ожидает снова увидеть её на небе, Церера не появляется. Гаусс, которому только исполнилось 23 года, узнав о проблеме астронома, берётся за её разрешение. В декабре 1801 г., через три месяца напряжённой работы, он определяет позицию Цереры на звёздном небе с погрешностью всего в полградуса.

В 1807 г. гениальный учёный Гаусс получает пост профессора астрономии и главы астрономической обсерватории Гёттингена, который он будет занимать всю оставшуюся жизнь.

Поздние годы

В 1831 г. Гаусс знакомится с профессором физики Вильгельмом Вебером, и знакомство это оказалось плодотворным. Их совместный труд приводит к новым открытиям в области магнетизма и установлению правил Кирхгофа в области электричества. Сформулировал Гаусс и закон собственного имени. В 1833 г. Вебер и Гаусс изобретают первый электромеханический телеграф, связавший обсерваторию с Институтом физики Гёттингена. Вслед за этим, во дворе астрономической обсерватории строится обсерватория магнетическая, в которой Гаусс, совместно с Вебером, основывает «Магнетический клуб», занимавшийся замерами магнитного поля Земли в разных точках планеты. Гаусс также успешно разрабатывает технику определения горизонтальной составляющей магнитного поля Земли.

Личная жизнь

Личная жизнь Гаусса была чередой трагедий, начиная с преждевременной смерти его первой жены, Джоанны Остофф, в 1809 г., и последовавшей за ней кончины одного из их детей, Луи. Гаусс женится снова, на лучшей подруге своей первой жены Фредерике Вильгельмине Вальдек, но и она, после долгой болезни, умирает. От двух браков у Гаусса родилось шестеро детей.

Смерть и наследие

Гаусс умер в 1855 г. в Гёттингене, Ганновер (ныне – Нижняя Саксония в Германии). Тело его было кремировано и захоронено в Альбанифридхофе. Согласно результатам изучения его мозга Рудольфом Вагнером, мозг Гаусса имел массу 1.492 г и площадь сечения мозга 219.588 мм² (34.362 квадратных дюйма), что научно доказывает, что Гаусс был гением.

Карл Фридрих Гаусс (нем. Carl Friedrich Gauß) — выдающийся немецкий математик, астроном и физик, считается одним из величайших математиков всех времён.

Карл Фридрих Гаусс родился 30 апреля 1777г. в герцогстве Брауншвейг. Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов. У Гаусса в раннем возрасте проявились необычайные способности к математике . Однажды, при расчетах своего отца, его трехлетний сын заметил ошибку в вычислениях. Расчет был проверен, и число, указанное мальчиком было верно. С учителем маленькому Карлу повезло: М. Бартельс оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского.

Это помогло Гауссу закончить колледж, где он изучал Ньютона, Эйлера, Лагранжа. Уже там Гаус сделал несколько открытий в высшей математике, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел, Эйлеру это также не удалось.

С 1795 по 1798 год Гаусс учился в Гёттингенском университете. Это наиболее плодотворный период в жизни Гаусса. В 1796 г. Карл Фридрих Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника.k}+1 (числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг .

30 марта 1796 года, в день, когда был построен правильный семнадцатиугольник, начинается дневник Гаусса — летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Два открытия Гаусс сделал на протяжении всего десяти дней, за месяц до того, как ему исполнилось 19 лет.

С 1799 года Гаусс — приват-доцент Брауншвейгского университета. Герцог продолжал опекать молодого гения. Он оплатил издание его докторской диссертации (1799) и пожаловал неплохую стипендию. После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки.

Мировую известность Карл Гаусс приобрел после разработки метода вычисления эллиптической орбиты планеты по трем наблюдениям. Применение этого метода к малой планете Церера дало возможность вновь найти ее на небе после того, как она была утеряна.

В ночь с 31 декабря на 1 января известный немецкий астроном Ольберс, пользуясь данными Гаусса, обнаружил планету, которую назвали Церерой. В марте 1802 была открыта еще одна аналогичная планета – Паллада, и Гаусс тут же вычислил ее орбиту.

Свои методы вычисления орбит Карл Гаусс изложил в знаменитой Теории движения небесных тел (лат.Theoria motus corporum coelestium, 1809). В книге описан использованный им метод наименьших квадратов, и по сей день остающийся одним из самых распространенных методов обработки экспериментальных данных.

В 1806 г. от раны, полученной на войне с Наполеоном, умирает его великодушный покровитель-герцог Брауншвейгский. Несколько стран наперебой приглашали Гаусса на службу. По рекомендации Александра фон Гумбольдта Гаусса назначили профессором в Гёттингене и директором Гёттингенской обсерватории. Эту должность он занимал до самой смерти.

С именем Гаусса связаны фундаментальные исследования почти во всех основных областях математики: алгебре, математическом анализе, теории функций комплексного переменного, дифференциальной и неевклидовой геометрии, теории вероятностей, а также в астрономии, геодезии и механике.

В 1809 году вышел в свет новый шедевр Гаусса — «Теория движения небесных тел» , где изложена каноническая теория учёта возмущений орбит.

В 1810 году Гаусс получил премию Парижской Академии наук и золотую медаль Лондонского Королевского общества , был избран в несколько академий. Знаменитую комету 1812 года всюду наблюдали, пользуясь вычислениями Гаусса. В 1828 году вышел в свет основной геометрический мемуар Гаусса «Общие исследования о кривых поверхностях». Мемуар посвящен внутренней геометрии поверхности, т. е. тому, что связано со структурой самой этой поверхности, а не с ее положением в пространстве.

Исследования в области физики, которыми Гаусс занимался с начала 1830-х годов, относятся к разным разделам этой науки. В 1832 он создал абсолютную систему мер, введя три основные единицы: 1 сек, 1 мм и 1 кг. В 1833 совместно с В.Вебером построил первый в Германии электромагнитный телеграф, связывавший обсерваторию и физический институт в Гёттингене, выполнил большую экспериментальную работу по земному магнетизму, изобрел униполярный магнитометр, а затем бифилярный (также совместно с В.Вебером), создал основы теории потенциала, в частности сформулировал основную теорему электростатики (теорема Гаусса – Остроградского). В 1840 разработал теорию построения изображений в сложных оптических системах. В 1835 создал магнитную обсерваторию при Гёттингенской астрономической обсерватории.

В каждой научной области его глубина проникновения в материал, смелость мысли и значительность результата были поражающими. Гаусса называли „королем математиков“. Он открыл кольцо целых комплексных гауссовых чисел, создал для них теорию делимости и с их помощью решил немало алгебраических проблем.

Умер Гаусс 23 февраля 1855 года в Гёттингене. Современники вспоминают Гаусса как жизнерадостного, дружелюбного человека, с отличным чувством юмора. В честь Гаусса названы: кратер на Луне, малая планета № 1001 (Gaussia), единица измерения магнитной индукции в системе СГС, вулкан Гауссберг в Антарктиде.

Зима — прекрасное время для занятий спортом как на свежем воздухе, так и в помещении. Открываются возможности для беговых и горных лыж, сноуборда, катания на коньках. Можно заниматься бегом или просто гулять по тропинкам.

Читать полностью

Рубрика: Здоровый образ жизни

Зима – время гриппа. Ежегодная волна заболеваний гриппом обычно начинается в январе и длится три-четыре месяца. Можно ли предотвратить грипп? Как защитить себя от гриппа? Является ли вакцина против гриппа действительно единственной альтернативой или есть другие способы? Что конкретно можно сделать для укрепления иммунной системы и предотвращения гриппа естественными способами, вы узнаете в нашей статье.

Читать полностью

Рубрика: Здоровый образ жизни

Существует множество лекарственных растений от простудных заболеваний. В нашей статье вы познакомитесь с наиболее важными травами, которые помогут вам быстрее справиться с простудой и стать сильнее. Вы узнаете, какие растения помогают при насморке, оказывают противовоспалительное действие, облегчают боль в горле и успокаивают кашель.

Читать полностью

Рубрика: Здоровый образ жизни

Правильное сбалансированное питание, предпочтительно из свежих местных ингредиентов, уже само по себе содержит необходимые организму питательные вещества и витамины. Однако многие люди не беспокоятся об идеальном питании каждый день, особенно зимой, когда из-за холода хочется чего-то вкусненького, сладкого и питательного. Кто-то не любит овощи и не обладают временем для их приготовления. В этих случаях пищевые добавки действительно являются важной и незаменимой добавкой к ежедневному рациону. Но есть также витамины, которые в зимний период должны принимать все люди без исключения в виде пищевых добавок просто потому, что с помощью питания невозможно удовлетворить потребности организма в этих питательных веществах.

Читать полностью

Как стать счастливым? Несколько шагов к счастью Рубрика: Психология отношений

Ключи к счастью находятся не так далеко, как это может показаться. Есть вещи, которые омрачают нашу действительность. От них необходимо избавляться. В нашей статье мы познакомим вас с несколькими шагами, с помощью которых ваша жизнь станет ярче, и вы почувствуете себя счастливее.

Читать полностью

Учимся извиняться правильно Рубрика: Психология отношений

Человек может быстро что-то сказать и даже не заметить, что он кого-то обидел. В мгновение ока может разгореться ссора. Одно плохое слово следует за следующим. В какой-то момент ситуация настолько накаляется, что, похоже, из нее уже нет выхода. Единственное спасение — чтобы один из участников ссоры остановился и извинился. Искренне и дружелюбно. Ведь холодное «Извините» не вызывает никаких эмоций. Правильное извинение — лучший лекарь для отношений в каждой жизненной ситуации.

Читать полностью

Рубрика: Психология отношений

Сохранять гармоничные отношения с партнером — это не просто, но бесконечно важно для нашего здоровья. Можно правильно питаться, регулярно заниматься спортом, иметь прекрасную работу и много денег. Но ничто из этого не поможет, если у нас есть проблемы в отношениях с дорогим человеком. Поэтому так важно, чтобы наши отношения были гармоничными, а как этого добиться, помогут советы в данной статье.

Читать полностью

Неприятный запах изо рта: в чем причина? Рубрика: Здоровый образ жизни

Плохой запах изо рта — довольно неприятный вопрос не только для самого виновника этого запаха, но и для его близких. Неприятный запах в исключительных случаях, например, в виде чесночной пищи, прощается всем. Хронический плохой запах изо рта, однако, может легко продвигать человека к социальному офсайду. Так не должно происходить, потому что причина неприятного запаха изо рта может быть в большинстве случаев относительно легко обнаружена и устранена.

Читать полностью

Рубрика:

Спальня всегда должна быть оазисом мира и благополучия. Очевидно поэтому многие люди хотят украсить спальню комнатными растениями. Но целесообразно ли это? И если да, то какие растения подходят для спальной комнаты?

Современные научные знания порицают древнюю теорию о том, что цветы в спальне неуместны. Раньше считалось, что зеленые и цветущие растения ночью потребляют много кислорода и могут вызвать проблемы со здоровьем. На самом деле комнатные растения имеют минимальную потребность в кислороде.

Читать полностью

Секреты ночной фотосъемки Рубрика: Фотография

Какие же настройки камеры следует использовать при длительной экспозиции, ночной фотосъемке и фотосъемке с низким уровнем освещения? В нашей статье мы собрали несколько советов и рекомендаций, которые помогут Вам сделать качественные ночные фотографии.

Открытие гаусса. Биография карла гаусса. Начало трудовой деятельности

Математик Гаусс был замкнутым человеком. Эрик Темпл Белл, который изучал его биографию, считает, что если бы Гаусс опубликовал все свои исследования и открытия в полном объеме и вовремя, то могло бы прославиться еще с полдюжины математиков. А так им пришлось потратить львиную долю времени, чтобы узнать, каким образом ученый получил те или другие данные. Ведь он редко публиковал методы, его всегда интересовал только результат. Выдающийся математик, и неподражаемая личность — это все Карл Фридрих Гаусс.

Ранние годы

Будущий математик Гаусс родился 30.04.1777 г. Это, конечно, странное явление, но выдающиеся люди чаще всего рождаются в бедных семьях. Так случилось и в этот раз. Его дедушка был обычным крестьянином, а отец работал в герцогстве Брауншвейг садовником, каменщиком или водопроводчиком. Родители узнали, что их ребенок вундеркинд, когда малышу исполнилось два года. Спустя год Карл уже умеет считать, писать и читать.

В школе его способности заметил учитель, когда дал задание подсчитать сумму чисел от 1 до 100. Гауссу быстро удалось понять, что все крайние числа в паре составляют 101, и за считанные секунды он решил это уравнение, умножив 101 на 50.

Юному математику несказанно повезло с учителем. Тот помогал ему во всем, даже похлопотал за то, чтобы начинающему дарованию выплачивали стипендию. С ее помощью Карл сумел окончить колледж (1795 год).

Студенческие годы

После колледжа Гаусс учится в Геттингенском университете. Этот период жизни биографы обозначают как самый плодотворный. В это время ему удалось доказать, что начертить правильный семнадцатиугольник, используя лишь циркуль, представляется возможным. Он уверяет: можно нарисовать не только семнадцатиугольник, но и другие правильные многоугольники, пользуясь только циркулем и линейкой.

В университете Гаусс начинает вести специальную тетрадь, куда заносит все записи, которые касаются его исследований. Большинство из них были скрыты от глаз общественности. Для друзей он всегда повторял, что не сможет опубликовать исследование или формулу, в которых не уверен на 100%. По этой причине большинство из его идей были открыты другими математиками спустя 30 лет.

«Арифметические исследования»

Вместе с окончанием университета математик Гаусс закончил свой выдающийся труд «Арифметические исследования» (1798), но его напечатали лишь спустя два года.

Это обширное сочинение определило дальнейшее развитие математики (в частности, алгебры и высшей арифметики). Основная часть работы сосредоточена на описании абиогенеза квадратичных форм. Биографы уверяют, что именно с него начинаются открытия Гаусса в математике. Ведь он был первым математиком, у кого получилось вычислять дроби и переводить их в функции.

Также в книге можно отыскать полную парадигму равенств деления круга. Гаусс умело применяет эту теорию, пытаясь решить проблему начертания многоугольников при помощи линейки и циркуля. Доказывая эту вероятность, Карл Гаусс (математик) вводит ряд чисел, которые называют числами Гаусса (3, 5, 17, 257, 65337). Это значит, что при помощи простых канцелярских предметов можно построить 3-угольник, 5-угольник, 17-угольник и т.д. А вот 7-угольник построить не получится, ведь 7 не является «числом Гаусса». К «своим» числа математик также относит двойки, что умноженные на любую степень его ряда чисел (2 3 , 2 5 и т.д.)

Этот результат можно назвать «чистой теоремой существования». Как уже было сказано вначале, Гаусс любил публиковать итоговые результаты, но никогда не указывал методы. Так же и в этом случае: математик утверждает, что построить вполне реально, вот только не уточняет, как именно это сделать.

Астрономия и царица наук

в 1799 году Карл Гаусс (математик) получает титул приват-доцента Брауншвейнского университета. Спустя два года ему предоставляют место в Петербургской Академии наук, где он выступает в качестве корреспондента. Он все еще продолжает изучать теорию чисел, но круг его интересов расширяется после открытия небольшой планеты. Гаусс пытается вычислить и указать ее точное местонахождение. Многие задаются вопросом, как называлась планета по вычислениям математика Гаусса. Однако немногим известно, что Церера — не единственная планета, с которой работал ученый.

В 1801 году впервые было обнаружено новое небесное тело. Это случилось неожиданно и внезапно, точно так же неожиданно планета была утеряна. Гаусс попытался обнаружить ее, применяя математические методы, и, как ни странно, она была именно там, куда указал ученный.

Астрономией ученый занимается более двух десятилетий. Всемирную известность получает метод Гаусса (математика, которому принадлежит множество открытий) для определения орбиты с помощью трех наблюдений. Три наблюдения — это место, в котором располагается планета в разный период времени. С помощью этих показателей была вновь найдена Церера. Точно таким же образом обнаружили еще одну планету. С 1802 года на вопрос, как называется планета, обнаруженная математиком Гаусса, можно было отвечать: «Паллада». Забегая немного вперед, стоит отметить, что в 1923 году именем известного математика назвали крупный астероид, вращающийся вокруг Марса. Гауссия, или астероид 1001, — это официально признанная планета математика Гаусса.

Это были первые исследования в области астрономии. Возможно, созерцание звездного неба стало причиной того, что человек, увлеченный числами, принимает решение обзавестись семьей. В 1805 году берет в жены Иоганну Остгоф. В этом союзе у пары рождается трое детей, но младший сын умирает в младенчестве.

В 1806 году скончался герцог, который покровительствовал математику. Страны Европы наперебой начинают приглашать Гаусса к себе. С 1807 года и до последних своих дней Гаусс возглавляет кафедру в Геттингенском университете.

В 1809 году умирает первая жена математика, в этом же году Гаусс издает свое новое творение — книгу под названием «Парадигма перемещения небесных тел». Методы для вычисления орбит планет, что изложены в этом труде, актуальны и сегодня (правда, с небольшими поправками).

Главная теорема алгебры

Начало ХІХ века Германия встретила в состоянии анархии и упадка. Эти годы были тяжелыми для математика, но он продолжает жить дальше. В 1810 году Гаусс второй раз связывает себя узами брака — с Минной Вальдек. В этом союзе у него появляется еще трое детей: Тереза, Вильгельм и Ойген. Также 1810 год был ознаменован получением престижной премии и золотой медали.

Гаусс продолжает свою работу в областях астрономии и математики, исследуя все больше и больше неизвестных составляющих этих наук. Его первая публикация, посвященная основной теореме алгебры, датируется 1815 годом. Главная идея заключается в следующем: число корней многочлена прямопропорциональна его степени. Позже высказывание приобрело несколько иной вид: любое число в степени, не равной нолю, априори имеет как минимум один корень.

Впервые он доказал это еще в 1799 году, но не был доволен своей работой, поэтому публикация вышла в свет спустя 16 лет, с некоторыми поправками, дополнениями и вычислениями.

Неевклидова теория

Согласно данным, в 1818 году Гауссу первому удалось построить базу для неевклидовой геометрии, теоремы которой были бы возможны в реальности. Неевклидовая геометрия представляет собой область науки, отличимой от евклидовой. Основная особенность евклидовой геометрии — в наличии аксиом и теорем, которые не требуют подтверждений. В своей книге «Начала» Евклид вывел утверждения, которые должны приниматься без доказательств, ведь они не могут быть изменены. Гаусс был первым, кому удалось доказать, что теории Евклида не всегда могут восприниматься без обоснований, так как в определенных случаях они не имеют прочной базы доказательств, которая удовлетворяет всем требованиям эксперимента. Так появилась неевклидова геометрия. Конечно, основные геометрические системы были открыты Лобачевским и Риманом, но метод Гаусса — математика, умеющего смотреть вглубь и находить истину, — положил начало этому разделу геометрии.

Геодезия

В 1818 году правительство Ганновера решает, что назрела необходимость измерить королевство, и это задание получил Карл Фридрих Гаусс. Открытия в математике на этом не закончились, а лишь приобрели новый оттенок. Он разрабатывает необходимые для выполнения задания вычислительные комбинации. В их число вошла гауссова методика «малых квадратов», которая подняла геодезию на новый уровень.

Ему пришлось составлять карты и организовывать съемку местности. Это позволило приобрести новые знания и поставить новые эксперименты, поэтому в 1821 году он начинает писать работу, посвященную геодезии. Этот труд Гаусса опубликовали в 1827, под названием «Общий анализ неровных плоскостей». В основу этой работы были положены засады внутренней геометрии. Математик считал, что необходимо рассматривать предметы, которые находятся на поверхности, как свойства самой поверхности, обращая внимание на длину кривых, игнорируя при этом данные объемлющего пространства. Несколько позже эта теория была дополнена трудами Б. Римана и А. Александрова.

Благодаря этому труду в научных кругах начало появляться понятие «гауссова кривизна» (определяет меру искривления плоскости в определенной точке). Начинает свое существование дифференциальная геометрия. И чтобы результаты наблюдений были достоверными, Карл Фридрих Гаусс (математик) выводит новые методы получения величин с высоким уровнем вероятности.

Механика

В 1824 году Гаусс был заочно включен в состав членов Петербургской Академии наук. На этом его достижения не заканчиваются, он все так же упорно занимается математикой и презентует новое открытие: «целые числа Гаусса». Под ними подразумевают числа, имеющие мнимую и вещественную часть, которые являются целыми числами. По сути, своими свойствами гауссовские числа напоминают обычные целые, но те небольшие отличительные характеристики позволяют доказать биквадратичный закон взаимности.

В любое время он был неподражаем. Гаусс — математик, открытия которого так тесно переплетены с жизнью, — в 1829 году внес новые коррективы даже в механику. В это время вышел его небольшой труд «О новом универсальном принципе механики». В нем Гаусс доказывает, что принцип малого воздействия, можно по праву считать новой парадигмой механики. Ученный уверяет, что этот принцип можно применять ко всем механическим системам, которые связаны между собой.

Физика

С 1831 года Гаусс начинает страдать от тяжелой бессонницы. Болезнь проявилась после смерти второй супруги. Он ищет утешения в новых исследованиях и знакомствах. Так, благодаря его приглашению в Геттинген приехал В. Вебер. С молодой талантливой личностью Гаусс быстро находит общий язык. Они оба увлечены наукой, и жажду знаний приходится унимать, обмениваясь своими наработками, догадками и опытом. Эти энтузиасты быстро принимаются за дело, посвящая свое время исследованию электромагнетизма.

Гаусс, математик, биография которого имеет большую научную ценность, в 1832 году создал абсолютные единицы, которыми и сегодня пользуются в физике. Он выделял три основные позиции: время, вес и расстояние (длина). Наряду с этим открытием в 1833 году, благодаря совместным исследованиям с физиком Вебером, Гауссу удалось изобрести электромагнитный телеграф.

1839 год ознаменован выходом еще одного сочинения — «Об общем абиогенезе сил тяготения и отталкивания, что действуют прямопропорционально расстоянию». На страницах подробно описан знаменитый закон Гаусса (еще известный как теорема Гаусса-Остроградского, или просто Этот закон является одним из основных в электродинамике. Он определяет связь между электрическим потоком и суммой заряда поверхности, делимые на электрическую постоянную.

В этом же году Гаусс освоил русский язык. Он направляет письма в Петербург с просьбой выслать ему русские книги и журналы, особенно желал он ознакомиться с произведением «Капитанская дочка». Этот факт биографии доказывает, что, помимо способностей к вычислению, у Гаусса было множество других интересов и увлечений.

Просто человек

Гаусс никогда не спешил публиковаться. Он долго и кропотливо проверял каждую свою работу. Для математика все имело значение: начиная от правильности формулы и заканчивая изяществом и простотой слога. Он любил повторять, что его работы — как только что построенный дом. Владельцу показывают только конечный результат работы, а не остатки леса, которые раньше были на месте жилого помещения. Также и с его работами: Гаусс был уверен, что никому не стоит показывать черновые наброски исследования, только готовые данные, теории, формулы.

Гаусс всегда проявлял живой интерес к наукам, но особенно его интересовала математика, которую он считал «царицей всех наук». И природа не обделила его умом и талантами. Даже находясь в преклонном возрасте, он, по обычаю, проводил большую часть сложных вычислений в уме. Математик никогда заранее не распространялся о своих работах. Как и каждый человек, он боялся, что его не поймут современники. В одном из своих писем Карл говорит о том, что устал вечно балансировать на грани: с одной стороны, он с удовольствием поддержит науку, но, с другой, ему не хотелось ворошить «осиное гнездо непонятливых».

Всю свою жизнь Гаусс провел в Геттингене, только один раз ему удалось побывать в Берлине на научной конференции. Он мог длительное время проводить исследования, опыты, вычисления или измерения, но очень не любил читать лекции. Этот процесс он считал лишь досадной необходимостью, но если у него в группе появлялись талантливые ученики, он не жалел для них ни времени, ни сил и долгие годы поддерживал переписку обсуждая важные научные вопросы.

Карл Фридрих Гаусс, математик, фото, которого размещены в этой статье, был поистине удивительным человеком. Выдающимися знаниями мог похвастаться не только в области математики, но и с иностранными языками «дружил». Свободно разговаривал на латыни, английском и французском, освоил даже русский. Математик читал не только научные мемуары, но и обычную художественную литературу. Особенно ему нравились произведения Диккенса, Свифта и Вальтера Скотта. После того как его младшие сыновья эмигрировали в США, Гаусс начал интересоваться американскими писателями. Со временем пристрастился к датским, шведским, итальянским и испанским книгам. Все произведения математик непременно читал в оригинале.

Гаусс занимал весьма консервативную позицию в общественной жизни. С ранних лет он ощущал зависимость от людей, наделенных властью. Даже когда в 1837 году в университете начался протест против короля, который урезал профессорам содержание, Карл не стал вмешиваться.

Последние годы

В 1849 год Гаусс отмечает 50-летие присвоения докторской степени. К нему приехали и это обрадовало его намного больше, чем присвоение очередной награды. В последние годы своей жизни уже много болел Карл Гаусс. Математику было сложно передвигаться, но ясность и острота разума от этого не пострадали.

Незадолго до смерти здоровье Гаусса ухудшилось. Врачи диагностировали болезнь сердца и нервное перенапряжение. Лекарства практически не помогали.

Математик Гаусс умер 23 февраля 1855 года, в возрасте семидесяти восьми лет. похоронили в Геттингене и, согласно его последней воле, выгравировали на надгробной плите правильный семнадцатиугольник. Позже его портреты напечатают на почтовых марках и денежных купюрах, страна навсегда запомнит своего лучшего мыслителя.

Таким был Карл Фридрих Гаусс — странным, умным и увлеченным. И если спросят, как называется планета математика Гаусса, можно не спеша ответить: «Вычисления!», ведь именно им он посвятил всю свою жизнь.

ГАУСС, КАРЛ ФРИДРИХ (Gauss, Carl Friedrich) (1777–1855), немецкий математик, астроном и физик. Родился 30 апреля 1777 в Брауншвейге. В 1788 при поддержке герцога Брауншвейгского Гаусс поступил в закрытую школу Коллегиум Каролинум, а затем в Гёттингенский университет, где обучался с 1795 по 1798. В 1796 Гауссу удалось решить задачу, не поддававшуюся усилиям геометров со времен Евклида: он нашел способ, позволяющий построить с помощью циркуля и линейки правильный 17-угольник. На самого Гаусса этот результат произвел столь сильное впечатление, что он решил посвятить себя изучению математики, а не классических языков, как предполагал вначале. В 1799 защитил докторскую диссертацию в университете Хельмштадта, в которой впервые дал строгое доказательство т.н. основной теоремы алгебры, а в 1801 опубликовал знаменитые Арифметические исследования (Disquisitiones arithmeticae ), считающиеся началом современной теории чисел. Центральное место в книге занимает теория квадратичных форм, вычетов и сравнений второй степени, а высшим достижением является закон квадратичной взаимности – «золотая теорема», первое полное доказательство которой привел Гаусс.

В январе 1801 астроном Дж.Пьяцци, составлявший звездный каталог, обнаружил неизвестную звезду 8-й величины. Ему удалось проследить ее путь только на протяжении дуги 9° (1/40 орбиты), и возникла задача определения полной эллиптической траектории тела по имеющимся данным, тем более интересная, что, по-видимому, на самом деле речь шла о давно предполагаемой между Марсом и Юпитером малой планете. В сентябре 1801 вычислением орбиты занялся Гаусс, в ноябре вычисления были закончены, в декабре опубликованы результаты, а в ночь с 31 декабря на 1 января известный немецкий астроном Ольберс, пользуясь данными Гаусса, нашел планету (ее назвали Церерой). В марте 1802 была открыта еще одна аналогичная планета – Паллада, и Гаусс тут же вычислил ее орбиту. Свои методы вычисления орбит он изложил в знаменитой Теории движения небесных тел (Theoria motus corporum coelestium , 1809). В книге описан использованный им метод наименьших квадратов, и по сей день остающийся одним из самых распространенных методов обработки экспериментальных данных.

В 1807 Гаусс возглавил кафедру математики и астрономии в Гёттингенском университете, получил должность директора Гёттингенской астрономической обсерватории. В последующие годы занимался вопросами теории гипергеометрических рядов (первое систематическое исследование сходимости рядов), механических квадратур, вековых возмущений планетных орбит, дифференциальной геометрией.

В 1818–1848 в центре научных интересов Гаусса находилась геодезия. Он проводил как практические работы (геодезическая съемка и составление детальной карты Ганноверского королевства, измерение дуги меридиана Гёттинген – Альтона, предпринятое для определения истинного сжатия Земли), так и теоретические исследования. Им были заложены основы высшей геодезии и создана теория т.н. внутренней геометрии поверхностей. В 1828 вышел в свет основной геометрический трактат Гаусса Общие исследования относительно кривых поверхностей (Disquisitiones generales circa superficies curvas ). В нем, в частности, упоминается поверхность вращения постоянной отрицательной кривизны, внутренняя геометрия которой, как потом обнаружилось, является геометрией Лобачевского.

Исследования в области физики, которыми Гаусс занимался с начала 1830-х годов, относятся к разным разделам этой науки. В 1832 он создал абсолютную систему мер, введя три основные единицы: 1 сек, 1 мм и 1 кг. В 1833 совместно с В.Вебером построил первый в Германии электромагнитный телеграф, связывавший обсерваторию и физический институт в Гёттингене, выполнил большую экспериментальную работу по земному магнетизму, изобрел униполярный магнитометр, а затем бифилярный (также совместно с В.Вебером), создал основы теории потенциала, в частности сформулировал основную теорему электростатики (теорема Гаусса – Остроградского). В 1840 разработал теорию построения изображений в сложных оптических системах. В 1835 создал магнитную обсерваторию при Гёттингенской астрономической обсерватории.

В 1845 университет поручил Гауссу реорганизовать Фонд поддержки вдов и детей профессоров. Гаусс не только отлично справился с этой задачей, но и попутно внес важный вклад в теорию страхования. 16 июля 1849 Гёттингенский университет торжественно отметил золотой юбилей диссертации Гаусса. В юбилейной лекции ученый вернулся к теме своей диссертации, предложив четвертое доказательство основной теоремы алгебры.

Многих ли выдающихся математиков Вы можете вспомнить не задумываясь? А можете ли Вы назвать тех из них, кто при жизни получил заслуженное звание «король математиков»? Одним из немногих этой почести удостоился Карл Гаусс – немецкий математик, физик и астроном.

Мальчик, который рос в бедной семье, уже с двухлетнего возраста проявил незаурядные способности вундеркинда. В три года ребенок отлично считал и даже помогал отцу выявлять неточности в проделанных математических операциях. По преданию, учитель математики задал школьникам задачу сосчитать сумму чисел от 1 до 100, чтобы чем-то занять ребят. С этой задачей блестяще справился маленький Гаусс, заметив, что попарные суммы в противоположных концов одинаковы. С детства и пошла привычка Гаусса любые вычисления проводить в уме.

Будущему математику всегда везло с учителями: они были чутки к способностям юноши и всячески ему помогали. Одним из таких наставников был Бартельс, который посодействовал Гауссу в получении стипендии от герцога, что оказалось значительным подспорьем при обучении юноши в колледже.

Исключителен Гаусс и тем, что долгое время он пытался сделать выбор между филологией и математикой. Гаусс владел многими языками (а особенно любил латынь) и мог быстро выучить любой из них, он понимал литературу; уже в преклонном возрасте математик смог выучить далеко не легкий русский язык, чтобы ознакомиться с трудами Лобачевского в оригинале. Как мы знаем, выбор Гаусса все же пал на математику.

Уже в колледже Гаусс смог доказать закон взаимности квадратичных вычетов, что не удавалось его знаменитым предшественникам – Эйлеру и Лежандру. В это же время Гаусс создает метод наименьших квадратов.

Позже Гаусс доказал возможность построения правильного 17-угольника с помощью циркуля и линейки, а также в общем обосновал критерий такого построения правильных многоугольников. Это открытие было особенно дорого ученому, поэтому он завещал изобразить на своей могиле вписанный в круг 17-угольник.

Математик требовательно относился к своим достижением, поэтому публиковал только те исследования, которыми был доволен: недоработанных и «сырых» результатов в трудах Гаусса мы не найдем. Многие из неопубликованных идей после воскресли в трудах других ученых.

Большую часть времени математик посвятил разработке теории чисел, которую он считал «царицей математики». В рамках исследований им была обоснована теория сравнений, исследованы квадратичные формы и корни из единицы, изложены свойства квадратичных вычетов и др.

В своей докторской диссертации Гаусс доказал основную теорему алгебры, а позже разработал еще 3 ее доказательства разными способами.

Гаусс-астроном прославился «поиском» планеты-беглянки Цереры. За несколько часов математик проделал вычисления, которые позволили точно указать место нахождения «сбежавшей планеты», где она и была обнаружена. Продолжая свои исследования, Гаусс пишет «Теорию небесных тел», где излагает теорию учета возмущений орбит. Вычисления Гаусса позволили наблюдать комету «пожара Москвы».

Велики заслуги Гаусса и в геодезии: «гауссова кривизна», метод конформного отображения и др.

Исследование магнетизма Гаусс проводит со своим молодым другом Вебером. Гауссу принадлежит открытие пушки Гаусса – одной из разновидностей электромагнитного ускорителя масс.Совместно с Вебером Гауссом была разработана также действующая модель сконструированного им же электрического телеграфа.

Метод решения системных уравнений, открытый ученым, был назван методом Гаусса. Метод состоит в последовательном исключении переменных до приведения уравнения к ступенчатому виду. Решение методом Гаусса считается классическим и активно используется и сейчас.

Имя Гаусса известно почти во всех областях математики, а также в геодезии, астрономии, механике. За глубину и оригинальность мысли, за требовательность к себе и гениальность ученый и получил звание «король математиков». Ученики Гаусса стали не менее выдающимися учеными, нежели их наставник: Риман, Дедекинд, Бессель, Мебиус.

Память о Гауссе навсегда осталась в математических и физических терминах (метод Гаусса, дискриминанты Гаусса, прямая Гаусса, Гаусс – единица измерения магнитной индукции и др.). Имя Гаусса носит лунный кратер, вулкан в Антарктиде и малая планета.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

С первых лет Гаусс отличался феноменальной памятью и выдающимися способностями к точным наукам. Всю свою жизнь он совершенствовал свои познания и систему счета, что принесло человечеству множество великих изобретений и бессмертных трудов.

Маленький принц математики

Карл родился в Брауншвейге, в Северной Германии. Это событие произошло 30 апреля 1777 года в семье бедного рабочего Герхарда Дидериха Гаусса. Хотя Карл был первым и единственным ребенком в семье, у отца редко находилось время на воспитание мальчика. Чтобы как-то прокормить семью, ему приходилось хвататься за любую возможность заработать: обустройство фонтанов, садовничество, каменные работы.

Большую часть своего детства Гаусс провел вместе с матерью Доротеей. Женщина души не чаяла в своем единственном сыне и, в дальнейшем, безумно гордилась его успехами. Она была веселой, умной и решительной женщиной, но, в силу своего простого происхождения, — неграмотной. Поэтому, когда маленький Карл, попросил научить его писать и считать, помочь ему оказалось нелегкой задачей.

Впрочем, мальчик не потерял энтузиазма. При любой удобной возможности он расспрашивал взрослых: «Что это за значок?», «Какая это буква?», «Как это прочитать?». Таким нехитрым способом он смог выучить весь алфавит и все цифры уже в трехлетнем возрасте. Тогда же ему поддались и самые простые операции счета: сложение и вычитание.

Как-то раз, когда Герхард снова снял подряд на каменные работы, он расплачивался с рабочими в присутствии маленького Карла. Внимательный ребенок в уме успел пересчитать все озвученные отцом суммы, и тут же нашел ошибку в его подсчетах. Герхард усомнился в правоте своего трехлетнего сына, но, пересчитав, действительно, обнаружил неточность.

Пряники вместо кнута

Когда Карлу исполнилось 7, родители отдали его в народную Екатерининскую школу. Всеми делами здесь заведовал немолодой и строгий учитель Бюттнер. Главным методом воспитания у него были телесные наказания (впрочем, как и везде в то время). В устрашение при себе Бюттнер носил внушительный хлыст, которым первое время попадало и маленькому Гауссу.

Сменить гнев на милость Карлу удалось достаточно быстро. Как только прошел первый урок по арифметике, Бюттнер кардинально изменил отношение к смышленому мальчику. Гауссу удавалось решать сложные примеры буквально на лету, используя оригинальные и нестандартные методы.

Так на очередном уроке Бюттнер задал задачу: сложить все числа от 1 до 100. Как только учитель закончил объяснять задание, Гаусс уже сдал свою табличку с готовым ответом. Позже он пояснил: «Я не складывал числа по порядку, а разделил их попарно. Если сложить 1 и 100 – получим 101. Если сложить 99 и 2 – тоже 101, и так далее. Я умножил 101 на 50 и получил ответ». После этого Гаусс стал любимым учеником.

Таланты мальчика заметил не только Бюттнер, но и его помощник – Христиан Бартельс. На свое небольшое жалование он покупал учебники по математике, по которым занимался сам и учил десятилетнего Карла. Эти занятия привели к ошеломительным результатам – уже в 1791 году мальчика представили герцогу Брауншвейгскому и его приближенным особам, как одного из самых талантливых и перспективных учеников.

Циркуль, линейка и Геттинген

Герцог был в восторге от юного дарования и пожаловал Гауссу стипендию в размере 10 талеров в год. Только благодаря этому, мальчику из бедной семьи удалось продолжить обучение в самой престижной школе – Каролинской коллегии. Там он получил необходимую подготовку и в 1895 году с легкостью поступил в Геттингенский университет.

Здесь Гаусс совершает одно из своих величайших открытий (по мнению самого ученого). Юноше удалось рассчитать построение 17-угольника и воспроизвести его с помощью линейки и циркуля. Другими словами, он решил уравнение х17- 1 = 0 в квадратичных радикалах. Это показалось Карлу настолько значимым, что в этот же день он начал вести дневник, в котором завещал начертить 17-угольник на своем надгробии.

Работая в этом же направлении, Гауссу удается построить правильный семи- и девятиугольник и доказать, что возможно построение многоугольников с 3, 5, 17, 257 и 65337 сторонами, а также с любым из этих чисел, умноженным на степень двойки. Позже эти числа нарекут «простыми гауссовыми».

Звезды на кончике карандаша

В 1798 году Карл покидает университет по неизвестным причинам и возвращается в родной Брауншвейг. При этом свою научную деятельность молодой математик и не думает приостанавливать. Наоборот, время, проведенное в родных краях, стало самым плодотворным периодом его работы.

Уже в 1799 году Гаусс доказывает основную теорему алгебры: «Количество действительных и комплексных корней многочлена равно его степени», исследует комплексные корни из единицы, квадратичные корни и вычеты, выводит и доказывает квадратичный закон взаимности. С этого же года он становится приват-доцентом университета Брауншвейга.

В 1801 году увидела свет книга «Арифметические исследования», где почти на 500 страницах ученый делится своими открытиями. В нее не вошло ни одного незаконченного исследования или сырого материала – все данные максимально точны и доведены до логического вывода.

В это же время он увлекается вопросами астрономии, а точнее математическими приложениями в этой области. Благодаря одному только правильному расчету, Гаусс нашел на бумаге то, что потеряли на небе астрономы – малую планету Цирреру (1801г, Дж. Пиацци). Этим методом было найдено еще несколько планет, в частности, Паллада (1802г, Г.В. Ольберс). Позже Карл Фридрих Гаусс станет автором бесценного труда под название «Теория движения небесных тел» (1809г) и множества исследований в области гипергеометрической функции и сходимости бесконечных рядов.

Браки без расчета

Здесь же, в Брауншвейге, Карл знакомится со своей первой женой – Иоанной Остгоф. Они поженились 22 ноября 1804 года и счастливо прожили на протяжении пяти лет. Иоанна успела родить Гауссу сына Иосифа и дочь Минну. При родах третьего ребенка – Луи – женщина скончалась. Вскоре погиб и сам младенец, и Карл остался один с двумя детьми. В письмах своим товарищам математик не раз утверждал, что эти пять лет в его жизни были «вечной весной», которая, к сожалению, закончилась.

Это несчастье в жизни Гаусса не стало последним. Примерно в то же время от смертельных ран погибает друг и наставник ученого – герцог Брауншвейгский. С тяжелым сердцем Карл покидает родину и возвращается в университет, где принимает кафедру математики и пост директора астрономической лаборатории.

В Геттингене он сближается с дочерью местного советника – Минной, которая была хорошей подругой его покойной жены. 4 августа 1810 года Гаусс женится на девушке, но их брак с самого начала сопровождают ссоры и конфликты. Из-за бурной личной жизни Карл даже отказался от места в Берлинской академии наук Минна родила ученому троих детей – двух сыновей и дочь.

Новые изобретения, открытия и ученики

Высокий пост, который Гаусс занимал в университете, обязывал ученого к преподавательской карьере. Его лекции отличались свежестью взглядов, а сам он был добрым и отзывчивым, что вызывало отклик у студентов. Тем не менее, сам Гаусс преподавать не любил и считал, что, уча других, он тратит свое время попусту.

В 1818 году Карл Фридрих Гаусс одним из первых начинает работу, связанную с неевклидовой геометрией. Побоявшись критики и насмешек, он так и не печатает свои открытия, тем не менее, яро поддерживает Лобачевского . Такая же участь постигла кватернионы, которые первоначально исследовал Гаусс под названием «мутации». Открытие приписали Гамильтону , который опубликовал свои труды, спустя 30 лет после смерти немецкого ученого. Эллиптические функции впервые появились в работах Якоби, Абеля и Коши , хотя основной вклад принадлежал именно Гауссу.

Спустя несколько лет Гаусс увлекается геодезией, проводит съемку Ганноверского королевства с помощью метода наименьших квадратов, описывает действительные формы земной поверхности и изобретает новый прибор – гелиотроп. Несмотря на простоту конструкции (зрительная труба и два плоских зеркала), это изобретения стало новым словом в геодезических измерениях. Результатом исследований в этой области стали труды ученого: «Общие исследования о кривых поверхностях» (1827г) и «Исследования о предметах высшей геодезии» (1842-47гг), а также понятие «гауссовой кривизны», которое дало начало дифференциальной геометрии.

В 1825 году Карл Фридрих совершает еще одно открытие, которое увековечило его имя – гауссовы комплексные числа. Он успешно использует их для решения уравнений высоких степеней, что позволило провести ряд исследований в области вещественных чисел. Основным результатом стал труд «Теория биквадратичных вычетов».

К концу жизни Гаусс изменил свое отношение к преподаванию и стал уделять своим ученикам не только лекционные часы, но и свободное время. Его работы и личный пример оказали огромное влияние на молодых математиков: Римана и Вебера. Дружба с первым привела к созданию «римановой геометрии», а со вторым – к изобретению электромагнитного телеграфа (1833 г).

В 1849 году за заслуги перед университетом, Гаусс был удостоен звания «почетный гражданин Геттингена». К этому времени в круг его друзей уже входят такие известные ученые, как Лобачевский, Лаплас , Ольберс, Гумбольд, Бартельс и Баум.

С 1852 года крепкое здоровье, которое досталось Карлу от отца, дало трещину. Избегая встреч с представителями медицины, Гаусс рассчитывал сам справиться с болезнью, но на этот раз его расчет оказался неверным. Он умер 23 февраля1855 года, в Геттингене, окруженный друзьями и единомышленниками, которые позже наградят его титулом короля математики.

Иоганн Карл Фридрих Гаусс (кратко), родился 30 апреля 1777 года в городе Брауншвейг, Нижняя Саксония, Германия. Отец Гебхард Дитрих Гаусс каменщик, садовник. Мать Доротея Бенце домохозяйка. В 1782 году, поступил в государственную школу Святой Екатерины. Маленький Карл с легкостью решал математические задачи, чем поразил своего учителя господина Бюттнера. Именно Бюттнер первым обнаружил математический талант у Карла. Он настоял на том, чтобы мальчик ни в коем случае не бросал учебу, а поступил в дальнейшем в университет. Карл начал обучаться у Мартина Бартельса, его старшего на восемь лет, талантливого математика. В 10 лет, Карл самостоятельно вывел теорему о биноме. В 1788 году, начал учиться в гимназии Мартино-Катаринеум, где он преуспел в математике, древнегреческом, латинском, английском языках. В 1792 году, он поступил в Кэролайн-колледж, по завершению получив степень по математике. В 1795 года, Гаусс поступил в Геттингенский университет. Спустя всего шесть месяцев Гаусс вывел математическую формулу, чтобы найти все правильные многоугольники, которые могут быть построены, используя только линейку и компас. В 1807 году, Гаусс принял кафедру астрономии в Геттингене, которую он занимал до конца своей жизни.

Научные достижения

Теория чисел была его любимым математическим занятием. В 1801 году, он опубликовал одну из величайших работ в истории математики – «Disquisitiones Arithmeticae», эта книга написана на латыни. В нем он записал формальные доказательства многих своих ранних открытий, здесь начинается современная теория чисел. Гаусс задокументировал значительные прорывы, такие как закон квадратичной взаимности, его формулировку современной модульной арифметики и конгруэнтность — идею, которая легла в основу его единого подхода к теории чисел. Почитатели таланта ученого, говорили, что Гаусс сделал для теории чисел то же, что Евклид сделал для геометрии. Он также очень глубоко изучал теорию потенциала и решению уравнений с частными производными — эти уравнения имеют многочисленные приложения в физике, включая электромагнетизм и гравитацию. В 1809 году он опубликовал важную двухтомную работу по движению небесных тел — Теорию движения небесных тел. В 1821 году, он изобрел гелиотроп это зеркало, которое отражает солнечные лучи на очень большие расстояния. Гелиотропы использовались в геодезических работах в Германии более 150 лет. Он стал участвовать в геодезических работах для составления карт и увидел важность записи удаленных позиций с большой точностью. В 1832 году при содействии Вебера, Гаусс провел эксперименты, результаты которых позволили ему определить магнитное поле Земли, используя единицы миллиметров, граммов и секунд. Другими словами, он показал, что магнитное поле Земли можно определить, используя чисто механические измерения — массу, длину и время. В 1833 году Гаусс и Вебер изобрели одну из первых в мире телеграфных систем. Они также изобрели двоичный алфавитный код, обеспечивающий связь между зданием Вебера и астрономической обсерваторией Гаусса на расстоянии около 1,5 миль. К 1835 году их телеграфные линии были проложены рядом с первой железной дорогой Германии.
Гаусс использовал свой огромный математический арсенал для анализа поведения электрических и магнитных полей, он сформулировал два закона: Закон Гаусса, который связывает электрическое поле с распределением электрических зарядов, вызывающих его. Закон Гаусса о магнетизме, который гласит, что магнитные монополи не существуют.

Он открыл теорему Egregium, связывающую кривизну поверхности с расстояниями и углами.

Семья и последние годы

Гаусс терпеть не мог путешествовать и покинул Геттинген только один раз в 48 лет — чтобы поехать на конференцию в Берлин. Он был увлечен литературой, его библиотека, насчитывала 6000 книг, написанных на разных языках. В 1805 году, он женился на Джоанне Остхофф, у них было трое детей. К сожалению, жена Гаусса Иоганна умерла в октябре 1809 года. В 1810 году Гаусс женился на Йоханне Вильгельмине, у них также было трое детей. Карл Фридрих Гаусс мирно скончался во сне в Геттингене 23 февраля 1855 года. Он был похоронен без мозга на Геттингенском кладбище Альбанифридхоф, недалеко от университета. Его мозг был сохранен и хранится в физиологическом отделении Геттингена. Гаусс так гордился своим молодым достижением в виде семиугольника, что он попросил вырезать фигуру на его надгробии. Его желание не было выполнено — каменщик сказал, что будет слишком трудно вырезать семиугольник, который не напоминает круг.

В каком году был предложен гаусса. Великие немецкие ученые

Самым величайшим математиком всех времен и народов принято считать знаменитого ученого из Европы Иоганна Карла Фридриха Гаусса. Несмотря на то, что сам Гаусс был выходцем из беднейших слоев общества: его отец был водопроводчиком, а дед — крестьянином, судьба уготовила ему великую славу. Мальчик уже в возрасте трех лет показал себя вундеркиндом, он умел считать, писать, читать, даже помогал своему отцу в его работе.


Юное дарование, конечно же, было замечено. Его любознательность перешла по наследству от дяди, брата матери. Карл Гаусс – сын бедного немца не только получил образование в колледже, но уже в возрасте 19-ти лет считался лучшим европейским математиком того времени.

  1. Сам Гаусс утверждал о том, что считать он начал раньше, чем говорить.
  2. У великого математика было хорошо развито слуховое восприятие: однажды в возрасте 3-х лет он на слух определил ошибку в подсчетах, выполняемых его отцом, когда тот подсчитывал заработок своих помощников.
  3. Гаусс довольно недолгое время провел в первом классе, его очень быстро перевели во второй. Учителя сразу распознали в нем талантливого ученика.
  4. Карлу Гауссу довольно легко давалось не только изучение цифр, но и языкознание. Он мог свободно говорить на нескольких языках. Математик довольно долго в юном возрасте не мог определиться, какую ученую стезю ему стоит выбрать: точные науки, либо же филологию. Выбрав в конечном итоге своим увлечением математику, Гаусс позднее писал свои труды на латыни, английском, немецком языках.
  5. В возрасте 62-х лет Гаусс начал активно изучать русский язык. Ознакомившись с трудами великого русского математика Николая Лобачевского, он захотел прочесть их в оригинале. Современники отмечали тот факт, что Гаусс, став знаменитым, никогда не читал трудов других математиков: обычно он знакомился с концепцией и сам старался ее либо доказать, либо опровергнуть. Труд Лобачевского стал исключением.
  6. Обучаясь в колледже, Гаусс интересовался трудами Ньютона, Лагранжа, Эйлера и прочих других выдающихся ученых.
  7. Самым плодотворным периодом в жизни великого европейского математика считается время его обучения в колледже, где им были созданы закон взаимности квадратичных вычетов и метод наименьших квадратов, а также была начата работа по исследованию нормального распределения ошибок.
  8. После учебы Гаусс отправился жить в Брауншвейг, где он был удостоен стипендии. Там же математик начал работу над доказыванием основной теоремы алгебры.
  9. Карл Гаусс являлся членом-корреспондентом Петербургской Академии наук. Данное почетное звание он получил после того, как обнаружил месторасположение малой планеты Цереры, произведя ряд сложнейших математических расчетов. Вычисление траектории Цереры математическим путем сделало имя Гаусса известным всему ученому миру.
  10. Изображение Карла Гаусса имеется на денежной банкноте Германии достоинством в 10 марок.
  11. Имя великого европейского математика отмечено на спутнике Земли – Луне.
  12. Гаусс разработал абсолютную систему единиц: принял за единицу массы – 1 грамм, за единицу времени – 1 секунду, за единицу длины – 1 миллиметр.
  13. Карл Гаусс известен своими исследованиями не только в алгебре, но также и в физике, геометрии, геодезии и астрономии.
  14. В 1836 году совместно со своим другом физиком Вильгельмом Вебером Гаусс создал общество по изучению магнетизма.
  15. Гаусс очень боялся критики и непонимания со стороны его современников, направленных в его адрес.
  16. В среде уфологов бытует мнение, что самым первым человеком, предложившим установить контакт с внеземными цивилизациями, был великий немецкий математик — Карл Гаусс. Он высказал свою точку зрения, согласно которой нужно было в сибирских лесах вырубить участок в форме треугольника и засеять его пшеницей. Инопланетяне, увидев такое необычное поле в виде аккуратной геометрической фигуры, должны были понять, что на планете Земля живут разумные существа. Но доподлинно неизвестно, выступал ли на самом деле Гаусс с подобным заявлением, либо же, эта история является чьей-то выдумкой.
  17. В 1832 году Гауссом была разработана конструкция электрического телеграфа, которую он спустя некоторое время доработал и усовершенствовал совместно с Вильгельмом Вебером.
  18. Великий европейский математик был дважды женат. Своих жен он пережил, а они в свою очередь оставили ему 6 детей.
  19. Гаусс проводил исследования в области оптоэлектроники и электростатики.

Гаусс – математический король

На жизнь юного Карла повлияло желание его матери сделать из него не грубого и неотесанного человека, каким был его отец, а умную и разностороннюю личность . Она искренне радовалась успехам сына и боготворила его до конца своей жизни.

Гаусса многие ученые считали отнюдь не математическим королем Европы, его называли королем мира за все исследования, труды, гипотезы, доказательства, созданные им.

В последние годы жизни математического гения ученые мужи воздавали ему славу и почет, но, несмотря на популярность и мировую известность Гаусс так и не обрел полноценного счастья. Однако же по воспоминаниям его современников великий математик предстает позитивным, дружелюбным и жизнерадостным человеком.

Гаусс работал практически до своей кончины – 1855 года . До самой смерти этот талантливый человек сохранял ясность ума, юношескую жажду к знаниям и вместе с тем безграничное любопытство.

div align=»justify»>

Карл Гаусс (1777 – 1855) – великий немецкий математик, механик, физик, геодезист.

Он считается одним из величайших математиков всех времён и прозван «королём математики».

Гаусс открыл множество законов в алгебре и геометрии, дал первые строгие доказательства Основной теоремы алгебры, открыл кольцо целых комплексных чисел, названных гауссовыми, сформулировал и доказал огромное множество теорем.

При этом Гаусс отличался невероятной строгостью по отношению к своим публикациям: он никогда не печатал свои работы, даже безупречные, если считал их незавершёнными.

Это привело к тому, что приоритет в ряде открытий, совершённых им, достался другим учёным, которые сделали их в одно время с ним или даже на десятилетия позже:

Несмотря на это, математические заслуги Гаусса отнюдь не умаляются. Многие его ученики впоследствии также стали выдающимися учёными.

Ребёнок-вундеркинд

Родился Кар Гаусс 30.02.1777 года. Гениальные умственные способности Кар Гаусс показывал с двухлетнего возраста. В три года он умел писать и читать, а считал наравне с отцом и даже исправлял его ошибки.

Существует легенда, что однажды в школе учителю необходимо было надолго отлучиться. Чтобы занять учеников, он дал им задание – вычислить сумму всех чисел от 1 до 100. Пока остальные школьники кропотливо складывали, Гаусс заметил, что числа с противоположных концов складываются в одинаковые суммы, то есть 100 + 1 = 101, 99 + 2 = 101 и так далее.

Он моментально нашёл нужную сумму, умножив 101 на 50, получилось 5050. Неизвестно, насколько правдива эта история, однако Гаусс до старости большинство вычислений производил в уме.

Знаток языков

Помимо математики, Гаусса интересовала филология. Он колебался между этими двумя дисциплинами, но поступил в итоге на математический факультет. Гаусс знал множество языков, в том числе и русский, который он выучил из-за любви к русской литературе и для того, чтобы прочитать в оригинале работы Лобачевского. Нравилась ему латынь, поэтому значительную часть своих трудов он написал на этом языке.

Нормальный закон распределения

Нормальный закон распределения – часто встречающееся в природе явление, связанное с распределением вероятностей. График этого явления часто называют гауссианой, несмотря на то, что Гаусс не был первооткрывателем этого закона. Он только его изучил, но изучил весьма тщательно.

Гаусс и астрономия

Отдельные труды Гаусса посвящены астрономии. В них он занимался небесной механикой, исследовал орбиты малых планет и открыл способ определять элементы орбиты по трём известным величинам.

Пушка Гаусса

Именем Гаусса названа также электромагнитная пушка – устройство, выстреливающее металлическим снарядом за счёт электромагнитной энергии. Гаусс – первооткрыватель электромагнетизма, с чем и связано название пушки.

Математик Гаусс был замкнутым человеком. Эрик Темпл Белл, который изучал его биографию, считает, что если бы Гаусс опубликовал все свои исследования и открытия в полном объеме и вовремя, то могло бы прославиться еще с полдюжины математиков. А так им пришлось потратить львиную долю времени, чтобы узнать, каким образом ученый получил те или другие данные. Ведь он редко публиковал методы, его всегда интересовал только результат. Выдающийся математик, и неподражаемая личность — это все Карл Фридрих Гаусс.

Ранние годы

Будущий математик Гаусс родился 30.04.1777 г. Это, конечно, странное явление, но выдающиеся люди чаще всего рождаются в бедных семьях. Так случилось и в этот раз. Его дедушка был обычным крестьянином, а отец работал в герцогстве Брауншвейг садовником, каменщиком или водопроводчиком. Родители узнали, что их ребенок вундеркинд, когда малышу исполнилось два года. Спустя год Карл уже умеет считать, писать и читать.

В школе его способности заметил учитель, когда дал задание подсчитать сумму чисел от 1 до 100. Гауссу быстро удалось понять, что все крайние числа в паре составляют 101, и за считанные секунды он решил это уравнение, умножив 101 на 50.

Юному математику несказанно повезло с учителем. Тот помогал ему во всем, даже похлопотал за то, чтобы начинающему дарованию выплачивали стипендию. С ее помощью Карл сумел окончить колледж (1795 год).

Студенческие годы

После колледжа Гаусс учится в Геттингенском университете. Этот период жизни биографы обозначают как самый плодотворный. В это время ему удалось доказать, что начертить правильный семнадцатиугольник, используя лишь циркуль, представляется возможным. Он уверяет: можно нарисовать не только семнадцатиугольник, но и другие правильные многоугольники, пользуясь только циркулем и линейкой.

В университете Гаусс начинает вести специальную тетрадь, куда заносит все записи, которые касаются его исследований. Большинство из них были скрыты от глаз общественности. Для друзей он всегда повторял, что не сможет опубликовать исследование или формулу, в которых не уверен на 100%. По этой причине большинство из его идей были открыты другими математиками спустя 30 лет.

«Арифметические исследования»

Вместе с окончанием университета математик Гаусс закончил свой выдающийся труд «Арифметические исследования» (1798), но его напечатали лишь спустя два года.

Это обширное сочинение определило дальнейшее развитие математики (в частности, алгебры и высшей арифметики). Основная часть работы сосредоточена на описании абиогенеза квадратичных форм. Биографы уверяют, что именно с него начинаются открытия Гаусса в математике. Ведь он был первым математиком, у кого получилось вычислять дроби и переводить их в функции.

Также в книге можно отыскать полную парадигму равенств деления круга. Гаусс умело применяет эту теорию, пытаясь решить проблему начертания многоугольников при помощи линейки и циркуля. Доказывая эту вероятность, Карл Гаусс (математик) вводит ряд чисел, которые называют числами Гаусса (3, 5, 17, 257, 65337). Это значит, что при помощи простых канцелярских предметов можно построить 3-угольник, 5-угольник, 17-угольник и т.д. А вот 7-угольник построить не получится, ведь 7 не является «числом Гаусса». К «своим» числа математик также относит двойки, что умноженные на любую степень его ряда чисел (2 3 , 2 5 и т.д.)

Этот результат можно назвать «чистой теоремой существования». Как уже было сказано вначале, Гаусс любил публиковать итоговые результаты, но никогда не указывал методы. Так же и в этом случае: математик утверждает, что построить вполне реально, вот только не уточняет, как именно это сделать.

Астрономия и царица наук

в 1799 году Карл Гаусс (математик) получает титул приват-доцента Брауншвейнского университета. Спустя два года ему предоставляют место в Петербургской Академии наук, где он выступает в качестве корреспондента. Он все еще продолжает изучать теорию чисел, но круг его интересов расширяется после открытия небольшой планеты. Гаусс пытается вычислить и указать ее точное местонахождение. Многие задаются вопросом, как называлась планета по вычислениям математика Гаусса. Однако немногим известно, что Церера — не единственная планета, с которой работал ученый.

В 1801 году впервые было обнаружено новое небесное тело. Это случилось неожиданно и внезапно, точно так же неожиданно планета была утеряна. Гаусс попытался обнаружить ее, применяя математические методы, и, как ни странно, она была именно там, куда указал ученный.

Астрономией ученый занимается более двух десятилетий. Всемирную известность получает метод Гаусса (математика, которому принадлежит множество открытий) для определения орбиты с помощью трех наблюдений. Три наблюдения — это место, в котором располагается планета в разный период времени. С помощью этих показателей была вновь найдена Церера. Точно таким же образом обнаружили еще одну планету. С 1802 года на вопрос, как называется планета, обнаруженная математиком Гаусса, можно было отвечать: «Паллада». Забегая немного вперед, стоит отметить, что в 1923 году именем известного математика назвали крупный астероид, вращающийся вокруг Марса. Гауссия, или астероид 1001, — это официально признанная планета математика Гаусса.

Это были первые исследования в области астрономии. Возможно, созерцание звездного неба стало причиной того, что человек, увлеченный числами, принимает решение обзавестись семьей. В 1805 году берет в жены Иоганну Остгоф. В этом союзе у пары рождается трое детей, но младший сын умирает в младенчестве.

В 1806 году скончался герцог, который покровительствовал математику. Страны Европы наперебой начинают приглашать Гаусса к себе. С 1807 года и до последних своих дней Гаусс возглавляет кафедру в Геттингенском университете.

В 1809 году умирает первая жена математика, в этом же году Гаусс издает свое новое творение — книгу под названием «Парадигма перемещения небесных тел». Методы для вычисления орбит планет, что изложены в этом труде, актуальны и сегодня (правда, с небольшими поправками).

Главная теорема алгебры

Начало ХІХ века Германия встретила в состоянии анархии и упадка. Эти годы были тяжелыми для математика, но он продолжает жить дальше. В 1810 году Гаусс второй раз связывает себя узами брака — с Минной Вальдек. В этом союзе у него появляется еще трое детей: Тереза, Вильгельм и Ойген. Также 1810 год был ознаменован получением престижной премии и золотой медали.

Гаусс продолжает свою работу в областях астрономии и математики, исследуя все больше и больше неизвестных составляющих этих наук. Его первая публикация, посвященная основной теореме алгебры, датируется 1815 годом. Главная идея заключается в следующем: число корней многочлена прямопропорциональна его степени. Позже высказывание приобрело несколько иной вид: любое число в степени, не равной нолю, априори имеет как минимум один корень.

Впервые он доказал это еще в 1799 году, но не был доволен своей работой, поэтому публикация вышла в свет спустя 16 лет, с некоторыми поправками, дополнениями и вычислениями.

Неевклидова теория

Согласно данным, в 1818 году Гауссу первому удалось построить базу для неевклидовой геометрии, теоремы которой были бы возможны в реальности. Неевклидовая геометрия представляет собой область науки, отличимой от евклидовой. Основная особенность евклидовой геометрии — в наличии аксиом и теорем, которые не требуют подтверждений. В своей книге «Начала» Евклид вывел утверждения, которые должны приниматься без доказательств, ведь они не могут быть изменены. Гаусс был первым, кому удалось доказать, что теории Евклида не всегда могут восприниматься без обоснований, так как в определенных случаях они не имеют прочной базы доказательств, которая удовлетворяет всем требованиям эксперимента. Так появилась неевклидова геометрия. Конечно, основные геометрические системы были открыты Лобачевским и Риманом, но метод Гаусса — математика, умеющего смотреть вглубь и находить истину, — положил начало этому разделу геометрии.

Геодезия

В 1818 году правительство Ганновера решает, что назрела необходимость измерить королевство, и это задание получил Карл Фридрих Гаусс. Открытия в математике на этом не закончились, а лишь приобрели новый оттенок. Он разрабатывает необходимые для выполнения задания вычислительные комбинации. В их число вошла гауссова методика «малых квадратов», которая подняла геодезию на новый уровень.

Ему пришлось составлять карты и организовывать съемку местности. Это позволило приобрести новые знания и поставить новые эксперименты, поэтому в 1821 году он начинает писать работу, посвященную геодезии. Этот труд Гаусса опубликовали в 1827, под названием «Общий анализ неровных плоскостей». В основу этой работы были положены засады внутренней геометрии. Математик считал, что необходимо рассматривать предметы, которые находятся на поверхности, как свойства самой поверхности, обращая внимание на длину кривых, игнорируя при этом данные объемлющего пространства. Несколько позже эта теория была дополнена трудами Б. Римана и А. Александрова.

Благодаря этому труду в научных кругах начало появляться понятие «гауссова кривизна» (определяет меру искривления плоскости в определенной точке). Начинает свое существование дифференциальная геометрия. И чтобы результаты наблюдений были достоверными, Карл Фридрих Гаусс (математик) выводит новые методы получения величин с высоким уровнем вероятности.

Механика

В 1824 году Гаусс был заочно включен в состав членов Петербургской Академии наук. На этом его достижения не заканчиваются, он все так же упорно занимается математикой и презентует новое открытие: «целые числа Гаусса». Под ними подразумевают числа, имеющие мнимую и вещественную часть, которые являются целыми числами. По сути, своими свойствами гауссовские числа напоминают обычные целые, но те небольшие отличительные характеристики позволяют доказать биквадратичный закон взаимности.

В любое время он был неподражаем. Гаусс — математик, открытия которого так тесно переплетены с жизнью, — в 1829 году внес новые коррективы даже в механику. В это время вышел его небольшой труд «О новом универсальном принципе механики». В нем Гаусс доказывает, что принцип малого воздействия, можно по праву считать новой парадигмой механики. Ученный уверяет, что этот принцип можно применять ко всем механическим системам, которые связаны между собой.

Физика

С 1831 года Гаусс начинает страдать от тяжелой бессонницы. Болезнь проявилась после смерти второй супруги. Он ищет утешения в новых исследованиях и знакомствах. Так, благодаря его приглашению в Геттинген приехал В. Вебер. С молодой талантливой личностью Гаусс быстро находит общий язык. Они оба увлечены наукой, и жажду знаний приходится унимать, обмениваясь своими наработками, догадками и опытом. Эти энтузиасты быстро принимаются за дело, посвящая свое время исследованию электромагнетизма.

Гаусс, математик, биография которого имеет большую научную ценность, в 1832 году создал абсолютные единицы, которыми и сегодня пользуются в физике. Он выделял три основные позиции: время, вес и расстояние (длина). Наряду с этим открытием в 1833 году, благодаря совместным исследованиям с физиком Вебером, Гауссу удалось изобрести электромагнитный телеграф.

1839 год ознаменован выходом еще одного сочинения — «Об общем абиогенезе сил тяготения и отталкивания, что действуют прямопропорционально расстоянию». На страницах подробно описан знаменитый закон Гаусса (еще известный как теорема Гаусса-Остроградского, или просто Этот закон является одним из основных в электродинамике. Он определяет связь между электрическим потоком и суммой заряда поверхности, делимые на электрическую постоянную.

В этом же году Гаусс освоил русский язык. Он направляет письма в Петербург с просьбой выслать ему русские книги и журналы, особенно желал он ознакомиться с произведением «Капитанская дочка». Этот факт биографии доказывает, что, помимо способностей к вычислению, у Гаусса было множество других интересов и увлечений.

Просто человек

Гаусс никогда не спешил публиковаться. Он долго и кропотливо проверял каждую свою работу. Для математика все имело значение: начиная от правильности формулы и заканчивая изяществом и простотой слога. Он любил повторять, что его работы — как только что построенный дом. Владельцу показывают только конечный результат работы, а не остатки леса, которые раньше были на месте жилого помещения. Также и с его работами: Гаусс был уверен, что никому не стоит показывать черновые наброски исследования, только готовые данные, теории, формулы.

Гаусс всегда проявлял живой интерес к наукам, но особенно его интересовала математика, которую он считал «царицей всех наук». И природа не обделила его умом и талантами. Даже находясь в преклонном возрасте, он, по обычаю, проводил большую часть сложных вычислений в уме. Математик никогда заранее не распространялся о своих работах. Как и каждый человек, он боялся, что его не поймут современники. В одном из своих писем Карл говорит о том, что устал вечно балансировать на грани: с одной стороны, он с удовольствием поддержит науку, но, с другой, ему не хотелось ворошить «осиное гнездо непонятливых».

Всю свою жизнь Гаусс провел в Геттингене, только один раз ему удалось побывать в Берлине на научной конференции. Он мог длительное время проводить исследования, опыты, вычисления или измерения, но очень не любил читать лекции. Этот процесс он считал лишь досадной необходимостью, но если у него в группе появлялись талантливые ученики, он не жалел для них ни времени, ни сил и долгие годы поддерживал переписку обсуждая важные научные вопросы.

Карл Фридрих Гаусс, математик, фото, которого размещены в этой статье, был поистине удивительным человеком. Выдающимися знаниями мог похвастаться не только в области математики, но и с иностранными языками «дружил». Свободно разговаривал на латыни, английском и французском, освоил даже русский. Математик читал не только научные мемуары, но и обычную художественную литературу. Особенно ему нравились произведения Диккенса, Свифта и Вальтера Скотта. После того как его младшие сыновья эмигрировали в США, Гаусс начал интересоваться американскими писателями. Со временем пристрастился к датским, шведским, итальянским и испанским книгам. Все произведения математик непременно читал в оригинале.

Гаусс занимал весьма консервативную позицию в общественной жизни. С ранних лет он ощущал зависимость от людей, наделенных властью. Даже когда в 1837 году в университете начался протест против короля, который урезал профессорам содержание, Карл не стал вмешиваться.

Последние годы

В 1849 год Гаусс отмечает 50-летие присвоения докторской степени. К нему приехали и это обрадовало его намного больше, чем присвоение очередной награды. В последние годы своей жизни уже много болел Карл Гаусс. Математику было сложно передвигаться, но ясность и острота разума от этого не пострадали.

Незадолго до смерти здоровье Гаусса ухудшилось. Врачи диагностировали болезнь сердца и нервное перенапряжение. Лекарства практически не помогали.

Математик Гаусс умер 23 февраля 1855 года, в возрасте семидесяти восьми лет. похоронили в Геттингене и, согласно его последней воле, выгравировали на надгробной плите правильный семнадцатиугольник. Позже его портреты напечатают на почтовых марках и денежных купюрах, страна навсегда запомнит своего лучшего мыслителя.

Таким был Карл Фридрих Гаусс — странным, умным и увлеченным. И если спросят, как называется планета математика Гаусса, можно не спеша ответить: «Вычисления!», ведь именно им он посвятил всю свою жизнь.

Математик и историк математики Джереми Грей рассказывает Гауссе и его огромном вкладе в науку, о теории квадратичных форм, открытии Цереры, и неевклидову геометрию*

Портрет Гаусса Эдуарда Ритмюллера на террасе обсерватории Геттингена // Карл Фридрих Гаусс: Титан науки Г. Уолдо Даннингтона, Джереми Грея, Фриц-Эгберт Дохе

Карл Фридрих Гаусс был немецким математиком и астрономом. Он родился у бедных родителей в Брауншвейге в 1777 году и скончался в Геттингене в Германии в 1855 году, и к тому времени все, кто его знал, считали его одним из величайших математиков всех времен.

Изучение Гаусса

Как мы изучаем Карла Фридриха Гаусса? Ну, когда дело доходит до его ранней жизни, мы должны полагаться на семейные истории, которыми поделилась его мать, когда он стал знаменитым. Конечно, эти истории склонны к преувеличению, но его замечательный талант был заметен, уже когда Гаусс был в раннем подростковом возрасте. С тех пор у нас появляется все больше записей о его жизни.
Когда Гаусс вырос и стал замечен, у нас начали появляться письма о нем людьми, которые его знали, а также официальными отчетами разного рода. У нас также есть длинная биография его друга, написанная на основе бесед, которые они имели в конце жизни Гаусса. У нас есть его публикации, у нас очень много его писем к другим людям, и много материала он написал, но так и не опубликовал. И, наконец, у нас есть некрологи.

Ранняя жизнь и путь к математике

Отец Гаусса занимался различными делами, был рабочим, мастером строительной площадки и купеческим ассистентом. Его мать была умной, но едва грамотной, и посвятила всю себя Гауссу до самой своей смерти в возрасте 97 лет. Похоже, что Гаусс был замечен как одаренный ученик еще в школе, в одиннадцать лет, его отца убедили отправить его в местную академическую школу, вместо того, чтобы заставить его работать. В то время Герцог Брауншвейгский стремился модернизировать своё герцогство, и привлекал талантливых людей, которые бы помогли ему в этом. Когда Гауссу исполнилось пятнадцать, герцог привел его в коллегию Каролинум для получения им высшего образования, хотя к тому времени Гаусс уже самостоятельно изучил латынь и математику на уровне высшей школы. В возрасте восемнадцати лет он поступил в Геттингенский университет, а в двадцать один уже написал докторскую диссертацию.


Первоначально Гаусс собирался изучать филологию, приоритетный предмет в Германии того времени, но он также проводил обширные исследования по алгебраическому построению правильных многоугольников. n — 1, являющейся одновременно очень оригинальной и в то же время легко воспринимаемой, а также гораздо более сложную теорию, называемую теорией квадратичной формой. Это уже привлекло внимание двух ведущих французских математиков, Джозефа Луи Лагранжа и Адриена Мари Лежандра, которые признали, что Гаусс ушел очень далеко за пределы всего того, что они делали.

Вторым важным событием было повторное открытие Гауссом первого известного астероида. Он был найден в 1800 году итальянским астрономом Джузеппе Пьяцци, который назвал его Церерой в честь римской богини земледелия. Он наблюдал ее в течение 41 ночи, прежде чем она исчезла за солнцем. Это было очень захватывающее открытие, и астрономы очень хотели знать, где он появится снова. Только Гаусс рассчитал это правильно, чего не сделал никто из профессионалов, и это сделало его имя как астронома, которым он и остался на многие годы вперед.

Поздняя жизнь и семья

Первая работа Гаусса была математиком в Геттингене, но после открытия Цереры, а затем и других астероидов он постепенно переключил свои интересы на астрономию, а в 1815 году стал директором Геттингенской обсерватории, и занимал эту должность почти до самой смерти. Он также оставался профессором математики в Геттингенском университете, но это, похоже, не требовало от него большого преподавания, а записи о его контактах с молодыми поколениями была довольно незначительной. Фактически, он, кажется, был отчужденной фигурой, более комфортной и общительной с астрономами, и немногими хорошими математиками в его жизни.

В 1820-х годах он руководил массированным исследованием северной Германии и южной Дании и в ходе этого переписывал теорию геометрии поверхностей или дифференциальную геометрию, как ее называют сегодня.

Гаусс женился дважды, в первый раз довольно счастливо, но когда его жена Джоанна умерла во время родов в 1809 году, он снова женился на Минне Вальдек, но этот брак оказался менее успешным; Она умерла в 1831 году. У него было трое сыновей, двое из которых эмигрировали в Соединенные Штаты, скорее всего, потому что их отношения с отцом были проблемными. В результате в Штатах существует активная группа людей, которые ведут свое происхождение от Гаусса. У него также было две дочери, по одной от каждого брака.

Величайший вклад в математику

Рассматривая вклад Гаусса в этой области, мы можем начать с метода наименьших квадратов в статистике, который он изобрел, чтобы понять данные Пьяцци и найти астероид Церера. Это был прорыв в усреднении большого количества наблюдений, все из которых были немного не точными, чтобы получить из них наиболее достоверную информацию. Что касается теории чисел, говорить об этом можно очень долго, но он сделал замечательные открытия о том, какие числа могут быть выражены квадратичными формами, которые являются выражениями вида . Вам может казаться, что это важно, но Гаусс превратил то, что было собранием разрозненных результатов в систематическую теорию, и показал, что многие простые и естественные гипотезы имеют доказательства, которые лежат в том, что похоже на другие разделы математики вообще. Некоторые приемы, которые он изобрел, оказались важными и в других областях математики, но Гаусс обнаружил их еще до того, как эти ветви были правильно изучены: теория групп — пример.

Его работа по уравнениям вида и, что более удивительно, по глубоким особенностям теории квадратичных форм, открыла использование комплексных чисел, например, для доказательства результатов о целых числах. Это говорит о том, что многое происходило под поверхностью предмета.

Позже, в 1820-х годах, он обнаружил, что существует концепция кривизны поверхности, которая является неотъемлемой частью поверхности. Это объясняет, почему некоторые поверхности не могут быть точно скопированы на другие, без преобразований, как мы не можем сделать точную карту Земли на листе бумаги. Это освободило изучение поверхностей от изучения твердых тел: у вас может быть яблочная кожура, без необходимости представления яблока под ней.

Поверхность с отрицательной кривизной, где сумма углов треугольника меньше, чем у треугольника на плоскости //source:Wikipedia

В 1840-х годах, независимо от английского математика Джорджа Грина, он изобрел предмет теории потенциала, который является огромным расширением исчисления функций нескольких переменных. Это правильная математика для изучения гравитации и электромагнетизма и с тех пор используется во многих областях прикладной математики.

И мы также должны помнить, что Гаусс открыл, но не опубликовал довольно много. Никто не знает, почему он так много сделал для себя, но одна теория состоит в том, что поток новых идей, которые он держал в голове был еще более захватывающим. Он убедил себя в том, что геометрия Евклида не обязательно истинна и что по крайней мере одна другая геометрия логически возможна. Слава этому открытию досталась двум другим математикам, Бойяю в Румынии-Венгрии и Лобачевскому в России, но только после их смерти — настолько это было спорно в то время. И он много работал над так называемыми эллиптическими функциями — вы можете рассматривать их как обобщения синусоидальных и косинусных функций тригонометрии, но, если более точно, они являются сложными функциями комплексной переменной, а Гаусс изобрел целую теорию из них. Десять лет спустя Абель и Якоби прославились тем, что сделали то же самое, не зная, что это уже сделал Гаусс.

Работа в других областях

После своего повторного открытия первого астероида, Гаусс много работал над поиском других астероидов и вычислением их орбит. Это была трудная работа в докомпьютерную эпоху, но он обратился к своим талантам, и он, похоже, почувствовал, что это работа позволила ему выплатить свой долг принцу и обществу, которое дало ему образование.

Кроме того, во время съемки в северной Германии он изобрел гелиотроп для точной съемки, а в 1840-х годах он помог создать и построить первый электрический телеграф. Если бы он также подумал об усилителях, он мог бы отметиться и в этом, так как без них сигналы не могли путешествовать очень далеко.

Прочное Наследие

Есть много причин, почему Карл Фридрих Гаусс по-прежнему так актуален сегодня. Прежде всего, теория чисел превратилась в огромный предмет с репутацией очень сложного. С тех пор некоторые из лучших математиков тяготеют к нему, и Гаусс дал им способ приблизиться к нему. Естественно, некоторые проблемы, которые он не смог решить, привлекли к себе внимание, поэтому вы можете сказать, что он создал целую область исследований. Оказывается, у этого также есть глубокие связи с теорией эллиптических функций.

Кроме того, его открытие внутренней концепции кривизны обогатило все изучение поверхностей и вдохновило на многие годы работы последующие поколения. Любой, кто изучает поверхности, от предприимчивых современных архитекторов до математиков, находится у него в долгу.

Внутренняя геометрия поверхностей простирается до идеи внутренней геометрии объектов более высокого порядка, таких как трехмерное пространство и четырехмерное пространство-время.

Общая теория относительности Эйнштейна и вся современная космология, в том числе изучение черных дыр, стали возможными благодаря тому, что Гаусс совершил этот прорыв. Идея неевклидовой геометрии, столь шокировавшая в свое время, заставляла людей осознавать, что может быть много видов строгой математики, некоторые из которых могут быть более точными или полезными — или просто интересными -, чем те, о которых мы знали.

Неевклидова геометрия //

Многих ли выдающихся математиков Вы можете вспомнить не задумываясь? А можете ли Вы назвать тех из них, кто при жизни получил заслуженное звание «король математиков»? Одним из немногих этой почести удостоился Карл Гаусс – немецкий математик, физик и астроном.

Мальчик, который рос в бедной семье, уже с двухлетнего возраста проявил незаурядные способности вундеркинда. В три года ребенок отлично считал и даже помогал отцу выявлять неточности в проделанных математических операциях. По преданию, учитель математики задал школьникам задачу сосчитать сумму чисел от 1 до 100, чтобы чем-то занять ребят. С этой задачей блестяще справился маленький Гаусс, заметив, что попарные суммы в противоположных концов одинаковы. С детства и пошла привычка Гаусса любые вычисления проводить в уме.

Будущему математику всегда везло с учителями: они были чутки к способностям юноши и всячески ему помогали. Одним из таких наставников был Бартельс, который посодействовал Гауссу в получении стипендии от герцога, что оказалось значительным подспорьем при обучении юноши в колледже.

Исключителен Гаусс и тем, что долгое время он пытался сделать выбор между филологией и математикой. Гаусс владел многими языками (а особенно любил латынь) и мог быстро выучить любой из них, он понимал литературу; уже в преклонном возрасте математик смог выучить далеко не легкий русский язык, чтобы ознакомиться с трудами Лобачевского в оригинале. Как мы знаем, выбор Гаусса все же пал на математику.

Уже в колледже Гаусс смог доказать закон взаимности квадратичных вычетов, что не удавалось его знаменитым предшественникам – Эйлеру и Лежандру. В это же время Гаусс создает метод наименьших квадратов.

Позже Гаусс доказал возможность построения правильного 17-угольника с помощью циркуля и линейки, а также в общем обосновал критерий такого построения правильных многоугольников. Это открытие было особенно дорого ученому, поэтому он завещал изобразить на своей могиле вписанный в круг 17-угольник.

Математик требовательно относился к своим достижением, поэтому публиковал только те исследования, которыми был доволен: недоработанных и «сырых» результатов в трудах Гаусса мы не найдем. Многие из неопубликованных идей после воскресли в трудах других ученых.

Большую часть времени математик посвятил разработке теории чисел, которую он считал «царицей математики». В рамках исследований им была обоснована теория сравнений, исследованы квадратичные формы и корни из единицы, изложены свойства квадратичных вычетов и др.

В своей докторской диссертации Гаусс доказал основную теорему алгебры, а позже разработал еще 3 ее доказательства разными способами.

Гаусс-астроном прославился «поиском» планеты-беглянки Цереры. За несколько часов математик проделал вычисления, которые позволили точно указать место нахождения «сбежавшей планеты», где она и была обнаружена. Продолжая свои исследования, Гаусс пишет «Теорию небесных тел», где излагает теорию учета возмущений орбит. Вычисления Гаусса позволили наблюдать комету «пожара Москвы».

Велики заслуги Гаусса и в геодезии: «гауссова кривизна», метод конформного отображения и др.

Исследование магнетизма Гаусс проводит со своим молодым другом Вебером. Гауссу принадлежит открытие пушки Гаусса – одной из разновидностей электромагнитного ускорителя масс.Совместно с Вебером Гауссом была разработана также действующая модель сконструированного им же электрического телеграфа.

Метод решения системных уравнений, открытый ученым, был назван методом Гаусса. Метод состоит в последовательном исключении переменных до приведения уравнения к ступенчатому виду. Решение методом Гаусса считается классическим и активно используется и сейчас.

Имя Гаусса известно почти во всех областях математики, а также в геодезии, астрономии, механике. За глубину и оригинальность мысли, за требовательность к себе и гениальность ученый и получил звание «король математиков». Ученики Гаусса стали не менее выдающимися учеными, нежели их наставник: Риман, Дедекинд, Бессель, Мебиус.

Память о Гауссе навсегда осталась в математических и физических терминах (метод Гаусса, дискриминанты Гаусса, прямая Гаусса, Гаусс – единица измерения магнитной индукции и др.). Имя Гаусса носит лунный кратер, вулкан в Антарктиде и малая планета.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

30 апреля 1777 года родился Иоганн Карл Фридрих ГАУСС (в Брауншвейге), выдающийся немецкий математик, механик, астроном и физик, геодезист…

30 апреля
1777 года родился Иоганн Карл Фридрих ГАУСС (в Брауншвейге), выдающийся немецкий математик, механик, астроном и физик, геодезист, один из величайших математиков всех времён.
С его именем связаны фундаментальные исследования почти во всех основных областях математики: в высшей алгебре, теории чисел, дифференциальной и неевклидовой геометрии, математическом анализе, теории функций комплексного переменного, теории вероятностей, а также в аналитической и небесной механике, астрономии, физике и геодезии.
«В каждой области глубина проникновения в материал, смелость мысли и значительность результата были поражающими. Гаусса называли „королём математиков“»
Ныне существует множество терминов, связанных с его именем. Гаусс – это единица магнитной индукции, алгоритм Гаусса – это вычисления даты пасхи, метод Гаусса – это решения систем линейных уравнений. А ещё – нормальное или Гауссово распределение, гауссова кривизна, пушка Гаусса, лента Гаусса, прямая Гаусса…
* * * * *
Уже в 3 года он умел считать и выполнять элементарные вычисления. Однажды, при расчетах своего отца, который был водопроводным мастером, он заметил ошибку в вычислениях. Расчет был проверен, и число, указанное мальчиком было верно.
В 1791 году Гаусс, в качестве одаренного молодого горожанина, был представлен государю. Видимо юноша произвел впечатление на герцога, и он пожаловал Карлу стипендию – 10 талеров в год. В 1792-1795 годах Гаусс был учеником новой гимназии – Коллегии Карла – школы избранных. Его приняли туда благодаря успехам в учебе.
За время обучения он изучил работы Ньютона, «Алгебру» и «Анализ» Эйлера, работы Лагранжа. Первый успех пришел к Гауссу, когда ему не было еще 19 лет – он доказал что можно построить правильный 17-угольник циркулем и линейкой. До самой старости математик большую часть вычислений производил в уме.
Свободно владея множеством языков, Гаусс некоторое время колебался в выборе между филологией и математикой, но предпочёл последнюю. Значительную часть своих трудов он написал на латыни; любил английскую, французскую и русскую литературу. В возрасте 62 лет Гаусс начал изучать русский язык, чтобы ознакомиться с трудами Лобачевского, и вполне преуспел в этом.
В период 1795-1798 годов Гаусс учился в Гёттингенском университете – это наиболее плодотворный период в его жизни.
С 1796 года Гаусс ведёт дневник своих открытий. Многое он, подобно Ньютону, не публиковал, хотя это были результаты исключительной важности (эллиптические функции, неевклидова геометрия и др.). Своим друзьям он пояснял, что публикует только те результаты, которыми доволен и считает завершёнными. Все многочисленные опубликованные труды Гаусса содержат значительные результаты, сырых и проходных работ не было ни одной.
Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки. Катализатором послужило открытие малой планеты Церера (в 1801 году), вскоре после наблюдений потерянной. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления по новому, открытому им же методу, и указал место, где искать беглянку; там она, к общему восторгу, и была вскоре обнаружена.
Слава Гаусса становится общеевропейской. Многие научные общества Европы избирают его своим членом, герцог увеличивает пособие, а интерес Гаусса к астрономии ещё более возрастает.
В 1810 году он получает премию Парижской академии наук и золотую медаль Лондонского королевского общества. Его избирают иностранным членом Петербургской Академии наук (1824).
Исследования Гаусса в теоретической физике в 1830-1840 годы явились результатом тесного общения и совместной научной работы с В. Вебером. Вместе с ним Гаусс создал абсолютную систему электромагнитных единиц и построил в 1833 году первый в Германии электромагнитный телеграф.
Овладев русским языком, Гаусс в письмах в Петербургскую Академию просил прислать ему русские журналы и книги, в частности «Капитанскую дочку» Пушкина.
Работы великого математика оказали огромное влияние на дальнейшее развитие теории притяжения, классической теории электричества, магнетизма и многих отраслей теоретической астрономии.
Скончался Иоганн Карл Фридрих ГАУСС 23 февраля 1855 года в Гёттингене.
—————————————————-
Смотри к/ф о Гауссе «Измеряя мир / Die Vermessung der Welt» по ссылке: https://youtu.be/nWlBLJVYKkY

30 мая также родились

ГАУСС КАРЛ ФРИДРИХ (1777 г. – 1855 г.). 100 знаменитых ученых

ГАУСС КАРЛ ФРИДРИХ

(1777 г. – 1855 г.)

Карл Фридрих Гаусс родился 30 апреля 1777 года в немецком городе Брауншвейг, в очень бедной семье. Его отец работал слесарем, позже освоил другую профессию и стал садовником. Кроме того, он подрабатывал счетоводом в торговой конторе. Мать Карла была дочерью каменщика. В отличие от своего супруга, человека довольно мрачного и сурового, если не сказать грубого, она была мягкой, доброй, веселой и рассудительной женщиной. Карл был ее единственным и горячо любимым ребенком.

Как и многих других героев этой книги, Карла Гаусса вполне можно отнести к вундеркиндам. Его выдающиеся способности к математике обнаружились в самом раннем возрасте. Сам знаменитый ученый рассказывал: «Я научился считать раньше, чем говорить». И, надо сказать, он почти не преувеличивал. Уже в три года Карл умел считать и выполнять элементарные вычисления. В частности, широко известен следующий случай. Однажды в доме собрались товарищи отца по работе, чтобы поделить деньги, вырученные за неделю. Маленький Карл внимательно слушал своего родителя, производившего расчеты вслух. А когда тот закончил, заявил: «Папа, ты ошибся!» Пораженный отец перепроверил свои расчеты и обнаружил, что его трехлетний сынишка оказался абсолютно прав. Так же легко давалось Карлу и чтение. После того, как мать рассказала ему о буквах, он совершенно самостоятельно овладел техникой чтения.

В 1784 году, когда мальчику исполнилось семь лет, он поступил в начальную школу. В течение первых двух лет обучения он был просто хорошим учеником. Выдающиеся способности проявились на третьем году обучения. Как-то учитель, чтобы занять детей, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1 + 100 = 101, 2 + 99 = 101 и т. д., и мгновенно получил результат 50 ? 101 = = 5050. Проучившись в школе четыре года, Карл сразу поступил во второй класс гимназии. Здесь раскрылись и другие таланты одаренного мальчика. Он продемонстрировал незаурядные лингвистические способности, удивительно быстро овладев греческим и латынью. Гаусс некоторое время всерьез размышлял над тем, чему отдать предпочтение – филологии или математике, но в результате остановил свой выбор на точной науке.

В десять лет Карл уже приступил к изучению высшей математики, а в пятнадцать познакомился с трудами Лагранжа, Эйлера и «Математическими принципами натуральной философии» Ньютона. Школьные учителя были так поражены выдающимися способностями Карла, что обратились к герцогу Брауншвейгскому с просьбой финансово поддержать вундеркинда. Это сыграло немаловажную роль в судьбе Карла Гаусса. Он произвел на герцога очень благоприятное впечатление, и тот начал покровительствовать ему, в частности, оплатил обучение в привилегированном учебном заведении – Коллегии Карла, в которой Карл учился с 1792 по 1795 год. К этому же времени относятся и его первые самостоятельные работы.

В 1795 году Гаусс поступил в Геттингенский университет, где занимался под руководством профессора Кестнера. Деньги на обучение также дал герцог Брауншвейгский. В том же году Карл сделал свое первое серьезное открытие: он разработал метод наименьших квадратов[54]. Гаусса считают одним из создателей теории ошибок[55]. Через год он решил классическую задачу о делении круга, продемонстрировал связь этой проблемы с задачей построения правильных многоугольников с помощью линейки и циркуля. Затем он показал, что таким образом теоретически возможно построение многоугольников с количеством углов 3, 5, 17, 257 и 65337 (так называемые гауссовы простые числа), и с числом углов, равным произведению любого (не повторяющегося) числа гауссовых чисел, умноженного на любую степень двойки. Для 17-угольника Гаусс также не только доказал возможность, но и нашел способ построения. Со времен античности это было первое подобное открытие (грекам был известен метод для треугольников и пятиугольников). Сам ученый посчитал это свое достижение очень важным и даже отметил день этого события (30 марта 1796 года) в своем дневнике.

В 1798 году Гаусс, не окончив университет, покинул Геттинген и отправился в Гельмштадт. Здесь под руководством известного математика Пфаффа он написал и защитил диссертацию. Темой ее стало доказательство основной теоремы алгебры, согласно которой, каждое алгебраическое уравнение имеет корни. Также Гаусс доказал, что число корней многочлена равно количеству единиц в показателе его степени. К общей теореме ученый возвращался не раз и позднее предложил еще несколько способов ее доказательства.

Вернувшись в родной Брауншвейг, Гаусс собрал и опубликовал результаты своих исследований, которые довольно быстро принесли молодому математику европейскую известность. Ему еще не было двадцати пяти лет, когда свет увидел его знаменитый трактат «Арифметические исследования» (1801). Надо сказать, что и сейчас, спустя более чем 200 лет, по богатству материала, ряду прекрасных открытий, разнообразию и остроумию доказательств эта работа считается одной из самых выдающихся в теории чисел.

Следует отметить, что научные интересы Карла Гаусса выходили далеко за рамки любимой им математики. В 1801 году произошло событие, благодаря которому его имя было золотыми буквами вписано в историю астрономии. В январе этого года итальянский астроном Пьяцци открыл новое небесное тело. Оно светилось как звезда восьмой величины, но перемещалось среди звезд, и поэтому его приняли за комету. Пьяцци успел произвести только 19 наблюдений, после объект скрылся в лучах Солнца. Попытки астрономов вычислить его орбиту по тому небольшому отрезку, который проследил Пьяцци, успеха не имели. Однако в том же году Карл Гаусс решил эту, казалось бы, непосильную задачу. Он предложил совершенно новый способ вычисления орбиты небесного тела всего лишь по трем наблюдениям. Проведя сложные и трудоемкие вычисления, он доказал, что новое небесное тело представляет собой планету, которая движется по эллиптической орбите между орбитами Марса и Сатурна. Это была первая из открытых астрономами малых планет. Пьяцци дал ей имя Церера. Прогнозы Гаусса относительно орбиты Цереры оказались точными. 7 декабря 1801 года планета была вновь обнаружена в месте, указанном ученым. После этого успеха о Гауссе как о блестящем ученом заговорили не только математики, но и астрономы, он даже был приглашен в Санкт-Петербург на должность директора обсерватории, от которой, правда, отказался.

В дальнейшем, после открытия малых планет Паллады (1802) и Юноны (1804), Гаусс также вычислил их орбиты. При этом исследование движения Паллады было сильно усложнено тем, что ее орбита испытывает возмущения, связанные с близостью Юпитера. Наряду с этими работами Гаусс занимался и еще более сложным вопросом – движением комет. До него ученые даже не были уверены, постоянны ли законы их движения. Гаусс не только утвердительно ответил на этот вопрос, но и значительно упростил процесс расчета орбит комет. Результаты своих астрономических исследований он опубликовал в фундаментальном трактате «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям» (1809). Методы вычисления орбит, изложенные в этом труде, с небольшими изменениями и дополнениями используются до сих пор. В 1810 году за решение задачи о движении Паллады Французский астрономический институт наградил Карла Гаусса золотой медалью.

Но вернемся к карьере знаменитого ученого. В 1807 году Гаусс вместе с семьей переехал в Геттинген, где ему была предложена должность экстраординарного профессора университета и пост директора Геттингенской обсерватории, который он занимал до конца своей жизни. В Геттингене Гаусс продолжил свои астрономические исследования, он занимался изучением возмущений в движении малых планет. Результаты исследований ученый поэтапно публиковал с 1811 по 1818 год в труде «Записки», издававшемся Геттингенским научным обществом. Астрономические вычисления привели Гаусса к целому ряду математических открытий.

На Венском конгрессе 1814–1815 годов Ганновер, историческая область на северо-западе Германии, был признан королевством. В 1818 году Карл Гаусс получил заказ на проведение геодезических работ и составление подробной карты нового королевства. Результатом этой, казалось бы, чисто практической, работы стало то, что Гаусс сделал целый ряд фундаментальных разработок и заложил основы высшей геодезии. Также он изобрел геодезический прибор гелиотроп[56]. Свои теоретические разработки, сделанные в этой области, ученый изложил в труде «Исследования о предметах высшей геодезии», публиковавшемся в 1842–1847 годах. Геодезические исследования Гаусса положили начало и многим чисто математическим находкам, например, для изучения земной поверхности ученый создал внутреннюю геометрию, в рамках которой рассматривались только те свойства поверхности, которые не зависят от ее изгиба. Свои идеи Гаусс изложил в работе «Общие изыскания о кривых поверхностях», изданной в 1827 году. Внутренняя геометрия послужила основой для создания Римановой геометрии – раздела математики, который изучает свойства многомерных пространств, в малых областях которых имеет место геометрия Евклида.

С конца 1820-х годов Карл Гаусс совместно с профессором физики Вильгельмом Эдуардом Вебером много занимался различными физическими исследованиями. Результатом этого сотрудничества стала разработка абсолютной системы единиц, конструирование первого в Германии электромагнитного телеграфа (1833). Еще до этого, в 1829 году, Гаусс сформулировал принцип наименьшего принуждения – один из принципов вариационной механики, позднее названный его именем. В 1835 году ученый основал магнитную обсерваторию. В 1834–1840 годах была издана его работа «О силах, действующих обратно пропорционально квадрату расстояния», содержащая основы теории потенциала и доказательство знаменитой теоремы Остроградского – Гаусса. В 1838 году вышел большой труд «Общая теория земного магнетизма», в 1840-м – «Диоптрические исследования», в которых были заложены основы теории построения изображений в системах линз.

Представляют большой интерес и разработки Карла Гаусса в области неевклидовой геометрии. Они, впрочем, как и многие другие записи ученого, остались неопубликованными. Но из дневников ясно, что к идеям неевклидовой геометрии он пришел не позднее 1818 года. Однако придавать их гласности Гаусс не стал, по всей видимости, из-за недооценки их важности и опасения быть непонятым. В 1840 году изучая работу «Геометрические исследования из теории параллельных линий», опубликованную на немецком языке, он познакомился с теорией Лобачевского. Гаусс хорошо отзывался об этом исследовании, но в одном из писем 1846 года писал, что сам пришел к подобным идеям 54 года назад (то есть когда ему было 15 лет). Тем не менее, работа Лобачевского, по всей видимости, вызвала у пожилого ученого желание… выучить русский язык, с чем он справился примерно за два года (кстати, незадолго до этого Гаусс также овладел санскритом).

В отличие от научной карьеры семейная жизнь Карла Гаусса сложилась отнюдь не гладко. 9 октября 1805 года он женился на Иоганне Остгроф, дочери дубильщика. Супруги обожали друг друга, их совместная жизнь была очень счастливой, но, к сожалению, недолгой. Осенью 1809 года Иоганна скончалась от послеродовых осложнений. Через месяц на Гаусса, глубоко потрясенного смертью жены, обрушилось новое несчастье: умер его новорожденный сын. В 1810 году состоялась помолвка Гаусса с Фредерикой Вильгельминой Вальдек, дочерью университетского профессора права и одной из лучших подруг Иоганны. Хотя у Карла и Фредерики было трое детей, этот брак тоже не принес счастья. Он был омрачен долгой болезнью жены и постоянными конфликтами с детьми. В 1831 году Фредерика умерла.

В повседневной жизни «Король математиков», как называли Карла Гаусса, был человеком легким в общении и очень неприхотливым. Так, например, его кабинет выглядел более чем скромно, он представлял собой небольшую комнату, в которой стоял стол, конторка, узкая софа и кресло. Несмотря на долгие годы напряженной работы и преимущественно сидячий образ жизни, ученый мог похвастаться завидным здоровьем. За всю свою жизнь он лишь дважды принимал лекарства. Однако на 75-м году жизни и его железное здоровье начало сдавать. Гаусс заметил, что очень быстро устает, кроме того, его беспокоили одышка и кашель, мучила бессонница. Врач, ставший частым гостем в доме ученого, обнаружил болезнь сердца и целый ряд других болезней. В результате Гауссу было назначено лечение и предписан строгий режим. На какое-то время его состояние даже улучшилось. Но было уже поздно, здоровье знаменитого ученого оказалось безнадежно подорвано, да и годы давали о себе знать.

23 февраля 1855 года Карла Гаусса не стало. На его надгробии, согласно его завещанию, изображен вписанный в круг правильный 17-угольник, способ построения которого, открытый в 19 лет, прославил ученого…

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Карл Фридрих Гаусс: принц математики

Карл Фридрих Гаусс (1777-1855)

Биография

Иоганн Карл Фридрих Гаусс иногда называют « принцем математиков » и «величайшим математиком». со времен античности ». Он оказал заметное влияние во многих областях математики и науки и считается одним из самых влиятельных математиков в истории.

Гаусс был вундеркиндом. Есть много анекдотов о его раннем детстве, и он сделал свои первые революционные математические открытия еще подростком.

Всего в три года он исправил ошибку в расчетах заработной платы отца, и к пяти годам он регулярно следил за счетами своего отца. Сообщается, что в возрасте 7 лет он удивил своих учителей. суммируя целые числа от 1 до 100 почти мгновенно (быстро заметив, что на самом деле сумма составляет 50 пар чисел, каждая пара в сумме дает 101, всего 5050).К 12 годам он уже посещал гимназию и критиковал геометрию Евклида.

Хотя его семья была бедной и принадлежала к рабочему классу, интеллектуальные способности Гаусса привлекли внимание герцога Брауншвейгского, который отправил его в Коллегиум Каролинум в 15 лет, а затем в престижный Геттингенский университет (который он посещал с 1795 по 1798 год). ). Еще будучи подростком, посещающим университет, Гаусс открыл (или независимо переоткрыл) несколько важных теорем.

Графики плотности простых чисел

В 15 лет Гаусс был первым, кто обнаружил какую-либо закономерность в появлении простых чисел, и эта проблема решила проблему. умы лучших математиков с древних времен.Хотя появление простых чисел казалось почти полностью случайным, Гаусс подошел к проблеме с другой точки зрения, построив график частоты появления простых чисел по мере увеличения числа. Он заметил грубую закономерность или тенденцию: когда числа увеличиваются на 10, вероятность выпадения простых чисел уменьшается примерно в 2 раза (например, шанс получить простое число в числе от 1 до 100 составляет 1 из 4, 1 из 6 шансов выпадения простого числа от 1 до 1000, 1 из 8 шансов от 1 до 10 000, 1 из 10 от 1 до 100 000 и т. Д.).Однако он прекрасно понимал, что его метод просто дает приблизительное значение и, поскольку он не может окончательно доказать свои открытия, держал их в секрете до гораздо более поздних лет.

Семнадцатигранный семиугольник, построенный Гауссом

В annus mirabilis Гаусса 1796 года всего в 19 лет он построил неизвестную до сих пор правильную семнадцатигранную фигуру, используя только линейка и компас, крупный прогресс в этой области со времен греческой математики, сформулировал свою теорему о простых числах о распределении простых чисел среди целых чисел и доказал, что каждое положительное целое число можно представить в виде суммы не более трех треугольных чисел.

Теория Гаусса

Хотя он внес вклад почти во все области математики, теория чисел всегда была любимой областью Гаусса, и он утверждал, что «математика — королева наук, а теория чисел — королева математики». . Пример того, как Гаусс произвел революцию в теории чисел, можно увидеть в его работе с комплексными числами (комбинациями действительных и мнимых чисел).

Представление комплексных чисел

Гаусс дал первое четкое изложение комплексных чисел и исследования функций комплексных переменных в начале 19 века.Хотя мнимые числа, состоящие из и (мнимая единица, равная квадратному корню из -1), использовались еще в 16 веке для решения уравнений, которые нельзя было решить никаким другим способом, и несмотря на новаторский принцип Эйлера. Работая над мнимыми и комплексными числами в 18 веке, до начала 19 века не было четкой картины того, как мнимые числа связаны с действительными числами. Гаусс был не первым, кто интерпретировал комплексные числа графически (Жан-Робер Арган создал свои диаграммы Аргана в 1806 году, а датчанин Каспар Вессель описал аналогичные идеи еще до начала века), но Гаусс, безусловно, был ответственен за популяризацию этой практики и также официально введены стандартные обозначения a + b i для комплексных чисел.В результате теория комплексных чисел получила заметное развитие, и ее потенциал начал раскрываться в полной мере.

В возрасте всего 22 лет он доказал то, что теперь известно как основная теорема алгебры (хотя на самом деле это не касалось алгебры). Теорема утверждает, что каждый непостоянный многочлен от одной переменной над комплексными числами имеет по крайней мере один корень (хотя его первоначальное доказательство не было строгим, он улучшил его позже). Он также показал, что поле комплексных чисел алгебраически «замкнуто» (в отличие от действительных чисел, где решение многочлена с действительными коэффициентами может дать решение в поле комплексных чисел).

Затем, в 1801 году, в возрасте 24 лет, он опубликовал свою книгу «Disquisitiones Arithmeticae», которая сегодня считается одной из самых влиятельных когда-либо написанных математических книг и заложила основы современной теории чисел. Среди прочего, книга содержала ясное изложение метода модулярной арифметики Гаусса и первое доказательство закона квадратичной взаимности (впервые высказанное Эйлером и Лежандром).

Линия наилучшего соответствия по методу наименьших квадратов Гаусса

На протяжении большей части своей жизни Гаусс также сохранял большой интерес к теоретической астрономии и занимал пост директора астрономическая обсерватория в Геттингене на протяжении многих лет.Когда планетоид Церера находился в процессе идентификации в конце 17 века, Гаусс сделал предсказание ее положения, которое сильно отличалось от предсказаний большинства других астрономов того времени. Но когда в 1801 году Церера была наконец открыта, это было почти точно так, как предсказывал Гаусс. Хотя он не объяснил свои методы в то время, это было одно из первых применений метода аппроксимации наименьших квадратов, обычно приписываемого Гауссу, хотя также заявленного французом Лежандром.Гаусс утверждал, что производил логарифмические вычисления в уме.

Однако по мере того, как слава Гаусса распространилась и он стал известен по всей Европе как человек, умеющий решать сложные математические вопросы, его характер ухудшался, и он становился все более высокомерным, горьким, пренебрежительным и неприятным, а не просто застенчивым. Существует множество историй о том, как Гаусс отверг идеи молодых математиков или, в некоторых случаях, объявил их своими собственными.

Гауссова, или нормальная, кривая вероятности

В области вероятности и статистики Гаусс ввел то, что теперь известно как распределение Гаусса, функцию Гаусса и кривую ошибки Гаусса.Он показал, как вероятность может быть представлена ​​колоколообразной или «нормальной» кривой, которая достигает пика около среднего или ожидаемого значения и быстро спадает в сторону плюс / минус бесконечности, что является основным для описания статистически распределенных данных.

Он также провел первое систематическое исследование модульной арифметики — с использованием целочисленного деления и модуля — которая теперь находит применение в теории чисел, абстрактной алгебре, информатике, криптографии и даже в визуальном и музыкальном искусстве.

Занимаясь довольно банальной геодезической работой для Королевского дома Ганновера в годы после 1818 года, Гаусс также изучал форму Земли и начал размышлять о революционных идеях, таких как форма самого пространства.Это заставило его усомниться в одном из центральных принципов всей математики, евклидовой геометрии, которая явно исходила из плоской, а не искривленной Вселенной. Позже он утверждал, что рассматривал неевклидову геометрию (к которой, например, не применима параллельная аксиома Евклида), которая была внутренне последовательной и свободной от противоречий еще в 1800 году. Однако, не желая оспаривать полемику, Гаусс решил не развивать и не публиковать какие-либо из его авангардных идей в этой области, оставив поле открытым для Бойяи и Лобачевского, хотя некоторые до сих пор считают его пионером неевклидовой геометрии.

Кривизна Гаусса

Ганноверские исследования также подогрели интерес Гаусса к дифференциальной геометрии (область математики, имеющая дело с кривыми и поверхностями) и к тому, что стало известно как гауссово кривизна (внутренняя мера кривизны, зависящая только от того, как измеряются расстояния на поверхности, а не от того, как она встроена в пространство). В целом, несмотря на довольно скучный характер его работы, обязанности по уходу за больной матерью и постоянные ссоры с его женой Минной (которая отчаянно хотела переехать в Берлин), это был очень плодотворный период его академической жизни. и он опубликовал более 70 статей между 1820 и 1830 годами.

Достижения Гаусса, однако, не ограничивались чистой математикой. В годы геодезии он изобрел гелиотроп, инструмент, который использует зеркало для отражения солнечного света на больших расстояниях, чтобы отмечать позиции при съемке местности. Позже он сотрудничал с Вильгельмом Вебером в измерениях магнитного поля Земли и изобрел первый электрический телеграф. В знак признания его вклада в теорию электромагнетизма международная единица магнитной индукции известна как гаусс.

Гаусс

Карл Фридрих Гаусс (1777-1855) считается величайший немецкий математик девятнадцатого века. Его открытия и сочинения повлияли и оставили прочный отметка в области теории чисел, астрономии, геодезии, и физика, особенно изучение электромагнетизма.

Гаусс родился в Брауншвейге, Германия, 30 апреля 1777 года. бедным родителям из рабочего класса.Его отец работал садовник и каменщик и считался вертикальным, честный человек. Однако он был суровым родителем, который отговаривал его маленький сын из школы, с ожиданиями что он будет заниматься одним из семейных занятий. К счастью, Мать и дядя Гаусса, Фридрих, узнали гений с самого начала и знал, что он должен развивать этот одаренный интеллект с образованием.

На уроке арифметики в возрасте десяти лет Гаусс проявил свои способности вундеркинда, когда суровый учитель дал следующее задание: «Запишите все числа от 1 до 100 и сложите их сумму.» Когда каждый студент закончил, он должен был принести свою доску. вперед и положите на парту учителя, одну на сверху другого. Учитель ожидал от новичка класс, чтобы уделить время, чтобы закончить это упражнение. Но в несколько секунд, к удивлению учителя, Карл продолжил в переднюю часть комнаты и положил свой грифель на стол. Гораздо позже другие студенты передали свои планшеты.

В конце урока результаты были проверены, с большинством из них ошибаются.Но когда учитель посмотрел на грифельной доске Карла он был поражен, увидев только одно число: 5050. Затем Карлу пришлось объяснить своему учителю, что он нашел результат, потому что он мог видеть, что 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101, так что он может найти 50 пар числа, каждое из которых дает в сумме 101. Таким образом, если 50 умножить на 101, равняется 5050.

В возрасте четырнадцати лет Гаусс смог продолжить свое образование с помощью Карла Вильгельма Фердинанда, герцога Брансуик.После встречи с Гауссом герцог был так впечатлен одаренным студентом с фотографической памятью, которую он пообещал финансовую поддержку, чтобы помочь ему продолжить его учится в Кэролайн-колледже. В конце своего колледжа лет Гаусс сделал потрясающее открытие, что до этого время, как считали математики, было невозможно. Он нашел что правильный многоугольник с 17 сторонами можно было нарисовать, используя просто компас и линейка.Гаусс был так счастлив и гордится своим открытием, что он отказался от своего намерения изучал языки и обратился к математике.

Герцог Фердинанд продолжал оказывать финансовую поддержку молодой друг, как Гаусс, продолжил учебу в Геттингенский университет. Пока он представил доказательство что каждое алгебраическое уравнение имеет хотя бы один корень или решение. Эта теорема бросила вызов математикам. столетий и называется «основной теоремой алгебра».

Следующее открытие

Гаусса было в совершенно другой области математика. В 1801 году астрономы открыли то, что они Мысль была планетой, которую они назвали Церерой. Они в конце концов потеряли Цереру из виду, но их наблюдения были сообщил Гауссу. Затем он вычислил его точное положение, так что его было легко открыть заново. Он также работал над новым методом определения орбит новых астероиды.В конце концов эти открытия привели к тому, что Гаусс назначение профессором математики и директором обсерваторию в Гёттингене, где он оставался в своей официальное положение до его смерти 23 февраля 1855 года.

Карл Фридрих Гаусс, хотя он посвятил свою жизнь математике, хранил свои идеи, проблемы и решения в личные дневники. Он отказался публиковать теории, которые не закончен и не совершенен.Тем не менее, он считается, наряду с с Архимедом и Ньютоном, чтобы быть одним из трех величайшие математики, которые когда-либо жили.

Карл Фридрих Гаусс — Биография, факты и изображения

Жил 1777 — 1855.

Карл Фридрих Гаусс был последним человеком, который знал всю математику.

Он был, вероятно, величайшим математиком, которого когда-либо знал мир, хотя, возможно, Архимед, Исаак Ньютон и Леонард Эйлер также имеют законные права на этот титул.

Примечательны опубликованные работы

Гаусса. В возрасте всего 21 года он написал Disquisitiones Arithmeticae , важность которого для теории чисел приравнивается к важности Евклида Elements для геометрии.

Помимо математики, Гаусс внес весомый вклад в широкий спектр математических и физических наук, включая астрономию, оптику, электричество, магнетизм, статистику и геодезию.

Объявления

Начало

Иоганн Карл Фридрих Гаусс родился 30 апреля 1777 года в городе Брауншвейг, Германия.Его матерью была Доротея Бенце, а отцом — Гебхард Дитрих Гаусс.

Мать Карла была умной, но неграмотной; до замужества она не получала образования, работала домработницей.

Отец Карла сводил концы с концами, как мог, работая в разное время продавцом, мясником, каменщиком, садовником и казначеем в местной страховой компании. Денег всегда не хватало. У Карла был старший сводный брат Георг от первого брака отца, который распался, когда умерла его первая жена.

С самого начала Карл проявил необычный талант к числам; он умел вычислять, прежде чем научился говорить.

Школа

В 1782 году, в возрасте семи лет, Карл поступил в Государственную школу Святой Екатерины. В более поздней жизни он рассказывал юмористические истории о том, как сбивал с толку своего учителя, считая быстрее, чем мог бы более образованный г-н Бюттнер. Мистер Бюттнер имел благоволение и заказал учебник по арифметике, и 8-летний Карл быстро проглотил его упражнения.

Хотя Карл происходил из простой крестьянской семьи, г-н Бюттнер понимал, что однажды мальчик может стать профессором в большом университете — если кто-то даст ему шанс.

Г-н Бюттнер пригласил отца Карла в школу, чтобы обсудить будущее своего сына. Отца Карла это не убедило — его кругозор был очень ограничен. Он надеялся, что Карл станет чернорабочим и поможет содержать семью. Г-н Бюттнер заверил его, что таланты его сына настолько необычны, что у богатого спонсора будут найдены деньги, чтобы мальчик мог продолжить свое образование.

Отец Карла согласился на это, освободив мальчика от работы прядением льна на полставки.

Расширяя горизонты

Карла начал обучать Мартин Бартельс, его старший на восемь лет, хорошо образованный и талантливый математик.Вскоре Бартельс был вдохновлен своим учеником полностью посвятить свою карьеру математике и в конечном итоге стал профессором. Эти двое будут друзьями на всю жизнь.

К 10 годам Карл независимо вывел биномиальную теорему — поистине выдающийся подвиг.

Весть о юном гении достигла ушей герцога Брауншвейгского, который щедро согласился профинансировать его образование.

В 1788 году, в возрасте 11 лет, Карл поступил в гимназию Мартино-Катаринеум, где он преуспел в математике, древнегреческом, латинском и современных языках.

Колледж

В 1792 году, в возрасте 15 лет, при поддержке герцога Карл поступил в Кэролайн-колледж. К 18 годам он получил степень по математике.

Он необычайно глубоко погрузился в тему. Он был особенно увлечен разработками Исаака Ньютона, Леонарда Эйлера и Жозефа-Луи Лагранжа. Его героем был Архимед.

Докторантура

Гаусс учился в докторантуре Геттингенского университета в течение трех лет, начиная с октября 1795 года.

Он уже намного опередил большинство профессоров математики как по широте, так и по глубине знаний. Геттинген с его великолепными библиотечными коллекциями был его идеальным домом.

Он погрузился в современную математику. Он также посещал лекции по лингвистике, физике и астрономии. На самом деле он взял из библиотеки больше книг по гуманитарным наукам, чем по математике.

Хотя он знал, что его способности были особенными, его сокурсники не считали его полностью преданным и блестящим математиком, каким он был.Они считали его скромным и нормальным.

Карл Фридрих Гаусс, математика и естественные науки

Во время учебы в Геттингене излияние новых идей Гауссом навсегда изменило математику.

Строительство гептадекагона

Гептадекагон

Спустя всего шесть месяцев Гаусс решил задачу, которая ставила математиков в тупик на 2000 лет, — построение правильной 17-сторонней фигуры, семиугольника, с помощью только линейки и циркуля.

Древние греки показали, что правильные 3-, 5- и 15-сторонние многоугольники могут быть построены с использованием только линейки и циркуля, но не смогли обнаружить больше таких форм.

Фактически, Гаусс вышел даже за пределы семиугольника. Он открыл математическую формулу, чтобы найти все правильные многоугольники, которые можно построить, используя только линейку и циркуль — и нашел 31. После 17-сторонней фигуры идут фигуры с 51, 85, 255, 257,… .. и 4 294 967 295 сторонами.

Самый замечательный математический дневник

Открыв конструкцию семиугольника, Гаусс понял, что ему обеспечено место в истории как математика высочайшего ранга.

Он вел дневник своих открытий, начиная с семиугольника. Дневник, содержащий 146 открытий, был утерян более 40 лет после его смерти.

1796 год был годом чудес, в нем было 49 записей, некоторые из которых настолько короткие или загадочные, что их значение неясно.

Запись 18, значение которой известно, относится к 10 июля 1796 года. Это открытие Гаусса о том, что каждое целое число может быть образовано путем суммирования не более трех треугольных чисел. Наклоняя шляпу перед Архимедом, Гаусс отметил в своем дневнике:

Ε Υ Ρ Η Κ Α! число = Δ + Δ + Δ

Естественно, освоив древнегреческий язык, 19-летний Гаусс написал «Эврика», как это сделал бы Архимед.

Гаусс был, пожалуй, последним человеком, овладевшим всеми аспектами математики. Сегодня даже такой одаренный человек, как Гаусс, не может знать всю математику; тема стала слишком большой.

Теория чисел

Во время учебы Гаусс сделал много важных открытий в теории чисел, таких как одно из вышеперечисленных.

Теория чисел была его любимой областью. Позже он сказал бы классную фразу:

«Математика — королева наук, а теория чисел — королева математики.”

Карл Фридрих Гаусс

Gauss zum Gedächtniss , 1856

Disquisitiones Arithmeticae — Исследования по арифметике

Герцог Брауншвейгский продолжал финансировать работу Гаусса, поэтому он мог свободно копаться в любых областях, которые его интересовали.

В 1801 году, когда ему было 24 года, он опубликовал одну из величайших работ в истории математики — Disquisitiones Arithmeticae . Он решил написать книгу на совершенной классической латыни, написав большую часть за три года до публикации.В нем он записал формальные доказательства многих своих более ранних открытий.

Disquisitiones Arithmeticae объединила отдельные направления теории чисел. Здесь начинается современная теория чисел. Гаусс задокументировал значительные прорывы, такие как закон квадратичной взаимности, его формулировку современной модульной арифметики и конгруэнтность — идею, лежащую в основе его единого подхода к теории чисел. Поклонники говорили, что Гаусс сделал для теории чисел то же, что Евклид сделал для геометрии.

Вы можете представить себе восхищение Гаусса, когда великий Жозеф-Луи Лагранж, работы которого Гаусс усердно изучал в колледже, отправил ему сообщение:

«Ваша [книга] возвела вас в ранг выдающихся математиков; содержание последнего раздела — прекраснейшее аналитическое открытие, сделанное за долгое время.”

Жозеф-Луи Лагранж

Открытие карликовой планеты Церера

1 января 1801 года Джузеппе Пьяцци в Италии открыл новое небесное тело. Он не знал, что он нашел, кроме того, что это было очень тусклым, звездным, и не было в его звездном каталоге. В течение следующих нескольких ночей он наблюдал, как объект слегка перемещается среди звезд на заднем плане.

Джузеппе Пиацци был единственным человеком, когда-либо наблюдавшим за Церерой, но он потерял ее. Он был снова обнаружен после того, как Гаусс, используя свои собственные математические методы, вычислил его местоположение.Изображение предоставлено NASA / JPL-Caltech.

Он начал верить, что открыл комету, но к 24 января был озадачен. Объект не был похож на комету и двигался слишком медленно.

Пиацци наблюдал его в течение 6 недель, за это время он переместился на 3 градуса по небу. Затем он серьезно заболел. К тому времени, когда он выздоровел, он его потерял. К сожалению, ни один астроном не смог найти его снова, поэтому они попросили математической помощи.

В конце концов, помочь мог только один человек — 24-летний Гаусс, который изобрел новый метод вычисления орбит по минимальному количеству наблюдений.Гаусс не только нашел потерянное тело, но и показал, что его орбита была почти круглой, как у планеты, и вычислил, как далеко объект находится от Солнца.

Объект, названный Церера, оказался совершенно новым классом объектов — астероидом, или, на современном жаргоне, карликовой планетой.

Слава, скромность и устойчивые научные методы

С повторным открытием Цереры Гауссом пришла заслуженная международная известность.

Гаусс скромно похвалил новое открытие теории гравитации Исаака Ньютона и книги Ньютона Principia .Гаусс считал Ньютона величайшим математиком всех времен.

Но Гаусс вышел за рамки Ньютона. Во время своей обширной программы работы по разгадке тайны Цереры он применил два очень мощных новых математических метода, которые он изобрел: метод наименьших квадратов и быстрое преобразование Фурье. Спустя более двух веков эти методы все еще остаются важными научными инструментами.

Профессор, избегавший преподавания

В 1806 году умер герцог Брауншвейгский. Его финансовая поддержка Гаусса тоже умерла.

В следующем году Гаусс принял кафедру астрономии в Геттингене, которую он занимал до конца своей жизни.

Гаусс серьезно относился к своей новой астрономической работе, регулярно используя свой телескоп для наблюдений за ночным небом — ему это действительно нравилось. Он внес несколько практических усовершенствований в астрономические инструменты и руководил строительством новой обсерватории.

Гаусс принял позицию астрономии в основном потому, что она подразумевала минимальное обучение на уровне бакалавриата.Он выразил свое презрение к обучению одного из своих друзей:

«Я испытываю истинное отвращение к преподаванию. Постоянное занятие профессора математики — только преподавать азбуку своей науки… И с этой неблагодарной работой профессор теряет свое благородное время ».

Карл Фридрих Гаусс

Письмо Генриху Ольберсу, 26 октября 1802 г.

Гаусс избегал преподавания не только из учеников Геттингена. Его основные работы, такие как Disquisitiones Arithmeticae , были трудны для всех, кроме лучших математиков, и предлагали мало подсказок относительно того, откуда пришли его идеи.Ссылаясь на эту привычку, Гаусс сказал:

«Когда архитектор завершает красивое здание, он снимает строительные леса».

Карл Фридрих Гаусс

Блестящие студенты

В более поздние годы Гаусс начал получать удовольствие от обучения студентов — не потому, что его взгляды изменились, а потому, что качество студентов улучшилось; он преподавал не только азбуку. Его присутствие в Геттингене действовало как магнит, привлекая таких элитных студентов, как Бернхард Риманн и Рихард Дедекинд.

Со временем Геттинген стал центром математики не только в Германии, но и во всем мире.

«Нам казалось, что Гаусс, несмотря на то, что ранее он не проявлял интереса к чтению курса, теперь получает удовольствие от своей преподавательской деятельности».

Ричард Дедекинд

1901

Астрономия, математика и физика

Гаусс подходил к выпуску научных работ «немного, но созрел». Он был перфекционистом и публиковал только те работы, которые, по его мнению, были безупречными.Многие очень важные открытия, которые он совершил, оставались неопубликованными до его смерти.

В первые годы работы профессором он опубликовал статьи, посвященные рядам, интегралам и статистике. Он также начал очень серьезно относиться к теории потенциала и решению уравнений в частных производных — эти уравнения имеют множество приложений в физике, включая электромагнетизм и гравитацию.

В 1809 году он опубликовал важный двухтомный труд о движении небесных тел — Теория движения небесных тел .

Изобретение гелиотропа

Гелиотроп Гаусса

Гаусс изобрел гелиотроп в 1821 году. Он принимал участие в съемке земли для составления карт и понимал важность записи удаленных друг от друга положений с большой точностью.

Гелиотроп — это зеркало, которое отражает солнечные лучи на очень большие расстояния.

Его недостаток в том, что его можно использовать только при ярком солнечном свете.

Гелиотропы использовались при геодезии в Германии более 150 лет. Они также использовались для обследования США.

Споры с глупыми людьми — пустая трата времени

В молодости Гаусс обнаружил, что не может угнаться за потоком математических идей, неослабевающим в его сознании.

Он решил не публиковать некоторые материалы, которые, по его мнению, слишком опережали свое время, например, неевклидова геометрия.

Гаусс сказал, что не хотел тратить свое драгоценное время на бессмысленные споры с людьми, которые не могли полностью понять его работу.

Электричество и магнетизм

В 1831 году Гаусс начал применять математическую теорию потенциала к реальному миру.54-летний математик помог 27-летнему физику Вильгельму Веберу получить кафедру физики в Геттингене, а затем работал с ним над электричеством и магнетизмом.

Магнитное поле и единицы СИ

В 1832 году с помощью Вебера Гаусс провел эксперименты, результаты которых позволили ему определить магнитное поле Земли в миллиметрах, граммах и секундах. Другими словами, он показал, что магнитное поле Земли можно определить с помощью чисто механических параметров — массы, длины и времени.

Работа дала сильный толчок к использованию единиц СИ.

Телеграф

В 1833 году Гаусс и Вебер изобрели одну из первых в мире телеграфных систем. Они также изобрели двоичный алфавитный код, обеспечивающий связь между физическим корпусом Вебера и астрономической обсерваторией Гаусса на расстоянии примерно 1,5 мили (2,5 км) друг от друга. К 1835 году их телеграфные линии были проложены рядом с первой железной дорогой Германии.

Окружные законы Кирхгофа

В 1833 году Гаусс и Вебер обнаружили, как напряжение и ток распределяются в ветвях электрических цепей: напряжение регулируется законом сохранения энергии, а ток — законом сохранения заряда.Густав Кирхгоф заново открыл законы в 1845 году, и теперь они носят его имя.

Закон Гаусса и закон Гаусса для магнетизма

Гаусс использовал свой огромный математический арсенал для анализа поведения электрических и магнитных полей. Используя свою теорему о расходимости, которую он открыл независимо от Жозефа-Луи Лагранжа, он сформулировал два закона в 1835 году:

  • Закон Гаусса, который связывает электрическое поле с распределением электрических зарядов, которые его вызывают
  • Закон Гаусса для магнетизма, который гласит, что магнитных монополей не существует

Закон Гаусса (для электрических полей и зарядов) и Закон Гаусса для магнетизма.

Написанные математически, эти законы образуют два из четырех уравнений, необходимых для объединения электрического и магнитного полей в единое электромагнитное поле. Объединение было достигнуто Джеймсом Клерком Максвеллом в 1864 году.

«Гаусс … реконструировал всю магнитную науку в том, что касается используемых инструментов, методов наблюдения и расчета результатов …»

Джеймс Клерк Максвелл, 1873 год

Трактат об электричестве и магнетизме, 1873

Но подождите, есть еще

Для документирования всего вклада Гаусса в математику и физические науки потребуется книга.Гаусс может претендовать на гораздо большее количество достижений, чем указано выше. Например,

  • Невероятная вычислительная сила Гаусса позволила ему находить закономерности в числах с большей готовностью, чем большинство математиков. Это позволило ему открыть теорему о простых числах, когда он был подростком. Как это часто бывает, он не опубликовал свое открытие.
  • нормальное распределение / колоколообразную кривую часто называют распределением Гаусса, потому что его открыл Гаусс.
  • , хотя и не был первым, кто использовал комплексные числа, он определил их, установив современные обозначения, и применил комплексные числа для решения научных задач.
  • он открыл область дифференциальной геометрии и опубликовал теорему Egregium , связывающую кривизну поверхности с расстояниями и углами.
  • он стал финансовым волшебником после того, как принял на себя общественную обязанность управлять фондом вдов Геттингена. В результате своей финансовой изобретательности он разбогател, оставив имение стоимостью почти в 200 раз превышающим его годовую зарплату. Если рассматривать это в современном контексте, тот, кто сегодня зарабатывает, например, 50 000 долларов в год, в конечном итоге получит активы в размере почти 10 миллионов долларов.

Некоторые личные данные и конец

Образ жизни
Сообщалось, что

Гаусс был в целом добродушным человеком. Он жил просто, несмотря на накопленное богатство. Он ненавидел путешествия и, став заведующим кафедрой астрономии, уезжал из Геттингена только один раз за 48 лет — чтобы поехать на конференцию в Берлин.

Он был страстно увлечен литературой и сбором фактов, и единственным его удовольствием была личная библиотека, в которой находилось 6000 книг, написанных на языках, которые он освоил, включая датский, английский, французский, греческий, латинский, русский и его родной немецкий.

Семья

Гаусс был женат дважды.

В октябре 1805 года, в возрасте 28 лет, он женился на Йоханне Остхофф. У них было трое детей: Иосиф, который стал армейским офицером; Вильгельмина, вышедшая замуж за академика, и Луи, умерший в возрасте 5 месяцев. К сожалению, жена Гаусса Джоанна умерла в октябре 1809 года, через месяц после рождения Луи.

В октябре 1810 года Гаусс женился на лучшей подруге Джоанны Вильгельмине. У них было трое детей: Юджин, который стал бизнесменом в Америке; Вильгельм, который также стал бизнесменом в Америке; и Тереза, которая до конца жизни вела дом для своего отца, затем вышла замуж за художника.

Любимая мать Гаусса дожила до 97 лет. Она жила в доме своего сына последние 20 лет своей жизни, получая его преданную личную заботу.

Мемориал гептадекагона (и маринованный мозг!)

Карл Фридрих Гаусс мирно скончался во сне в Геттингене 23 февраля 1855 года. Ему было 77 лет. Он был похоронен без мозга на кладбище Альбанифридхоф в Геттингене, недалеко от университета. Его мозг был сохранен и хранится в физиологическом отделении Геттингена.Он все еще там.

В последние годы своей жизни Гаусс так гордился своим юношеским достижением в виде семиугольника, что попросил вырезать форму на его надгробии, точно так же, как у Архимеда была сфера внутри цилиндра, вырезанная на его.

К сожалению, его желание не исполнилось — каменщик сказал, что будет слишком сложно вырезать семиугольник, не напоминающий круг.

Однако в его родном городе Брансуик воздвигнут мемориал в честь Гаусса, и на этом действительно есть семиугольник.

Объявления

Автор этой страницы: The Doc
Изображения, улучшенные и раскрашенные в цифровом виде с помощью этого веб-сайта. © Все права защищены.

Цитируйте эту страницу

Используйте следующую ссылку, соответствующую требованиям MLA:

 «Карл Фридрих Гаусс». Известные ученые. famousscientists.org. 25 июля 2016 г. Web.
. 

Опубликовано FamousScientists.org

Дополнительная литература
Марк Литтманн
Запредельные планеты: открытие внешней Солнечной системы
John Wiley & Sons, Inc., 1990

Джордж М. Рассиас
Математическое наследие К. Ф. Гаусса
World Scientific, 1991

Г. Уолдо Даннингтон, Джереми Грей, Фриц-Эгберт Дозе
Карл Фридрих Гаусс: Титан науки
MAA, 2004

Стивен Хокинг
Бог создал целые числа
Running Press, 2005

Стюарт Холлингдейл
Создатели математики
Dover Publications, 2011

Google Doodle награждает «Принца математиков» Иоганна Карла Фридриха Гаусса

Сегодняшний дудл Google (30 апреля) посвящен математическим и научным достижениям Иоганна Карла Фридриха Гаусса, широко известного как «принц математиков», в день его 241-го дня рождения.

Родившийся в Германии в 1777 году, Гаусс был признан вундеркиндом, когда он был еще маленьким мальчиком; он получил признание за скорость своих численных вычислений, а позже внес новаторский вклад в области теории чисел и алгебры. Он также использовал математику, чтобы успешно предсказать повторное появление «пропавшей» Цереры, самого большого известного астероида в нашей солнечной системе, который исчез за Солнцем вскоре после его открытия в 1801 году, прежде чем его орбита могла быть нанесена на карту.[11 самых красивых математических уравнений]

Гаусс представил свой поразительный расчет вероятной орбиты Цереры, когда ему было всего 24 года — его усилия ознаменовали его введение в астрономию, которая затем стала центром его карьеры на следующие 50 лет. согласно докладу, представленному в 1977 году на симпозиуме, посвященном двухсотлетию со дня его рождения. Статья опубликована Королевским астрономическим обществом Канады.

В возрасте 30 лет Гаусс был назначен профессором астрономии в Геттингенском университете в Германии, а с 1816 года он жил и работал в здании астрономической обсерватории, согласно веб-сайту университета.

В последние годы своей жизни Гаусс изучал электромагнитное поле Земли, изобретая в 1833 году магнитометр — прибор для измерения магнитных сил. В том же году он изобрел одну из первых телеграфных машин, за несколько лет до того, как телеграф был представлен в Америке Сэмюэль Морзе, представители Геттингенского университета написали в биографии математика и астронома.

Гаусс разработал электромагнитный телеграф вместе с коллегой из Геттингенского университета, физиком Вильгельмом Вебером, и, согласно биографии, они использовали его для обмена сообщениями между двумя офисами.Одним из первых сообщений, которые они передали, было предложение «Знание превыше веры, реальность превыше видимости», и на его передачу ушло около 4 минут 30 секунд.

Когда Гаусс умер от сердечного приступа в 1855 году, его современники оплакивали его потерю, называя его «принцем науки», а в 1856 году король Георг V Ганноверский посмертно наградил его медалью, внесенной в журнал «Mathematicorum Principi». «-» Принц математиков «, — сообщил Геттингенский университет.

Оригинальная статья на Live Science .

Гаусс, изумительный математический ум

Говорят, что в возрасте всего трех лет он исправил ошибку в вычислениях своего отца, а к 19 годам он сформулировал свою первую теорему. Гаусс был прежде всего вундеркиндом, который, когда рос, умел поддерживать активным свой любопытный и необычный ум. «Наибольшее удовольствие доставляет не знание, а акт обучения, не обладание, а действие, которое доставляет удовольствие». Его математические работы произвели революцию в арифметике, астрономии и статистике , области, в которой он известен своей знаменитой кривой Гаусса.За свои 77 лет жизни у него также было время собрать личную библиотеку, насчитывающую около 6000 книг. Его научные достижения принесли ему посмертное звание Princeps mathematicorum (на латыни «выдающийся математик»).

Памятник Карлу Фридриху Гауссу в Брауншвейге, Германия. Источник: Викимедиа

Несмотря на то, что он родился в бедной и неграмотной семье в Брунсвике, небольшом городке к западу от Берлина, Карл Фридрих Гаусс (30 апреля 1777 — 23 февраля 1855) вскоре был замечен благодаря своему удивительному уму. .Когда ему было всего семь лет, он удивил своего учителя и одноклассников, легко и быстро вычислив сумму всех натуральных чисел от 1 до 100 — задача, которую весь его класс получил в наказание. Интеллектуальные способности Гаусса привлекли внимание герцога Брауншвейгского, который решил субсидировать его среднее образование и учебу в университете.

Проблема, унаследованная от Древней Греции

В 1796 году он опубликовал свое первое великое достижение, демонстрацию того, что семиугольник, правильный многоугольник с 17 сторонами, можно построить с помощью линейки и циркуля — проблема, унаследованная от Древней Греции, и проблема оставалась без ответа в течение двух тысяч лет .Вскоре после этого он сформулировал теорему о простых числах, которая состоит из описания того, как простые числа распределяются в наборе натуральных чисел. Это одна из важнейших теорем в истории математики, которая позволила продолжить изучение простых чисел. Начиная с того плодотворного года, Гаусс начал вести дневник, в котором он записывал все математические открытия, сделанные им с 1796 по 1814 год, всего в 146 записей.

Правильный гептадекагон с аннотацией.Кредит: Ласло Немет

Гаусс стал особенно известен в 1801 году, когда ему было 24. В начале того же года астрономы наблюдали то, что они считали новой планетой, Церерой, которая вскоре исчезла из поля зрения. Гаусс описал ее орбиту с математической точностью и определил, что это на самом деле астероид (в настоящее время Церера считается карликовой планетой). К всеобщему восхищению, он снова появился в конце того же года, именно там, где и предсказывал Гаусс.

Вскоре он принял должность профессора астрономии в Геттингенской обсерватории, примерно в 100 километрах от своего родного Брансуика, где он стал директором и оставался им до конца своей жизни.Там в 1809 году он определил, как вычислить орбиту планеты с беспрецедентной точностью. В те годы его личная жизнь складывалась не менее плодотворно. Его первая жена умерла, родив ему третьего ребенка, и мальчик также умер вскоре после этого, что привело к глубокой депрессии Гаусса. Несмотря на это, он снова женился и имел еще троих детей.

Столб статистики

Примерно в 1820 году, работая над математическим определением формы и размера земного шара, Гаусс разработал различные инструменты для обработки данных.Наиболее важной была функция Гаусса или кривая колокола, которая является одним из столпов статистики. Это визуальное представление частоты данной группы данных, генерируемых случайными причинами. Примером может служить температура в городе: если мы представим данные о температуре в нашем городе как функцию дней, в которые она достигается, мы обнаружим, что самые экстремальные температуры повторяются несколько раз, в то время как более умеренные температуры имеют гораздо более высокую частоту.Полученный график имеет форму колокола и симметричный, с самыми умеренными температурами в центре и самыми экстремальными по краям колокола. Мы говорим тогда, что эта переменная подчиняется нормальному распределению, и легкость, с которой ее можно использовать для моделирования самых разных ситуаций, делает ее фундаментальным инструментом многих исследований .

Гауссова колоколообразная кривая. Кредит: Индуктивная нагрузка

Гаусс умер во сне 23 февраля 1855 года и был похоронен на Геттингенском кладбище.Он так гордился своим юношеским достижением семиугольника, что попросил вырезать его на своей надгробной плите, точно так же, как у Архимеда была начертана сфера внутри цилиндра. Его желание, однако, не могло быть выполнено, потому что каменотес, получивший задание, обнаружил, что невозможно вылепить семиугольник, если он не будет выглядеть как круг. Блестящий ум Гаусса наверняка знал бы, как это сделать, но его больше не было, чтобы объяснить это.

Бибиана Гарсия

@dabelbi

Карл Фридрих Гаусс — Хронология математики — Mathigon

c.300 г. до н. Э .: Индийский математик Пингала пишет о нуле, двоичных числах, числах Фибоначчи и треугольнике Паскаля.

г. 260 г. до н. Э .: Архимед доказывает, что π находится между 3,1429 и 3,1408.

г. 235 г. до н.э.: Эратосфен использует алгоритм сита для быстрого поиска простых чисел.

г. 200 г. до н. Э .: «Суан шу шу» (Книга о числах и вычислениях) — один из старейших китайских текстов по математике.

г. 100 г. н. Э.: Никомах ставит самую старую нерешенную проблему в математике: существуют ли какие-либо нечетные совершенные числа.

г. 250 г. н.э .: культура майя в Центральной Америке процветает, и в ней используется система счисления с основанием 20.

г. 830 г. н.э .: Аль-Хорезми издает «Китаб аль-джабр ва аль-мукабала», первую книгу об алгебре и тезку по ней.

1202: Liber Abaci Фибоначчи вводит арабские цифры в Европу, а также простую алгебру и числа Фибоначчи.

1482: Первое печатное издание «Элементов» Евклида

1545: Кардано задумал идею комплексных чисел.

1609: Кеплер публикует «Astronomia nova», в которой объясняет, что планеты движутся по эллиптическим орбитам.

1618: Напье публикует первые упоминания числа е в книге по логарифмам.

1637: Ферма утверждает, что доказал Великую теорему Ферма.

1654: Паскаль и Ферма развивают теорию вероятностей.

1684: Лейбниц публикует первую статью по исчислению.

1687: Ньютон издает «Основы математики», содержащие законы гравитации и движения, а также свою версию исчисления.

1736: Эйлер решает проблему Кенигсбергских мостов, изобретая теорию графов.

1761: Ламберт доказывает, что π иррационально

1799: Гаусс доказывает основную теорему алгебры.

1829: Бойяи, Гаусс и Лобачевский изобретают гиперболическую неевклидову геометрию.

1832: Галуа находит общее условие для решения алгебраических уравнений, тем самым основывая теорию групп и теорию Галуа.

1858: Август Фердинанд Мебиус изобретает ленту Мебиуса.

1874: Кантор доказывает, что существуют разные «размеры» бесконечности и что действительные числа неисчислимы.

1895: Статья Пуанкаре «Analysis Situs» положила начало современной топологии.

1905: Эйнштейн объясняет фотоэлектрический эффект и броуновское движение, открывает специальную теорию относительности и E = mc².

1915: Нётер показывает, что каждый закон сохранения в физике соответствует симметрии Вселенной.

1931: Теорема Гёделя о неполноте устанавливает, что математика всегда будет неполной.

1939: Группа французских математиков издает свою первую книгу по теории множеств под псевдонимом Николя Бурбаки.

1961: Лоренц обнаруживает хаотическое поведение в моделировании погоды — эффект бабочки.

1976: Аппель и Хакен доказывают гипотезу четырех цветов с помощью компьютера.

1977: Адельман, Ривест и Шамир вводят криптографию с открытым ключом с использованием простых чисел.

1994: Эндрю Уайлс доказывает Великую теорему Ферма.

2000: Институт математики Клэя опубликовал семь задач, присуждаемых Премией тысячелетия.

2003: Перельман доказывает гипотезу Пуанкаре, единственную из семи решенных на сегодняшний день проблем тысячелетия.

г. 9100 г. до н.э .: старейшее известное сельскохозяйственное поселение на Кипре.

г. 2030 г. до н.э.: шумерский город Ур — самый большой город в мире.

г. 3500 г. до н. Э .: Первые колесные машины появляются в Месопотамии и Восточной Европе.

г. 3200 г. до н.э .: первые системы письма появляются в Месопотамии, Египте и долине Инда.

г. 3000 г. до н.э .: первые свидетельства плавки железной руды для производства кованого железа.

г. 2560 г. до н.э .: Великая пирамида Гизы построена в Древнем Египте для фараона Хуфу.

г. 1754 г. до н.э .: вавилонский царь Хаммурапи издает Кодекс Хаммурапи, один из первых юридических документов.

776 г. до н.э .: Первые Олимпийские игры проходят в Греции.

753 г. до н. Э .: Легендарная дата основания Рима.

г. 563 г. до н.э .: Будда родился в Индии.Его учение стало основой буддизма.

г. 551 г. до н. Э .: Конфуций родился в Китае. Его учение стало основой конфуцианства.

490 г. до н. Э .: Греция остановила персидское вторжение в битве при Марафоне. Начинается классический период.

432 г. до н. Э .: Акрополь построен в Афинах в период своего расцвета при Перикле.

399 до н.э .: Сократ приговорен к смерти, отказывается бежать и выпивает чашу с ядом.

327 до н.э .: Александр Македонский вторгается в Индию, создав огромную империю по всей Азии.

г. 221 г. до н.э .: Цинь Шихуанди объединяет Китай и начинает строительство Великой стены.

146 г. до н. Э .: Римская армия разрушает Карфаген, положив конец Третьей Пунической войне.

44 г. до н. Э .: Юлий Цезарь убит.

4 г. до н. Э.: Иисус из Назарета родился в Вифлееме, утверждая христианство.

180 г. н. Э.: Смертью Марка Аврелия положен конец Pax Romana, 200-летнему периоду мира в Европе.

476 н.э .: падение Римской империи

570 н.э .: Мухаммад, основатель ислама, родился в Мекке.

г. 641 г. н.э .: Александрийская библиотека разрушена.

800 н.э .: Карл Великий коронован как первый император Священной Римской империи.

г. 870 г. н.э.: норвежские исследователи открывают и колонизируют Исландию.

1066: Вильгельм Завоеватель побеждает в битве при Гастингсе и становится королем Англии.

1088: Первый университет открыт в Болонье, Италия.

1096: Первый крестовый поход инициирован Папой Урбаном II.

1206: Чингисхан побеждает своих соперников и получает титул «Вселенский правитель монголов».

1215: Король Англии Иоанн вынужден подписать Великую хартию вольностей, ограничивая его полномочия.

1266: Марко Поло прибывает ко двору Хубилай-хана в Пекине.

г. 1347 год: Черная смерть убивает миллионы людей по всей Европе.

1439: Иоганнес Гутенберг изобретает печатный станок.

1453: Османские турки завоевывают Константинополь, отмечая падение Византийской империи.

1492: Христофор Колумб прибывает в Америку, начиная новую эру европейских завоеваний.

1517: Мартин Лютер публикует свои 95 тезисов, положив начало протестантской реформации.

1522: Экспедиция Фердинанда Магеллана облетает Землю.

1543: Польский ученый Николай Коперник пишет, что Земля вращается вокруг Солнца.

1588: При королеве Елизавете I Англия побеждает испанскую армаду.

1603: Впервые исполняется «Гамлет» Уильяма Шекспира.

1633: Католическая инквизиция судит Галилео Галилея за его научные труды.

1649: Король Карл I предан суду и обезглавлен во время Гражданской войны в Англии.

1756: Вольфганг Амадей Моцарт родился в Австрии.

г. 1765: Джеймс Ватт изобретает более эффективный паровой двигатель, который станет двигателем промышленной революции.

1776: Америка издает Декларацию независимости от Великобритании.

1789: Революционеры штурмуют Бастилию в Париже, начиная Французскую революцию.

1804: Наполеон коронован императором Франции.

1819: Симон Боливар побеждает Испанию в битве при Бояке, что приводит к независимости многих стран Южной Америки.

1837: Сэмюэл Морс и другие разрабатывают электрические телеграфы.

1859: Чарльз Дарвин публикует «Происхождение видов», вводя естественный отбор.

1865: Авраам Линкольн убит в конце Гражданской войны в США.

1876: Александр Белл изобретает телефон.

1903: Братья Райт создают первый самолет с двигателем тяжелее воздуха.

1914: Франц Фердинанд из Австрии убит в Сараево, в начале Первой мировой войны.

1929: Обвал фондового рынка в «Черный вторник» положил начало великой депрессии.

1939: Адольф Гитлер вторгается в Польшу, начиная Вторую мировую войну.

1953: Уотсон и Крик открывают двойную спиральную структуру ДНК.

1957: Советский Союз запускает в космос первый искусственный спутник — Спутник-1.

1969: Астронавты «Аполлона-11» Нил Армстронг и Базз Олдрин приземляются и идут по Луне.

1975: Конец войны во Вьетнаме

1989: Тим Бернерс-Ли изобретает всемирную паутину.

Карл Фридрих Гаусс

Карл Фридрих Гаусс (1777-1855)

Введение:

Карл Фридрих Гаусс считается одним из величайших математиков всех времен. время. Он творец в логико-математической области, поскольку он внес много идей в области математика, астрономия и физика. Будучи специалистом по математике, я познакомился с Гауссом. работать довольно много раз. Он внес в значительной степени в различные области математики, такие как линейная алгебра, исчисление, и теория чисел. Креативность проявляется, когда человек делает или обнаруживает существенные новые идеи, которые существенно влияют на область, в которой работает человек. Гаусса работу следует считать творческой, потому что он внес так много новых теорем и идеи к математике, астрономии и физике.

В отличие от Некоторым из создателей, которых изучал Гарднер, Гаусс казался действительно достойным человек. Он никогда не пытался критиковать своих соперников или заставьте себя стоять над остальными. Он решал задачи, потому что любил математику. Некоторые теоремы, которые мы считаем решенные кем-то другим были действительно обнаружены ранее Гауссом. Он не все опубликовал, потому что он не успел все закончить. Вот почему я считаю Гаусса выше, чем некоторых других авторов, о которых мы читаем. о.Он был порядочным человеком, который работал из любви к математике. я также очень восхищаюсь его работами. Любой математик, который может доказать так много разных идей в самых разных областях математики действительно гений.

Отношение к триаде Гарднера:

As В детстве Гаусс был вундеркиндом. Этот Событие произошло незадолго до того, как Гауссу исполнилось три года.

“Один Суббота Герхард Гаусс (его отец) составлял еженедельную ведомость заработной платы под его опекой, не подозревая, что его маленький сын следил за слушания с критическим вниманием. Подойдя к концу своих долгих вычислений, Герхард с удивлением услышал — воскликнул маленький мальчик: «Отец, счет неверен, он должен быть…. »Проверка счета показала, что фигура, названная Гауссом был прав »(Bell 221).

Что в этом больше удивительно то, что его никто не учил арифметике. Он поднял его самостоятельно. Хотя Гаусс проявил большой интеллект, его отец отказался отправить его в школу. Его семья был очень беден, так как его отец работал садовником, плотником и каменщиком. (Звонок 218).Его отец хотел сына идти по стопам семьи и работать разнорабочим. Однако его мать вмешалась и послала его в школу, когда ему было семь. Его учитель Бюттнер был бессердечным учителем, любившим доказывать своим ученикам, какими они были невежественными (Bell 221). В возрасте десяти лет Гаусс «открыл» формулу это навсегда изменит его будущее. Бюттнер попросил своих учеников сложить числа от единицы до сотня. Он полагал, что это будет держать его учеников занятыми весь день. Однако Гаусс заметил закономерность. Никто не показал ему формулу [n (n + 1)] / 2, Гаусс вывел ее и решил проблему быстро (Burton 510). Бюттнер был так впечатлен этим, что купил Гауссу учебник по математике. и его помощник, Иоганн Бартельс, работал с мальчиком (Bell 222). Дружба, которая возникла между Бартельс и Гаусс побудили Бартельса познакомить Гаусса с Карлом Вильгельмом Фердинандом, Герцог Брауншвейгский (Bell 224). В Герцог в конечном итоге заплатил Гауссу за продолжение обучения в Кэролайн-колледже. которая на самом деле была подготовительной школой, а затем и университетом Гёттинген.

Нравится семь создателей в книге Гарднера, у Гаусса были похожие типы отношения. Он никогда по-настоящему не получал вместе с отцом. Его отец был крутой человек, который не хотел, чтобы его сын получил образование. Гаусс был послушным ребенком, но он сказал, что никогда по-настоящему не любил своего отца (Bell 219). Его мама, однако, была очень любящим человеком и только хотела чтобы увидеть его успех. Она увидела интеллект в сыне. В Человек, которому Гаусс был ближе всего в детстве, был брат его мамы Фридрих.Фридрих был умным человеком, бросил вызов молодому Гауссу (Bell 219).

As Гаусс стал старше, он стал больше одиночкой. Его больше интересовала работа, чем отношения. Его друзья казались людьми, которые также интересовались математикой. В колледже он познакомился с математиком Вольфгангом Бойяи, с которым хотел поддерживать связь с писем до самой его смерти. Однако Гаусс все-таки женился. 9 октября 1805 года он женился на Иоганне Остхоф.Он написал Бойяи, рассказывая о своем счастье, говоря: «Жизнь стоит передо мной, как вечная весна. новыми яркими красками »(Bell 243). У него было трое детей, но случилась трагедия, и Йоханна умерла. вскоре после того, как младший родился 11 октября 1809 г., он снова женился 4 августа 1810 г. на Минна Вальдек, бывшая подругой его первой жены. Этот брак был больше для удобства поскольку он чувствовал, что его детям нужна мать.

г. Период между 1806-1810 годами был не лучшим временем для Гаусса.Его первая жена умерла, и герцог Фердинанд был убит в битве с Наполеоном, а это означало, что Гауссу пришлось для настоящей работы. До этого Герцог поддерживал Гаусса, поэтому Гаусс мог посвятить себя исследованиям. В 1807 году он был назначен директором обсерватории в Геттингене (Bell 244). Чтобы справиться со всей окружавшей его трагедией, его работа стала его жизнью.

Гаусс опубликовал несколько творческих идей в области математики до своего большого прорыв 1801 г.В 1796 г. в возрасте девятнадцати лет он открыл, как построить многоугольник из семнадцати сторон, что раньше считалось невозможным (Burton 510). В 1801 году его книга Disquisitiones Было опубликовано Arithmeticae . Он состоял из семи разделов с последний о теории чисел (О’Коннер и Робертсон). Эта книга привлекла внимание публично, но это было слишком сложно для понимания. Это была его работа с несовершеннолетними. планета Церера, которая наконец принесла ему общественную честь.Его второй крупной работой была книга Theoria motus. corporum coelestium in sectionibus conicis solem ambientium (Теория Движение небесных тел, вращающихся вокруг Солнца в конических сечениях ), опубликованном в 1809 году. Мы рассмотрим эти открытия подробно чуть позже.

Кому понять, как Гаусс смог открыть столько идей в стольких разных областях, нужно посмотреть, как он работал. Он думал о математике и о задачах, которые он хотел решить. дни или месяцы за раз.Пока разговаривая с людьми, он часто отключался, потому что концентрировался на проблема такая сложная (Bell 254). Когда на вопрос, как он мог так многого добиться, Гаусс ответил: «Если бы другие размышлять о математических истинах так же глубоко и постоянно, как и я, они сделаю свои открытия »(Bell 254).

Индивидуальный уровень:

Кроме того логико-математический интеллект, он был силен в визуальном / пространственном и внутриличностные домены.Если бы это было не за открытие семнадцатигранного многоугольника в возрасте девятнадцати лет, Гаусс мог сделать карьеру в области изучения философии (Bell 227). Это открытие привело его к математике вместо философии, хотя он продолжал изучать философию как хобби на протяжении всей его жизни. Его математический журнал — еще один способ, которым внутриличностный интеллект Гаусса выходит. В этом журнале он записывал разные математические вопросы, на которые хотел ответить, или различные доказательства, которые он разработал. Не все в этом журнале было опубликовано, поскольку Гаусс не публиковал вся его работа. Этот журнал служить доказательством позже, что Гаусс действительно открыл много математических понятий что более поздние математики получили признание. Когда другие математики опубликуют свои работы, Гаусс часто говорил людям, что он уже открыл это. Однако он так и не достал свой журнал чтобы доказать это. Он позволил своему слову быть доказательств достаточно, потому что он был достаточно уверен в себе, чтобы знать, что он верно.Гаусс также обладал способностью хранить огромное количество информации в его голова. Он мог видеть вещи развить в его уме, что будет частью визуально-пространственного интеллект.

Его два слабости, межличностные и вербально-лингвистические области, не были слабостями это слишком мешало его творческим способностям. Просто они были не такими сильными, как его основные способности. Гаусс был предан своей работе, поэтому он оставался вне основной публики. У него было несколько близких друзей, с которыми он поддерживал контакт, но он не постоянно иметь вокруг себя группу людей.У него также были проблемы в отношениях с некоторыми из своих детей (Белл 244). Вот почему его навыки межличностного общения не считаются сильными. Что касается вербально-лингвистики, людям приходилось нелегко. понимание его работы, когда он ее опубликовал. Он не мог хорошо представить свои идеи, и человек Чтобы понять это, нужно было быть одаренным математиком (Bell 230).

Гаусс работал исключительно для любви к математике и ее развития, а не для награды. Его внутренняя мотивация было невероятно.Он работал над проблемы, которые его интересовали, а не проблемы, которые были популярны во время время. Один из примеров — почему Гаусс никогда не работал над Великой теоремой Ферма. В 1816 году Парижская академия вручила приз всем, кто могли доказать или опровергнуть эту теорему. Его друг написал Гаусса и попытался заставить его поработать над этим. Гаусс ответил: «Признаюсь, Теорема Ферма как изолированное предложение малоинтересна для меня, потому что я мог легко сформулировать множество таких предложений, которое не мог ни доказать, ни избавиться »(Bell 238).Он также проводил большую часть времени в обсерватории. За исключением участия в научной встрече в В Берлине 1836 года он никогда не спал где-нибудь, кроме как под крышей своего дома. обсерватория (Бертон 513).

Без финансовую поддержку герцога Фердинанда, Гаусс не смог бы ходить в школу. Герцог заплатил путь через подготовительную школу, а затем колледж. Позже герцог выплатил Гауссу стипендию, чтобы он смог исследовательская работа. До смерти герцога в 1806 году Гауссу не нужно было беспокоиться о поиске настоящей работы.Гаусс был бесконечно благодарен Герцог. Он даже посвятил свой первый книга, Disquisitiones Arithmeticae , чтобы Герцог Фердинанд. Он писал в книга «Если бы не ваша непрерывная помощь в поддержку моей учебы, Я не смог бы полностью посвятить себя своей страстной любви, изучение математики »(Burton 515). У Гаусса не было особой поддержки со стороны семьи. У него были любящие мать и жена, но он обратился к своему друзьям за поддержку его работы. Он поддерживал связь с математиками Францем Тауринусом, Фридрихом Бессель и Вольфганг Бойяи использовали их как основу для своей работы.

Там является доказательством десятилетней закономерности, которую исследовал Гарднер. Хотя было всего восемь лет между его обнаружением малой планеты Церера и его второй крупной работой Теория движения небесных тел, вращающихся вокруг Солнца в конических сечениях, его более поздние работы, кажется, соответствуют десятилетнему шаблон.В 1818 году он начал работает в области геодезии, изучения размеров и формы земли. Его попросили провести геодезическую съемку Ганновера (ныне часть Германии), чтобы подключиться к датской сети (О’Коннер и Робертсон). Из этого произошло изобретение гелиотроп, который мог передавать сигналы отраженным светом (Bell 255). Это исследование привело Гаусса к идее конформное отображение. При создании карте искажения возникают при переносе поверхности на плоский кусок бумага.Гаусс интересовался сохранение правильных углов, а не расстояний при составлении карты. Это было известно как конформное отображение. Гаусс также выиграл Премия Копенгагенского университета за его аттракцион Theoria — , который снова касается отображения одной поверхности на другой, чтобы «эти два были похожи на свои мельчайшие части» (О’Коннер и Робертсон). В 1830-е годы он начал работать над электромагнетизмом. Он разработал теории, связанные с такими идеями, как земные магнетизм и притяжение эллипсоидов (Bell 267).В 1833 г. он вместе с кафедрой физики в г. Геттинген, Вильгельм Вебер изобрел первый электрический телеграф (Burton 514). В целом его работа кажется чтобы соответствовать выкройке. Как он работал в различных областях прикладной математики, ему потребовалось почти десять лет, чтобы опубликовать новый прорыв.

Уровень домена:

Гаусс работал чисто в логико-математической области. Однако следует понимать, что не все его вклады были в области чистой математики. В то время математика была другой, поскольку охватывала другие области, такие как астрономия и физика. Вместо имея строгое разделение между дисциплинами, как мы это делаем сегодня, он смог открывать для себя вещи во всех областях с его математическим образованием. Вот почему его большое открытие было на самом деле в астрономии, хотя это было математически обосновано.

В 1801 г. итальянский астроном Пиацци открыл малую планету под названием Церера. Церера исчезла позади солнце, и никто не мог найти его снова. Пиацци не успел собрать много данных о Церере раньше. он исчез, поэтому вычисление его орбиты оказалось большой проблемой для научное сообщество. Ньютон имел даже сказал, что эти задачи были одними из самых сложных для решения математических астрономия (Bell 241). Даже с собранные скудные данные, Гаусс смог вычислить орбиту Цереры и когда планета снова появилась, она оказалась в том месте, которое предсказал Гаусс. Это принесло ему известность в глазах общественности. общественности, но это открытие не обошлось без критики.Известные люди критиковали его за то, что он зря тратил время расчет орбиты малой планеты. В конце концов, это не поможет развитию их города. Расчеты, которые он использовал позже, стали известный как исключение Гаусса-Жордана и метод наименьших квадратов. Исключение Гаусса-Жордана — это алгоритм решения систем линейных уравнений. Примером системы из пяти линейных уравнений может быть следующее:

5a + 2b + 5c + 7d + 3e = 1

2a + 4c + 3d = 5

4b + 9c + 6d + e = 2

6b + 2e = 3

9a + 7b + 5c + 6d + 8e = 1

В разгадывании Цереры орбите, у Гаусса была система из семнадцати линейных уравнений, которые он должен был вычислить (Bretscher 23).В метод наименьших квадратов — это «минимизация суммы квадратов компоненты »или нахождение наименьшего расстояния между двумя векторами (Бретчер 222).

Теория о движении небесных тел, вращающихся вокруг Солнца в конических сечениях , была второй книгой, написанной Гауссом. Первый том посвящен дифференциальным уравнениям, коническим сечениям и эллиптическим орбитам. а во втором более подробно рассматривается оценка планетарного орбита (О’Коннер и Робертсон). Дифференциальные уравнения имеют дело с системами уравнений, но вместо имея только переменные, задействованы производные переменных.

Очевидно, Работа Гаусса имела дело почти исключительно с числами. Это было хорошо, поскольку Гауссу было трудно передать свои идеи для широкой публики. Хотя он был хорошо начитан, его словесно-лингвистический интеллект не был один из его сильнейших.

г. области математики и астрономии были достаточно развиты, когда Гаусс вычислил орбиту Цереры. Этот расчет не привел к резкому изменению полей или возникновению других математикам перейти на астрономию. Он решил проблему, которая озадачивал ученых в течение многих лет. Тот факт, что он сделал это с таким небольшим количеством данных, был поразительным.

Уровень поля:

Кроме того его дядя Фридрих и Иоганн Бартельс помогали ему в детстве, Гаусс никогда не было наставников. Он всегда опережал своих учителей в области математики и предпочитал разрабатывать вещи самостоятельно.Он имел друзья, с которыми он обсуждал математику, например, профессор Иоганн Фридрих Пфафф, но у него никогда не было кого-нибудь, кто руководил бы им в области математики.

Гаусс не любил критику или споры. Таким образом, он старался избегать любой конфронтации со своими соперниками. Когда Гаусс сказал, что открыл что-то в первую очередь, он никогда не придавал этому большого значения. Одним из примеров этого может быть математик Лежандр. который утверждал, что Гаусс украл у него метод наименьших квадратов, поскольку Лежандр опубликовал его в 1806 году. Хотя Гаусс использовал этот метод в 1801 году для вычисления орбиты Цереры, он не публиковал ее до 1809 года. Гаусс отказался вступать в спор с Лежандром. Гаусс написал Ольберсу в 1802 г. идея наименьших квадратов, и у него были доказательства, чтобы показать Лежандру. Однако Гаусс не хотел рисовать аргумент. Он дал слово стоять самостоятельно (Bell 259).

Один Критика со стороны сверстников Гаусса заключалась в том, что он публиковал только те работы, которые были усовершенствованный.Другие математики снова и снова просил его немного расслабиться и опубликовать работы, даже если они были не полностью закончен, так как это поможет продвинуть математическую область больше быстро. Гаусс отказался это сделать (Звонок 230).

Другой критика Гаусса состоит в том, что он не поддерживал более молодых математиков, которые следовал за ним. Когда они опубликовали что-то, он никогда не хвалил. Например, когда Коши опубликовал свою теорию функций комплекса переменная, Гаусс ничего не сказал о своей работе (Bell 260).Люди не понимали, что Гаусс уже открыл комплексные переменные. Он просто так и не дошел до публикации.

Gauss ’ работа никогда не вызывала особых политических споров. Чтобы понять почему, нужно взглянуть на то, что опубликовал Гаусс. и его личность. Гаусс никогда публиковал любую работу, которая не была полностью идеальной. Он не хотел, чтобы кто-либо добавлял или убирал из его работы (Звонок 230). Таким образом, когда он что-то опубликовал, он был настолько полным, что никто не мог найти никаких дыр в Это.Однако это помешало ему от печати некоторых математических идей, которые он обнаружил. Многие из идей, которые были обнаружены после него были позже обнаружены первым Гауссом. Он просто не дошел до опубликовать открытия, потому что он не успел их довести до боязнь критики. Это где вошла его личность. Гаусс не любил споры. Следовательно, когда он открыл неевклидову геометрию, он не опубликовал ее, опасаясь критика и / или разногласия. Все, что тогда понимали в мире, было объяснено Евклидовой геометрией. Для кого-то представить себе геометрию, основанную на чем-то еще, шокировало бы Мир. Вот почему Гаусс никогда опубликовал это. Он написал своему друг Франца Тауринуса в 1824 году, что он чувствовал, что рассказывая публике об этом новое открытие подвергнет его насмешкам (Burton 550). Заслуга неевклидовой геометрии идет к Лобачевскому и Джону Бойяи, сыну давнего друга Гаусса.Гаусс получил признание за то, что заложил основу неевклидовой теории. геометрия, поскольку его журнал показал доказательства исследований Гаусса.

Кому понять, насколько важен Гаусс для области математики, нужно только посмотрите комментарий Лапласа о Гауссе. Александр фон Гумбольдт спросил у Лапласа, великого математика в своем роде верно, кто был величайшим математиком Германии. Лаплас сказал, что это Пфафф. Когда Гумбольдт спросил, почему он не ответил Гауссу, Лаплас ответил: «Гаусс — величайший математик в мире» (Белл 242).Гаусс потратил большую часть своего взрослая жизнь в Геттингенском университете. Хотя он был бы хорошим кандидатом в политический поскольку он довольно внимательно следил за политикой, он был доволен тем, что остался в университет и проводить исследования. Когда он умер в 1855 году, он был в элитном классе с Архимедом и Ньютоном в качестве величайшие математики, которые когда-либо жили (Bell 218).

Заключение:

Гаусс очень хорошо вписывается в модель Гарднера. Если бы Гарднер сосредоточился на людях, которые творчески Прорыв в начале 1800-х годов, он, вероятно, включил бы Гаусса. Гаусс соответствовал детскому профилю как другие создатели в том, что он был ближе к кому-то кроме родителей поскольку он лучше всего относился к своему дяде Фридриху. Гаусс тоже был одиночкой. У него не было много близких друзей. Он предпочитал погрузиться в работать, чем строить отношения. Опять же, большинство из семи создателей считались одиночками.Хотя вторая работа Гаусса не произошло ровно десять лет спустя, это было довольно близко. Он также продолжал производить произведения и даже совершил прорыв через тридцать лет после оригинала с его работой электромагнетизм и электрический телеграф.

Что не соответствовали модели Гарднера, так как большой прорыв Гаусса не был потрясающее открытие. Хотя концепция расчета орбиты планеты была загадочной для научного сообщества они знали, что это возможно.Они просто не знали, что делать Это. Следовательно, это не было огромным шок для математиков и ученых, когда Гаусс понял это. Если бы Гаусс был храбрее и опубликовал его идеи о неевклидовой геометрии, то он подошел бы к теории Гарднера. модель практически идеально. Вместо этого он предпочел публиковать работы, которые не вызовут много политических полемика. Хотя Гаусс считался одним из величайших математиков всех времен, он был бы в классе один, если бы он опубликовал все, что открыл.

Работы Цитируется

Белл, E.T. Мужчины Математика . Нью-Йорк: Саймон и Шустер, 1986.

Бретчер, Отто. линейный Алгебра и приложения . Верхнее седло Ривер, Нью-Джерси: Prentice-Hall, Inc., 1997.

Бертон, Дэвид М. История математики, введение . Ньютон, Массачусетс: Allyn and Bacon, Inc., 1985.

О’Коннер, J.J. и Э.Ф. Робертсон. «Иоганн Карл Фридрих Гаусс.”(Декабрь. 1996). 26 ноября 2001 г.

http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Gauss.html

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *