Что такое формулы и как их понимать?boeffblog.ru
Изначально, формулы были придуманы математиками для того, чтобы описать простые физические явления. Например формула скорости: скорость = путь/время. Эта формула говорит о том, что если двигаться с одинаковой скоростью, то за определенное время мы пройдем определенное расстояние. То есть она показывает связь между двумя изменяющимися величинами: путь и время. Если же одно и то же расстояние два человека пройдут с разной скоростью, то они потратят на это разное время, и первым финиширует тот, кто шел с большей скоростью.
Таким образом, формулы нужны для более короткой записи (математическими символами или буквами) взаимосвязей между некоторыми величинами (смотрите пример в статье).
Решение заданий с формулами обычно подразумевает нахождение какой-либо величины, зная остальные величины входящие в формулу.
Например:
Закон Ома выражается формулой: U = I•R, где U – напряжение в Вольтах, I – сила тока в Амперах, R – сопротивление в Омах. Зная, что сила тока равна 2 А, а сопротивление равно 10 Ом, найдите напряжение.
Все, что требуется в данном задании – подставить вместо букв их значения и посчитать. U = 2 • 10 = 20 В.
Встречаются задания и посложнее. Например:
Площадь четырехугольника находится по формуле: S = 1/2 d1d2 Sinα. Где d1 и d2 – диагонали четырехугольника, α – угол между ними. Вычислите Sinα. S = 21, d1 = 7, d2 = 15.
Для начала нужно выразить величину, которую нужно найти (то есть, чтобы эту величину и остальные величины разделял знак равно). Для этого нужно избавиться от лишних величин, стоящих возле Sinα.
Разделим обе части на 1/2 d1d2. В результате получим: = Sinα.
Теперь осталось подставить числа и посчитать: Sinα = = 0,4.
Из закона всемирного тяготения F = G выразите массу m и найдите её величину (в килограммах), если F = 13,4 Н, r = 5 м, M = 5·109 кг и гравитационная постоянная G = 6,7 ·10-11.
Первым действием разделим обе части на G, чтобы масса была отделена от других величин знаком равно.
Получим:
F : G = m
F : = m
F • = m
= m
Теперь подставляем численные значения и находим наконец-то массу:
= m
m = 1000.
Таким образом происходит решение задач на расчет по формулам.
Как я перепрограммировала свой мозг, чтобы начать разбираться в математике / Хабр
Простите, реформаторы образования – нам всё ещё нужны зубрёжка и повторение
Я была капризным ребёнком, росшим на лирической стороне жизни, и относилась к математике и науке так, будто они были симптомами чумы. И потому странно, что я превратилась в человека, ежедневно имеющего дела с тройными интегралами, преобразованиями Фурье и, жемчужиной математики – уравнением Эйлера. Сложно поверить, что из матофоба я превратилась в профессора прикладных наук.
Однажды один из моих учеников спросил, как мне это удалось – как я изменила свой мозг. Мне хотелось ответить – чёрт возьми, с трудом! Я всё-таки заваливала экзамены по математике и физике в начальной, средней и высшей школах. Я записалась в класс для отстающих по математике после того, как отслужила в армии, в 26 лет. На выставке примеров нейропластичности у взрослых я была бы первым экземпляром.
Изучение математики и точных наук во взрослом возрасте открыло мне дверь в технические науки. Но эти тяжёлые взрослые изменения в мозгу открыли мне взгляд изнутри на нейропластичность, связанную со взрослым обучением. К счастью, моя докторская по системному проектированию, во время которой я постигала точные науки, технологии, технические науки и математику (STEM – Science, Technology, Engineering, Math), и моё последующее исследование на тему человеческого мышления, помогло мне понять недавние прорывы в неврологии и когнитивной психологии, связанные с обучением.
Примером этой техники, «сфокусированной на понимании», и объектом подражания стала Япония. Но из обсуждения часто пропадает конец истории: в Японии также изобрели и метод обучения «Кумон», который основан на запоминании, повторении и зубрёжке для достижения школьником отличного владения материалом. Эту интенсивную программу послешкольного обучения предпочитают тысячи родителей в Японии и во всём мире, дополняя совместное обучение детей большим количеством практики, повторений, и с умом разработанной системой зубрёжки, с целью обеспечить им прекрасное владение материалом.
В США концентрация на понимании иногда заменяет, а не дополняет более старые методы обучения, которые, как подтверждают учёные, работают с естественными процессами мозга, изучающего такие сложные вещи, как математика и точные науки.
Последняя волна реформы обучения математике включает «Общее ядро» – попытку назначить жёсткие общие стандарты по всем США, хотя критики и говорят, что эти стандарты не соответствуют достижениям других, более продвинутых стран. Внешне у стандартов есть некая перспектива. Предполагается, что в математике ученики должны иметь равные возможности в концептуальном понимании, практических и процедурных навыках.
Дьявол, как обычно, в мелочах реализации. В сегодняшнем образовательном климате запоминание и повторение STEM-дисциплин, в отличие от изучения языка и музыки, часто расцениваются, как недостойные занятия, тратящие время учеников и учителей. Многие учителя давно считают, что понимание концепций в дисциплинах STEM имеет наивысший приоритет. Конечно, учителям легче вовлечь учеников в обсуждение математических тем (и этот процесс при правильном руководстве может сильно помочь в понимании задач), чем корпеть над выставлением отметок за домашние задания. В результате, хотя процедурные умения и свободное владение предметом должны преподаваться в тех же дозах, что и концептуальное понимание, часто этого не происходит.
Проблема с концентрацией только на понимании состоит в том, что ученики, постигающие математику и точные науки, часто могут нахвататься основных понятий о важной идее, но её понимание быстро ускользает без его закрепления через практику и повторение. Хуже того, ученикам часто кажется, что они понимают что-то, в то время, когда это не так. Такой подход часто может принести лишь иллюзию понимания. Как недавно сказал мне один из неуспевающих учеников, «Не пойму, почему я так плохо справился с заданием. Я ведь в классе всё понимал». Ему казалось, что он всё понял, и возможно, что так и было, но он не использовал понятое на практике, чтобы оно закрепилось в мозгу. Он не выработал процедурного владения или способности применять знания.
Между обучением спортивной дисциплине и обучением математике и точным наукам есть интересная связь. Когда вы учитесь наносить удар клюшкой для гольфа, вы доводите удар до совершенства при помощи практики в течение нескольких лет. Ваше тело знает, что нужно делать, просто когда вы подумаете об этом – вам не нужно вспоминать все компоненты сложного взмаха для удара по мячу.
Точно так же, когда вы понимаете, почему вы что-то делаете в математика, вам не нужно каждый раз объяснять себе одно и то же. Вам не нужно носить с собой 25 шариков, выкладывать их по 5 рядов в 5 столбцов на столе, чтобы убедиться, что 5 х 5 = 25. В какой-то момент вы просто это знаете. Вы запоминаете, что при умножении одинаковых чисел в разной степени вы можете просто складывать степени (104 x 105 = 109). Используя эту процедуру часто и в разных случаях, вы обнаружите, что вы понимаете, почему и как она работает. Лучшее понимание темы происходит из создания в мозгу осмысленного шаблона.
Я выучила всё это насчёт математики и насчёт самого процесса обучения не в классе, а по ходу течения моей жизни, как человек, в детстве читавший Мадлен Ленгль и Достоевского, изучавший языки в одном из ведущих мировых языковых институтов, а затем резко поменявший свой путь и ставший профессором технических наук.
Будучи молодой девушкой, страстно желавшей изучать языки, и не обладавшей нужными деньгами и навыками, я не могла позволить себе оплачивать колледж. Поэтому я после школы пошла в армию. Мне нравилось изучать языки в школе, и казалось, что армия – как раз то место, где человек может получать деньги за изучение языков, посещая высоко ценящийся языковой институт Минобороны – место, где изучение языков превратили в науку. Я выбрала русский, поскольку он сильно отличался от английского, но был не таким сложным, чтобы изучать его всю жизнь и дойти в итоге до уровня 4-летнего ребёнка. Кроме того, «Железный занавес» притягивал меня – не могла ли я использовать знание русского, чтобы заглянуть за него?
После армии я стала переводчиком на советских траулерах в Беринговом море. Работать на русских было интересно и увлекательно – но также это была внешне приукрашенная работа мигранта. Во время сезона добычи рыбы ты ходишь в море, зарабатываешь неплохо, периодически напиваешься, а затем возвращаешься в порт в конце сезона и надеешься, что тебя снова наймут в следующем году. Для русскоговорящего человека была практически только одна альтернатива этому – работа на АНБ. Мои армейские контакты подталкивали меня к этому, но у меня не лежала к этому душа.
Я начала понимать, что хотя знание другого языка – это хорошо, это был навык с ограниченными возможностями и потенциалом. Из-за моих возможностей склонять слова по-русски мой дом не осаждали. Если только я не была готова терпеть морскую болезнь и периодическое недоедание на вонючих траулерах посреди Берингова моря. Я не могла не вспоминать об инженерах из Вест-Поинта, с которыми я работала в армии. Их математический подход к решению проблем явно был полезен для реального мира – более полезен, чем мои неудачи с математикой.
Так что, в 26 лет я, уходя из армии и оценивая возможности, вдруг подумала: если я хочу заняться чем-то новым, почему бы мне не попробовать нечто, что открыло бы мне целый новый мир перспектив? Технические науки, например? А это значило, что мне предстоит изучить новый язык – язык счисления.
С моим плохим пониманием простейшей математики, после армии я занялась алгеброй и тригонометрией по курсу для отстающих. Пытаться перепрограммировать мозг иногда казалось глупой идеей – особенно, когда я смотрела на лица моих более молодых одноклассников. Но в моём случае, а я ведь изучила русский в зрелом возрасте, я надеялась, что некоторые аспекты изучения языка можно применить в изучении математики и точных наук.
Изучая русский, я старалась не только понимать что-либо, но и достигать беглости в этом. Беглость в таком обширном предмете, как язык, требует такой степени знакомства, которую можно выработать только повторяющейся и различающейся работой с различными областями. Мои одноклассники, изучавшие язык, концентрировались на простом понимании, а я старалась достичь внутренней беглости со словами и структурой языка. Мне недостаточно было того, что слово «понимать» означает «to understand». Я практиковалась с глаголом, постоянно использовала его в разных временах, в предложениях, а затем понимала не только то, где его можно использовать, но и где его использовать не нужно. Я практиковалась над быстрым извлечением из памяти этих аспектов и вариантов. Посредством практики можно понимать и переводить десятки и сотни слов с другого языка. Но если у вас нет беглости, то когда кто-то быстро выплёвывает вам кучку слов, как в обычном разговоре, у вас не возникает понятия о том, что этот человек говорит, хотя технически вы вроде бы понимаете все слова и структуру. И вы, конечно, не можете говорить достаточно быстро для носителей языка, чтобы им было приятно слушать вас.
Этот подход, сосредоточение на беглости, а не на простом понимании, вывел меня на первое место в классе. Тогда я этого не понимала, но этот подход дал мне интуитивное понимание основ обучения и выработки экспертных навыков – кускование [chunking].
Кускование впервые было предложено в революционной работе Герберта Саймона при анализе шахмат. Кусочками служили различные мысленные аналоги шахматных шаблонов. Нейробиологи постепенно пришли к пониманию того, что эксперты, допустим, в шахматах, являются таковыми, поскольку могут хранить тысячи кусочков знания в долгосрочной памяти. Мастера в шахматах могут вспомнить десятки тысяч различных шахматных шаблонов. В любой области эксперт может вспомнить один или несколько хорошо связанных вместе кусков нервных подпрограмм для анализа и реакции на новую ситуацию. Такой уровень настоящего понимания и возможность использовать это понимание в новых ситуациях приобретается только из знакомства с предметом, полученного от повторений, запоминаний и практики.
Изучение мастеров шахмат, врачей скорой помощи и пилотов истребителей показало, что в стрессовых ситуациях сознательный анализ ситуации уступает место быстрой подсознательной обработке данных, когда эксперты обращаются к глубоко интегрированному набору мысленных шаблонов – кусочков. В какой-то момент осознанное понимание того, почему вы делаете то, что делаете, начинает только замедлять вас и прерывает поток, что приводит к принятию худших решений. Я была права, интуитивно ощущая наличие связи между изучением нового языка и математики. Ежедневное и непрерывное изучение русского языка возбуждало и укрепляло нервные контуры в моём мозгу, и я постепенно начала связывать вместе славянские кусочки, которые легко можно было вызывать из памяти. Чередуя изучение, практикуясь так, что я знала не только когда можно использовать слово, но и когда его использовать не нужно, или нужно использовать другой его вариант, я использовала те же подходы, что используют для изучения математики.
Изучение математики и точных наук во взрослом возрасте я начала с той же стратегии. Я смотрела на уравнение – для простого примера возьмём второй закон Ньютона, F = ma. Я практиковалась в ощущении значения каждой буквы: «f», то есть сила,- это толчок, «m», масса,- тяжёлое сопротивление толканию, «a» было радостным ощущением ускорения. (В случае с русским языком я так же практиковала произношение букв кириллицы). Я запоминала уравнение, носила его в своей голове и игралась с ним. Если m и a – большие, то что будет с f в уравнении? Если f большое, а a – маленькое, какое будет m? Как с обеих сторон сходятся единицы измерения? Играться с уравнением – как связывать глагол с другими словами. Я начинала постигать, что смутные очертания уравнения напоминали метафорическую поэму, в которой существовали всякого рода красивые символические представления. И хотя тогда я бы так это не выразила, но для хорошего изучения математики и точных наук мне нужно было медленно и ежедневно строить прочные нервные кусковые подпрограммы.
Со временем профессора математики и точных наук сообщили мне, что построение хорошо зафиксированных в памяти кусочков опыта посредством практики и повторения было жизненно важно для достижения успеха. Понимание не приводит к беглости. Беглость приводит к пониманию. Вообще, я считаю, что реальное понимание сложной темы происходит исключительно от беглости.
Вторгаясь в новую для меня область, становясь инженером-электриком, и, в итоге, профессором инженерного дела, я оставила русский язык позади. Но через 25 лет после того, как я в последний раз подымала стакан на советских траулерах, мы с моей семьей решили совершить путешествие по Транссибу через всю Россию. И хотя я с удовольствием ожидала давно желанного путешествия, я ещё и волновалась. Всё это время я практически не говорила по-русски. Что, если я всё забыла? Что дали мне все те годы достижения беглости?
Конечно, впервые зайдя в поезд, я обнаружила, что говорю по-русски на уровне двухлетнего ребёнка. Я искала слова, мои склонения и спряжения путались, а почти идеальный ранее акцент звучал ужасно. Но основа никуда не делась, и постепенно мой русский улучшался. Даже рудиментарных знаний хватало для ежедневных нужд. Вскоре экскурсоводы начали подходить ко мне за помощью в переводе для других пассажиров. Прибыв в Москву, мы сели в такси. Водитель, как я потом поняла, попытался нас обмануть, поехав в другую сторону и застряв в пробке, считая, что не разбирающиеся иностранцы спокойно выдержат лишний час счётчика. Внезапно русские слова, которыми я не пользовалась десятки лет, вылетели из моего рта. Сознательно я даже не помнила, что знаю их.
Беглость, когда она понадобилась, оказалась под рукой – и выручила нас. Беглость позволяет пониманию встроиться в сознание, и всплывать по необходимости.
Смотря на недостаток людей, специализирующихся в точных науках и в математике в нашей стране, и наши текущие техники обучения, и вспоминая свой собственный путь, с сегодняшними моими знаниями о мозге, я понимаю, что мы можем достичь большего. Как родители и учителя, мы можем использовать простые методы углубления понимания и превращения его в полезный и гибкий инструмент.
Я открыла, что наличие основной и глубоко выученной беглости в математике и точных науках – а не простого «понимания», чрезвычайно важно. Оно открывает пути к самым интересным занятиям в жизни. Оглядываясь в прошлое, я понимаю, что мне не обязательно было слепо следовать моим изначальным склонностям и страстям. Та же самая «беглая» часть меня, обожавшая литературу и язык, в результате полюбила математику и точные науки – и в итоге, преобразила и обогатила мою жизнь.
ОСНОВНЫЕ МАТЕМАТИЧЕСКИЕ ФОРМУЛЫ | Социальная сеть работников образования
Образование — то, что остается после того, как забыто все, чему учили в школе.
Игорь Хмелинский, новосибирский учёный, ныне работающий в Португалии, доказывает, что без прямого запоминания текстов и формул развитие абстрактной памяти у детей затруднительно. Приведу выдержки из его статьи «Уроки образовательных реформ в Европе и странах бывшего СССР»
Заучивание наизусть и долговременная память
Незнание таблицы умножения имеет и более серьезные последствия, чем неспособность обнаружить ошибки в расчетах на калькуляторе. Наша долговременная память работает по принципу ассоциативной базы данных, то есть, одни элементы информации при запоминании оказываются связанными с другими на основе ассоциаций, установленных в момент знакомства с ними. Поэтому, чтобы в голове образовалась база знаний в какой-либо предметной области, например, в арифметике, нужно для начала выучить хоть что-то наизусть. Далее, вновь поступающая информация попадет из кратковременной памяти в долговременную, если в течение короткого промежутка времени (несколько дней) мы столкнемся с нею многократно, и, желательно, в разных обстоятельствах (что способствует созданию полезных ассоциаций). Однако при отсутствии в постоянной памяти знаний из арифметики, вновь поступающие элементы информации связываются с элементами, которые к арифметике никакого отношения не имеют – например, личностью преподавателя, погодой на улице и т.п. Очевидно, такое запоминание никакой реальной пользы учащемуся не принесет – поскольку ассоциации уводят из данной предметной области, то никаких знаний, относящихся к арифметике, учащийся вспомнить не сможет, кроме смутных идей о том, что он вроде бы что-то когда-то об этом должен был слышать. Для таких учащихся роль недостающих ассоциаций обычно выполняют разного рода подсказки – списать у коллеги, воспользоваться наводящими вопросами в самой контрольной, формулами из списка формул, которым пользоваться разрешено, и т.п. В реальной жизни, без подсказок, такой человек оказывается совершенно беспомощным и неспособным применить имеющиеся у него в голове знания.
Формирование математического аппарата, при котором формулы не заучиваются, происходит медленнее, нежели в противном случае. Почему? Во-первых, новые свойства, теоремы, взаимосвязи между математическими объектами почти всегда используют какие-то особенности ранее изученных формул и понятий. Концентрировать внимание ученика на новом материале будет сложнее, если эти особенности не смогут извлекаться из памяти за короткий промежуток времени. Во-вторых, незнание формул наизусть препятствует поиску решения содержательных задач с большим количеством мелких операций, в которых требуется не только провести определенные преобразования, но и выявить последовательность этих ходов, анализируя применение нескольких формул на два-три шага вперед.
Практика показывает, что интеллектуальное и математическое развитие ребенка, формирование его базы знаний и навыков, происходит значительно быстрее, если большая часть используемой информации (свойства и формулы) находиться в голове. И чем прочнее и дольше она там удерживается, тем лучше.
НАДО ЛИ ВАС ДАЛЬШЕ УБЕЖДАТЬ В ТОМ, ЧТО ФОРМУЛЫ НАДО ЗНАТЬ НАИЗУСТЬ?
Готовим к публикации пост с формулами / Хабр
В последнее время на хабре появилось много постов с математическими формулами. Например, нельзя не вспомнить серию статей maisvendoo о теоретической механике.
В связи с этим стал актуальным вопрос о выборе удобного инструмента для создания и подготовки таких постов. SeptiM предложил скрипт, преобразующий маркдаун-разметку + латех в html-код. Я решил развить идею и упростить инструмент, и сделал для этих же целей онлайн-редактор с поддержкой латеха и маркдауна:
Редактор математических текстов
В редакторе удобно набирать текст с большим количеством формул и сразу видеть результат. Вы форматируете текст в маркдауне, вводите формулы на латехе и получаете html-код.
Рассмотрим пример. Фрагмент
Формула для решения квадратного уравнения <nobr>_ax_^2^ + _bx_ + _c_ = 0</nobr> имеет вид
$$
x_{1,2} = {-b\pm\sqrt{b^2 - 4ac} \over 2a}
$$ (1)
превращается в
Формула для решения квадратного уравнения ax2 + bx + c = 0 имеет вид
Особенности редактора
Редактор сохраняет вводимый текст в localStorage, чтобы при сбоях браузера, операционной системы, компьютера или электропитания ваш труд не пропадал.
Есть экспорт в вариант html-разметки, понятной хабрапарсеру (который игнорирует атрибуты style
и теги <p>
, но понимает «тег» <source>
и переносы строк).
Редактор работает в браузере, обращается на сервер только за формулами в режиме предпросмотра.
Некоторых возможностей в маркдауне нет. Для вставки картинок с выравниванием или указанием размеров используйте голый html.
Математические формулы в вебе
На сайтах встречаются два способа встраивания латеха. Формулы либо рендерятся на сервере и отдаются как картинки, либо рендерятся на клиенте.
Существующие решения мне не нравились. Сервис codecogs.com для серверного рендеринга иногда глючил: генерировал картинки со слишком большими верхними и нижними индексами, а потом и кешировал их. JS-рендерер MathJax делает одну и ту же работу по отрисовке каждый раз на всех компьютерах и мобильных, да и содержит ограниченный набор команд.
Поэтому еще раньше я сделал свой сервис генерации svg- и png-картинок с формулами. В редакторе используются svg-картинки, чтобы формулы красиво смотрелись на ретине.
Подсветка синтаксиса
Больше всего я доволен подсветкой синтаксиса. Её удалось совместить с браузерной проверкой правописания и сделать достаточно быстрой для работы на лету:
К сожалению, подсветка не всегда работает корректно (и никогда полностью не будет, потому что в основе лежит парсер на регулярных выражениях). Однако задачу ориентирования по тексту этот способ решает хорошо. Сообщайте о багах, буду пытаться их исправлять.
План развития
Со временем я хочу сделать поддержку клавиатурных сочетаний, доработать анимацию (не во всех браузерах сейчас плавная), добавить открытие файлов через drag & drop, разобраться с выравниванием формул по базовой линии в режиме предпросмотра.
Код редактора, как и сервиса генерации картинок, выложен на гитхабе. Форкайте и присылайте пул-реквесты 🙂
Благодарности
Спасибо пользователю maisvendoo за тестирование. В редакторе используется парсер markdown-it. Идея подсветки найдена в проекте LDT.
Почему математика хорошо описывает реальность? / Хабр
Поводом к переводу статьи стало то, что я искал книгу автора «The Outer Limits of Reason». Спиратить книгу я так и не смог, зато наткнулся на статью, которая в довольно сжатом виде показывает взгляд автора на проблему.
Одна из самых интересных проблем философии науки — это связь математики и физической реальности. Почему математика так хорошо описывает происходящее во вселенной? Ведь многие области математики были сформированы без какого-либо участия физики, однако, как в итоге оказалось, они стали основой в описании некоторых физических законов. Как это можно объяснить?
Наиболее явно этот парадокс можно наблюдать в ситуациях, когда какие-то физические объекты были сначала открыты математически, а уже потом были найдены доказательства их физического существования. Наиболее известный пример — открытие Нептуна. Урбен Леверье сделал это открытие просто вычисляя орбиту Урана и исследуя расхождения предсказаний с реальной картиной. Другие примеры — предсказание Дираком о существовании позитронов и предположение Максвелла о том, что колебания в электрическом или магнитном поле должно порождать волны.
Ещё более удивительно, что некоторые области математики существовали задолго до того, как физики поняли, что они подходят для объяснения некоторых аспектов вселенной. Конические сечения, изучаемые ещё Аполлонием в древней Греции, были использованы Кеплером в начале 17 века для описания орбит планет. Комплексные числа были предложены за несколько веков до того, как физики стали использовать их для описания квантовой механики. Неевклидова геометрия было создана за десятилетия до теории относительности.
Почему математика так хорошо описывает природные явления? Почему из всех способов выражения мыслей, математика работает лучше всего? Почему, например, нельзя предсказать точную траекторию движения небесных тел на языке поэзии? Почему мы не можем выразить всю сложность периодической таблицы Менделеева музыкальным произведением? Почему медитация не сильно помогает в предсказании результата экспериментов квантовой механики?
Лауреат нобелевской премии Юджин Вигнер, в своей статье «The unreasonable effectiveness of mathematics in the natural sciences», также задается этими вопросами. Вигнер не дал нам каких-то определенных ответов, он писал, что «невероятная эффективность математики в естественных науках — это что-то мистическое и этому нет рационального объяснения».
Альберт Эйнштейн по этому поводу писал:
Как может математика, порождение человеческого разума, независимое от индивидуального опыта, быть таким подходящим способом описывать объекты в реальности? Может ли тогда человеческий разум силой мысли, не прибегая к опыту, постичь свойства вселенной? [Einstein]
Давайте внесем ясность. Проблема действительно встает, когда мы воспринимаем математику и физику как 2 разные, превосходно сформированные и объективные области. Если смотреть на ситуацию с этой стороны, то действительно непонятно почему эти две дисциплины так хорошо работают вместе. Почему открытые законы физики так хорошо описываются (уже открытой) математикой?
Этот вопрос обдумывался многими людьми, и они дали множество решений этой проблемы. Теологи, например, предложили Существо, которое строит законы природы, и при этом использует язык математики. Однако введение такого Существа только все усложняет. Платонисты (и их кузены натуралисты) верят в существование «мира идей», который содержит все математические объекты, формы, а так же Истину. Там же находятся и физические законы. Проблема с Платонистами в том, что они вводят ещё одну концепцию Платонического мира, и теперь мы должны объяснить отношение между тремя мирами (прим. переводчика. Я так и не понял зачем третий мир, но оставил как есть). Так же встает вопрос являются ли неидеальные теоремы идеальными формами (объектами мира идей). Как насчет опровергнутых физических законов?
Наиболее популярная версия решения поставленной проблемы эффективности математики заключается в том, что мы изучаем математику, наблюдая за физическим миром. Мы поняли некоторые свойства сложения и умножения считая овец и камни. Мы изучили геометрию, наблюдая за физическими формами. С этой точки зрения, неудивительно, что физика идет за математикой, ведь математика формируется при тщательном изучении физического мира. Главная проблема с этим решением заключается в том, что математика неплохо используется в областях, далеких от человеческого восприятия. Почему же спрятанный мир субатомных частиц так хорошо описывается математикой, изученной благодаря подсчетам овец и камней? почему специальная теория относительности, которая работает с объектами, двигающимися со скоростями близкими к скорости света, хорошо описывается математикой, которая сформирована наблюдением за объектами, двигающимися с нормальной скоростью?
В двух статьях (раз, два) Макр Зельцер и Я (Носон Яновски) сформулировали новый взгляд на природу математики (прим. переводчика. В целом в тех статьях написано то же, что и здесь, но куда более развернуто). Мы показали, что также, как и в физике, в математике огромную роль играет симметрия. Такой взгляд дает довольно оригинальное решение поставленной проблемы.
Прежде чем рассматривать причину эффективности математики в физике, мы должны поговорить о том, что такое физические законы. Говорить, что физические законы описывают физические феномены, несколько несерьезно. Для начала можно сказать, что каждый закон описывает много явлений. Например закон гравитации говорит нам что будет, если я уроню свою ложку, также он описывает падение моей ложки завтра, или что будет если я уроню ложку через месяц на Сатурне. Законы описывают целый комплекс разных явлений. Можно зайти и с другой стороны. Одно физическое явление может наблюдаться совершенно по-разному. Кто-то скажет, что объект неподвижен, кто-то, что объект движется с постоянной скоростью. Физический закон должен описывать оба случая одинаково. Также, например, теория тяготения должна описывать мое наблюдение падающей ложки в двигающимся автомобиле, с моей точки зрения, с точки зрения моего друга, стоящего на дороге, с точки зрения парня, стоящего у него на голове, рядом с черной дырой и т.п.
Встает следующий вопрос: как классифицировать физические явления? Какие стоит группировать вместе и приписывать одному закону? Физики используют для этого понятие симметрии. В разговорной речи слово симметрия используют для физических объектов. Мы говорим, что комната симметрична, если левая её часть похожа на правую. Иными словами, если мы поменяем местами стороны, то комната будет выглядеть точно также. Физики немного расширили это определение и применяют его к физическим законам. Физический закон симметричен по отношению к преобразованию, если закон описывает преобразованный феномен таким же образом. Например, физические законы симметричны по пространству. То есть явление, наблюдаемое в Пизе, так же может наблюдаться в Принстоне. Физические законы также симметричны по времени, т.е. эксперимент, проведенный сегодня должен дать такие же результаты, как если бы его провели завтра. Ещё одна очевидная симметрия — ориентация в пространстве.
Существует множество других типов симметрий, которым должны соответствовать физические законы. Относительность по Галиею требует, чтобы физические законы движения оставались неизменными, независимо от того неподвижен объект, или двигается с постоянной скоростью. Специальная теория относительности утверждает, что законы движения должны оставаться прежними, даже если объект движется со скоростью, близкой к скорости света. Общая теория относительности говорит, что законы остаются прежними, даже если объект движется с ускорением.
Физики обобщали понятие симметрии по-разному: локальная симметрия, глобальная симметрия, непрерывная симметрия, дискретная симметрия и т.д. Виктор Стенджер объединил множество видов симметрии по тем, что мы называем инвариантность по отношению к наблюдателю (point of view invariance). Это означает, что законы физики должны оставаться неизменными, независимо от того, кто и как их наблюдает. Он показал как много областей современной физики (но не все) могут быть сведены к законам, удовлетворяющими инвариантности по отношению к наблюдателю. Это означает, что явления, относящиеся к одному феномену, связанны, несмотря на то, что они могут рассматриваться по-разному.
Понимание настоящей важности симметрии прошло с теорией относительности Эйнштейна. До него люди сначала открывали какой-то физический закон, а потом находили в нем свойство симметрии. Эйнштейн же использовал симметрию, чтобы найти закон. Он постулировал, что закон должен быть одинаков для неподвижного наблюдателя и для наблюдателя, двигающегося со скоростью, близкой к световой. С этим предположением, он описал уравнения специальной теории относительности. Это была революция в физике. Эйнштейн понял, что симметрия — определяющая характеристика законы природы. Не закон удовлетворяет симметрии, а симметрия порождает закон.
В 1918 году Эмми Нётер показала, что симметрия ещё более важное понятие в физике, чем думали до этого. Она доказала теорему, связывающую симметрии с законами сохранения. Теорема показала, что каждая симметрия порождает свой закон сохранения, и наоборот. Например инвариантность по смещению в пространстве порождает закон сохранения линейного импульса. Инвариантность по времени порождает закон сохранения энергии. Инвариантность по ориентации порождает закон сохранения углового момента. После этого физики стали искать новые виды симметрий, чтобы найти новые законы физики.
Таким образом мы определили что называть физическим законом. С этой точки зрения неудивительно, что эти законы кажутся нам объективными, вневременными, независимыми от человека. Так как они инвариантны по отношению к месту, времени, и взгляду на них человека, создается впечатление, что они существуют «где-то там». Однако на это можно посмотреть и по-другому. Вместо того, чтобы говорить, что мы смотрим на множество различных следствий из внешних законов, мы можем сказать, что человек выделил какие-то наблюдаемые физические явления, нашел в них что-то похожее и объединил их в закон. Мы замечаем только то, что воспринимаем, называем это законом и пропускаем все остальное. Мы не можем отказаться от человеческого фактора в понимании законов природы.
Прежде чем мы двинемся дальше, нужно упомянуть о одной симметрии, которая настолько очевидная, что о ней редко когда упоминают. Закон физики должен обладать симметрией по приложению (symmetry of applicability). То есть если закон работает с объектом одного типа, то он будет работать и с другим объектом такого же типа. Если закон верен для одной положительно заряженной частицы, двигающейся со скоростью, близкой к скорости света, то он будет работать и для другой положительно заряженной частицы, двигающейся со скоростью такого же порядка. С другой стороны, закон может не работать для макрообъектов с малой скоростью. Все похожие объекты связанны с одним законом. Нам понадобится этот вид симметрии, когда мы будем обсуждать связь математики с физикой.
Давайте потратим немного времени на то, чтобы понять самую суть математики. Мы рассмотрим 3 примера.
Давным давно какой-то фермер обнаружил, что если ты возьмешь девять яблок и соединишь их с четырьмя яблоками, то в итоге ты получишь тринадцать яблок. Некоторое время спустя он обнаружил, что если девять апельсинов соединить с четырьмя апельсинами, то получится тринадцать апельсинов. Это означает, что если он обменяет каждое яблоко на апельсин, то количество фруктов останется неизменным. В какое-то время математики накопили достаточно опыта в подобных делах и вывели математическое выражение 9 + 4 = 13. Это маленькое выражение обобщает все возможные случаи таких комбинаций. То есть оно истинно для любых дискретных объектов, которые можно обменять на яблоки.
Более сложный пример. Одна из важнейших теорем алгебраической геометрии — теорема Гильберта о нулях (https://ru.wikipedia.org/wiki/Теорема_Гильберта_о_нулях ). Она заключается в том, что для каждого идеала J в полиномиальном кольце существует соответствующее алгебраическое множество V(J), а для каждого алгебраического множества S существует идеал I(S). Связь этих двух операций выражается как , где — радикал идеала. Если мы заменим одно алг. мн-во на другое, мы получим другой идеал. Если мы заменим один идеал на другой, мы получим другое алг. мн-во.
Одним из основных понятий алгебраической топологии является гомоморфизм Гуревича. Для каждого топологического пространства X и положительного k существует группа гомоморфизмов из k-гомотопичой группы в k-гомологичную группу. . Этот гомоморфизм обладает особым свойством. Если пространство X заменить на пространство Y, а заменить на , то гомоморфизм будет другим . Как и в предыдущем примере, какой-то конкретный случай этого утверждения не имеет большого значения для математики. Но если мы собираем все случаи, то мы получаем теорему.
В этих трех примерах мы смотрели на изменение семантики математических выражений. Мы меняли апельсины на яблоки, мы меняли одну идею на другую, мы заменяли одно топологическое пространство на другое. Главное в этом то, что делая правильную замену, математическое утверждение остается верным. Мы утверждаем, что именно это свойство является основным свойством математики. Так что мы будем называть утверждение математическим, если мы можем изменить то, на что оно ссылается, и при этом утверждение останется верным.
Теперь к каждому математическому утверждению нам нужно будет приставить область применения. Когда математик говорит «для каждого целого n», «Возьмем пространство Хаусдорфа», или «пусть C — кокуммутативная, коассоциативная инволютивная коалгебра», он определяет область применения для своего утверждения. Если это утверждение правдиво для одного элемента из области применения, то оно правдиво для каждого (при условии правильного выбора этой самой области применения, прим. пер.).
Эта замена одного элемента на другое, может быть описана как одно из свойств симметрии. Мы называем это симметрия семантики. Мы утверждаем, что эта симметрия фундаментальна, как для математики, так и для физики. Таким же образом, как физики формулируют свои законы, математики формулируют свои математические утверждения, одновременно определяя в какой области применения утверждение сохраняет симметрию семантики (иными словами где это утверждение работает). Зайдем дальше и скажем, что математическое утверждение — утверждение, которое удовлетворяет симметрии семантики.
Если среди вас найдутся логики, то им понятие симметрии семантики будет вполне очевидно, ведь логическое высказывание истинно, если оно истинно для каждой интерпретации логической формулы. Здесь же мы говорим, что мат. утверждение верно, если оно верно для каждого элемента из области применения.
Кто-то может возразить, что такое определение математики слишком широкое и что утверждение, удовлетворяющее симметрии семантики — просто утверждение, не обязательно математическое. Мы ответим, что во-первых, математика в принципе достаточно широка. Математика — это не только разговоры о числах, она о формах, высказываниях, множествах, категориях, микросостояниях, макросостояниях, свойствах и т.п. Чтобы все эти объекты были математическими, определение математики должно быть широким. Во-вторых, существует множество утверждений, не удовлетворяющих симметрии семантики. «В Нью-Йорке в январе холодно», «Цветы бывают только красными и зелеными», «Политики — честные люди». Все эти утверждения не удовлетворяют симметрии семантики и, следоваиельно, не математические. Если есть контрпример из области применения, то утверждение автоматически перестает быть математическим.
Математические утверждения удовлетворяют также и другим симметриям, например симметрии синтаксиса. Это означает, что одни и те же математические объекты могут быть представлены по-разному. Например число 6 может быть представлено как «2 * 3», или «2 + 2 + 2», или «54/9». Также мы можем говорить о «непрерывной самонепересекающийся кривой», о «простой замкнутой кривой», о «жордановой кривой», и мы будем иметь в виду одно и то же. На практике математики пытаются использовать наиболее простой синтаксис (6 вместо 5+2-1).
Некоторые симметрические свойства математики кажутся настолько очевидными, что о них вообще не говорят. Например математическая истина инвариантна по отношению ко времени и пространству. Если утверждение истинно, то оно будет истинно также завтра в другой части земного шара. Причем неважно, кто его произнесет — мать Тереза или Альберт Эйнштейн, и на каком языке.
Так как математика удовлетворяет всем этим типам симметрии, легко понять почему нам кажется, что математика (как и физика) объективна, работает вне времени и независима от наблюдений человека. Когда математические формулы начинают работать для совершенно разных задач, открытых независимо, иногда в разных веках, начинает казаться, что математика существует «где-то там». Однако, симметрия семантики (а это именно то, что происходит) — это фундаментальная часть математики, определяющая её. Вместо того, чтобы сказать, что существует одна математическая истина и мы лишь нашли несколько её случаев, мы скажем, что существует множество случаев математических фактов и человеческий разум объединил их вместе, создав математическое утверждение.
Ну что, теперь мы можем задаться вопросов почему математика так хорошо описывает физику. Давайте взглянем на 3 физических закона.
- Наш первый пример — гравитация. Описание одного феномена гравитации может выглядеть как «В Нью-Йорке, Бруклин, Майн стрит 5775, на втором этаже в 21.17:54, я увидел двухсотграммовую ложку, которая упала и стукнулась о пол спустя 1.38 секунд». Даже если мы настолько аккуратны в наших записях, они нам не сильно помогут в описаниях всех явлений гравитации (а именно это и должен делать физический закон). Единственный хороший способ записать этот закон будет записать его математическим утверждением, приписав к нему все наблюдаемые явления гравитации. Мы можем сделать это, написав закон Ньютона . Подставляя массы и расстояние, мы получим наш конкретный пример гравитационного явления.
- Точно также для того, чтобы найти экстремум движения, нужно применить формулу Эйлера-Лагранжа . Все минимумы и максимумы движения выражаются через это уравнение и определяются симметрией семантики. Конечно, эта формула может быть выражена и другими символами. Она может быть записана даже на эсперанто, в целом не важно на каком языке она выражается (на эту тему переводчик мог бы подискутировать с автором, но для результата статьи это не так важно).
- Единственный способ описать взаимоотношения между давлением, объемом, количеством и температурой идеального газа — это записать закон . Все инстансы явлений будут описываться этим законом.
В каждом из трех приведенных примеров физические законы естественно выражаются только через математические формулы. Все физические явления, которые мы хотим описать, находятся внутри математического выражения (точнее в частных случаях этого выражения). В терминах симметрий мы говорим, что физическая симметрия применимости — частный случай математической симметрии семантики. Более точно, из симметрии применимости следует, что мы можем заменить один объект на другой (того же класса). Значит математическое выражение, которое описывает явление, должно обладать таким же свойством (то есть его область применения должна быть хотя бы не меньше).
Иными словами, мы хотим сказать, что математика так хорошо работает в описании физических явлений, потому-что физика с математикой формировались одинаковым образом. Законы физики не находятся в платоновом мире и не являются центральными идеями в математике. И физики, и математики выбирают свои утверждения таким образом, чтобы они подходили ко многим контекстам. В этом нет ничего странного, что абстрактные законы физики берут свое начало в абстрактном языке математики. Как и в том, что некоторые математические утверждения сформулированы задолго до того, как были открыты соответствующие законы физики, ведь они подчиняются одним симметриям.
Теперь мы полностью решили загадку эффективности математики. Хотя, конечно, есть ещё множество вопросов, на которые нет ответов. Например, мы можем спросить почему у людей вообще есть физика и математика. Почему мы способны замечать симметрии вокруг нас? Частично ответ на этот вопрос в том, что быть живым — значит проявлять свойство гомеостазиса, поэтому живые существа должны защищаться. Чем лучше они понимают своё окружение, тем лучше они выживают. Неживые объекты, например камни и палки, никак не взаимодействуют со своим окружением. Растения же, с другой стороны, поворачиваются к солнцу, а их корни тянутся к воде. Более сложное животное может замечать больше вещей в своем окружении. Люди замечают вокруг себя множество закономерностей. Шимпанзе или, например, дельфины не могут этого. Закономерности наших мыслей мы называем математикой. Некоторые из этих закономерностей являются закономерностями физических явлений вокруг нас, и мы называем эти закономерности физикой.
Можно задаться вопросом почему в физических явлениях вообще есть какие-то закономерности? Почему эксперимент проведенный в Москве даст такие же результаты, если его провести в Санкт-Петербурге? Почему отпущенный мячик будет падать с одинаковой скоростью, несмотря на то, что его отпустили в другое время? Почему химическая реакция будет протекать одинаково, даже если на неё смотрят разные люди? Чтобы ответить на эти вопросы мы можем обратиться к антропному принципу. Если бы во вселенной не было каких-то закономерностей, то нас бы не существовало. Жизнь пользуется тем фактом, что у природы есть какие-то предсказуемые явления. Если бы вселенная была полностью случайна, или похожа на какую-то психоделическую картину, то никакая жизнь, по крайней мере интеллектуальная жизнь, не смогла бы выжить. Антропный принцип, вообще говоря, не решает поставленную проблему. Вопросы типа «Почему существует вселенная», «Почему есть что-то» и «Что тут вообще происходит» пока остаются без ответа.
Несмотря на то, что мы не ответили на все вопросы, мы показали, что наличие структуры в наблюдаемой вселенной вполне естественно описывается на языке математики.
Математический феномен: формула, которая описывает всё
Чем ещё удивит математика? Вот как выглядит формула всего, и вот как это использовать в личных целях. Алгоритм с иллюстрациями.
Феноменальное неравенство
Посмотрите на одно занимательное число. Это классика. Возможно, вам знакомая.
48584506361897134235820959624942020445814005879832445494830930850619347047088099284506447 69865524364849997247024915119110411605739177407856919754326571855442057210445735883681829 82375413963433822519945219165128434833290513119319995350241375876523926487461339490687013 05622958132194811136853395355652908500238750928568926945559742815463865107300491067230589 33586052544096664351265349363643957125565695936815184334857605266940161251266951421550539 55451915378545752575659074054015792900176596796548006442782913148854825991472124850635268 6630476300
Через минуту поймёте, почему этот цифровой ряд вызывает чертовское любопытство. Он связан с одним фантастическим неравенством.
Формулу – в студию:
где ⌊ ⌋
– пол вещественного числа – округление до целой части в меньшую сторону, а mod
— оператор остатка от деления.
Возьмите координатные оси x
и y
и для каждой точки в плоскости подставьте координаты x
и y
, тогда эта формула скажет, нужно ли окрашивать позицию. Неравенство показывает, какую часть пространства заполнить цветом.
Если вы построите диаграмму, то получите это:
Разве не поразительно, что график формулы выглядит как изображение её само́й?
Самореферентная формула Таппера правомерно занимает место в списке причудливых вещей математики. Впервые Джефф Таппер опубликовал её в 2001 году на конференции SIGGRAPH, когда демонстрировал собственную разработку – программу для рисования графиков GrafEq.
У внимательных в голове наверняка проскользнул вопрос: что за магическое k
по оси y
? С x
область понятна – от 0 до 106. На самом деле, k
– то длинное число. То есть, по оси y
мы забрались за облака. Когда абстрагируетесь от верхних и нижних значений и рассмотрите маленькую область от k
до k + 17
, вы увидите неравенство, по которому создали график.
Но потрясает в формуле Таппера не образование собственного изображения, а построение всего. Пройдитесь вдоль оси y
, и увидите, как это неравенство сформирует каждый возможный рисунок из чёрных и белых пикселей размерами 106 на 17. Значит, изображения в рамках такого формата найдёте в определённых местах на графике. Не только формулу Таппера, но и всевозможные другие.
Например, мы отыскали такое значение числа k
, при котором в формуле вместо символов остатка от деления появились смайлики:
А также приготовили вариант с Пакманом, поедающим формулу, и приведением:
Формула всего в действии
Настало время узнать, как из желаемой картинки получить заветное число.
В первую очередь возьмите изображение в пиксельном виде формата 106 на 17. Покажем на примере логотипа Библиотеки программиста:
Начинайте с левого нижнего угла и двигайтесь вверх. Если пиксель чёрный, то записывайте 1, в противном случае – 0. Когда подойдёте к концу первого столбца, переходите ко второму. Направление прежнее – снизу вверх.
На рассматриваемой картинке вначале будет масса нулей. В конечном счёте получим такое длинное двоичное число:
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000000011111111100000000000110011000 000000001000010000000000011001100000000000111110000000000000000000000000000000000000000000000 111111000000000000000100000000000000000100000000000000000000000000000111100000000000011001100 000000000100001000000000001000010000000000011001100000000000011110000000000000000000000000001 001111000000000110110011000000001001000010000000011011001100000000011111111000000000000000000 000000000000000000000000000000000000000001111111111111000111111111111111001111111111111110011 111111111111100111111111111111001111000000001110011110111111111100111111111111111001111000000 101110011111111111111100111111111111111001111000000001110011110011001111100111101111011111001 111001100111110011110000011111100111111111111111001111111111111110011111111111111100011111111 11111
Переведите результат в десятичную систему счисления и умножьте на 17. Поздравляем, вы получили значение k
.
Для логотипа Библиотеки:
275920946718088023480723936896165056360565819683866987796214204083704967426367028838171010577 240995701759158859651200376151267820757234464431427249106688058522782455726480988406439648562 620760834048362915566450772662232356183743837870137689132679620381296484548019451375155482604 298164929327123340746339483037052696814767795015822491105174814111467113651849715266381480786 0373249589248
Осталось построить график.
С помощью этой формулы декодируют растровые изображения, зашифрованные в константе k
. Так что смело воспроизводите картинки. Чтобы получить изображение, инвертируйте последовательность шагов алгоритма.
Бонус
С хардкором закончили. А что делать, когда нет желания провести выходные за переводом изображения в двоичное число? Используйте готовый инструмент, и эта процедура займёт минуту. Там вы загружаете изображение нужного формата или рисуете по клеточкам онлайн.
Источник
Какие картинки вам захотелось построить с помощью этой формулы?
Математическая формула — Карта знаний
- Математическая формула (от лат. formula — уменьшительное от forma — образ, вид) — в математике, а также физике и прикладных науках, символическая запись высказывания (которое выражает логическое суждение), либо формы высказывания. Формула, наряду с термами, является разновидностью выражения формализованного языка.
В более широком смысле формула — всякая чисто символьная запись (см. ниже), противопоставляемая в математике различным выразительным способам, имеющим геометрическую коннотацию: чертежам, графикам, диаграммам, графам и т. п.
Источник: Википедия
Связанные понятия
Бу́лева фу́нкция (или логи́ческая функция, или функция а́лгебры ло́гики) от n аргументов — в дискретной математике — отображение Bn → B, где B = {0,1} — булево множество. Элементы булева множества {1, 0} обычно интерпретируют как логические значения «истинно» и «ложно», хотя в общем случае они рассматриваются как формальные символы, не несущие определённого смысла. Неотрицательное целое число n называют арностью или местностью функции, в случае n = 0 булева функция превращается в булеву константу… Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления. Формальное дифференцирование — операция над элементами кольца многочленов или кольцом формальных степенных рядов, повторяющая форму производных из математического анализа. Алгебраическое преимущество формального дифференцирования состоит в том, что оно не опирается на понятие предела, которое в общем случае невозможно определить для кольца. Многие свойства производной верны для формального дифференцирования, но некоторые, особенно касающиеся утверждений, содержащих числа, не верны. В основном формальное… По́ле в общей алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на нуль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Хотя названия операций поля взяты из арифметики, следует иметь в виду, что элементы поля не обязательно являются числами, и определения операций могут быть далеки от арифметических.Упоминания в литературе
Таким образом, общим для всех фракталов является наличие рекурсивной процедуры их генерации и (бес)конечной цепочки автопоэзиса (самопостроения)[29]. В строгом математическом понимании фрактал бесконечен, поэтому фрактальная структура n-ного порядка называется предфракталом. При этом с помощью относительно несложных математических формул «можно описать форму облака так же чётко и просто, как архитектор описывает здание с помощью чертежей, в которых применяется язык традиционной геометрии»[30]. Математические фракталы бесконечны, как и культурные фракталы, относящиеся к культурогенезу и культурной трансмиссии, однако фрактальные артефакты культуры (например, здания, матрешки или образы на рекламных объявлениях) имеют ограниченную «глубину» фрактальности, иногда не более двух итерационных уровней. Степень простоты и диапазон теории определяют присущую ей вероятность, а вероятность эта зависит от ее отношения к любым данным. Чем проще теория, тем более она вероятна. Простота теории, на мой взгляд, связана с тем, что она постулирует немногие (логически независимые) сущности, немногие свойства этих сущностей, немногие виды сущностей, немногие виды свойств (свойств, которые проще наблюдать), немногие независимые друг от друга законы с немногими понятиями, связывающими немногие переменные в наиболее математически простые формулировки. Например, теория фундаментальных частиц будет простой в той мере, в которой она постулирует лишь немногие виды частиц с такими свойствами (например, масса и электрический заряд), которые мы можем наблюдать на примере других, более крупных, частиц, действие которых определяется простой математической формулой. Теория является более простой, а потому обладает большей предварительной вероятностью, в той степени, в которой она удовлетворяет этим критериям. Но часто случается так, что для того, чтобы быть возможно истинной, теория должна удовлетворять другому критерию (например, это может быть объяснительная сила), но сделать это может лишь не самая простая теория. Наилучшей теорией может оказаться не самая простая, но в отношении других вещей, при прочих равных условиях, сохраняется принцип: чем проще, тем более вероятно. Способность предсказывать или описывать что-либо, даже достаточно точно, совсем не равноценна пониманию этого. В физике предсказания и описания часто выражаются в виде математических формул. Допустим, я запомнил формулу, из которой при наличии времени и желания мог бы вычислить любое положение планет, которое когда-либо было записано в архивах астрономов. Что же я в этом случае выиграл бы по сравнению с непосредственным заучиванием архивов? Формулу проще запомнить, но ведь найти число в архивах может быть даже проще, чем вычислить его из формулы. Истинное преимущество формулы в том, что ее можно использовать в бесконечном множестве случаев помимо архивных данных, например, для предсказания результатов будущих наблюдений. С помощью формулы можно также получить более точное историческое положение планет, потому что архивные данные содержат ошибки наблюдений. И все же несмотря на то, что формула охватывает бесконечно больше фактов, чем архив наблюдений, знать ее не значит понимать движения планет. Факты невозможно понять, попросту собрав их в формулу, так же как нельзя понять их, просто записав или запомнив. Факты можно понять только после объяснения. К счастью, наши лучшие теории наряду с точными предсказаниями содержат глубокие объяснения. Например, общая теория относительности объясняет гравитацию на основе новой четырехмерной геометрии искривленных пространства и времени. Она точно объясняет, каким образом эта геометрия воздействует на материю и подвергается воздействию материи. В этом объяснении и заключается полное содержание теории; а предсказания движений планет – это всего лишь некоторые следствия, выводимые из этого объяснения. Интуитивно, когда участники забега бегут плечом к плечу, это представляет собой более тесную форму синхронизма, чем в случае, когда они находятся на значительном удалении друг от друга, и поэтому заслуживают более высокого «балла за синхронизм», то есть должны характеризоваться более высоким значением параметра порядка. Числовое значение параметра порядка всегда находится в диапазоне от 0 до 1 и вычисляется с помощью математической формулы, которая зависит от относительного положения каждого из бегунов. В одном крайнем случае, когда все бегуны пребывают в идеальном синхронизме, то есть бегут «в унисон», параметр порядка равняется 1. В другом крайнем случае, когда все бегуны распределены случайным образом по всей длине беговой дорожки, параметр порядка равняется 0. В одних и тех же математических формулах могут быть описаны самые разнородные процессы – геометрические, форономические, фантастические; формулы энергетики в этом отношении ничем не отличаются от других формул. До этих пор анализ их приводит, поэтому, к математическим категориям, а эти последние уже предполагаются энергетикой. Впервые своеобразие понятий, выраженных в формулах, обусловливает то, что описанные отношения соответствуют действительным процессам природы. Очевидно, следовательно, что именно понятие энергии и ее факторов и есть то, чем определенное количеством и качеством образование выделяется как образование физическое. Сущность же этих физических образований заключается в том, что они сохраняют самостоятельное существование в пространстве и времени, что они действуют друг на друга и этим действиям подвержено и собственное наше тело. Закон, обусловливающий то, что предметы полагаются в связи вещей неизменными или изменяющимися во времени, оказывающими и воспринимающими воздействия, называется понятием отношения. Следует, поэтому, ожидать, что в понятии энергии мы найдем категории отношения. Векторная графика превращается в растровую «в последний момент», и математические формулы, из которых состоит изображение, грубо говоря, просто «просчитываются» с более высокой точностью. Поэтому увеличить векторный рисунок очень просто, и качество его будет по-прежнему высоким (рис. 1.3), а при увеличении растрового рисунка качество наверняка ухудшится, поскольку станут заметны отдельные пикселы (рис. 1.4). В настоящее время невозможно, как видно, объяснить все революционные открытия современной науки, обсужденные в этой главе, в связной и всесторонней новой парадигме. Однако все они имеют по-видимому кое-что общее, а именно разделяемое их сторонниками глубокое убеждение, что механистический образ Вселенной, созданный ньютоно-картезианской наукой, не может больше считаться точной и окончательно установленной моделью реальности. Понятие космоса как гигантской супермашины, собранной из бесчисленных отдельных объектов и существующей независимо от наблюдателя, уже устарело и отправлено в исторический архив науки. Исправленная модель показывает Вселенную единой и неделимой сетью событий и взаимосвязей; ее части представляют разные аспекты и паттерны одного интегрального процесса невообразимой сложности. Как предсказывал более пятидесяти лет назад Джеймс Джинс (Jeans, 1930), Вселенная современной физики больше похожа на систему мыслительных процессов, нежели на гигантский часовой механизм. По мере того как ученые проникают все глубже в структуру материи и изучают многочисленные аспекты мировых процессов, понятие твердой субстанции постепенно исчезает из этой картины, оставляя им только архетипические паттерны, абстрактные математические формулы или универсальный порядок. Следовательно, не будет странным предположить, что связующим принципом в космической сети является сознание как первичный и нередуцируемый атрибут существования19. Решительный демарш, который совершила на своем пути физическая наука, – не каприз ученых, а их последняя надежда. Они осознали: чтобы объяснить субатомные феномены, нужно оставить физику как таковую и создать математические формулы, описывающие состояния людей, занимающихся наблюдением, а не физические события. Эта идея была настолько эксцентричной, что ни одна группа ученых никогда не решилась бы принять ее – если бы не возникла потребность в чрезвычайных мерах.Связанные понятия (продолжение)
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения. Элемента́рная а́лгебра — самый старый раздел алгебры, в котором изучаются алгебраические выражения и уравнения над вещественными и комплексными числами. Теневое исчисление (от англ. Umbral calculus, далее от лат. umbra — «тень») — математический метод получения некоторых алгебраических тождеств. До 1970-х термин относился к схожести некоторых внешне несвязанных алгебраических тождеств, а также к техникам, использованных для доказательства этих тождеств. Эти техники предложил Джон Блиссард и они иногда называются символическим методом Блиссарда. Их часто приписывают Эдуарду Люка (или Джеймсу Джозефу Сильвестру), которые их интенсивно использовали… Смешанные частные производные одной и той же функции, отличающиеся лишь порядком (очерёдностью) дифференцирования, равны между собой при условии их непрерывности. Такое свойство называется равенством смешанных производных.Подробнее: Равенство смешанных производных
Дробная производная (или производная дробного порядка) является обобщением математического понятия производной. Существует несколько разных способов обобщить это понятие, но все они совпадают с понятием обычной производной в случае натурального порядка. Когда рассматриваются не только дробные, но и отрицательные порядки производной, к такой производной обычно применяется термин дифферинтеграл. Бра и кет (англ. bra-ket Комплексный логарифм — аналитическая функция, получаемая распространением вещественного логарифма на всю комплексную плоскость (кроме нуля). Существует несколько эквивалентных способов такого распространения. Данная функция имеет широкое применение в комплексном анализе. В отличие от вещественного случая, функция комплексного логарифма многозначна. Квазианалити́ческие фу́нкции в математическом анализе — класс функций, которые, нестрого говоря, можно полностью реконструировать по их значениям на небольшом участке (например, на границе области). Такое свойство значительно облегчает решение дифференциальных уравнений и исследование других задач анализа. Поскольку это свойство выполняется для аналитических функций (см. Комплексный анализ), то класс квазианалитических функций содержит класс обычных аналитических функций и может рассматриваться как…Подробнее: Квазианалитическая функция
Обобщённая фу́нкция или распределе́ние — математическое понятие, обобщающее классическое понятие функции. Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости. Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Формирование дифференциального исчисления связано с именами Исаака Ньютона и Готфрида Лейбница. Именно они чётко сформировали основные положения и указали на взаимообратный характер дифференцирования и интегрирования. Создание дифференциального исчисления (вместе с интегральным) открыло новую эпоху в развитии математики. С этим связаны… Аддитивная комбинаторика (от англ. addition — сложение) — междисциплинарная область математики, изучающая взаимозависимость различных количественных интерпретаций понятия структурированности подмножества группы (как правило, конечной), а также аналогичные свойства производных от множества структур, использующихся при этих интерпретациях. Кроме того, аддитивная комбинаторика изучает структурированность в различных смыслах некоторых специфических множеств или классов множеств (например, подмножеств… В математике и теоретической физике функциональная производная является обобщением производной по направлению. Разница заключается в том, что для последней дифференцирование производится в направлении какого-нибудь вектора, а для первой речь идёт о функции. Оба эти понятия можно рассматривать как обобщение обычного дифференциального исчисления.Подробнее: Функциональная производная
При конструктивном подходе к определению вещественного числа вещественные числа строят, исходя из рациональных, которые считают заданными. Во всех трёх нижеизложенных способах за основу берутся рациональные числа и конструируются новые объекты, называемые иррациональными числами. В результате пополнения ими множества рациональных чисел, мы получаем множество вещественных чисел.Подробнее: Конструктивные способы определения вещественного числа
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке). В математике и информатике подстановка — это операция синтаксической замены подтермов данного терма другими термами, согласно определённым правилам. Обычно речь идёт о подстановке терма вместо переменной.Подробнее: Подстановка
Дифференциа́л (от лат. differentia «разность, различие») — линейная часть приращения функции. Мультимножество в математике — обобщение понятия множества, допускающее включение одного и того же элемента по нескольку раз. Число элементов в мультимножестве, с учётом повторяющихся элементов, называется его размером или мощностью. Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован… Кватернионный анализ — это раздел математики, изучающий регулярные кватернионнозначные функции кватернионного переменного. Из-за некоммутативности алгебры кватернионов существуют различные неравносильные подходы к определению регулярных кватернионных функций. В данной статье будет рассматриваться, в основном, подход Фютера. В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.Подробнее: Монодромия
Единица в теории колец — двусторонний нейтральный элемент операции умножения. Кольцо, содержащее единицу, называется кольцом с единицей. Обозначается единица, как правило, цифрой «1» (что отражает таковые свойства одноимённого числа) или иногда (например, в матричной алгебре), латинской буквой I или E. Гру́ппа Галуа́ — группа, ассоциированная с расширением поля. Играет важную роль при исследовании расширений полей, в частности, в теории Галуа. Это понятие (в контексте группы перестановок корней многочлена) ввёл в математику Эварист Галуа в 1832 году. Множество больших тригонометрических сумм — понятие теории чисел — множество индексов, в которых преобразование Фурье характеристической функции заданного подмножества группы принимает достаточно большие значения. Конъю́нкция (от лат. conjunctio — «союз, связь») — логическая операция, по смыслу максимально приближенная к союзу «и». Синонимы: логи́ческое «И», логи́ческое умноже́ние, иногда просто «И». Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости). Логика первого порядка, называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков. Универсальная тригонометрическая подстановка, в англоязычной литературе называемая в честь Карла Вейерштрасса подстановкой Вейерштрасса, применяется в интегрировании для нахождения первообразных, определённых и неопределённых интегралов от рациональных функций от тригонометрических функций. Без потери общности можно считать в данном случае такие функции рациональными функциями от синуса и косинуса. Подстановка использует тангенс половинного угла. Математические обозначения («язык математики») — сложная графическая система обозначений, служащая для изложения абстрактных математических идей и суждений в человеко-читаемой форме. Составляет (по своей сложности и разнообразию) значительную долю неречевых знаковых систем, применяемых человечеством. В данной статье описывается общепринятая международная система обозначений, хотя различные культуры прошлого имели свои собственные, и некоторые из них даже имеют ограниченное применение до сих пор… Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел. Мультииндекс (или мульти-индекс) — обобщение понятия целочисленного индекса до векторного индекса, которое нашло применение в различных областях математики, связанных с функциями многих переменных. Использование мультииндекса помогает упростить (записать более кратко) математические формулы. Переме́нная — атрибут физической или абстрактной системы, который может изменять своё, как правило численное, значение. Понятие переменной широко используется в таких областях как математика, естественные науки, техника и программирование. Примерами переменных могут служить: температура воздуха, параметр функции и многое другое. Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента. В компле́ксном анализе вы́четом заданного объекта (функции, формы) называется объект (число, форма или когомологический класс формы), характеризующий локальные свойства заданного.Подробнее: Вычет (комплексный анализ)
Целая функция — функция, регулярная во всей комплексной плоскости. Типичным примером целой функции может служить многочлен или экспонента, а также суммы, произведения и суперпозиции этих функций. Ряд Тейлора целой функции сходится во всей плоскости комплексного переменного. Логарифм, квадратный корень не являются целыми функциями. Трои́чная ло́гика (трёхзначная логика или тернарная логика) — один из видов многозначной логики, предложенный Яном Лукасевичем в 1920 году. Трёхзначная логика — исторически первая многозначная логика. Она является простейшим расширением двузначной логики. Тео́рия поле́й — раздел математики, занимающийся изучением свойств полей, то есть структур, обобщающих свойства сложения, вычитания, умножения и деления чисел. Полуинварианты, или семиинварианты, или кумулянты — коэффициенты в разложении логарифма характеристической функции случайной величины в ряд Маклорена. Интеграл — одно из важнейших понятий математического анализа, которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и тому подобных, а также в задаче о восстановлении функции по её производной (неопределённый интеграл). Упрощённо интеграл можно представить как аналог суммы для бесконечного числа бесконечно малых слагаемых. В зависимости от пространства, на котором задана подынтегральная функция, интеграл может быть…30 математических формул для SAT, которые необходимо знать
Коэффициенты, проценты и статистика
13. Простые проценты
\ (A = Prt \)
Этот показатель появляется реже, чем сложные проценты на SAT, но он все равно появляется, поэтому о нем стоит знать. \ (P \) представляет основную сумму, \ (r \) — процентную ставку, выраженную в десятичной дроби, а \ (t \) — время, обычно в годах.