Как решить пример в квадратных скобках – Порядок арифметических действий, скобки | Формулы и расчеты онлайн

Порядок арифметических действий, скобки | Формулы и расчеты онлайн

Если несколько действий выполняются одно за другим, то результат, зависит от порядка действий.

Например,

\[ 4 — 2 + 1 = 3 \]

Если производить действия в порядке их записи.

Если же сначала сложить 2 и 1 и вычесть полученную сумму из 4, то получим 1.

Чтобы указать, в каком порядке нужно выполнять действия (в тех случаях, когда результат зависит от порядка действий), пользуются скобками. Действия, заключенные в скобки, выполняются раньше других. В нашем случае:

\[ (4 — 2) + 1 = 3 \]

\[ 4 — (2 + 1) = 1 \]

Пример 1:

\[ (2 + 4) · 5 = 6 · 5 = 30 \]

\[ 2 + (4 · 5) = 2 + 20 = 22 \]

Чтобы не загромождать чрезмерно записи, условились не писать скобок:

  1. в том случае, когда действия сложения и вычитания, следуя друг за другом, должны выполняться в том порядке, в каком они записаны;
  2. в том случае, когда внутри скобок производятся действия умножения или деления; например, вместо 2 + (4 · 5) = 22 пишут 2 + 4 · 5 = 22.

При вычислении таких выражений, которые либо совсем не содержат скобок, либо содержат лишь такие скобки, внутри которых больше нет скобок, нужно производить действия в таком порядке:

  1. сначала выполняются действия, заключенные в скобки; при этом умножение и деление делаются в порядке из следования, но раньше, чем сложение и вычитание;
  2. затем выполняются остающиеся действия, причем опять умножение и деление делаются в порядке из следования, но раньше сложения и вычитания.

Пример 2:

\[ 2 · 5 — 3 · 3 \]

Сначала выполняем умножения:
2 · 5 = 10
3 · 3 = 9
затем вычитание:
10 — 9 = 1

Пример 3:

\[ 9 + 16 : 4 — 2 · (16 — 2 · 7 + 4) + 6 · (2 + 5) \]

Сначала выполняем действия в скобках:
16 — 2 · 7 + 4 = 16 — 14 + 4 = 6
2 + 5 = 7

Теперь выполняем остающиеся действия:

9 + 16 : 4 — 2 · 6 + 6 · 7 =
= 9 + 4 — 12 + 42 =
= 43

Часто для указания порядка действий необходимо заключать в скобки такие выражения, которые сами уже содержат скобки. Тогда, кроме обычных (круглых), применяют скобки иной формы, например квадратные []. Если в скобки нужно заключить выражение, содержащее уже круглые и квадратные скобки, пользуются фигурными скобками {}. Вычисление подобных выражений производится в следующем порядке: сначала производятся вычисления внутри всех круглых скобок в вышеуказанной последовательности. Затем — вычисления внутри всех квадратных скобок по тем же правилам. Далее — вычисления внутри фигурных скобок и т.д.. Наконец, выполняются остающиеся действия.

Пример 4:

\[ 5 + 2 · [14 — 3 · (8 — 6)] + 32 : (10 — 2 · 3) \]

Выполняем действия в круглых скобках, имеем:
8 — 6 = 2
10 — 2 · 3 = 10 — 6 = 4

действия в квадратных скобках дают:
14 — 3 · 2 = 8

выполняя остающиеся действия скобках находим:
5 + 2 · 8 + 32 : 4 = 5 + 16 + 8 = 29

Пример 5:

\[ {100 — [35 — (30 — 20)]}· 2 \]

Порядок действий:
30 — 20 = 10
35 — 10 = 25
100 — 25 = 75
75 · 2 = 150

В помощь студенту

Порядок арифметических действий, скобки
стр. 19

www.fxyz.ru

Примеры по математике со скобками

 

Выполнение тех или иных операций предполагает определённый порядок действий.

42 + 1 = 3

Если производить действия в порядке их записи, четыре минус два плюс один, результат будет равен трём. Если же вначале сложить 2 и 1 и вычесть данную сумму из 4, то получится цифра 1.

Чтобы указать, в каком порядке нужно выполнять действия применяют скобки.

Действия, заключенные в скобки, выполняются раньше других.

Пример:

(42) + 1 = 3

5 – (3 + 1) = 1

(3 + 4) × 5 = 7 × 5 = 35

4 + (4 × 5) = 4 + 20 = 24

Скобки не ставятся в тех случаях если:

1. действия сложения и вычитания, исполняются в последовательности, как они записаны:

вместо (62) + 1 = 5 пишут 62 + 1 = 5

2. внутри скобок совершаются операции умножения или деления:

вместо 2 + (2 × 8) = 18 пишут 2 + 2 × 8 = 18

При расчёте таких выражений, которые либо вовсе не содержат разделительных скобок, либо имеют такие скобки, внутри которых не содержится других скобок, следует производить действия в следующем порядке:

1. вначале выполняются операции с цифрами заключенными в скобки, при этом действия умножения и деления делаются в порядке их следования, но ранее, чем сложение и вычитание.

2. Затем, исполняются остающиеся действия, причем опять умножение и деление производятся в порядке их следования, но ранее сложения и вычитания.

Пример:

2 × 53 × 3

сначала выполняется умножения

2 × 5 = 10

3 × 3 = 9

затем выполняется вычитание

109 = 1

Пример:

22 + 16 : 44 × (172 × 7 + 3) + 7 × (3 + 4)

выполнение действий в скобках:

172 × 7 + 4 = 1714 + 3 = 6

3 + 4 = 7

выполнение остающихся действий:

22 + 16 : 44 × 6 + 7 × 7 = 22 + 424 + 49 = 51

Зачастую для указания порядка действий, необходимо применять дополнительные скобки.

Тогда, кроме простых круглых скобок, используют скобки иной формы:

[ ]квадратные скобки

{ }фигурные скобки

Вычисление этих выражений реализуется в следующем порядке:

Вначале операции вычисления производятся внутри всех круглых скобок

затем – вычисления внутри всех квадратных скобок

далее – вычисления внутри фигурных скобок

после выполняются остающиеся действия

Пример:

5 + 2 × [144 × (75) ] + 36 : (12

2 × 3)

выполнение действий в круглых скобках:

75 = 2

122 × 3 = 126 = 6

действия в квадратных скобках:

144 × 2 = 6

выполнение остающихся действий:

5 + 2 × 6 + 36 : 6 = 5 + 12 + 6 = 23

Пример:

{100 – [40 – (3525)]} × 2

Порядок действий:

3525 = 10

4010 = 30

100 30 = 70

70 × 2 = 140

simple-math.ru

Скобки в математике: их виды и предназначение

В данной статье рассказывается о скобках в математике и рассматриваются виды и применения, термины и методы использования при решении или для описания материала. В заключение будут решены подобные примеры с подробными комментариями.

Основные виды скобок, обозначения, терминология

Для решения заданий в математике используются три вида скобок: ( ), [ ], { }. Реже встречаются скобки такого вида ] и [, называемые обратными, или < и >, то есть в виде уголка. Их применение всегда парное, то есть имеется открывающаяся и закрывающаяся скобка в любом выражении, тогда оно имеет смысл . скобки позволяют разграничить и определить последовательность действий.

Фигурная непарная скобка типа { встречается при решении систем уравнений, что обозначает пересечение заданных множеств, а [ скобка используется при их объединении. Далее рассмотрим их применение.

Скобки для указания порядка выполнения действий

Основное предназначение скобок – указание порядка выполняемых действий. Тогда выражение может иметь одну или несколько пар круглых скобок. По правилу всегда выполняется первым действие в скобках, после чего умножение и деление, а позже сложение и вычитание.

Пример 1

Рассмотрим на примере заданное выражение. Если дан пример вида 5+3-2, тогда очевидно, что действия выполняются последовательно. Когда это же выражение записывается со скобками, тогда их последовательность меняется. То есть при (5+3)-2 первое действие выполняется  в скобках. В данном случае изменений не будет. Если выражение будет записано в виде 5+(3-2), тогда в начале производятся вычисления в скобках, после чего сложение с числом 5. На исходное значение в этом случае оно не повлияет.

Пример 2

Рассмотрим пример, который покажет, как при изменении положения скобок может измениться результат. Если дано выражение 5+2·4, видно, что вначале выполняется умножение, после чего сложение. Когда выражение будет иметь вид (5+2)·4, то вначале выполнится действие в скобках, после чего произведется умножение. Результаты выражений будут отличаться.

Выражения могут содержать несколько пар скобок, тогда выполнения действий начинаются с первой. В вы

zaochnik.com

Квадратные скобки в математике ℹ️ основные символы, значение и обозначение, предназначение круглых, фигурных и других знаков, примеры решения неравенств и уравнений

Квадратные скобки в математике

Общая характеристика

Главная задача знаков — описание этапов осуществляемых действий. Математическое уравнение или выражение имеет одиночную пару квадратных, фигурных и других скобок, а также может использовать их некоторое количество.

Значение и разновидности

Скобки — это парные знаки, используемые во всевозможных областях. Чтобы правильно выстроить фразу в русском языке, для понимания смысла текста в предложении они употребляются как знаки препинания. С начальных классов школы изучают основы этих знаков.

Разновидности скобок

В расчетах первая из скобок считается открывающей, а вторая — замыкающей. Оба знака соответствуют друг другу, но также используются те, в которых открытие или закрытие не различается (косые /…/, прямые скобки |…|, двойные прямые ||…||. Раскрывать значение можно чаще всего в математике, физике, химии и остальных науках для указания важности выполнения операции в формулах. На компьютерной клавиатуре представлены все виды знаков препинания.

Разновидности:

  • Круглые ().
  • Квадратные [ ].
  • Фигурные { }.
  • Угловые ⟨ ⟩ (< > в ASCII-текстах).

Открытие круглых () произошло в 1556 году для подкоренного выражения. По правилу первым выполняется действие внутри знака, затем произведение или определение частного (деление), а в конце — суммирование и разница.

В Microsoft word, Excel включена электронная конфигурация этих знаков. Часто используемые виды скобок, следующие: (), [ ], { }(), [ ], { }. Также встречаются двойные, называемые обратными (]] и [ [) или << и >> в виде уголка. Их использование является двойственным — с открывающейся и замыкающей скобочкой.

Основные цели квадратной скобки в математике:

  • Взятие целой части числового значения.
  • Округление до близкого знака.
  • Возведение в степень, взятие производной или подсчёт подинтегрального выражения.
  • Приоритет операций. Примером может быть следующий способ: [(5+6)*2]3.
Основные цели квадратной скобки в математике

Другие варианты расчета:

  • Векторное произведение — с = [a, b] = [a*b] = a*b.
  • Закрытие сегмента [1;2] означает, что в множество включены цифры 1 и 2.
  • Коммутатор [А, В = [А, В].
  • Заменяют круглые скобки при записи матриц по правилам.
  • Одна [ объединяет несколько уравнений или неравенств.
  • Нотация Айверсона.

Квадратные скобки в математике обозначают, что действие выполняется последовательно. Эти знаки позволяют разграничить операции.

Треугольные актуальны в теории групп. Правило записи ⟨ a ⟩ n характеризует циклическую группу порядка n, сформированную элементом a.

Круглые (операторные) скобки

Круглые (операторные) () используются в математике для описания первостепенности действий. Например, (1 +5)*3 означает, что нужно сначала сложить 1 и 5, а затем полученную величину перемножить на 3. Наряду с квадратными, используются для записи разных компонент векторов, матриц и коэффициентов.

На уроке математики преподаватель объясняет, как раскрыть скобки в уравнении для последующего решения. Фигурная одинарная { встречается при решении систем уравнений, обозначает пересечение данных, а [[ используется при их слиянии.

Одинарные или двойные выражения

Употребление [] происходит реже. Одно уравнение со скобками объединяет несколько значений или неравенств различных размеров. Для решения совокупности нужно выполнить любое условие. Конец, завершение действия замыкает закрывающий знак.

В персональных компьютерах, ноутбуках, нетбуках встроена кодировка Юникод, закрепленная не за левыми или правыми объединяющими знаками, а за открывающими и замыкающими, поэтому при воспроизведении печатного текста со скобочками в режиме «справа налево» каждый знак меняет внешнее направление на обратное.

Квадратные скобки в уравнении

Квадратные скобки в уравнении означают, что установлен порядок действий, задаются границы промежутков и необходимость выполнения действия над выражением. Двойные квадратные скобки необходимы для записи выражений наряду с круглыми для рационального порядка действий.

По правилам интервал [−a;+a] записывается в виде нестрогого неравенства −a≤x≤a, означающего, что x находится на промежутке от −a до a включительно.

Также используются в математике как круглые, так и прямые знаки, означающие, что на конце отрезка, рядом с которым имеется круглая скобка, равенство строгое, а на том, где скобка квадратная — нестрогое. Интервал (−5;5] иначе записывается неравенством $5.

В середине парного знака с отделяющей точкой или запятой указываются два числа — наименьшее, затем большее, ограничивающие интервал. Круглая скобочка, прилегающая к цифре, означает невключение числа в промежуток, а квадратная — добавление.

В некоторых учебных пособиях для вузов встречаются расшифровки числовых интервалов, в которых вместо круглой скобочки (применяется обратная квадратная скобка ], и наоборот. В обозначениях запись ]0, 1[ равносильна (0, 1).

Открытая квадратная скобка

Открытая квадратная скобка (символ [) значит, что совокупность представляет систему уравнений разных размеров, для которых справедливы все множества решений для каждого уравнения, входящего в общее задание. Например, [x+11=2yy2−12=0

Прежде чем решать задачу или выполнять задание, нужно правильно определить принципы действий. В некоторых случаях скобочки могут быть не нужны, а иногда их обязательно нужно поставить.

Прочие знаки

Для математических, алгебраических и прочих расчетов важно знать различие обобщающих знаков. От правильности вычислений зависит итоговый результат.

Удобство записи системы уравнений

Система уравнений с объединяющими значками может раскрываться с помощью фигурной конфигурации{{. Это характеризует объединение неравенства или уравнений. Пример: {x2−1=0x2+x−2=0x2−1=0x2+x-2=0 или неравенства с несколькими переменными {x2−y>03x+2y≤3, cos x12 (x+π3)=02×2−4≥5×2-y>03x+2y≤3, cos x12x+π3=02×2−4≥5.

Применение фигурных знаков относится к представлению совмещения множеств. При решении системы с фигурной скобкой уравнения пересекаются, а [] объединяет их.

Удобство записи системы уравнений

Кусочная функция изображается одиночной { скобкой, имеющей формулы, обусловливающие функцию, содержащие определенные промежутки. Пример:|x|={x, x≥0−x, x<0x=x, x≥0-x, x<0.

Для изображения координатных точек в виде промежутков, применяются круглые скобки. Они располагаются на координатной прямой, а также в прямоугольной системе или n-пространстве.

Запись двух координат А (1)А (2) означает, что т. АА имеет координату со значением 12, тогда Q (c, d, e) Q (c, d, e) свидетельствует о том, что т. QQ содержит координаты x, y, zx, y, z.

Множества задаются через перечисление элементов, входящих в эту область с помощью фигурных скобок, где участвующие элементы перечисляются через запятую. Пример: А={5, 6, 7, 8}А={5, 6, 7, 8}.

Для указания последовательности действий нужно заключить в скобочки выражения, уже содержащие скобки. Кроме обычных (круглых), используют знаки различной формы.

Примеры решений

Когда в скобки заключают выражение, содержащее круглые и квадратные скобки, пользуются фигурными знаками {}. Вычисление по таким формулам осуществляется в особом порядке: сначала считают внутри всех круглых скобок в определенной последовательности. Затем — внутри всех квадратных и фигурных.

Например, расчет предполагает поэтапное действие. Выражение последовательно 5 — 3 + 2 = 4. Если сначала сложить 3+2, затем отнять от 5−5 получится 0. Для указания правильной последовательности применяют скобки.

(5−2)+3 = 3+3 = 6.

7 — (2+2) = 7−4 = 3.

[(5+5) — (2−1)]+(6−4)= [(10 +1)] + 2= 11+2= 13.

Примеры решений уравнений

Парные знаки не ставятся, если сложение и вычитание исполняются в указанной последовательности. Также когда внутри происходят операции умножения или деления.

По правилам сначала выполняются операции с цифрами в скобочках, а умножение или деление производятся в порядке их следования, ранее, чем сложение и вычитание. Исполняются остальные действия, а умножение и деление осуществляются в порядке их следования.

При использовании квадратных или фигурных знаков в начале вычисления начинаются внутри круглых скобочек, далее — внутри всех квадратных и фигурных. Оставшиеся действия происходят в последнюю очередь. Обобщающие знаки — скобки важны и незаменимы в математических расчетах для правильного вычисления.


nauka.club

МАТЕМАТИКА. В чем отличие круглых ( ) скобок от квадратных [ ] ?

[ — больше/меньше и равно ( — больше/меньше ну, т. е. в твоем случае [4;7), Х принадлежит интервалу от больше или равно 4 до строго меньше 7

Круглые, это когда знак &lt; или &gt;,а квадратные, когда &lt;= или &gt;=

[4;7) от четырех включительно 4 до 7, но семь в этот интервал не входит

насколько я помню квадратные скобки означают — «включительно», например [4;7) означает — от 4 включительно, до 7

При указании интервала ( включает значение [ исключает

Внутри скобок границы интервала, включающего множество действительных чисел на числовой оси. Если скобки квадратные, границы входят в указанное множество, если круглые, то не входят. В вашем примере первый случай соответствует условию 4&lt;= x &lt; 7 а второй 4&lt;= x &lt;= 7

В круглых скобках конечные цифры промежутка не берутс, а в квадратных скобках указанные цифры принадлежат промежутку, это используется ддля указания принадлежности промежутков в неравентвах, облатей значения и определения функций… например вам дано значение /4;7)Это означает, что решениями исходного неравенства являются числа из данного промежутка, то есть от 4, включая 4, до 7, не включая 7 а во втором примере /4;7/ решениями являются числа от 4 до 7 включая 4 и 7

x=[4;7) можно записать как 4&lt;=x&lt;7 x=[4;7] можно записать как 4&lt;=x&lt;=7 кругдые скобки — значит что это число «не включаем» в этот промежуток квадратные — «включаем»

touch.otvet.mail.ru

Что в математике обозначают квадратные скобки( [ …] ) ?

Квадратными скобками в математике могут обозначаться: Операция взятия целой части числа. Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]&#178;. Векторное произведение векторов: c=[a,b]=[a&#215;b]=a &#215; b. Закрытые сегменты; запись [1;3] означает, что в множество включены числа 1 \leq x \leq 3. В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y). Коммутатор [A,B] \equiv [A,B]_- \equiv AB-BA\! и антикоммутатор [A,B]_+ \equiv AB+BA\,, хотя для последнего иногда используют фигурные скобки без нижнего индекса. Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений) . Нотация Айверсона

промежуток числовой прямой, в который входят крайние точки например (3,5)-здесь точки 3 и 5 не входят в промежуток, а квадратные скобки включают

По мойму это как бы скобки в скобках! Большие скобки это квадтратные а «подскобки» это круглые.. . в 5 классе задолбали с этой темой!

Квадратными скобками в математике могут обозначаться: Операция взятия целой части числа. Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]&#178;. Векторное произведение векторов: c=[a,b]=[a&#215;b]=a &#215; b. Закрытые сегменты; запись [1;3] означает, что в множество включены числа 1 \leq x \leq 3. В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y). Коммутатор [A,B] \equiv [A,B]_- \equiv AB-BA\! и антикоммутатор [A,B]_+ \equiv AB+BA\,, хотя для последнего иногда используют фигурные скобки без нижнего индекса. Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений) . Нотация Айверсона …. КОРОЧЕ: сходи в wikipedia.org и БУДЕТ ТЕБЕ СЧАСТЬЕ…. тупо задавать вопросы… удел игрока. . P.S. Далее пошло из серии МАССИВОВ 🙂

да в школе спишиш

СМОТРИТЕ <img src=»//otvet.imgsmail.ru/download/221276022_2fcb286bbdf8f1807ea5f368f4d37cef_800.jpg» data-lsrc=»//otvet.imgsmail.ru/download/221276022_2fcb286bbdf8f1807ea5f368f4d37cef_120x120.jpg» data-big=»1″>

надо писькой варатить

Квадратными скобками в математике могут обозначаться: Операция взятия целой части числа. Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]². Векторное произведение векторов: c=[a,b]=[a×b]=a × b. Закрытые сегменты; запись [1;3] означает, что в множество включены числа 1 \leq x \leq 3. В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y). Коммутатор [A,B] \equiv [A,B]_- \equiv AB-BA\! и антикоммутатор [A,B]_+ \equiv AB+BA\,, хотя для последнего иногда используют фигурные скобки без нижнего индекса. Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений) . Нотация Айверсона

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *