Метод обратной матрицы — Циклопедия
Решение системы уравнений методом обратной матрицы // bezbotvy [4:56]Метод обратной матрицы — это способ решения системы линейных уравнений, записанной в матричном виде Ax=b (A — квадратная матрица коэффициентов, x — вектор неизвестных, а b — вектор свободных членов системы), заключающийся в вычислении x=A−1b, где A−1 — обратная матрица (к матрице A).
[править] Описание метода
Суть метода обратной матрицы состоит в умножении обратной матрицы коэффициентов системы линейных уравнений на вектор свободных членов.
[править] Решение системы двух уравнений с двумя неизвестными
[править] Решение системы трёх уравнений с тремя неизвестными
[править] Решение системы четырёх уравнений с четырьмя неизвестными
- Демидович Б. П., Марон И. А. Основы вычислительной математики. М.: Наука, 1970.
- Участник:Logic-samara
Решение Системы Линейных Алгебраических Уравнений (СЛАУ) методом обратной матрицы в EXCEL
Решим Систему Линейных Алгебраических Уравнений (СЛАУ) методом обратной матрицы в MS EXCEL. В этой статье нет теории, объяснено только как выполнить расчеты, используя MS EXCEL.
Решим систему из 3-х линейных алгебраических уравнений с помощью обратной матрицы (матричным методом).
СОВЕТ
: Решение СЛАУ методом Крамера приведено в статье Решение Системы Линейных Алгебраических Уравнений (СЛАУ) методом Крамера в MS EXCEL .Запишем в ячейки основную матрицу системы и столбец свободных членов.
Систему n линейных алгебраических уравнений с n неизвестными можно решать матричным методом только тогда, когда определитель основной матрицы системы отличен от нуля (в противном случае мы имеем линейно зависимые уравнения и соответственно решение систем не единственное). В нашем случае определитель =12.
Вычислим обратную матрицу с помощью формулы массива МОБР() .
Для этого выделите ячейки A18:C20 , а в Строке формул введите =МОБР(A11:C13) , затем нажмите CTRL+SHIFT+ENTER .
Решение системы уравнений получим умножением обратной матрицы и столбца свободных членов. Перемножить матрицы можно с помощью формулы массива =МУМНОЖ() .
Для этого выделите ячейки F18:F20 , а в Строке формул введите =МУМНОЖ(A18:C20;F11:F13) , затем нажмите CTRL+SHIFT+ENTER .
В файле примера также приведено решение системы 4-х и 5-и уравнений.
определение, теорема и примеры решения задач
Задание. Решить с помощью обратной матрицы систему
Решение. Запишем данную систему в матричной форме:
,
где — матрица системы, — столбец неизвестных, — столбец правых частей. Тогда
Найдем обратную матрицу к матрице с помощью союзной матрицы:
Здесь — определитель матрицы ; матрица — союзная матрица, она получена из исходной матрицы заменой ее элементов их алгебраическими дополнениями. Найдем , для этого вычислим алгебраические дополнения к элементам матрицы :
Таким образом,
Определитель матрицы
А тогда
Отсюда искомая матрица
Ответ.
Нахождение обратной матрицы с примеры решения. Описание основных методов вычисления обратной матрицы
Задание. Найти обратную матрицу к матрице $ A=\left( \begin{array}{rrr}{1} & {0} & {2} \\ {2} & {-1} & {1} \\ {1} & {3} & {-1}\end{array}\right) $
Решение. Вычисляем определитель матрицы:
$$ \Delta=\left| \begin{array}{rrr}{1} & {0} & {2} \\ {2} & {-1} & {1} \\ {1} & {3} & {-1}\end{array}\right|=1 \cdot(-1) \cdot(-1)+2 \cdot 3 \cdot 2+0 \cdot 1 \cdot 1- $$
$$ -1 \cdot(-1) \cdot 2-3 \cdot 1 \cdot 1-2 \cdot 0 \cdot(-1)=1+12+0+2-3+0=12 \neq 0 $$
Так как определитель не равен нулю, то матрица имеет обратную. Обратная матрица $A^{-1}$ к матрице $A$ находится по формуле:
$$ A^{-1}=\frac{1}{\Delta} \cdot \widetilde{A}^{T} $$
Найдем союзную матрицу $ \tilde{A} $ , для этого вычислим алгебраические дополнения к элементам матрицы $A$ :
$$ A_{11}=(-1)^{1+1} \left| \begin{array}{rr}{-1} & {1} \\ {3} & {-1}\end{array}\right|=(-1) \cdot(-1)-3 \cdot 1=1-3=-2 $$
$$ A_{12}=(-1)^{1+2} \left| \begin{array}{rr}{2} & {1} \\ {1} & {-1}\end{array}\right|=-[2 \cdot(-1)-1 \cdot 1]=-(-2-1)=3 $$
$$ A_{13}=(-1)^{1+3} \left| \begin{array}{rr}{2} & {-1} \\ {1} & {3}\end{array}\right|=2 \cdot 3-1 \cdot(-1)=6+1=7 $$
$$ A_{21}=(-1)^{2+1} \left| \begin{array}{rr}{0} & {2} \\ {3} & {-1}\end{array}\right|=-[0 \cdot(-1)-3 \cdot 2]=-(0-6)=6 $$
$$ A_{22}=(-1)^{2+2} \left| \begin{array}{rr}{1} & {2} \\ {1} & {-1}\end{array}\right|=1 \cdot(-1)-1 \cdot 2=-1-2=-3 $$
$$ A_{23}=(-1)^{2+3} \left| \begin{array}{cc}{1} & {0} \\ {1} & {3}\end{array}\right|=-[1 \cdot 3-1 \cdot 0]=-(3-0)=-3 $$
$$ A_{31}=(-1)^{3+1} \left| \begin{array}{rr}{0} & {2} \\ {-1} & {1}\end{array}\right|=0 \cdot 1-(-1) \cdot 2=0+2=2 $$
$$ A_{32}=(-1)^{3+2} \left| \begin{array}{cc}{1} & {2} \\ {2} & {1}\end{array}\right|=-[1 \cdot 1-2 \cdot 2]=-(1-4)=3 $$
$$ A_{33}=(-1)^{3+3} \left| \begin{array}{rr}{1} & {0} \\ {2} & {-1}\end{array}\right|=1 \cdot(-1)-2 \cdot 0=-1-0=-1 $$
Таким образом, $ \tilde{A}=\left( \begin{array}{rrr}{-2} & {3} & {7} \\ {6} & {-3} & {-3} \\ {2} & {3} & {-1}\end{array}\right) $
Транспонируем эту матрицу (т.е. строки матрицы делаем столбцами с тем же номером):
$$ \widetilde{A}^{T}=\left( \begin{array}{rrr}{-2} & {6} & {2} \\ {3} & {-3} & {3} \\ {7} & {-3} & {-1}\end{array}\right) $$
Итак, $ A^{-1}=\frac{1}{12} \left( \begin{array}{rrr}{-2} & {6} & {2} \\ {3} & {-3} & {3} \\ {7} & {-3} & {-1}\end{array}\right) $
Ответ. $ A^{-1}=\frac{1}{12} \left( \begin{array}{rrr}{-2} & {6} & {2} \\ {3} & {-3} & {3} \\ {7} & {-3} & {-1}\end{array}\right) $