Как составлять систему уравнений – ❶ Как решать системы уравнений 🚩 что такое система уравнений 🚩 Образование 🚩 Другое

Решение задач с помощью системы уравнений

Решение. Представьте, что на верх клетки, в которой сидят фазаны и кролики, положили морковку. Все кролики встанут на задние лапки, чтобы дотянуться до морковки. Сколько ног в этот момент будет стоять на земле?

35·2=70 (ног).

Но в условии даны 94 ноги. Где же остальные? Остальные не посчитаны – это передние лапки кроликов. Сколько их?

94-70=24 (лапки).

Сколько же кроликов?

24:2=12 (кроликов).

А сколько фазанов?

35-12=23 (фазана).

Ответ: 23 фазана и 12 кроликов.

Учитель: А можно ли эту задачу решить с помощью уравнения?

(да)

Учитель: Давайте, попробуем составить и решить уравнение. (Можно вызвать ученика к доске).

Решение. Пусть x (фазанов) было в клетке, а кроликов 35- x. У фазана две ноги, следовательно, у всех фазанов, сидящих в клетке 2 x ног, у кролика по четыре лапки, тогда у всех кроликов, сидящих в клетке, 4·(35- x) лапок. По условию задачи известно, что в клетке всего было 94 ноги. Составим уравнение:

2 x+4·(35- x)=94,

2x+140-4x=94,

-2x=94-140,

-2x=-46,

x=23,

35-x=35-23=12.

Ответ: 23 фазана и 12 кроликов.

Учитель: Итак, мы с вами убедились в том, что одну и туже задачу можно решить разными способами: арифметическим (по действиям) или алгебраическим (с помощью уравнения) и всегда получим правильный ответ. Какой вам способ решения понравился больше? Почему? (арифмети­ческий способ, так как этот способ более краси­вый).

Как вы думаете, а можно ли эту задачу решить с помощью системы уравнений?

(да)

Учитель: Давайте, попробуем составить и решить систему уравнений. (Можно вызвать ученика к доске).

Решение. Пусть x кроликов и y фазанов было в клетке. По условию задачи всего животных было 35. Составим первое уравнение: x + y =35. У кроликов было 4x ног, а у фазанов 2y, всего 94. Составим второе уравнение: 4x +2 y =94.

Составим систему уравнений:

hello_html_3093f3ab.gif, hello_html_m29b106dc.gif, hello_html_m56ec043e.gif,

hello_html_56092865.gif,

hello_html_m4a4771c4.gif,

hello_html_m2d829e0d.gif,

hello_html_mcc52662.gif,

Тогда кроликов было hello_html_2558bdd0.gif, hello_html_ae58b11.gif, hello_html_m5e3f5919.gif.

Ответ: 23 фазана и 12 кроликов.

Учитель: Итак, мы решили эту задачу и с помощью системы уравнений. А какой вы выбрали бы способ, если решали задачу сами? Почему?

Я предлагаю разделиться вам на три группы и решить одну и туже задачу разными способами (I группа – арифметическим способом, II – алгебраическим (с помощью уравнения), III группа – алгебраическим (с помощью системы уравнений)).

2. Работа в группах.

Учащиеся решают задачу в группах, затем представитель каждой группы записывает свое решение на доске и обсуждаем всем классом это решение. Если учащиеся не справятся с решением, то учитель сам записывает все способы решения.

ОО+П=800 г

ПП+О=700 г

Задача. Два одинаковых огурца и один помидор весят вместе 800 г, а два таких же помидора и один огурец весят вместе 700 г. Определите массу одного огурца и одного помидора в отдельности.

Способ I (с помощью уравнения).

Пусть x г весит один огурец, тогда (800 – 2x) г весит один помидор. По условию задачи два огурца и помидор весят 700 г. Составим и решим уравнение

x+2(800 – 2x)=700,

x = 300 (г) весит один огурец;

800 — 2·300 = 200 (г) весит один помидор.

Способ II (с помощью системы уравнений).

Пусть x г весит один огурец, y г весит один помидор. Соста­вим систему уравнений:

hello_html_m2dcf3a87.gif, hello_html_ma19480b.gif, hello_html_m8497dab.gif,

hello_html_88afa39.gif,

hello_html_m2e635328.gif,

hello_html_m6f2efc94.gif,

hello_html_29d8b430.gif,

hello_html_mc3931c5.gif,

Тогда hello_html_24c5d85.gif, hello_html_14d9005b.gif, hello_html_m220c8445.gif.

Способ III (арифметический).

800 — 700 = 100 (г) — на столько тяжелее один огурец, чем один помидор;

700 — 100 = 600 (г) весят три помидора;

600:3 = 200 (г) весит помидор;

200 + 100 = 300 (г) весит огурец.

Способ IV (арифметический).

800 + 700 = 1500 (г) весят три огурца и три поми­дора;

1500:3 = 500 (г) весят один огурец и один поми­дор;

800 — 500 = 300 (г) весит один огурец;

700 — 500 = 200 (г) весит один помидор.

Учитель: Какой вывод вы для себя сделали? Какой способ для вас более приемлемый? Нравится ли вам решать задачи с помощью системы уравнений? Почему?

3. Решение задач из учебника.

Учитель: Решим задачу № 633 из учебника.

Задача. Группа туристов отправилась в поход на 12 байдарках. Часть байдарок были двухместными, а часть – трехместными. Сколько двухместных и сколько трехместных байдарок участвовало в походе, если группа состояла из 29 человек и все места были заняты?

Решение. Пусть x было двухместных байдарок и y трехместных. По условию задачи известно, что всего было 12 байдарок. Составим первое уравнение: x + y=12. В двухместных байдарках поместится 2x человек, в трехместных — 3y человек. Из условия нам известно, что в походе участвовало 29 человек. Составим второе уравнение: 2x+3y=29.

Составим систему уравнений:

hello_html_7f13fecc.gif, hello_html_mf02099f.gif,

hello_html_51be63c8.gif,

hello_html_m715b71a4.gif,

hello_html_m62949e15.gif,

hello_html_a36c68c.gif,

Тогда hello_html_m6fc5ea1f.gif, hello_html_6eb5ab65.gif, hello_html_3b3e0833.gif.

Ответ: 7 двухместных и 5 трехместных байдарок участвовало в походе.

Учитель: Решим эту задачу с помощью уравнения.

Решение. Пусть x было двухместных байдарок, тогда трехместных было 12 — x. В двухместных байдарках поместится 2x человек, в трехместных – 3(12- x) человек. Из условия нам известно, что в походе участвовало 29 человек. Составим уравнение: 2x+3(12- x) =29.

2x+3(12- x) =29,

2x+36-3x=29,

x=29-36,

x=7.

Итак, 7 было двухместных байдарок, трехместных байдарок было 12-x=12-7=5.

Ответ: 7 двухместных и 5 трехместных байдарок участвовало в походе.

Учитель: Какой способ наш ваш взгляд более рациональный? Почему?

4. Подведение итогов урока.

Учитель: Сегодня на уроке мы с вами решали одни и те же задачи разными способами. И я надеюсь, что каждый из вас уже решил для себя, какой способ решения для него более приемлем. Для того, чтобы вы лучше научились решать задачи с помощью уравнений и их систем, запишем блок-схему алгоритма решения.

hello_html_m39e67b0b.png

5. Постановка домашнего задания: № 623(а, б), 631, № 634

infourok.ru

Обучение общему приёму решения систем уравнений

В настоящее время образовательные стандарты стали все больше обращаться к компетенциям как к ведущему критерию подготовленности учащихся к эффективной деятельности в определенной сфере. Одна из компетенций – умение ориентироваться в информации, умение ее получать, анализировать и т.д., т.е. учащиеся должны владеть определенными общими приемами деятельности. На материале темы “Системы рациональных уравнений” (8-ой класс) мы рассмотрим один из таких приемов, касающийся анализа данной системы и построения (выбора) способа ее решения в зависимости от ее вида. При этом закладывается такое важное качество знаний, которое называется обобщенностью.

Основные общие методы решения систем уравнений отрабатываются в средней школе при изучении темы “Системы линейных уравнений” в 7-ом классе. Это метод подстановки, метод сложения, уравнивания коэффициентов. На материале темы “Системы рациональных уравнений” (8-ой класс по учебнику С.М. Никольского и др.) обычно предполагается тренировка тех же методов на системах другого вида и иногда введение дополнительных общих методов решения систем. В реальной практике, когда ученик сталкивается с системой уравнений, ему необходимо самому сориентироваться и выбрать способ ее решения, но анализ учебных пособий показал, что в них процесс анализа системы и выбора способа решения не делается предметом специального усвоения, а лишь тренируется умение применять изученный метод к данной системе. В итоге учащиеся не всегда владеют полной системой знаний и умений, ориентируясь на которые можно выбрать (построить) адекватный, наиболее эффективный способ решения заданной системы. Нами была сделана попытка формирования такой системы знаний и умений. Ведь решение систем уравнений важно не только в плане содержания курса математики; они используются в физике, химии, при решении технических, инженерных задач, при работе с моделями экономических, социальных, биологических и пр. явлений и процессов.

Покажем на примере нескольких уроков для 8-го класса, каким образом мы планируем организовать совместную деятельность учащихся и учителя по выделению содержания названного умения на первом этапе. Так как одним из компонентов является анализ заданной системы на наличие решений, то один из первых уроков посвятим именно этому вопросу. Затем попытаемся выделить общий прием решения систем уравнений и связать с известными школьникам методами. Для этого нами разработаны рекомендации и специальная система заданий. Принципы построения системы заданий для первого этапа обучения следующие:

– порядок заданий фиксирован, он выполняет направляющую функцию, позволяя школьникам вместе с учителем выстроить ориентировочную основу деятельности по решению произвольной системы рациональных уравнений и создать в итоге схему ее решения,

– каждая следующая система связана с предыдущими заданиями и рассуждениями, но содержит в себе одну или несколько новых важных идей, логично развивающих тему,

– переменные в системах варьируются: не всегда привычные x и y (ведь при моделировании системами уравнений реальных задач из самых разных областей не всегда удобно вводить обозначения x и y),

– помимо заданий, где система уравнений задана, предлагаются и творческие задания, связанные с придумыванием тех или иных систем.

Материалы к урокам

1. Системы, не имеющие решений.

а) Случай, когда в системе имеется противоречивое уравнение (не имеющее решений):

№ 1. Ответ: .

Один из самых очевидных случаев: сразу можно заметить, что первое уравнение не имеет решений. Если же в правой части первого уравнения стояло бы неотрицательное число, то такая система имела бы решение. Немного усложнив данную систему, вместе со школьниками можно “придумать”, например, следующие не имеющие решений системы:

и т.д. Ответ: .

Обращаем внимание школьников на то, что каким бы в данном случае ни было второе уравнение системы, решений она иметь не будет (вспомним определение решения системы уравнений).

№ 2. Ответ: .

Первое уравнение системы имеет решения. В левой части второго уравнения сумма двух неотрицательных чисел, а в правой – отрицательное число. Противоречие. Отметим, что достаточно хотя бы одного противоречивого уравнения, чтобы дать ответ.

№ 3. Ответ: .

Несколько более замаскировано противоречивое уравнение. Здесь, чтобы его распознать, нужно увидеть во втором уравнении формулу квадрата разности. Далее аналогично номеру 1.

Задание школьникам: составьте еще системы, не имеющие решений.

№ 4. Ответ: .

Если сразу заметить или вспомнить, что дробь с ненулевым числителем не может быть равна нулю, то ответ очевиден. Если же заменить в условии ноль на ненулевое число, то решения системы могут появиться.

№ 5. Ответ: .

Результат деления отрицательного числа на отрицательное не может быть отрицательным, поэтому первое уравнение (а значит и система) не имеет решений.

б) Случай, когда в системе имеются неопределенные выражения (ОДЗ пусто):

№ 6. Ответ: .

В первом уравнении под знаком корня (радикала) стоит отрицательное выражение, значит, такого арифметического квадратного корня не существует ни при каких значениях x. Вспоминаем определение решения системы уравнений и делаем вывод о том, что система несовместна, т.е. не имеет решений. Таким образом, решение этой системы (и ряда других) нужно начинать с ОДЗ. Ведь если становится ясно, что ОДЗ пусто (как в данной системе), то и множество решений будет пусто.

Эта система не является системой рациональных уравнений, т.е. не входит в рассматриваемую тему, но она содержит принципиально важную идею, поэтому ее полезно дать и на данном этапе. К тому же это позволит повторить и закрепить определение системы рациональных уравнений. Определение и свойства арифметического квадратного корня восьмиклассникам уже известны.

Обсуждение: Как еще можно “построить” противоречивое уравнение? Какие ограничения на значения выражений могут быть? Из этой части урока делам вывод о том, что уравнение (а значит и соответствующая система уравнений) не имеет решений, когда:

а) не может выполняться равенство из-за тех или иных свойств:

ограничения по знаку: , , ,

дробь при ,

комбинации: , , при и и т.п.

б) какое-то входящее в него выражение не определено (т.е. не существует, не имеет смысла) (см. задание №  4):

не существует при ,

не существует при .

Здесь стоит провести параллель с заданиями, опирающимися на те же идеи. Это задания найти ОДЗ переменных в выражении, область определения функции (ООФ), множество значений функции (выражения).

в) Случай, когда в системе одно уравнение противоречит другому:

№ 7. Ответ: .

Один из самых явных случаев: видим, что левые части обоих уравнений совпадают, а правые – нет. Противоречие.

№ 8. Ответ: .

Если разделить второе уравнение на 4 и перенести все члены каждого уравнения в одну сторону, то станет видно, что уравнения противоречат друг другу.

Здесь логично возникает вопрос: а что делать, если не заметили сразу, что система несовместна? Ответ: решать ее известными методами. Ответ получится сам собой, если все делать верно и понимать про вырожденные уравнения (0=0, 4=0 и т.п.), при встрече с которыми многие школьники теряются, как показывает школьная практика. Поэтому для преодоления возможных затруднений здесь важно обратить внимание учащихся на то, что при решении любых уравнений или систем вопрос ставится всегда один и тот же: “При каких значениях неизвестной верно равенство?” или соответственно “При каких парах (тройках, четверках, …) переменных верны одновременно все равенства системы?”. Помня это, нетрудно понять, что если в ходе решения получилось что-то вроде 0=4, то решений у этого “уравнения” и у исходной системы нет; а если же получилось, например, 0=0 и нет других противоречий, то решений у системы бесконечно много.

Задание школьникам: придумайте еще несколько систем, не имеющих решений, таких чтобы при замене в ней одного числа или знака на другое решения у нее появлялись. Придуманные системы по парам занесите в таблицу:

Система, не имеющая решений
Система, имеющая решения
   

Таким образом, результатом первичного анализа системы может быть один из трех важных выводов:

1) (–) система не имеет решений дальнейшее решение не нужно,

2) (+) система имеет решение (решения) нужно решать,

3) (?) система может иметь решения (а может и не иметь) нужно решать и помнить про сказанное выше.

После этой части урока вместе со школьниками делается вывод о том, что начинать решение системы нужно с ее анализа, т.к. если сразу удастся понять, что она не имеет решений, то не надо будет тратить время на решение, а сразу можно будет дать верный ответ. В этом присутствует и воспитательный эффект, касающийся важности предварительного анализа ситуации, объекта, явления.

На данном материале идет отработка важного навыка “всматривания” в систему и ее составные части – уравнения. Заметим, что тот же навык может отрабатываться и при решении уравнений (например, методом замены неизвестной). Он же пригодится и при решении систем, имеющих решение.

Стоит обратить внимание школьников на различные термины, употребляющиеся по отношению к уравнениям и системам, не имеющим решений (несовместным, противоречивым). Это важно для понимания математических задач и текстов, взятых из различных источников.

Для закрепления материала, в том числе терминологии, и проверки результатов этой части урока ученикам предлагается небольшое задание: заполнить следующую таблицу (в каждой ячейке проставьте знаки +, – или ? в зависимости от того, характеризует ли указанное в заголовке столбца данную систему). Столбцы таблицы: система | имеет решения | ответ: ? | не определено какое-то выражение | противоречива | несовместна | совместна.

2. Случай, когда одно из уравнений содержит лишь одну неизвестную.

№ 9. Ответ: и .

Очевидных противоречий в данной системе нет (в отличие от предыдущих). Можно заметить, что в первом уравнении системы присутствует только одна переменная (d), поэтому первое уравнение мы можем сразу решить. Его корни: -1 и 2. Подставляем эти значения по очереди во второе уравнение и находим другую неизвестную – z. Здесь вспоминаем, что решением системы двух уравнений с двумя неизвестными являются пары чисел.

При решении данной системы у школьников возникает разумный вопрос: “В каком порядке записывать в ответе числа, ведь здесь не x и y?”. Ответ: в алфавитном (как и в случае с x и y).

3. Случай, когда в явном виде имеется общее выражение в нескольких уравнениях, т.е. обобщенная подстановка, приводящая к ответу, уже подготовлена.

Вспоминаем стандартный метод подстановки, известный школьникам с 7-го класса. Отмечаем, что он работает в любых системах уравнений, не только в системах линейных уравнений.

Рассматриваем идею о том, что подставлять в другое уравнение можно не только переменную, но и некое выражение. Для этого должны иметься одинаковые выражения в нескольких уравнениях системы. В данном случае это так. Здесь же может возникнуть разумный вопрос: “Что делать, если одинаковых выражений в уравнениях нет?”

Таким образом, переходим к обобщенному методу подстановки и затрагиваем идею о выражении как обобщенной переменной (отсюда берет начало метод замены неизвестной, используемый при решении уравнений и систем.). В данной системе можно заменить на новую переменную z. Тогда система примет вид элементарной системы линейных уравнений. Анализ учебных пособий и методов решения систем уравнений показал, что очень широкий класс систем, предлагаемых в школьном курсе математики, решается с помощью обобщенного метода подстановки, который можно назвать центральным, главным методом. Попробуем этим методом решать все предлагаемые далее системы.

Тут два варианта проведения обобщенной подстановки: b2 и b2 + u2. Второй в данном случае удобнее, хотя чтобы его применить, исходную систему надо “подготовить”: разложить левую часть второго уравнения на множители. Первый требует больше алгебраических преобразований, следовательно, вероятность ошибок при решении возрастает. Таким образом, иногда подстановку придется подготовить (прежде чем выполнять).

Здесь начнем выявлять и фиксировать приемы, позволяющие выделять общие выражения в двух уравнениях. В данном примере – прием разложения на множители. Какие еще могут быть приемы? Их может быть очень много. Эту область можно назвать “творческой”, т.к. здесь нужно “изобрести” способ сделать так, чтобы появились одинаковые выражения, причем удобные для дальнейшего решения системы. “Творческая” область весьма обширна.

Здесь тоже два варианта выполнения подстановки. В указанном выше варианте используется другой прием – домножение обеих частей одного из уравнений системы на неизвестную. Тонкий момент: домножать на ноль нельзя . Но именно такова здесь ОДЗ!

4. Случай, когда в уравнениях нет подходящих общих выражений для подстановки, но они легко могут быть выделены.

urok.1sept.ru

Как решить систему уравнений в Excel

Уравнения в Microsoft Excel

Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

Варианты решений

Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.

Способ 1: матричный метод

Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:


14x1+2x2+8x4=218
7x1-3x2+5x3+12x4=213
5x1+x2-2x3+4x4=83
6x1+2x2+x3-3x4=21

  1. Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.
  2. Матрица в Microsoft Excel

  3. Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.
  4. Вектор B в Microsoft Excel

  5. Теперь для нахождения корней уравнения, прежде всего, нам нужно отыскать матрицу, обратную существующей. К счастью, в Эксель имеется специальный оператор, который предназначен для решения данной задачи. Называется он МОБР. Он имеет довольно простой синтаксис:

    =МОБР(массив)

    Аргумент «Массив» — это, собственно, адрес исходной таблицы.

    Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.

  6. Переход в Мастер функций в Microsoft Excel

  7. Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».
  8. Переход к аргументам функции МОБР в Microsoft Excel

  9. Запускается окно аргументов функции МОБР. Оно по числу аргументов имеет всего одно поле – «Массив». Тут нужно указать адрес нашей таблицы. Для этих целей устанавливаем курсор в это поле. Затем зажимаем левую кнопку мыши и выделяем область на листе, в которой находится матрица. Как видим, данные о координатах размещения автоматически заносятся в поле окна. После того, как эта задача выполнена, наиболее очевидным было бы нажать на кнопку «OK», но не стоит торопиться. Дело в том, что нажатие на эту кнопку является равнозначным применению команды Enter. Но при работе с массивами после завершения ввода формулы следует не кликать по кнопке Enter, а произвести набор сочетания клавиш Ctrl+Shift+Enter. Выполняем эту операцию.
  10. Окно аргументов функции МОБР в Microsoft Excel

  11. Итак, после этого программа производит вычисления и на выходе в предварительно выделенной области мы имеем матрицу, обратную данной.
  12. Матрица обратная данной в Microsoft Excel

  13. Теперь нам нужно будет умножить обратную матрицу на матрицу B, которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ. Данный оператор имеет следующий синтаксис:

    =МУМНОЖ(Массив1;Массив2)

    Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций, нажав значок «Вставить функцию».

  14. Вставить функцию в Microsoft Excel

  15. В категории «Математические», запустившегося Мастера функций, выделяем наименование «МУМНОЖ» и жмем на кнопку «OK».
  16. Переход к аргументам функции МУМНОЖ в Microsoft Excel

  17. Активируется окно аргументов функции МУМНОЖ. В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2», только на этот раз выделяем значения колонки B. После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter, а набираем комбинацию клавиш Ctrl+Shift+Enter.
  18. Окно аргументов функции МУМНОЖ в Microsoft Excel

  19. После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1, X2, X3 и X4. Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.

Корни системы уравнений в Microsoft Excel

Урок: Обратная матрица в Excel

Способ 2: подбор параметров

Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение

3x^2+4x-132=0

  1. Принимаем значение x за равное 0. Высчитываем соответствующее для него значение f(x), применив следующую формулу:

    =3*x^2+4*x-132

    Вместо значения «X» подставляем адрес той ячейки, где расположено число 0, принятое нами за x.

  2. Значение f(x) в Microsoft Excel

  3. Переходим во вкладку «Данные». Жмем на кнопку «Анализ «что если»». Эта кнопка размещена на ленте в блоке инструментов «Работа с данными». Открывается выпадающий список. Выбираем в нем позицию «Подбор параметра…».
  4. Переход к подбору параметра в Microsoft Excel

  5. Запускается окно подбора параметров. Как видим, оно состоит из трех полей. В поле «Установить в ячейке» указываем адрес ячейки, в которой находится формула f(x), рассчитанная нами чуть ранее. В поле «Значение» вводим число «0». В поле «Изменяя значения» указываем адрес ячейки, в которой расположено значение x, ранее принятое нами за 0. После выполнения данных действий жмем на кнопку «OK».
  6. Окно подбора параметра в Microsoft Excel

  7. После этого Эксель произведет вычисление с помощью подбора параметра. Об этом сообщит появившееся информационное окно. В нем следует нажать на кнопку «OK».
  8. Подбор пораметра произведен в Microsoft Excel

  9. Результат вычисления корня уравнения будет находиться в той ячейке, которую мы назначили в поле «Изменяя значения». В нашем случае, как видим, x будет равен 6.

Результат вычисления корня уравнения в Microsoft Excel

Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x.

Урок: Подбор параметра в Excel

Способ 3: метод Крамера

Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1:


14x1+2x2+8x4=218
7x1-3x2+5x3+12x4=213
5x1+x2-2x3+4x4=83
6x1+2x2+x3-3x4=21

  1. Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно».
  2. Составление матриц в Microsoft Excel

  3. Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A, только у этих копий поочередно один столбец заменен на таблицу B. У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.
  4. Четыре матрицы в Microsoft Excel

  5. Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД. Синтаксис данного оператора следующий:

    =МОПРЕД(массив)

    Таким образом, как и у функции МОБР, единственным аргументом выступает ссылка на обрабатываемую таблицу.

    Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию».

  6. Переход к запуску мастера функций в Microsoft Excel

  7. Активируется окно Мастера функций. Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД». После этого жмем на кнопку «OK».
  8. Переход к аргументам функции МОПРЕД в Microsoft Excel

  9. Запускается окно аргументов функции МОПРЕД. Как видим, оно имеет только одно поле – «Массив». В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK». Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter.
  10. Окно аргументов функции МОПРЕД в Microsoft Excel

  11. Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740, то есть, не является равным нулю, что нам подходит.
  12. Определитель для первой матрицы в Microsoft Excel

  13. Аналогичным образом производим подсчет определителей для остальных трех таблиц.
  14. Расчет определителей для всех матриц в Microsoft Excel

  15. На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.
  16. Определитель первичной матрицы в Microsoft Excel

  17. Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148, которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5, 14, 8 и 15. Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1, что подтверждает правильность решения системы уравнений.

Корни системы уравнений определены в Microsoft Excel

Способ 4: метод Гаусса

Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:


14x1+2x2+8x3=110
7x1-3x2+5x3=32
5x1+x2-2x3=17

  1. Опять последовательно записываем коэффициенты в таблицу A, а свободные члены, расположенные после знака «равно» — в таблицу B. Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.
  2. Две матрицы в Microsoft Excel

  3. Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

    =B8:E8-$B$7:$E$7*(B8/$B$7)

    Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

    После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter. К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

  4. Ряд заполнен значениями в Microsoft Excel

  5. После этого копируем полученную строку и вставляем её в строчку ниже.
  6. Вставка строки в Microsoft Excel

  7. Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать», которая расположена на ленте во вкладке «Главная».
  8. Копирование в Microsoft Excel

  9. Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка». В запустившемся дополнительном списке выбираем позицию «Значения».
  10. Вставка в Microsoft Excel

  11. В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

    =B13:E13-$B$12:$E$12*(C13/$C$12)

    После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter.

  12. Формула массива в Microsoft Excel

  13. Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

    =B17:E17/D17

    Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter.

  14. Третья формула массива в Microsoft Excel

  15. Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

    =(B16:E16-B21:E21*D16)/C16

    Жмем привычное уже нам сочетание клавиш для применения формулы массива.

  16. Четвертая формула массива в Microsoft Excel

  17. Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

    =(B15:E15-B20:E20*C15-B21:E21*D15)/B15

    Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter.

  18. Ввод последней формулы массива в Microsoft Excel

  19. Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4, 7 и 5) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1, X2 и X3 в выражения.

Найденные корни уравнения в Microsoft Excel

Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.

Найденные корни уравнения в Microsoft ExcelМы рады, что смогли помочь Вам в решении проблемы.
Найденные корни уравнения в Microsoft ExcelОпишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

lumpics.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *