Кислотные свойства: Что значит кислотные и основные свойства?? – Что такое кислотные свойства?

Карбоновые кислоты, подготовка к ЕГЭ по химии

Карбоновые кислоты - класс органических соединений, молекулы которых содержат одну или несколько карбоксильных групп COOH.

Имеют разнообразное промышленное применение и большое биологическое значение. Общая формула одноосновных карбоновых кислот CnH2nO2 .

Карбоксильная группа
Классификация карбоновых кислот

По количеству карбоксильных групп в молекуле карбоновые кислоты подразделяются на:

  • Одноосновные - 1 карбоксильная группа
  • Двухосновные - 2 карбоксильных группы
  • Трехосновные - 3 карбоксильных группы
Классификация карбоновых кислот

Высшие карбоновые кислоты называют жирными кислотами. Более подробно мы изучим их теме, посвященной жирам, в состав которых они входят.

Номенклатура и изомерия карбоновых кислот

Названия карбоновых кислот формируются путем добавления суффикса "овая" к названию алкана с соответствующим числом атомов углерода и слова кислота: метановая кислота, этановая кислота, пропановая кислота, и т.д.

Многие карбоновые кислоты имеют тривиальные названия. Наиболее известные:

  • Метановая - HCOOH - муравьиная кислота
  • Этановая - CH3-COOH - уксусная кислота
  • Пропановая - C2H5-COOH - пропионовая кислота
  • Бутановая - C3H7-COOH - масляная кислота
  • Пентановая - C4H9-COOH - валериановая кислота
Номенклатура карбоновых кислот

Для предельных карбоновых кислот характерна структурная изомерия: углеродного скелета, межклассовая изомерия со сложными эфирами.

Изомерия карбоновых кислот
Получение карбоновых кислот
  • Окисление алканов
  • При повышенной температуре и в присутствии катализатора становится возможным неполное окисление алканов, в результате которого образуются кислоты.

    Окисление алканов
  • Окисление спиртов
  • При реакции спиртов с сильными окислителями, такими как подкисленный раствор перманганата калия, спирты окисляются до соответствующих кислот.

    Окисление спиртов
  • Окисление альдегидов
  • При окислении альдегиды образуют соответствующие карбоновые кислоты. Окисление можно проводить качественной реакцией на альдегиды - реакцией серебряного зеркала.

    Окисление альдегидов, реакция серебряного зеркала

    Обратите особое внимание, что при написании реакции с аммиачным раствором серебра в полном виде, правильнее будет указать не кислоту, а ее аммиачную соль. Это связано с тем, что выделяющийся аммиак, который обладает основными свойствами, реагирует с кислотой с образованием соли

    Реакция серебряного зеркала

    Окисление альдегидов также может быть успешно осуществлено другим реагентом - свежеосажденным гидроксидом меди II. В результате такой реакции образуется осадок кирпично-красного цвета оксида меди I.

    Окисление альдегидов, реакция с гидроксидом меди II
  • Синтез муравьиной кислоты
  • Существует специфический способ получения муравьиной кислоты, который заключается в реакции щелочи с угарным газом - в результате образуется формиат (соль муравьиной кислоты). При подливании к формиату раствора серной кислоты получается муравьиная кислота.

    Синтез муравьиной кислоты
  • Синтез уксусной кислоты
  • Специфичность синтеза уксусной кислоты заключается в реакции угарного газа с метанолом, в результате которой она образуется.

    Также уксусную кислоту можно получить другим путем: сначала провести реакцию Кучерова, в ходе которой образуется уксусной альдегид. Окислить его до уксусной кислоты можно аммиачным раствором оксида серебра или гидроксидом меди II.

    Синтез уксусной кислоты
Химические свойства карбоновых кислот

Для карбоновых кислот не характерны реакции присоединения. Карбоновые кислоты обладают более выраженными кислотными свойствами, чем спирты.

  • Кислотные свойства
  • Карбоновые кислоты вступают в реакции с металлами, которые способны вытеснить водород (стоят левее водорода в ряду напряжений металлов) из кислоты. Реагируют также с основаниями, с солями более слабых кислот, например, угольной кислоты.

    Кислотные свойства карбоновых кислот
  • Галогенирование
  • Галогенирование происходит по типу замещения в радикале, который соединен с карбоксильной группой. Напомню, что наиболее легко замещается водород у третичного, чуть сложнее - у вторичного, и значительно сложнее - у первичного атома углерода.

    Галогенирование карбоновых кислот

    Сила карбоновых кислот тем выше, чем меньше электронной плотности сосредоточено на атоме углерода в карбоксильной группе. Поэтому самая слабая из трех кислот - уксусная, чуть сильнее - хлоруксусная, за ней - дихлоруксусная и самая сильная - трихлоруксусная.

    Перераспределение электронной плотности в молекулах этих кислот для лучшего запоминания лучше увидеть наглядно. Это перераспределение обусловлено большей электроотрицательностью хлора, который притягивает электронную плотность.

    Сила карбоновых кислот
  • Особые свойства муравьиной кислоты
  • Муравьиная кислота отличается от своих гомологов. За счет наличия у нее альдегидной группы, она, единственная из карбоновых кислот, способна вступать в реакцию серебряного зеркала.

    В такой реакции идет ее окисление до нестойкой угольной кислоты, которая распадается на углекислый газ и воду.

    Реакция серебряного зеркала с муравьиной кислотой
  • Разложение муравьиной кислоты
  • При нагревании и в присутствии серной кислоты (водоотнимающего компонента) муравьиная кислота распадается на воду и угарный газ.

    HCOOH → (t, H2SO4) CO↑ + H2O

Сложные эфиры

Получение сложных эфиров происходит в реакции этерификации (лат. aether - эфир), заключающейся во взаимодействии карбоновой кислоты и спирта.

Названия сложных эфиров формируются в зависимости от того, какой кислотой и каким спиртом эфир образован. Примеры:

  • Метановая кислота + метанол = метиловый эфир метановой кислоты (метилформиат)
  • Этановая кислота + этанол = этиловый эфир уксусной кислоты (этилацетат)
  • Метановая кислота + этанол = метиловый эфир уксусной кислоты (метилацетат)
  • Пропановая кислот + бутанол = бутиловый эфир пропионовой кислоты (бутилпропионат)
Реакция этерификации

Для сложных эфиров характерной реакцией является гидролиз - их разложение. Возможен щелочной гидролиз, при котором образуется соль кислоты и спирт, и кислотный гидролиз, при котором образуются исходные спирт и кислота.

Кислотный гидролиз протекает обратимо, щелочной - необратимо. Реакция щелочного гидролиза по-другому называется реакция омыления, и напомнит о себе, когда мы дойдем до темы жиров.

Гидролиз сложных эфиров
Ангидриды

Ангидриды - химические соединения, производные неорганических и органических кислот, образующиеся при их дегидратации.

Образование ангидридов

Хлорангидриды карбоновых кислот образуются в реакции карбоновых кислот с хлоридом фосфора V.

Образование хлорангидридов

Следующая реакция не имеет отношения к ангидридам, однако (из-за их схожести) вы увидите ее здесь для наилучшего запоминания. Это реакция галогенирования гидроксикислот, в результате которой гидроксогруппа в радикале меняется на атом галогена.

Галогенирование гидроксикислот
Непредельные карбоновые кислоты

Распределение электронной плотности в молекулах творит чудеса: иногда реакции идут против правила Марковникова. Так происходит в непредельной акриловой кислоте.

Присоединение против правила Марковникова

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к

Беллевичу Юрию.

Кислотные свойства - Справочник химика 21

    Так вот, атом водорода карбоксильной группы отделяется от нее в миллион раз легче, чем от гидроксильной группы фенола. Поэтому всякое органическое вещество, содержащее карбоксильную группу, обладает ярко выраженными кислотными свойствами. Такие вещества носят название карбоновых кислот. [c.153]

    Кислотные свойства атома О в карбонильной группе находят отражение в таутомерном равновесии кетонов и альдегидов с соответствующими енолами  [c.490]


    Когда атом водорода присоединен к атому углерода, он практически не может от него отделиться в виде иона. Но когда атом водорода присоединен к атому кислорода, как, например, в составе гидроксильной группы, такая возможность появляется, хотя и слабая. Поэтому этиловый спирт—очень слабая кислота настолько слабая, что ее кислотные свойства могут обнаружить только химики. 
[c.110]

    Оксихинолин обладает амфотерным характером. Присутствие гидроксильной группы, связанной с бензольным ядром, обусловливает его кислотные свойства, а наличие третичного азота — [c.126]

    Согласно протолитической теории способность данного соединения проявлять свойства кислоты пти основания зависит от конкретных условий его существования, В одним условиях данное соединение может функционировать как донор протонов и быть кислотой, в других — как их акцепто[), т. е. быть основанием. Если какая-то частица теряет свой протон, иными словами проявляет свойства кислоты, он неизбеЛ Шо должен перейти к другой частице, которая будет, таким образом, играть роль основания. Поскольку эта реакция в той или иной мере обраткма, остаток первой частицы, образовавшейся после потери протона, должен обладать некоторыми основными свойствами. Он способе возвратить себе протон от присоединившей его частицы, которая поэтому будет обладать известными кислотными свойствами. Так как в растворах не существует свободных протонов, в равновесии кислота — основание должны участвовать две иары взаимосвязанных кислот и оснований  

[c.70]

    Основные и кислотные свойства веществ представляют собой лишь две стороны единого процесса основно-кислотного взаимодействия. Кислотные свойства веществ проявляются лишь при взаимодействии с веществами, проявляющими основные свойства, и наоборот. Вещества, проявляющие и основные и кислотные свойства (т. е. способность быть и донорами и акцепторами электронных пар), называются амфотерными. Как видно из приведенных примеров, жидкие НаО, НзЫ и НЫОз как раз и являются амфотерными соединениями. [c.122]

    В процессе в качестве катализатора применяют 96—98 %-ную, считая на моногидрат, серную кислоту. Расход катализатора на 1 т алкилата зависит от содержания олефинов в сырье для пропиленового сырья — 190 кг, для бутиленового сырья — от 80 до 100 кг, для амиленового сырья — 120 кг. Объемное соотношение кислота углеводороды поддерживается в реакционной зоне от 1 1 до 2 1. Поскольку кислотные свойства серной кислоты в растворе углеводородов значительно выше, чем в воде, снижение активности катализатора при алкилировании будет зависеть от разбавления ее водой. Поэтому нужна тщательная осушка сырья перед подачей в зону реакции. Концентрация кислоты понижается также за счет накопления в ней высокомолекулярных соединений. Применение более концентрированной кислоты приводит к окислению углеводородов, осмолению продуктов, выделению диоксида серы и снижению выхода алкилата. При меньшей концентрации идет реакция полимеризации олефинов с образованием разбавленной серной кислоты, корродирующей аппаратуру. В серной кислоте должны отсутствовать примеси, такие, как соединения железа, например сульфат трехвалентного железа, снижающие эффективность процесса. [c.60]


    Основно-кислотные свойства бинарных соединений [c.250]

    Наконец, существует еще одна важная аналогия между кислотами и основаниями — с одной стороны, и окислителями и восста-иовителями —с другой. Так, в случае кислотно-основных реакций для того, чтобы какое-нибудь соединение проявляло кислотное свойство, необходимо присутствие в растворе основания, обладающего большим сродством к протону, чем основание, образуемое из кислоты, отдающей протон. Подобным же образом и в окислительно-восстановительных реакциях электроны не могут существовать растворе в свободном состоянии, для того чтобы какой-нибудь восстановитель проявлял свои свойства, необходимо присутствие окислителя, имеющего ббльщее сродство к электронам, чем окислитель,— продукт окисления данного восстановителя. Следовательно, точно так же, как в кислотно-основных системах, следует говорить не об отдельном окислителе или восстановителе, а об окислительно-вос-становительных системах, компонентами в которых являются окисленная и восстановленная формы одного и того же соединения. [c.344]

    В соответствии с изменением химической природы элемента закономерно изменяются и химические свойства соединений, в частности их основно-кислотная активность. Так. в случае оксидов в ряду — ВеО — В2О3 — СО2 — N,05 по мере уменьшения степени полярности связи (уменьшения отрицательного эффективного заряда атома кислорода б) ослабляются основные и нарастают кислотные свойства Ы О — сильно основный оксид, ВеО — амфотерный, а В2О3, СО и ЫзОй — кислотные. [c.250]

    Гидрокрекинг — каталитический процесс переработки не — ф"яных дистиллятов и остатков при умеренных температурах и ПС вышенных давлениях водорода на полифункциональных ката — Л1- заторах, обладающих гидрирующими и кислотными свойствами (а в процессах селективного гидрокрекинга — и ситовым эф — ф ктом). [c.224]

    V высокой механической прочностью, инертные или обладающие кислотными свойствами. [c.208]

    Во втором механизме, вероятно, амид-ион атакует водород, обладающий сравнительными кислотными свойствами, в о-положении по отношению к галоиду с последующей ионизацией галоида, ведущей к образованию симметричного промежуточного соединения необычной структуры, которое затем способно присоединять аммиак (СХ1) [266]  [c.477]

    Подобно спиртам способны оксиэтилироваться и фенолы. Так как гидроксильная группа фенолов обладает более сильно выраженными кислотными свойствами, чем гидроксильные группы спиртов, то удается нагреванием в автоклаве до 200° 1 моля фенола с 1 молем окиси этилена получить этилен-гликольмонофенплопый эфир с 95%-ным выходом. Этот продукт, известный нод названием арозол , уже упоминался ранее (см. стр. 184). [c.193]

    М—ОН) или азотистой (0 = N—ОН) кислоты. Аналогии в строении должна соответствовать и аналогия в свойствах, сказывающаяся в том, что все три соединения обладают кислотными свойствами, т. е. способны отщеплять в водных растворах атом во-до1)ода гидроксильной группы в виде Н+-иона. [c.242]

    Экспериментальные дашше, несмотря на их малочисленность, показывают, что гидрокарбонил кобальта является эффективным катализатором реакций, проходящих в условиях оксосинтеза. Гидрокарбонил — сильная кислота, водные растворы его титруются в присутствии фенолфталеина [22]. Кислотные свойства его возможно объясняются тем, что в [c.298]

    Как ВИДНО из значений АС химических реакций, в ряду А1 — Si — Р — S — С1 ПО мере усиления неметаллических признаков элементов кислотные свойства их оксидов резко возрастают. [c.251]

    Аналогично можно показать, что в том же ряду элементов кислотные свойства возрастают и у других бинарных соединений, например  [c.251]

    Кислотные свойства проявляют и другие соединения железа (III), [c.590]

    Протон в растворах обычно соединяется с молекулами растворителя.

Ответы Mail.ru: Что такое кислотные свойства?

Если вещество проявляет кислотные свойства, значит оно реагирует с основаниями (щелочами) , оснОвными оксидами. ОснОвные свойства - противоположность кислотным.

Это, наверное, стабильность кислот, их лету4есть, растворимость в воде, степень ЭД, основность, и нали4ие кислорода.

Понятие кислот и оснований исторически менялось в зависимости от этапа развития науки химии. На начальном этапе, - кислота - сложные вещества, молекулы которых состоят из атомов водорода и кислотных остатков. В свете теории электролитической диссоциации, - кислоты - это электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода (это понятие для водных растворов) . А для любых растворов существует протонная теория Бренстеда, которая определяет кислоту, как молекулу или ион, от которого отщепляется протон Н (+). И, наконец, существует понятие кислот Льюиса, в молекулах которых вообще нет атомов водорода, но данные структурные частицы являются акцепторами электронов.

Когда вещество реагирует с основаниями✌

Химические свойства карбоновых кислот | Химия онлайн

Для насыщенных монокарбоновых кислот характерна высокая реакционная способность. Она определяется в основном наличием в их структуре карбоксильной группы.

Карбоксильная группа представляет собой сопряженную систему, в которой неподеленная пара электронов атома кислорода гидроксильной группы вступает в сопряжение с π-электронами карбонильной группы (р,π-сопряжение). Вследствие +М-эффекта со стороны группы –ОН электронная плотность в сопряженной системе смещена в  сторону атома кислорода карбонильной группы неподеленные пары электронов которого не участвуют в сопряжении. В результате смещения электронной плотности связь О-Н оказывается сильно поляризованной (по сравнению со спиртами и фенолами), что приводит к появлению в карбоксильной группе ОН-кислотного центра.

Но в то же  время за счет +М-эффекта со стороны группы –ОН в молекулах карбоновых кислот в некоторой степени уменьшается частичный положительный заряд (δ+) на атоме углерода карбонильной группы по сравнению с альдегидами и кетонами.

Кроме того, вследствие –I-эффекта карбоксильной группы в молекуле карбоновой кислоты происходит смещение электронной плотности с углеводородного остатка, что приводит к появлению СН-кислотного центра у α-углеродного атома.

Исходя из строения, в молекулах карбоновых кислот можно выделить реакционные центры, определяющие возможные реакции с их участием. 

1. Кислотные свойства кабоновых кислот проявляются в реакциях с основаниями за счет ОН-кислотного центра.

2. С участием электрофильного центра (атома углерода карбоксильной группы) происходят реакции нуклеофильного замещения в карбоновых кислотах и их функциональных производных.

3. Основный центр – карбонильная группа (оксогруппа) со своей электронной парой – протонируется на стадии катализа в реакциях нуклеофильного замещения.

4. СН-кислотный центр определяет возможность замещения атома водорода в алкильном радикале и реакции конденсации.

Карбоновые кислоты вступают в реакции с различными веществами и образуют разнообразные соединения, среди которых большое значение имеют функциональные производные, т.е. соединения, полученные в результате реакций по карбоксильной группе.

Химические свойства карбоновых кислот (таблица)

Химические свойства карбоновых кислот (таблица)

Химические свойства карбоновых кислот на примере уксусной кислоты

I. Реакции с разрывом связи О-Н

(кислотные свойства карбоновых кислот обусловлены подвижностью атома водорода карбоксильной группы и их способностью отщеплять его в виде протона)

Предельные монокарбоновые кислоты обладают всеми свойствами обычных кислот.

Карбоновые кислоты изменяют окраску индикаторов.

1. Диссоциация 

В водных растворах монокарбоновые кислоты ведут себя как одноосновные кислоты: они диссоциируют с образованием протона (Н+) и кислотного остатка (карбоксилат-иона):

Уравнение реакции, учитывающее участие молекулы воды:

Растворы карбоновых кислот изменяют окраску индикаторов, имеют кислый вкус, проводят электрический ток.

В карбоксилат-ионе оба атома кислорода равноценны, а отрицательный заряд равномерно делокализован (рассредоточен) между ними.

В результате делокализации отрицательного заряда карбоксилат-ион обладает высокой устойчивостью. Сила кислоты определяется устойчивостью образующегося аниона, поэтому карбоновые кислоты превосходят по кислотным свойствам спирты и фенолы, где возможность делокализации заряда в анионе меньшая.

Тем не менее, монокарбоновые кислоты являются слабыми кислотами. Наиболее сильной в гомологическом ряду насыщенных кислот является муравьиная кислота, в которой группа –СООН связана с атомом водорода.

Заместители, присутствующие в молекуле карбоновой кислоты, сильно влияют на ее кислотность вследствие оказываемого ими индукционного эффекта.

Алкильные радикалы, связанные с карбоксильной группой, обладают положительным индукционным эффектом (+І). Они отталкивают от себя электронную плотность, тем самым уменьшая частичный положительный заряд (δ+) на атоме углерода карбоксильной группы. Положительный индукционный эффект возрастает по мере увеличения длины углеводородного радикала, что в свою очередь ослабляет полярность связи О-Н. Алкильные группы понижают кислотность.

В гомологическом ряду предельных монокарбоновых кислот кислотные свойства уменьшаются от муравьиной кислоты к высшим карбоновым кислотам.

Такие заместители, как хлор или фенильный радикал, оттягивают на себя электронную плотность и, следовательно, вызывают отрицательный индукционный эффект (I). Оттягивание электронной плотности от карбоксильного атома водорода приводит к повышению кислотности карбоновой кислоты.

Карбоновые кислоты – слабые электролиты. Равновесие процесса диссоциации сильно смещено влево, об этом свидетельствует тот факт, что даже сильноразбавленные водные растворы кислот имеют резкий запах.

Видеоопыт «Растворимость в воде различных карбоновых кислот»

Видеоопыт «Карбоновые кислоты — слабые электролиты»

2. Образование солей

Карбоновые кислоты проявляют все свойства минеральных кислот. Карбоновые кислоты при взаимодействии с активными металлами, основными оксидами, основаниями и солями слабых кислот образую соли.

а) взаимодействие с активными металлами

Цинк и уксусная кислота

Карбоновые кислоты реагируют с металлами, стоящими в ряду напряжений до водорода.

Видеоопыт «Взаимодействие уксусной кислоты с металлами»

б) взаимодействие c ос­но­ва­ни­я­ми (реакция нейтрализации)

Видеоопыт «Взаимодействие уксусной кислоты с раствором щелочи»

в) взаимодействие с ос­нов­ны­ми и амофтерными ок­си­да­ми

Оксид меди(II) и уксусная кислота

Видеоопыт «Взаимодействие уксусной кислоты с оксидом меди (II)»

г) взаимодействие с со­ля­ми более сла­бых кис­лот

Сода (NaHCO3) и уксус

Видеоопыт «Взаимодействие уксусной кислоты с карбонатом натрия»

д) взаимодействие с аммиаком или гидроксидом аммония

Названия солей составляют из названий остатка RCOO– (карбоксилат-иона) и металла. Например, CH3COONa – ацетат натрия, (HCOO)2Ca – формиат кальция, C17H35COOK – стеарат калия и т.п.

Отличие карбоновых кислот от минеральных заключается в возможности образования ряда функциональных производных.

Видеоопыт «Свойства карбоновых кислот»

Свойства солей карбоновых кислот

1) Взаимодействие с сильными кислотами

Карбоновые кислоты – слабые, поэтому сильные минеральные кислоты вытесняют их из соответствующих солей.

Из неорганических кислот лишь угольная кислота слабее рассматриваемых кислот и может вытесняться ими из её солей — карбонатов и гидрокарбонатов.

Качественная реакция на ацетат-ион СН3СОО! Запах уксусной кислоты.

2) Гидролиз по аниону

Натриевыс и калиевые соли карбоновых кислот в водных растворах находятся частично в гидролизованном состояния.

Этим объясняется щелочная реакция мыльного раствора.

Видеоопыт «Гидролиз ацетата натрия»

3) Электролиз солей активных металлов (реакция Кольбе)

Одним из применений солей карбоновых кислот является электролиз их водных растворов, в результате которого образуются насыщенные углеводороды:

Электролизом раствора соли карбоновой кислоты можно получить алкан с удлиненной цепью.

4) Пиролиз солей карбоновых кислот

При пиролизе (термическое разложение) кальциевых, бариевых солей карбоновых кислот образуются соответствующие карбонильные соединения. Из смешанной соли муравьиной и другой карбоновой кислоты получают альдегиды, а в остальных случаях образуются кетоны:

4) Декарбоксилирование солей щелочных металлов (реакция Дюма)

В процессе сплавления солей карбоновых кислот с твердой щелочью происходит расщепление углеродной связи и образуются алканы с числом атомов углерода на один меньше, чем у исходной кислоты:

II. Реакции с разрывом связи C

(замещение ОН-группы)

Пониженная электронная плотность (δ+) на атоме углерода в карбоксильной группе обусловливает возможность реакций нуклеофильного замещения группы –ОН с образованием функциональных производных карбоновых кислот (сложных эфиров, амидов, ангидридов и галогенангидридов).

1. Взаимодействие со спиртами с образованием сложных эфиров (реакция этерификации)

Карбоновые кислоты при нагревании в присутствии кислотного катализатора реагируют со спиртами, образуя сложные эфиры:

Механизм этой реакции был установлен методом меченых атомов. С этой целью использовали спирт, меченный изотопом кислорода 18О. После реакции изотоп кислорода был обнаружен в молекуле сложного эфира.

2. Взаимодействие с аммиаком с образованием амидов

Амиды получают из карбоновых кислот и аммиака через стадию образования аммониевой соли, которую затем нагревают:

Вместо карбоновых кислот чаще используют их галогенангидриды:

Амиды образуются также при взаимодействии карбоновых кислот (их галогенангидридов или ангидридов) с органическими производными аммиака (аминами):

Амиды играют важную роль в природе. Молекулы природных пептидов и белков построены из α-аминокислот с участием амидных групп — пептидных связей.

3. Взаимодействие с галогенидами фосфора или тионилхлоридом с образованием галогенангидридов карбоновых кислот

Наибольшее значение имеют хлорангидриды. Хлорирующие реагенты –галогениды фосфора PCl3, PCl5, тионилхлорид SOCl2.

Для получения хлорангидридов чаще используют тионилхлорид, так как в этом случае образуются газообразные побочные продукты.

Галогенангидриды карбоновых кислот — весьма реакционноспособные вещества, широко применяемые в органическом синтезе.

4. Образование ангидридов кислот (межмолекулярная дегидратация)

Ангидриды кислот образуются в результате межмолекулярной дегидратации кислот при их нагревании в присутствии оксида фосфора (V) в качестве водоотнимающего средства.

Вещества, которые образуются при отщеплении воды от органических кислот, называются ангидридами.

Смешанные ангидриды карбоновых кислот можно получить при взаимодействии хлорангидрида одной кислоты с безводной солью другой карбоновой кислоты:

Муравьиная кислота не образует ангидрида. Дегидратация ее приводит к образованию оксида углерода (II).

Наиболее широкое применение находит уксусный ангидрид. Большое количество его расходуется для синтеза ацетилцеллюлозы, которая идет на изготовление искусственного шелка. Уксусный ангидрид используется также для получения аспирина.

III. Реакции с разрывом связи C-Н у ɑ-углеродного атома

(реакции с участием радикала)

1. Реакции замещения (с галогенами)

Атомы водорода у ɑ-углеродного атома более подвижны, чем другие атомы водорода в радикале кислоты и могут замещаться на атомы галогена с образование ɑ-галогенкарбоновых кислот.

Карбоновые кислоты взаимодействуют с галогенами в присутствии красного фосфора (реакция Геля-Фольгарда-Зелинского):

2-Хлорпропионовая кислота – промежуточный продукт для получения аминокислот. Действием на 2-хлорпропионовую кислоту аммиака получают 2-аминопропионовую кислоту (аланин):

При пропускании хлора через кипящую уксусную кислоту в присутствии красного фосфора образуется кристаллическое вещество – хлоруксусная кислота:

Дальнейшее хлорирование приводит к образова­нию дихлоруксусной и трихлоруксусной кислот:


IV. Реакции окисления (горение)

В атмосфере кислорода карбоновые кислоты сгорают с образованием оксида углерода (IV) СО2 и Н2О:

Видеоопыт  «Горение уксусной кислоты на воздухе»

В отличие от альдегидов, карбоновые кислоты достаточно устойчивы к действию даже такого сильного окислителя, как перманганат калия. Исключение составляет муравьиная кислота, которая проявляет восстановительные свойства благодаря наличию альдегидной группы.

V. Реакции каталитического восстановления

Карбоновые кислоты с трудом восстанавливаются каталитическим гид-рированием, однако при взаимодействии с алюмогидридом лития (LiAlH4) или дибораном (В2Н6) восстановление осуществляется достаточно энергично:

Сравнение химических свойств органических и неорганических кислот

Особенности строения и свойства муравьиной кислоты 

Муравьиная (метановая) кислота НСООН по своему строению и свойствам отличается от остальных членов гомологического ряда предельных монокарбоновых кислот.

В отличие от других карбоновых кислот в молекуле муравьиной кислоты функциональная карбоксильная группа 

связана не с углеводородным радикалом, а с атомом водорода. Поэтому муравьиная кислота является более сильной кислотой по сравнению с другими членами своего гомологического ряда.

Все предельные карбоновые кислоты устойчивы к действия концентрированной серной и азотной кислот. Но муравьиная кислота при нагревании с концентрированной серной кислотой разлагается на воду и монооксид углерода (угарный газ).

Специфические свойства муравьиной кислоты

1. Разложение при нагревании

При нагревании с концентрированной H2SO4 муравьиная кислота разлагается на оксид углерода (II) и воду:

Данную реакцию используют в лаборатории для получения чистого оксида углерода (II).

Видеоопыт «Разложение муравьиной кислоты»

Молекула муравьиной кислоты, в отличие от других карбоновых кислот, наряду с карбоксильной группой содержит в своей структуре и альдегидную группу.

Поэтому муравьиная кислота вступает в реакции, характерные как для кислот, так и для альдегидов. Как и альдегиды, НСООН проявляет восстановительные свойства. Проявляя свойства альдегида, муравьиная кислота легко окисляется до угольной кислоты:

2. Окисление перманганатом калия

Видеоопыт «Окисление муравьиной кислоты раствором перманганата калия»

Муравьиная кислота окисляется аммиачным раствором Ag2О и гидроксидом меди (II) Cu (OH)2, т.е. дает качественные реакции на альдегидную группу!

3. Реакция «серебряного зеркала»

или в упрощенном виде

4. Окисление гидроксидом меди (II)

5. Окисление хлором, хлоридом ртути

Муравьиная кислота окисляется и другими окислителями (Сl2, HgCl2).

Формиаты щелочных металлов при сплавлении образуют соли щавелевой кислоты — оксалаты:

Видеоопыт «Взаимодействие бромной воды с олеиновой кислотой»

Карбоновые кислоты

Кислотные свойства Какие свойства проявляют кислоты?

В зависимости от кислотно-основных свойств химических элементов, складываются и их возможные реакции. Причем эти свойства влияют не только на элемент, но и на его соединения. Что такое кислотно-основные свойства Основные свойства проявляют металлы, их оксиды и гидроксиды. Кислотные свойства проявляются неметаллы, их соли, кислоты и ангидриды. Существуют также амфотерные элементы, способные проявлять как кислотные, так и основные свойства. Цинк, алюминий и хром являются одними из представителей амфотерных элементов. Щелочные и щелочно-земельные металлы проявляют типичные основные свойства, а сера, хлор и азот кислотные. Так, при реакции оксидов с водой, в зависимости от свойств основного элемента, получается либо основание или гидроксид, либо кислота. Например: SO3+h3O=h3SO4 - проявление кислотных свойств; CaO+h3O=Ca(OH)2 - проявление основных свойств; Периодическая таблица Менделеева, как показатель кислотно-основных свойств Таблица Менделеева может помочь в определении кислотно-основных свойств элементов. Если посмотреть на таблицу Менделеева, то можно увидеть такую закономерность, что по горизонтали слева-направо усиливаются неметаллические или кислотные свойства. Соответственно ближе к левому краю находятся металлы, по центру амфотерные элементы, а справа неметаллы. Если посмотреть на электроны и их притяжение к ядру, то заметно, что в левой части элементы имеют слабый заряд ядра, а электроны находятся на s-уровне. В результате таким элементам проще отдать электрон, нежели элементам, находящимся в правой части. Неметаллы имеют достаточно высокий заряд ядра. Тем самым усложняется отдача свободных электронов. Таким элементам проще присоединить к себе электроны, проявляя кислотные свойства. Три теории для определения свойств Существуют три подхода, определяющих какие свойства имеет соединение: протонная теория Бренстеда-Лоури, апротонная электронная теория Льюиса, теория Аррениуса. Согласно протонной теории кислотными свойствами обладают соединения, способные отдавать свои протоны. Такие соединения были названы донорами. А основные свойства проявляются способностью акцептировать или присоединять протон. Апротонный подход подразумевает то, что акцептирование и донорство протонов для определения кислотно-основных свойств необязательно. Кислотные свойства по данной теории проявляются возможностью принять электронную пару, а основные, наоборот, отдать эту пару. Теория Аррениуса является самой актуальной для определения кислотно-основных свойств. В ходе исследования было доказано, что кислотные свойства проявляются, когда при диссоциации водных растворов химическое соединение разделяется на анионы и ионы водорода, а основные свойства - на катионы и ионы гидроксида.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *