Конвекция рисунок физика – Конвекция

Содержание

Конвекция

Конвекция — это один из способов теплопередачи, при котором энергия переносится струями жидкостей или газов. Наглядный пример конвекции — это ощущение тепла, электрической лампочки (не касаясь её), ощущение горячих струй воздуха, исходящих от раскаленного на солнце песка. Также, примерами конвекции могут являться дым, исходящий из печной трубы, облака и туман. Все эти явления происходят по причине неравномерного нагрева газов или жидкостей. Теплые слои стремятся переместиться выше, а холодные — напротив, опускаются. Мы уже знаем, что при нагревании тела расширяются, а значит, уменьшается их плотность. Теплый воздух стремится вверх, т.к. сила Архимеда, выталкивающая его из холодного воздуха, становится больше силы тяжести. Не следует путать это с теплопроводностью: теплый воздух сам поднимается, а не нагревает слои воздуха, которые выше. Таким образом, потоки теплого воздуха осуществляют перенос энергии.

Существует естественная и вынужденная конвекция. Примером естественной конвекции может быть равномерное нагревание или охлаждение жидкостей или газов. Скажем, вода в чайнике, постоянно циркулирует из-за того, что сначала нагреваются нижние слои воды. Эти нагретые слои вытесняются верхними холодными слоями, которые опускаются на дно и, в свою очередь нагреваются от источника тепла. Через какое-то время, температура нижних слоёв снова превысит температуру верхних, в результате чего, верхние слои вновь опустятся вниз. Подобный процесс происходит и с воздухом. Самый очевидный пример естественной конвекции в природе — это ветер.

Хорошо известно, что в разных областях Земли разный климат и, соответственно, неравномерно нагретый воздух. Более нагретый воздух в одной области вытесняется менее нагретым воздухом из другой области. Поскольку речь идёт о перемещении огромных масс воздуха на существенное расстояние, то сильные ветра — неудивительное явление.

Примером вынужденной конвекции в быту является, например, использование вентилятора или кондиционера, который перемешивают воздух. Также перемешивание какой-либо неравномерно нагретой жидкости — это вынужденная конвекция, т.к. потоки возникают не из-за разности температуры, а из-за механического перемещения частиц.

Исходя из объяснения процесса, можно сделать вывод, что для стимуляции конвекции нужно нагревать жидкости или газы снизу или же остужать их сверху. Ведь если их нагреть сверху или остудить снизу, все слои так и останутся на своем месте, и никакой циркуляции не произойдёт. Как раз поэтому, батареи устанавливаются поближе к полу, а кондиционеры — поближе к потолку.

Батарея нагревает нижние слои воздуха в комнате, которые всплывают вверх, а более холодные оседают, после чего тоже нагреваются батареей. Также происходит и с охлаждением: кондиционер охлаждает верхние слои воздуха, из-за чего те опускаются вниз, а их место занимают более теплые слои, после чего тоже охлаждаются.

Заметим ещё один важный пункт. Конвекция не может происходить в твердых телах, потому что, как мы уже знаем, в твердых телах частицы не перемещаются, а только колеблются.

videouroki.net

Явление конвекции и примеры конвекции

Если приблизить руку к включенной электролампе или поместить ладонь над горячей плитой, можно почувствовать движение теплых потоков воздуха. Тот же эффект можно наблюдать при колебании листа бумаги, помещенного над открытым пламенем. Оба эффекта объясняются конвекцией.

конвекция физика

Что представляет собой?

В основе явления конвекции лежит расширение более холодного вещества при соприкосновении с горячими массами. В таких обстоятельствах нагреваемое вещество теряет плотность и становится легче по сравнению с окружающим его холодным пространством. Наиболее точно данная характеристика явления соответствует перемещению тепловых потоков при нагревании воды.

Движение молекул в противоположных направлениях под воздействием нагревания – это именно то, на чем основывается конвекция. Излучение, теплопроводность выступают схожими процессами, однако касаются прежде всего передачи тепловой энергии в твердых телах.

конвекция излучение теплопроводность

Яркие примеры конвекции – перемещение теплого воздуха в середине помещения с отопительными приборами, когда нагретые потоки движутся под потолок, а холодный воздух опускается к самой поверхности пола. Именно поэтому при включенном отоплении вверху комнаты воздух заметно теплее по сравнению с нижней частью помещения.

Закон Архимеда и тепловое расширение физических тел

Чтобы понять, что представляет собой естественная конвекция, достаточно рассмотреть процесс на примере действия закона Архимеда и явления расширения тел под воздействием теплового излучения. Так, согласно закону, повышение температуры обязательно приводит к увеличению объемов жидкости. Нагреваемая снизу жидкость в емкостях поднимается выше, а влага большей плотности, соответственно, перемещается ниже. В случае нагрева сверху более и менее плотные жидкости останутся на своих местах, в таком случае явления не произойдет.

Возникновение понятия

Впервые термин «конвекция» был предложен английским ученым Вильямом Прутом еще в 1834 году. Использовался он для описания перемещения тепловых масс в нагретых, движущихся жидкостях.

Первые теоретические исследования явления конвекции стартовали лишь в 1916 году. В ходе экспериментов было установлено, что переход от диффузии к конвекции в подогреваемых снизу жидкостях возникает при достижении некоторых критических температурных значений. Позже это значение получило определение «число Роэля». Оно было так названо в честь исследователя, занимавшегося его изучением. Результаты опытов позволили дать объяснение перемещению тепловых потоков под влиянием сил Архимеда.

Виды конвекции

вынужденная конвекцияСуществует несколько видов описываемого нами явления – естественная и вынужденная конвекция. Пример перемещения потоков горячего и холодного воздуха в середине помещения как нельзя лучше характеризует процесс естественной конвекции. Что касается вынужденной, то ее можно наблюдать при перемешивании жидкости ложкой, насосом или мешалкой.

Конвекция невозможна при нагревании твердых тел. Всему виной достаточно сильное взаимное притяжение при колебании их твердых частиц. В результате нагрева тел твердой структуры не возникают конвекция, излучение. Теплопроводность заменяет указанные явления в таких телах и способствует передаче тепловой энергии.

Отдельным видом выступает так называемая капиллярная конвекция. Происходит процесс при перепадах температуры во время движения жидкости по трубам. В естественных условиях значение такой конвекции наряду с естественной и вынужденной крайне несущественно. Однако в космической технике капиллярная конвекция, излучение и теплопроводность материалов становятся весьма значимыми факторами. Даже самые слабые конвективные движения в условиях невесомости приводят к затруднению реализации некоторых технических задач.

Конвекция в слоях земной коры

Процессы конвекции неразрывно связаны с естественным образованием газообразных веществ в толще земной коры. Рассматривать земной шар можно как сферу, состоящую из нескольких концентрических слоев. В самом центре располагается массивное горячее ядро, которое представляет собой жидкую массу высокой плотности с содержанием железа, никеля, а также прочих металлов.

примеры конвекции

Окружающими слоями для земного ядра выступают литосфера и полужидкая мантия. Верхний слой земного шара представляет собой непосредственно земную кору. Литосфера сформирована из отдельных плит, которые находятся в свободном движении, перемещаясь по поверхности жидкой мантии. В ходе неравномерного нагревания различных участков мантии и горных пород, которые отличаются разным составом и плотностью, происходит образование конвективных потоков. Именно под воздействием таких потоков возникает естественное преобразование ложа океанов и перемещение несущих континентов.

Отличия конвекции от теплопроводности

Под теплопроводностью следует понимать способность физических тел к передаче тепла посредством движения атомных и молекулярных соединений. Металлы выступают отличными проводниками тепла, так как их молекулы находятся в неразрывном контакте друг с другом. Напротив, газообразные и летучие вещества выступают плохими проводниками тепла.

Как происходит конвекция? Физика процесса основывается на переносе тепла за счет свободного движения массы молекул веществ. В свою очередь, теплопроводность заключается исключительно в передаче энергии между составляющими частицами физического тела. Однако и тот, и другой процесс невозможен без наличия частиц вещества.

Примеры явления

конвекция излучениеНаиболее простым и доступным для понимания примером конвекции может послужить процесс работы обыкновенного холодильника. Циркуляция охлажденного газа фреона по трубам холодильной камеры приводит к снижению температуры верхних пластов воздуха. Соответственно, замещаясь более теплыми потоками, холодные опускаются вниз, охлаждая, таким образом, продукты.

Расположенная на тыльной панели холодильника решетка играет роль элемента, способствующего отводу теплого воздуха, образованного в компрессоре агрегата во время сжатия газа. Охлаждение решетки также основывается на конвективных механизмах. Именно по этой причине не рекомендуется загромождать пространство позади холодильника. Ведь только в таком случае охлаждение может происходить без затруднений.

Другие примеры конвекции можно заметить, наблюдая за таким природным явлением, как движение ветра. Нагреваясь над засушливыми континентами и охлаждаясь над местностью с более суровыми условиями, потоки воздуха начинают вытеснять друг друга, что приводит к их движению, а также перемещению влаги и энергии.

На конвекции завязана возможность парения птиц и планеров. Менее плотные и более теплые воздушные массы при неравномерном нагревании у поверхности Земли приводят к образованию восходящих потоков, что способствует процессу парения. Для преодоления максимальных расстояний без затраты сил и энергии птицам требуется умение находить подобные потоки.

Хорошие примеры конвекции – образование дыма в дымоходах и вулканических кратерах. Перемещение дыма вверх основано на его более высокой температуре и низкой плотности по сравнению с окружающей средой. При остывании дым постепенно оседает в нижние слои атмосферы. Именно по этой причине промышленные трубы, посредством которых происходит выброс вредных веществ в атмосферу, делают максимально высокими.

Наиболее распространенные примеры конвекции в природе и технике

естественная конвекция

Среди наиболее простых, доступных для понимания примеров, которые можно наблюдать в природе, быту и технике, следует выделить:

  • движение воздушных потоков во время работы бытовых батарей отопления;
  • образование и движение облаков;
  • процесс движения ветра, муссонов и бризов;
  • смещение тектонических земных плит;
  • процессы, которые приводят к свободному газообразованию.

Приготовление пищи

Все чаще явление конвекции реализуется в современных бытовых приборах, в частности в духовых шкафах. Газовый шкаф с конвекцией позволяет готовить разные блюда одновременно на отдельных уровнях при различной температуре. При этом полностью исключается смешение вкусов и запахов.

явление конвекции

Нагрев воздуха в традиционном духовом шкафу основывается на работе единственной горелки, что приводит к неравномерному распределению тепла. За счет целенаправленного перемещения горячих потоков воздуха при помощи специализированного вентилятора блюда в конвекционном духовом шкафу получаются более сочными, лучше пропекаются. Такие устройства быстрее нагреваются, что позволяет уменьшить время, требуемое на приготовление пищи.

Естественно, для хозяек, которые готовят в духовом шкафу всего лишь несколько раз в год, бытовой прибор с функцией конвекции нельзя назвать техникой первой необходимости. Однако для тех, кто не может жить без кулинарных экспериментов, такое устройство станет просто незаменимым на кухне.

Надеемся, представленный материал оказался полезным для вас. Всего доброго!

fb.ru

теплопроводность, конвекция, излучение – FIZI4KA

1. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность можно наблюдать на следующем опыте. Если к металлическому стержню с помощью воска прикрепить несколько гвоздиков (рис. 68), закрепить один конец стержня в штативе, а другой нагревать на спиртовке, то через некоторое время гвоздики начнут отпадать от стержня: сначала отпадет тот гвоздик, который ближе к спиртовке, затем следующий и т.д.

Это происходит потому, что при повышении температуры воск начинает плавиться. Поскольку гвоздики отпадали не одновременно, а постепенно, можно сделать вывод, что температура стержня повышалась постепенно. Следовательно, постепенно увеличивалась и внутренняя энергия стержня, она передавалась от одного его конца к другому.

2. Передачу энергии при теплопроводности можно объяснить с точки зрения внутреннего строения вещества. Молекулы ближнего к спиртовке конца стержня получают от неё энергию, их энергия увеличивается, они начинают более интенсивно колебаться и передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь передают энергию своим соседям, и процесс передачи энергии распространяется по всему стержню. Увеличение кинетической энергии частиц приводит к повышению температуры стержня.

Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другому или от одной части тела к другой передается энергия.

Процесс передачи энергии от одного тела к другому или от одной части тела к другой благодаря тепловому движению частиц называется теплопроводностью.

3. Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводностью обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

4. Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если на дно колбы с водой аккуратно через трубочку опустить кристаллик марганцево-кислого калия и нагревать колбу снизу так, чтобы пламя касалось её в том месте, где лежит кристаллик, то можно увидеть, как со дна колбы будут подниматься окрашенные струйки воды. Достигнув верхних слоёв воды, эти струйки начнут опускаться.

Объясняется это явление так. Нижний слой воды нагревается от пламени спиртовки. Нагреваясь, вода расширяется, её объём увеличивается, а плотность соответственно уменьшается. На этот слой воды действует архимедова сила, которая выталкивает нагретый слой жидкости вверх. Его место занимает опустившийся вниз холодный слой воды, который, в свою очередь, нагреваясь, перемещается вверх и т.д. Следовательно, энергия в данном случае переносится поднимающимися потоками жидкости (рис. 69).

Подобным образом осуществляется теплопередача и в газах. Если вертушку, сделанную из бумаги, поместить над источником тепла (рис. 70), то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Теплопередача, которая осуществляется в этом опыте и в опыте, изображенном на рисунках 69, 70, называется конвекцией.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.

Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

5. Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Если закрепить металлическую коробочку (теплоприёмник), одна сторона которой блестящая, а другая чёрная, в штативе, соединить коробочку с манометром, а затем налить в сосуд, у которого одна поверхность белая, а другая чёрная, кипяток, то, повернув сосуд к чёрной стороне теплоприёмника сначала белой стороной, а затем чёрной, можно заметить, что уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится. При этом он сильнее понизится, когда сосуд обращён к теплоприёмнику чёрной стороной (рис. 71).

Понижение уровня жидкости в манометре происходит потому, что воздух в теплоприёмнике расширяется, это возможно при нагревании воздуха. Следовательно, воздух получает от сосуда с горячей водой энергию, нагревается и расширяется. Поскольку воздух обладает плохой теплопроводностью и конвекция в данном случае не происходит, т.к. плитка и теплоприёмник располагаются на одном уровне, то остаётся признать, что сосуд с горячей водой излучает энергию.

Опыт также показывает, что чёрная поверхность сосуда излучает больше энергии, чем белая. Об этом свидетельствует разный уровень жидкости в колене манометра, соединённом с теплоприёмником.

Чёрная поверхность не только излучает больше энергии, но и больше поглощает. Это можно также доказать экспериментально, если поднести включённую в сеть электроплитку сначала к блестящей стороне тенлоприёмника, а затем к чёрной. Во втором случае жидкость в колене манометра, соединённом с теплоприёмником, опустится ниже, чем в первом.

Таким образом, чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В твёрдых телах теплопередача может осуществляться путём

1) конвекции
2) излучения и конвекции
3) теплопроводности
4) конвекции и теплопроводности

2. Теплопередача путём конвекции может происходить

1) только в газах
2) только в жидкостях
3) только в газах и жидкостях
4) в газах, жидкостях и твёрдых телах

3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?

1) только с помощью теплопроводности
2) только с помощью конвекции
3) только с помощью излучения
4) всеми тремя способами

4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?

1) только теплопроводность
2) только конвекция
3) излучение и теплопроводность
4) конвекция и теплопроводность

5. Какой вид теплопередачи не сопровождается переносом вещества?

1) только теплопроводность
2) только конвекция
3) только излучение
4) только теплопроводность и излучение

6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?

1) только теплопроводность
2) конвекция и теплопроводность
3) излучение и теплопроводность
4) только конвекция

7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.

В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из

1) газобетона
2) железобетона
3) силикатного кирпича
4) дерева

8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?

1) в металлической
2) в пластмассовой
3) одновременно
4) скорость остывания воды зависит от её температуры

9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?

10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?

1) Температура воды не изменится ни в той, ни в другой кастрюле.
2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов.
3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной.
4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.

11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.

1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения.
2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции.
3) В процессе передачи энергии давление воздуха в коробке увеличивалось.
4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию.
5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи.
2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия.
3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим.
4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению.
5) Стекло обладает лучшей теплопроводностью, чем металл.

Ответы

Виды теплопередачи: теплопроводность, конвекция, излучение

5 (100%) 1 vote

fizi4ka.ru

Виды теплопередачи: теплопроводность, конвекция, излучение

«Виды теплопередачи:
теплопроводность, конвекция, излучение»



Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие

виды теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Виды теплопередачи: теплопроводность, конвекция, излучение

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.  Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Виды теплопередачи: теплопроводность, конвекция, излучение

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

теплопередача виды


Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».

Следующая тема: «Количество теплоты. Удельная теплоёмкость».

 

uchitel.pro

Физика. Конспект «Конвекция» | 8 класс РФ

Конспект по физике для 8 класса «Конвекция». ВЫ УЗНАЕТЕ: Что такое конвекция. Какие виды конвекции существуют.

Конспекты по физике    Учебник физики    Тесты по физике


Конвекция

Если жидкости и газы обладают низкой теплопроводностью, то как же тогда нам удаётся достаточно быстро прогреть воздух в помещении и вскипятить воду?

ЯВЛЕНИЕ ТЕПЛОПЕРЕДАЧИ В ВОЗДУХЕ

Находясь рядом с горячей плитой, можно почувствовать тёплые струи воздуха, поднимающиеся над ней. Этот же эффект хорошо ощущается, если сверху поднести руку к горящей свече или горящей электрической лампочке.

Это физическое явления используется в игрушке «музыкальная ёлочка». Когда зажигаются свечки, под действием возникающих струй тёплого воздуха, направленных вверх, вертушка начинает вращаться, а колокольчики — звенеть.

Если сделать из бумаги спираль и поместить её над включённой электрической лампочкой, как показано на рисунке, под действием поднимающегося нагретого воздуха спираль начнёт вращаться.

В этом опыте, так же как и в игрушке «музыкальная ёлочка», происходит нагревание воздуха, находящегося вблизи горящей лампочки или свечи. При этом он расширяется, и его плотность становится меньше плотности окружающего холодного воздуха. Под действием выталкивающей (архимедовой) силы со стороны холодного воздуха тёплый воздух вытесняется вверх. Образовавшийся воздушный поток и вращает спираль.

ЯВЛЕНИЕ ТЕПЛОПЕРЕДАЧИ В ЖИДКОСТИ

Аналогичные явления происходят и при нагревании жидкости, если источник тепла находится снизу.

Нагретые слои жидкости имеют меньшую плотность. Поэтому сила тяжести, действующая на них, становится меньше архимедовой силы, действующей на эти слои со стороны окружающей жидкости. Вследствие этого нагретые слои воды начинают подниматься вверх, а на их место опускаются более холодные слои жидкости. Этот процесс продолжается до тех пор, пока вся жидкость не прогреется одинаково по всему объёму.

Рассмотрим следующий опыт. На дно колбы с водой аккуратно опустим несколько кристалликов любого красителя (например, марганцовокислого калия). Начнём нагревать колбу снизу. Сразу станет хорошо видно, как со дна колбы поднимаются окрашенные струйки воды.

КОНВЕКЦИЯ

При нагревании воздуха или воды снизу происходит теплопередача, обусловленная переносом вещества и отличающаяся от теплопроводности. Этот процесс называют конвекцией (от лат. convectio — перенесение).

Конвекция — это вид теплопередачи, при котором энергия передаётся потоками (или струями) жидкости или газа.

В 7 классе мы говорили о том, что строение твёрдых тел отличается от строения жидкостей и газов. В твёрдых телах перенос вещества невозможен, поэтому конвекция наблюдается только в жидкостях и газах. В твёрдых телах она не происходит.

В закрытом помещении при работе отопительных приборов всегда возникает явление конвекции. Поэтому разница температур воздуха у пола и вблизи потолка может достигать нескольких градусов.

ЕСТЕСТВЕННАЯ И ВЫНУЖДЕННАЯ КОНВЕКЦИЯ

Различают два вида конвекции: естественную и вынужденную. Рассмотренные выше процессы нагревания воздуха и жидкости являются примерами естественной конвекции. Для её возникновения требуется либо подогрев жидкости или газа снизу, либо охлаждение сверху.

Вынужденная конвекция наблюдается в случае, когда потоки нагретой или охлаждённой жидкости или газа переносятся под действием насосов или вентиляторов.

КОНВЕКЦИЯ В ПРИРОДЕ

Конвекция является очень распространённым явлением в природе. Она выполняет основную роль в образовании в атмосфере потоков воздуха — ветров. Нагреваясь над одними участками земли и охлаждаясь над другими, воздух начинает циркулировать, перенося с собой энергию и влагу.

Эти же причины порождают дневные и ночные бризы — ветры, попеременно дующие от моря к суше днём и от суши к морю ночью. В течение дня температура земли становится заметно выше, чем температура моря. Соответственно и воздух, соприкасающийся с землёй, теплеет, расширяется и его плотность уменьшается. За счёт явления конвекции возникает циркулирующее течение воздушных масс. Ночью происходит обратный процесс, так как земля охлаждается до температуры, которая ниже, чем температура моря.

Благодаря конвекции птицы способны подолгу парить в воздухе. Разные участки земли прогреваются по-разному, и из-за этого возни кают восходящие воздушные потоки. Эти же потоки используются при полётах на дельтапланах.

Из-за конвекции нагретый пар из труб котельных и дым из печных труб при отсутствии ветра поднимаются вверх, так как имеют более низкую плотность, чем окружающий воздух.

В быту мы привыкли к тому, что при нагреве воды источник тепла располагается снизу. Нагревательные приборы в комнате также всегда расположены внизу.

Опыты показывают, что при нагревании сверху как жидкостей, так и газов конвекции не происходит. В этом случае просто не возникает выталкивающая сила, так как нагретые слои с меньшей плотностью располагаются сверху.

Естественная и вынужденная конвекция лежат в основе действия отопительной системы зданий. Нагревание воды может производиться либо непосредственно в здании при помощи специального котла, либо за пределами отапливаемого помещения при наличии системы центрального отопления. Горячая вода, поступающая в дом или нагретая в котле, поднимается вверх, а затем спускается по трубам и распределяется по помещениям, отдавая тепло в радиаторах.


Вы смотрели Конспект по физике для 8 класса «Конвекция».

Вернуться к Списку конспектов по физике (Оглавление).

Конвекция

5 (100%) 1 vote[s]

Просмотров: 662

xn--8-8sb3ae5aa.xn--p1ai

Конвекция. Опыты — Класс!ная физика

Конвекция. Опыты

06.2012

ВЕС — РЕГУЛИРОВЩИК ТЕПЛОТЫ

Одним из естественных способов распространения теплоты в природе является конвекция. Это наблюдается в жидкостях и газах. Основана конвекция на том, что участки жидкости или газа при нагревании становятся менее плотными и поднимаются вверх, а более холодные, более тяжелые слои опускаются вниз. Источник тепла обычно помещается внизу, поэтому происходит непрерывное перемещение нагретых слоев вверх, а холодных вниз. Но при невесомости, например, в помещении орбитальной станции, такой способ распространения тепла не действует, ведь вес — регулировщик теплоты — отсутствует.


Опыт 1

Возьмите гладкую металлическую пластинку, например ровную металлическую крышку от стеклянной банки из-под консервов, положите на нее несколько кристаллов марганцевокислого калия, капните на них каплю воды и покройте тонким слоем стеарина. Края лепешки из стеарина плотно прилепите к пластинке. Налейте в стакан воду, накройте его пластинкой так, чтобы стеариновая лепешка оказалась внутри стакана. Придерживая стакан рукой, переверните его вверх дном.

Поставьте пластинку со стаканом на две опоры, чтобы к ней, ее средней части, был снизу доступ для свечи.


Поднесите к тому месту пластинки, над которым приклеен стеарин, горящую свечу. Лепешка, нагревшись, оторвется от пластинки, и поток горячей воды, окрашенный в фиолетовый цвет, устремится вверх. Вы увидите циркуляцию окрашенных потоков воды: теплые струйки идут вверх, холодные — вниз.

Опыт 2

Опыт, демонстрирующий циркуляцию воздушных тепловых потоков, проделайте так: возьмите стекло от керосиновой лампы, а если его нет, то бутылку с ровно отрезанным дном.

Поставьте ламповое стекло на горящую свечку. Она быстро погаснет. Свежий воздух к ней не поступает. Горячий воздух с продуктами горения устремляется вверх, а свежему воздуху пройти негде. Но если вы в ламповое стекло вставите полоску из плотной бумаги, она разделит внутреннее пространство на две половины: в той, где находится свеча, горячий воздух с продуктами горения по-прежнему будет идти вверх, а свежий, более холодный воздух будет притекать к свече сверху — по другую сторону перегородки.
Чтобы убедиться, что перегородка играет важную роль в снабжении свечи свежим воздухом и что без нее циркуляции воздуха не будет, выдерните бумажную полоску. Свеча моментально погаснет.


ВИНОВАТА КОНВЕКЦИЯ

Опыт 1

Возьмите учебные весы, закрепите, их в лапке штатива и уравновесьте. Поднесите горящую спичку под чашку весов снизу на расстоянии 10—12 см.

Почему они выходят из равновесия?
Оказывается, при горении спички возникают восходящие конвекционные потоки, которые вызывают подъем чашки.

Опыт 2

Зажгите стеариновую свечу, накройте ее стеклянной цилиндрической трубкой. При этом пламя уменьшается и может погаснуть. Почему?

Если трубку приподнять, то свеча горит ярче. Почему?

Когда горящую свечу накрывают стеклянной цилиндрической трубкой, доступ кислорода к свече ухудшается и ее пламя уменьшается.
При подъеме трубки улучшается доступ кислорода к горящей свече, улучшается тяга.

ХИТРАЯ ЗМЕЯ

Есть на свете хитрая змея. Она лучше людей чувствует движение потоков воздуха. Сейчас мы ее сделаем и проверим, действительно ли так неподвижен воздух в закрытой комнате.

Змею можно сделать из старой почтовой открытки, годится и лист, вырванный из тетради по рисованию. Нарисуй выкройку змеи по нашей картинке и аккуратно вырежь ее ножницами. На хвосте змеи, в самой серединке, выдави острием карандаша маленькое углубление.

Проверим теперь, действует ли наша змея. Надень ее углублением на кончик остро очищенного карандаша и подними. Закинув голову, легонько подуй на змею снизу.
Завертелась!

Значит, хитрая змея действительно замечает то, чего люди не видят. Она чувствует, когда воздух поднимается вверх. Попробуем воспользоваться этим свойством змеи и поищем в комнате такое место, где воздух сам поднимается вверх. Поднеси карандаш со змеей к топящейся печке или к батарее центрального отопления. Придвинь его совсем близко, так, чтобы только змея могла свободно вертеться.

Хитрая змея завертится!
Она будет вертеться тем быстрее, чем горячее печка. Это потому, что печка нагревает воздух. В комнате происходит распределение тепла с помощью конвекции — потоков воздуха: теплый воздух поднимается вверх. Он и вертит хитрую змею.


ВЕРТУШКА НА БУЛАВКЕ

Для опытов с хитрой змеей нужна горячая печка или горячая батарея отопления. Ну, а что делать летом?
Есть гораздо более чувствительный физический прибор, для работы которого вполне достаточно тепла твоего тела. Это бумажная вертушка на булавке. Сделать ее ничуть не труднее, чем змею.

Вырежь квадратик размером 4×4 см из тоненькой, лучше всего папиросной бумаги. Перегни его точно с угла на угол — сначала по одной диагонали, потом по другой. Получится колпачок в виде отлогой пирамидки. Углы этой пирамидки сложи попарно так и этак, чтобы образовались еще складки, входящие внутрь.

Каждая боковая грань пирамидки разделилась на два треугольника. Возьми ножницы и вырежь из каждой грани левый треугольничек. Только —чур! — не до самой серединки режь, оставь по 2—3 мм, иначе все развалится.

Получилась вертушка с четырьмя косыми крылышками. Возьми в руки булавку, острием вверх, и положи вертушку на острие вершинкой. Убери вторую руку и подожди несколько секунд.
Видишь? Вертушка тихонько завертелась. Ее крутит поток нагретого воздуха — это явление воздушной конвекции. Он поднимается от руки, в которой ты держишь булавку. Конечно, поток этот очень слабенький. Но вертушка легонькая, ей и этого хватает!

Источник:»Забавная физика» Л. Гальперштейн; «Занимательные опыты по физике» А. Горев



class-fizika.ru

Физика на кухне – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)

  • Участник: Коршунова Анастасия Владимировна
  • Руководитель: Ирхина Елена Юрьевна
       Физика в быту

Аннотация

Мир физических явлений чрезвычайно разнообразен. Физика обладает необыкновенным свойством. Изучая самые простые явления можно вывести общие законы. Многие физические закономерности можно получить из собственных наблюдений. Замечательным местом для наблюдения физических явлений и проведения экспериментов является самая обычная кухня.

Кухня – это место, которое мы посещаем постоянно. Мы даже не задумываемся, что там могут происходить какие-то физические явления. В повседневной жизни мы не найдём другого такого места, где происходило бы столько удивительного и загадочного, как в кухне. Именно здесь мы смешиваем, нагреваем, охлаждаем, замораживаем, размораживаем, а бывает, что и сжигаем всевозможные виды животного, растительного и неорганического сырья. В этом месте происходит множество явлений: световые, тепловые, электрические, электромагнитные и др.

Цель работы: рассмотреть тепловые явления на кухне.

Актуальность работы: работа на кухне не осуществима без тепловых явлений особенно во время технического мира. Время не стоит на месте, люди придумывают все больше техники, а без знаний физики будет невозможен прогресс.

Задачи:

  1. Изучить 3 взаимосвязанных тепловых явлений.
  2. Объяснить их с физической точки зрения.
  3. Исследовать историю открытия явлений.
  4. Найти интересные факты.
  5. Провести анализ полученных данных.

Для начала, что же такое тепловые явления? Тепловые явления – это явления, связанные с нагреванием или охлаждением тел, с изменением температуры. К таким явлениям относятся, например, нагревание и охлаждение воды в емкости, таяние льда, плавление металлов и др. [1] Итак, какие же тепловые явления мы встречаем на кухне? Испарение, кипение, конвекция, теплопроводность, изменение агрегатного состояния веществ – все это тепловые явления. Таким образом, рассмотрим 3 явления. Это конвекция, теплопроводность и кипение.

Конвекция

Конвекция – это вид теплопередачи, при котором внутренняя энергия передается струями и потоками. [3]

Впервые термин «конвекция» был предложен английским ученым Вильямом Прутом еще в 1834 году. (Рисунок 1) Использовался он для описания перемещения тепловых масс в нагретых, движущихся жидкостях.

Рисунок 1 – «Портрет Вильяма Прута. Художник Генри Виндхам Филипс»

Рисунок 1 – «Портрет Вильяма Прута. Художник Генри Виндхам Филипс»

Первые теоретические исследования явления конвекции стартовали лишь в 1916 году. В ходе экспериментов было установлено, что переход от диффузии к конвекции в подогреваемых снизу жидкостях возникает при достижении некоторых критических температурных значений. Позже это значение получило определение «число Роэля». Оно было так названо в честь исследователя, занимавшегося его изучением. Результаты опытов позволили дать объяснение перемещению тепловых потоков под влиянием сил Архимеда. [1]. В основе явления конвекции лежит расширение более холодного вещества при соприкосновении с горячими массами. В таких обстоятельствах нагреваемое вещество теряет плотность и становится легче по сравнению с окружающим его холодным пространством. Наиболее точно данная характеристика явления соответствует перемещению тепловых потоков при нагревании воды. Движение молекул в противоположных направлениях под воздействием нагревания – это именно то, на чем основывается конвекция. Излучение, теплопроводность выступают схожими процессами, однако касаются прежде всего передачи тепловой энергии в твердых телах.

Рассмотрим применение конвекции на кухне. Когда мы готовим пищу на плите, то жидкость из холодной превращается в теплую. Почему так происходит? Все дело в том, что здесь проявляется явление конвекция. Жидкость при конвекции нагревается снизу вверх. Нагретые слои жидкости – менее плотные и поэтому более легкие – вытесняются вверх более тяжелыми холодными слоям. Холодные слои жидкости, опустившись вниз, в свою очередь, нагреваются от источника тепла и вновь вытесняются менее нагретой водой. Благодаря такому движению вся жидкость равномерно прогревается. Различают два вида конвекции: естественную (или свободную) и вынужденную. Так, нагревание жидкости является примером естественной конвекции. (Рисунок 2) Вынужденная конвекция наблюдается, если перемешивать жидкость мешалкой, ложкой и т.д. Если жидкости прогревать не снизу, а сверху, то конвекция не происходит. Нагретые слои не могут опускаться ниже холодных, более тяжелых. [3]

Рисунок 2 – «Водяное охлаждение»

Рисунок 2 – «Водяное охлаждение»

С явлением конвекции связаны процесс охлаждение продуктов в холодильнике. Газ фреон, циркулирующий по трубкам холодильника, охлаждает воздух в верхней части холодильной камеры. Холодный воздух, опускаясь, охлаждает продукты, а затем снова поднимается вверх. Решетка сзади холодильника предназначается для отвода тепла, образующегося при сжатии газа в компрессоре. Механизм ее охлаждения также конвективный, поэтому надо оставлять пространство за холодильником свободным для конвективных потоков. Все чаще явление конвекции реализуется в современных бытовых приборах, в частности в духовых шкафах. Газовый шкаф с конвекцией позволяет готовить разные блюда одновременно на отдельных уровнях при различной температуре. При этом полностью исключается смешение вкусов и запахов. Нагрев воздуха в традиционном духовом шкафу основывается на работе единственной горелки, что приводит к неравномерному распределению тепла. За счет целенаправленного перемещения горячих потоков воздуха при помощи специализированного вентилятора блюда в конвекционном духовом шкафу получаются более сочными, лучше пропекаются. Такие устройства быстрее нагреваются, что позволяет уменьшить время, требуемое на приготовление пищи.По этим примерам можно понять, что конвекция играет большую роль на кухне. Она помогает при приготовлении пищи в духовке или просто на плите, сохраняет продукты от жары в холодильнике. Все это помогает поддерживать нормальную функциональную жизнедеятельность людям.

Кипение

Кипение – это интенсивный переход жидкости в пар, происходящий с образованием пузырьков пара по всему объему жидкости при определенной температуре. (Рисунок 3)

Рисунок 3 – «Процесс кипения»

Рисунок 3 – «Процесс кипения»

Энергия кипения воды широко используется человеком в быту. Данный процесс стал настолько обыденным и привычным, что никто не задумывается о его природе и особенностях. [1] Тем не менее с кипением связан целый ряд интересных фактов:

  1. Наверное, все замечали, что в крышке чайника есть отверстие, но мало кто задумывается о его предназначении. Оно проделывается с той целью, чтобы частично выпускать пар. В противном случае вода может расплескаться через носик.
  2. Продолжительность варки картофеля, яиц и прочих продуктов питания не зависит от того, насколько мощным является нагреватель. Имеет значение лишь тот факт, как долго они находились под воздействием кипящей воды.
  3. На такой показатель, как температура кипения, никак не влияет мощность нагревательного прибора. Она может сказаться лишь на скорости испарения жидкости.
  4. Кипение связано не только с нагреванием воды. При помощи данного процесса можно также заставить жидкость замерзнуть. Так, в процессе кипения нужно производить непрерывную откачку воздуха из сосуда.
  5. Одна из самых актуальных проблем для хозяек заключается в том, что молоко может «убежать». Так, риск этого явления значительно повышается во время ухудшения погоды, которое сопровождается падением атмосферного давления.
  6. Самый горячий кипяток получается в глубоких подземных шахтах.
  7. Путем экспериментальных исследований ученым удалось установить, что на Марсе вода закипает при температуре 45 градусов Цельсия.

Как же происходит этот процесс и от чего он зависит? При нагревании какой-либо жидкости мы увидим ряд особенностей. Прежде всего обратим внимание на то, что с поверхности жидкости происходит испарение. На это указывает туман, образовавшийся над емкость. Это водяной пар смешивается с холодным воздухом и конденсируется в виде маленьких капель. Сам пар, конечно, невидим глазу. При дальнейшем повышении температуры мы заметим появление в жидкости многочисленных мелких пузырьков. Они постепенно увеличиваются в размерах. Это пузырьки воздуха, который растворен в воде. При нагревании воздух выделяется из воды в виде пузырьков. Эти пузырьки содержат не только воздух, но и водяной пар, так как вода испаряется внутрь этих пузырьков воздуха. Поднимающиеся пузырьки, попадая в более холодные слои воды, уменьшаются в размерах, так как содержащиеся в них пары конденсируются и под действием силы тяжести они опускаются. Спустившись вниз, в более горячие слои воды, пузырьки начинают снова подниматься к поверхности. Это попеременное увеличение и уменьшение пузырьков в размерах сопровождается характерным шумом, предшествующим закипанию воды. Постепенно вся вода прогревается, пузырьки уже не уменьшаются в размерах. Под действием архимедовой силы они всплывают на поверхность и лопаются. Находящийся в них насыщенный пар выходит наружу. Шум прекращается, и мы слышим бульканье – жидкость закипела. [3]. Кипение от начала до конца происходит при определенной и постоянной для каждой жидкости температуре. (Таблица 1) Поэтому при варке пищи нужно уменьшать огонь после того, как вода закипит. Это даст экономию топлива, а температура воды все равно сохраняется постоянной во время кипения. [1]

Таблица 1 – «Температура кипения различных веществ»

Таблица 1 – «Температура кипения различных веществ»

Все выше сказанное дает понять, что если бы не кипение, то можно было нагревать пищу и не узнать когда она приготовилась, или мы просто ели холодную пищу.

Теплопроводность

Теплопроводность – явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте. [2]

Таблица 2 – «Коэффициент теплопроводности»

Таблица 2 – «Коэффициент теплопроводности»

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы, так их теплопроводность и прочность выше, чем у других материалов. (Таблица 2) Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается еде. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых еде передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Обычно в кастрюлю на огне наливают в воду, в которую ставят вторую кастрюлю с едой. Температура здесь регулируется благодаря более низкой теплопроводности воды и вследствие того, что температура нагревания внутренней кастрюли не превышает температуры кипения воды, то есть 100° C (212° F). Такой способ часто применяют с продуктами, которые легко пригорают или которые нельзя кипятить, например, шоколад. [4]. Металлы, которые очень хорошо проводят тепло — медь и алюминий. Медь более теплопроводна, но и стоит дороже. Из обоих металлов делают кастрюли, но некоторая еда, особенно кислая, реагирует с этими металлами, и у еды появляется металлический привкус. За такими кастрюлями, особенно за медными, необходим тщательный уход, поэтому на кухне чаще используют более дешевые и удобные в обращении и уходе кастрюли из нержавеющей стали. (Рисунок 4)

Рисунок 4 – «Медная посуда»

Рисунок 4 – «Медная посуда»

Потребности в теплопроводности зависят от способа приготовления пищи и от вкуса и консистенции, которой хочет добиться повар. Например, при варке обычно нужна более низкая теплопроводность, чем при жарке. Теплопроводность регулируют, выбирая разную посуду, а также используя продукты с большим или меньшим содержанием жидкости. Например, количество масла на дне кастрюли или сковородки влияет на теплопроводность, так же, как и общее количество жидкости в продукте. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру. [2]. Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью. [4]. Материалы с невысокой теплопроводностью также используют для поддержания температуры еды неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них еда остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, еде — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для еды навынос. Таким образом, теплопроводность играет важную роль на кухне. Без нее нельзя было бы даже взять кастрюлю или сковородку в руку, потому что могли обжечься. Также она очень хорошо помогает при выборе посуды. Она дает знать, какой материал будет наиболее пригодный для приготовления той или иной пищи.

Заключение

Итак, мы познакомились с тепловыми явлениями, которые наиболее часто встречаются на кухне: конвекция, теплопроводность и кипение. Каждое из них выполняет определенную роль на кухне. Так с помощью конвекция жидкость вся равномерно прогревается Кипение сообщает, что пища приготовилась и набрала определенную температуру. С помощью теплопроводности можно дольше сохранять тепло (пример термоса), а также выбрать посуду, в которой при приготовлении пищи будет возможность взять руками посуду и не обжечься. Таким образом, я делаю вывод о том, что на кухне без знаний физики не обойтись.


rosuchebnik.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *