Круги Эйлера Википедия

Диагра́ммы Э́йлера (круги́ Э́йлера) — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Первое их использование приписывают Леонарду Эйлеру[⇨]. Используется в математике, логике, менеджменте и других прикладных направлениях. Не следует их путать с диаграммами Эйлера — Венна[⇨].
Диаграммы Эйлера также называют кругами Эйлера. При этом «круги» — это условный термин, вместо кругов могут быть любые фигуры.
На диаграммах Эйлера множества изображаются кругами (или другими фигурами). Причём непересекающиеся множества изображены непересекающимися кругами, а подмножества изображены вложенными кругами. Например, диаграмма на рисунке показывает, что множество A является подмножеством B, а B не пересекается с C.
История[ | ]
При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Однако этим методом ещё до Эйлера пользовался выдающийся немецкий философ и математик Готфрид Вильгельм Лейбниц. Лейбниц использовал их для геометрической интерпретации логических связей между понятиями, но при этом всё же предпочитал использовать линейные схемы.
Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна, подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году. Венн предложил свою схему изображения отношения между множествами, которая теперь называется диаграммами Эйлера — Венна. Первоначально круги Эйлера возникли на основе идей силлогистики Аристотеля. Диаграммы Венна были созданы для решения задач математической логики. Их основная идея разложения на конституенты возникла на основе алгебры логики[2].
Связь диаграмм Эйлера и Венна[ | ]


ru-wiki.ru
Круги Эйлера — Википедия (с комментариями)
Материал из Википедии — свободной энциклопедии
Круги́ Э́йлера[1] — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Леонардом Эйлером. Используется в математике, логике, менеджменте и других прикладных направлениях.
Важный частный случай кругов Эйлера — диаграммы Эйлера — Венна, изображающие все <math>2^n</math> комбинаций <math>n</math> свойств, то есть конечную булеву алгебру. При <math>n=3</math> диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.
При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Однако этим методом ещё до Эйлера пользовался выдающийся немецкий философ и математик Готфрид Вильгельм Лейбниц. Лейбниц использовал их для геометрической интерпретации логических связей между понятиями, но при этом всё же предпочитал использовать линейные схемы.[2]
Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна, подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году. Поэтому такие схемы иногда называют Диаграммы Эйлера — Венна.
См. также
Напишите отзыв о статье "Круги Эйлера"
Примечания
- ↑ «Круги…» — это условный термин, вместо кругов могут быть любые многомерные фигуры, иерархически расположенные в пространстве, то есть одни фигуры поглощают либо часть других фигур, либо полностью.
- ↑ Leibniz G. W. Opuscules et fragments inédits de Leibniz. — Paris, 1903. — p. 293—321.
|
Отрывок, характеризующий Круги Эйлера
В такие минуты в душе княжны Марьи собиралось чувство, похожее на гордость жертвы. И вдруг в такие то минуты, при ней, этот отец, которого она осуждала, или искал очки, ощупывая подле них и не видя, или забывал то, что сейчас было, или делал слабевшими ногами неверный шаг и оглядывался, не видал ли кто его слабости, или, что было хуже всего, он за обедом, когда не было гостей, возбуждавших его, вдруг задремывал, выпуская салфетку, и склонялся над тарелкой, трясущейся головой. «Он стар и слаб, а я смею осуждать его!» думала она с отвращением к самой себе в такие минуты.В 1811 м году в Москве жил быстро вошедший в моду французский доктор, огромный ростом, красавец, любезный, как француз и, как говорили все в Москве, врач необыкновенного искусства – Метивье. Он был принят в домах высшего общества не как доктор, а как равный.
Князь Николай Андреич, смеявшийся над медициной, последнее время, по совету m lle Bourienne, допустил к себе этого доктора и привык к нему. Метивье раза два в неделю бывал у князя.
В Николин день, в именины князя, вся Москва была у подъезда его дома, но он никого не велел принимать; а только немногих, список которых он передал княжне Марье, велел звать к обеду.
Метивье, приехавший утром с поздравлением, в качестве доктора, нашел приличным de forcer la consigne [нарушить запрет], как он сказал княжне Марье, и вошел к князю. Случилось так, что в это именинное утро старый князь был в одном из своих самых дурных расположений духа. Он целое утро ходил по дому, придираясь ко всем и делая вид, что он не понимает того, что ему говорят, и что его не понимают. Княжна Марья твердо знала это состояние духа тихой и озабоченной ворчливости, которая обыкновенно разрешалась взрывом бешенства, и как перед заряженным, с взведенными курками, ружьем, ходила всё это утро, ожидая неизбежного выстрела. Утро до приезда доктора прошло благополучно. Пропустив доктора, княжна Марья села с книгой в гостиной у двери, от которой она могла слышать всё то, что происходило в кабинете.
wiki-org.ru
круги Эйлера — со всех языков на русский
Круги Эйлера — Пример кругов Эйлера. Буквами обозначены, например, свойства: живое существо, человек, неживая вещь Круги Эйлера[1] геометрическая схема, с помощью которой можно изобразить отношения … Википедия
Круги — Круги: Содержание 1 Населённые пункты 1.1 Белоруссия 1.2 Россия 1.3 Украина … Википедия
Круги (значения) — Населённые пункты: Круги (укр. Круги) село, входит в Вышгородский район Киевской области Украины. Круги (укр. Круги) село на Украине, находится в Тывровском районе Винницкой области. Круги (белор. Кругі) деревня в… … Википедия
эйлера круги — геометрическая наглядная иллюстрация объемов понятий и отношений между ними с помощью кругов. Если круг A иллюстрирует объем понятия студенты , а круг В иллюстрирует объем понятия спортсмены , то отношение между объемами этих понятий можно… … Словарь терминов логики
Список объектов, названных в честь Леонарда Эйлера — Существует множество математических и физических объектов, названных в честь Леонарда Эйлера: Содержание 1 Теоремы 2 Лемма 3 Уравнения 4 … Википедия
Интеграл Эйлера — Существует множество математических и физических объектов, названных в честь Леонарда Эйлера: Содержание 1 Теоремы 2 Лемма 3 Уравнения 4 Тождества 5 … Википедия
Диаграмма Эйлера — Пример диаграммы Эйлера. B живое существо, A человек, C неживая вещь. Круги Эйлера[1] геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Эйлером. Используется в… … Википедия
Диаграммы Эйлера—Венна — Пример диаграммы Эйлера. B живое существо, A человек, C неживая вещь. Круги Эйлера[1] геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Эйлером. Используется в… … Википедия
Эйлеров интеграл — Существует множество математических и физических объектов, названных в честь Леонарда Эйлера: Содержание 1 Теоремы 2 Лемма 3 Уравнения 4 Тождества 5 … Википедия
Эйлеровы интегралы — Существует множество математических и физических объектов, названных в честь Леонарда Эйлера: Содержание 1 Теоремы 2 Лемма 3 Уравнения 4 Тождества 5 … Википедия
Кобзарь, Владимир Иванович — (р. 28.07.1938) спец. в обл. теории познания, методологии, логики и истории филос.; д р филос. наук, проф. Род. в Ленинграде. Закончил филос. ф т ЛГУ (1966) и асп. этого ф та по кафедре логики (1969). С июня 1969 по апрель 1975 работал мл., потом … Большая биографическая энциклопедия
translate.academic.ru