Квадратный корень это что – Квадратный корень — это… Что такое Квадратный корень?

Содержание

Квадратный корень — это… Что такое Квадратный корень?

Квадра́тный ко́рень из (корень 2-й степени) — это решение уравнения вида . Наиболее часто под и подразумеваются числа, но в некоторых приложениях они могут быть и другими математическими объектами, например матрицами и операторами.

Применение операции корня к числам

Квадратный корень из числа  — это такое число, квадрат которого (результат умножения на себя) равен , то есть решение уравнения относительно переменной .[1][2] Часто под этим понятием подразумевают более узкое — т. н. арифметический квадратный корень — неотрицательное число.

Рациональные числа

Корень из рационального числа является рациональным числом, только если и (после сокращения общих множителей) являются квадратами натуральных чисел.

Непрерывная дробь корня из рационального числа всегда является периодической (возможно с предпериодом) что позволяет с одной стороны легко вычислять хорошие рациональные приближения к ним с помощью линейных рекуррент, а с другой стороны ограничивает точность приближения: , где зависит от [3][4]. Верно и обратное: любая периодическая цепная дробь является квадратичной иррациональностью.

Действительные числа

При натуральных уравнение не всегда разрешимо в рациональных числах, что и привело к появлению новых числовых полей. Древнейшее из таких расширений — поле вещественных (действительных) чисел.

Теорема. Для любого положительного числа a существует ровно два вещественных корня, которые равны по модулю и противоположны по знаку.[5]

Неотрицательный квадратный корень из положительного числа называется арифметическим квадратным корнем и обозначается с использованием знака радикала .[6]

Комплексные числа

Над полем комплексных чисел решений всегда два, отличающихся только знаком (за исключением квадратного корня из нуля). Корень из комплексного числа часто обозначают как , однако использовать это обозначение нужно осторожно. Распространённая ошибка:

Для извлечения квадратного корня из комплексного числа удобно использовать экспоненциальную форму записи комплексного числа: если

,

то (см. Формула Муавра)

,

где корень из модуля понимается в смысле арифметического значения, а k может принимать значения k=0 и k=1, таким образом в итоге в ответе получаются два различных результата.

Квадратный корень как элементарная функция

Вещественный анализ

\sqrt{a}=\sqrt{ График функции

Квадратным корнем называют также функцию вещественной переменной , которая каждому ставит в соответствие арифметическое значение корня.[7] Эта функция является частным случаем степенной функции с . Эта функция является гладкой при , в нуле же она непрерывна справа, но не дифференцируема.

Как функция комплексного переменного корень — двузначная функция, листы которой соединяются в начале координат.

Обобщения

Квадратные корни вводятся как решения уравнений вида и для других объектов: матриц[8], функций[9], операторов[10] и т. п. В качестве операции при этом могут использоваться достаточно произвольные мультипликативные операции, например, суперпозиция.

В алгебре применяется следующее формальное определение: Пусть  — группоид и . Элемент называется квадратным корнем из если .

Квадратный корень в элементарной геометрии

Квадратные корни тесно связаны с элементарной геометрией: если дан отрезок длины 1, то с помощью циркуля и линейки можно построить те и только те отрезки, длина которых записывается выражениями, содержащими целые числа, знаки четырёх действий арифметики, квадратные корни и ничего сверх того.

[11]

Квадратный корень в информатике

Во многих языках программирования функционального уровня (а также языках разметки типа LaTeX) функция квадратного корня обозначается как sqrt (от англ. square root «квадратный корень»).

Алгоритмы нахождения квадратного корня

Нахождение или вычисление квадратного корня заданного числа называется извлечением (квадратного) корня.

Разложение в ряд Тейлора

при .

Арифметическое извлечение квадратного корня

Для квадратов чисел верны следующие равенства:

и так далее.

То есть, узнать целую часть квадратного корня числа можно, вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, и посчитав количество выполненных действий. Например, так:

Выполнено 3 действия, квадратный корень числа 9 равен 3.

Недостатком такого способа является то, что если извлекаемый корень не является целым числом, то можно узнать только его целую часть, но не точнее. В то же время такой способ вполне доступен детям, решающим простейшие математические задачи, требующие извлечения квадратного корня.

Грубая оценка

Многие алгоритмы вычисления квадратных корней из положительного действительного числа S требуют некоторого начального значения. Если начальное значение слишком далеко от настоящего значения корня, вычисления замедляются. Поэтому полезно иметь грубую оценку, которая может быть очень неточна, но легко вычисляется. Если S ≥ 1, пусть D будет числом цифр S слева от десятичной запятой. Если S < 1, пусть D будет числом нулей, идущих подряд, справа от десятичной запятой, взятое со знаком минус. Тогда грубая оценка выглядит так:

Если D нечётно, D = 2n + 1, тогда используем
Если D чётно, D = 2n + 2, тогда используем

Два и шесть используются потому, что и

При работе в двоичной системе (как внутри компьютеров), следует использовать другую оценку (здесь D это число двоичных цифр).

Геометрическое извлечение квадратного корня

В частности, если , а , то [12]

Итерационный аналитический алгоритм

Основная статья: Итерационная формула Герона

тогда

Столбиком

Этот способ позволяет найти приближённое значение корня из любого действительного числа с любой наперёд заданной точностью. Такой способ может быть освоен даже школьником. К недостаткам способа можно отнести увеличивающуюся сложность вычисления с увеличением количества найденных цифр.

Для ручного извлечения корня применяется запись, похожая на деление столбиком. Выписывается число, корень которого ищем. Справа от него будем постепенно получать цифры искомого корня. Пусть извлекается корень из числа с конечным числом знаков после запятой. Для начала мысленно или метками разобьём число N на группы по две цифры слева и справа от десятичной точки. При необходимости, группы дополняются нулями — целая часть дополняется слева, дробная справа. Так 31234.567 можно представить, как 03 12 34 . 56 70. В отличие от деления снос производится такими группами по 2 цифры.

  1. Записать число (в примере — 69696) на листке.
  2. Найти , квадрат которого меньше или равен группе старших разрядов числа (старшая группа — самая левая не равная нулю), а квадрат больше группы старших разрядов числа. Записать найденное справа от N (это очередная цифра искомого корня). (На первом шаге примера , а ).
  3. Записать квадрат под старшей группой разрядов. Провести вычитание из старшей группы разрядов выписанного квадрата числа и записать результат вычитания под ними.
  4. Слева от этого результата вычитания провести вертикальную черту и слева от черты записать число равное уже найденным цифрам результата (мы их выписываем справа от N) умноженное на 20. Назовём это число . (На первом шаге примера это число просто есть , на втором ).
  5. Произвести снос следующей группы цифр, то есть дописать следующие две цифры числа справа от результата вычитания. Назовем число, полученное соединением результата вычитания и очередной группы из двух цифр. (На первом шаге примера это число , на втором ). Если сносится первая группа после десятичной точки числа , то нужно поставить точку справа от уже найденных цифр искомого корня.
  6. Теперь нужно найти такое , что меньше или равно , но больше, чем . Записать найденное справа от N, как очередную цифру искомого корня. Вполне возможно, что окажется равным нулю. Это ничего не меняет — записываем 0 справа от уже найденных цифр корня. (На первом шаге примера это число 6, так как , но ) Если число найденных цифр уже удовлетворяет искомой точности прекращаем процесс вычисления.
  7. Записать число под . Провести вычитание столбиком числа из и записать результат вычитания под ними. Перейти к шагу 4.

Наглядное описание алгоритма:

SquareRoot.png

См. также

Примечания

  1. «Корнем n-й степени из числа x называется число, n-я степень которого совпадает с x. При n = 2 и n = 3 корни называются соответственно квадратным и кубическим.» — определение из статьи «Алгебра» энциклопедии «Кругосвет»
  2. «Извлечь корень n-й степени из числа а — это значит найти такое число (или числа) x, которое при возведении в n-ю степень даст данное число ()… Корень 2-й степени называется квадратным» — определение из статьи «Извлечение корня» «Большой советской энциклопедии» третьего издания.
  3. Теорема Лиувилля о приближении алгебраических чисел
  4. См. А. Я. Хинчин, Цепные дроби, М. ГИФМЛ, 1960, §§ 4, 10.
  5. Фихтенгольц, Григорий Михайлович. Курс дифференциального и интегрального исчисления Том. 1. Введение, § 4 // Мат. анализ на EqWorld
  6. Г.Корн, Т.Корн. Справочник по математике (для научных работников и инженеров). М., 1974 г., п. 1.2.1
  7. Фихтенгольц, гл. 2, § 1
  8. См., например: Гантмахер Ф. Р.,
    Теория матриц
    , М.: Гос. изд-во технико-теоретической литературы, 1953, или: Воеводин В., Воеводин В., Энциклопедия линейной алгебры. Электронная система ЛИНЕАЛ, Спб.: БХВ-Петербург, 2006.
  9. См., например: Ершов Л. В., Райхмист Р. Б., Построение графиков функций, М.: Просвещение, 1984, или: Каплан И. А., Практические занятия по высшей математике, Харьков: Изд-во ХГУ, 1966.
  10. См., например: Хатсон В., Пим Дж., Приложения функционального анализа и теории операторов, М.: Мир, 1983, или: Халмош П., Гильбертово пространство в задачах, М.: Мир, 1970.
  11. Р. Курант Г. Роббинс Что такое математика? МЦНМО, 2000. (ГЛАВА III Геометрические построения. Алгебра числовых полей)
  12. Р. Курант Г. Роббинс Что такое математика? МЦНМО, 2000. Стр. 148

Ссылки

dic.academic.ru

День квадратного корня — это… Что такое День квадратного корня?

День квадратного корня — неофициальный праздник, отмечаемый девять раз в столетие: в день, когда и число, и порядковый номер месяца являются квадратными корнями из двух последних цифр года (например, 2 февраля 2004 года: 02-02-04)[1].

История и современность праздника

Впервые этот праздник отмечался 9 сентября 1981 года (09-09-81). Основателем праздника является школьный учитель Рон Гордон (Ron Gordon) из города Редвуд Сити, Калифорния, США. По состоянию на 2009 год Гордон продолжает публиковать заметки о придуманном им празднике, активно контактируя по этому поводу со СМИ[2]. Его дочь с помощью Facebook собрала группу поклонников этого праздника, где каждый может поделиться своим способом отметить эту необычную дату[3]

.

Главным блюдом на этом «праздничном столе» обычно являются вареные кубики из корнеплодов и выпечка в форме математического знака квадратного корня[3].

Хронология

По объективным математическим причинам этот праздник может отмечаться строго девять раз в столетие (семь раз в первой половине века и дважды — во второй), всегда в одни и те же дни:

  1. 1 января хх01 года
  2. 2 февраля хх04 года
  3. 3 марта хх09 года
  4. 4 апреля хх16 года
  5. 5 мая хх25 года
  6. 6 июня хх36 года
  7. 7 июля хх49 года
  8. 8 августа хх64 года
  9. 9 сентября хх81 года

При этом интересно заметить, что промежуток (в годах) между праздниками составляет непрерывную последовательность нечётных чисел: 3, 5, 7 и т. д.

Интересные факты

  • 1 января 2001 года праздник совпал с началом нового тысячелетия.
  • 2 февраля 2004 года праздник совпал с Днём сурка[4].
  • 3 марта 2009 года (03-03-2009) организатор праздника Рон Гордон устроил специальное соревнование, призом в котором послужила сумма в $339[3].
  • 4 апреля 2016 года праздник совпадёт с Днём интернета

См. также

Примечания

Ссылки

  • О празднике на сайте scientificamerican.com. 3 марта 2009. (англ.) Проверено 22-06-2010

biograf.academic.ru

Квадратный корень из 5 — это… Что такое Квадратный корень из 5?

Квадратный корень из числа 5 — положительное действительное число, которое при умножении само на себя даёт число 5. Это иррациональное и алгебраическое число.[1]

Его приблизительное значение с 59 цифрами после запятой является:

Округлённое значение 2.236 является правильным с точностью до 0,01 %. Компьютерная вычисленная точность составляет не менее 1 000 000 знаков.[2]

Может быть выражено в виде непрерывной дроби [2; 4, 4, 4, 4, 4, 4, …], последовательно это дроби:

Вавилонский метод

Вычисление корня из 5, начиная с r0 = 2, где rn+1 = (rn + 5/rn) / 2:

Золотое сечение

\frac{2}{1} = 2.0,\quad \frac{9}{4} = 2.25,\quad \frac{161}{72} = 2.23611\dots,\quad \frac{51841}{23184} = 2.2360679779 \ldots √5/2 — диагональ половины квадрата, представляет собой геометрическое представление о золотом сечении.

Золотое сечение φ — среднее арифметическое 1 и корня из 5.[3]

() алгебраически можно выразить так:

Числа Фибоначчи могут быть выражены через корень из 5 так:

Отношение √5 к φ и наоборот дают интересные зависимости непрерывных дробей с числами Фибоначчи и числами Люка:[4]

Алгебра

Кольцо содержит числа вида , где a и b целые числа и мнимое число . Это кольцо является примером области целостности, не являющейся факториальным кольцом.

Число 6 представляется в данном кольце двумя способами:

Поле  — абелево расширение рациональных чисел.

Теорема Кронекера — Вебера утверждает, что корень из 5 можно выразить линейной комбинацией корней из единицы:

Тождества Рамануджана

Корень из 5 появляется во множестве тождеств Рамануджана с непрерывными дробями.[5][6]

Например, случай непрерывных дробей Роджерса-Рамануджана:

См. также

Примечания

  1. Dauben, Joseph W. (June 1983) Scientific American Georg Cantor and the origins of transfinite set theory. Volume 248; Page 122.
  2. R. Nemiroff and J. Bonnell: The first 1 million digits of the square root of 5
  3. Browne, Malcolm W. (July 30, 1985) New York Times Puzzling Crystals Plunge Scientists into Uncertainty. Section: C; Page 1. (Note — this is a widely cited article).
  4. Richard K. Guy: «The Strong Law of Small Numbers». American Mathematical Monthly, vol. 95, 1988, pp. 675—712
  5. Ramanathan, K. G. (1984), ««On the Rogers-Ramanujan continued fraction»», Indian Academy of Sciences. Proceedings. Mathematical Sciences Т. 93 (2): 67-77, MR813071, ISSN 0253-4142, DOI 10.1007/BF02840651 
  6. Eric W. Weisstein, «Ramanujan Continued Fractions», <http://mathworld.wolfram.com/RamanujanContinuedFractions.html>  at MathWorld

Ссылки

biograf.academic.ru

Квадратный корень из 2 — это… Что такое Квадратный корень из 2?

Квадратный корень из 2 равен длине гипотенузы в прямоугольном треугольнике с длиной катетов 1.

Квадратный корень из числа 2 — положительное вещественное число, которое при умножении само на себя даёт число 2. Обозначение: Приведём значение корня из 2 с 65 знаками после запятой:

1,414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 948 073 176 679 737 99…

Геометрически корень из 2 можно представить как длину диагонали квадрата со стороной 1 (это следует из теоремы Пифагора). Вероятно, это было первое известное в истории математики иррациональное число (то есть число, которое нельзя точно представить в виде дроби).

\sqrt{2}. Квадратный корень из 2.

Хорошим и часто используемым приближением к является дробь . Несмотря на то, что числитель и знаменатель дроби лишь двузначные целые, оно отличается от реального значения меньше, чем на 1/10000.

История

\tfrac{99}{70} Вавилонская глиняная табличка с примечаниями.

Вавилонская глиняная табличка (ок. 1800—1600 до н. э.) даёт приближённое значение в четырёх шестидесятеричных цифрах, что составляет 8 десятичных цифр:

Другое раннее приближение этого числа в древнеиндийском математическом тексте, Шульба-сутры (ок. 800—200 до н. э.) даётся следующим образом:

Пифагорейцы обнаружили, что диагональ квадрата несоизмерима с его стороной, или на современном языке, что квадратный корень из двух является иррациональным. Мало что известно с определённостью о времени и обстоятельствах этого выдающегося открытия, но традиционно его авторство приписывается Гиппасу из Метапонта.

Алгоритмы вычисления

Существует множество алгоритмов для вычисления значения квадратного корня из двух. В результате алгоритма получается приблизительное значение в виде обыкновенной или десятичной дроби. Самый популярный алгоритм для этого, который используется во многих компьютерах и калькуляторах, это вавилонский метод вычисления квадратных корней. Он состоит в следующем:

Чем больше повторений в алгоритме (то есть, чем больше «n»), тем лучше приближение квадратного корня из двух. Каждое повторение приблизительно удваивает количество правильных цифр. Приведём несколько первых приближений:

  • 3/2 = 1.5
  • 17/12 = 1.416…
  • 577/408 = 1.414215…
  • 665857/470832 = 1.4142135623746…

В 1997 году Ясумаса Канада вычислил значение √2 до 137,438,953,444 десятичных знаков после запятой. В феврале 2007 года рекорд был побит: Шигеру Кондо вычислил 200 миллиардов десятичных знаков после запятой в течение 13 дней и 14 часов, используя процессор 3.6 GHz с 16 ГБ ОЗУ. Среди математических констант только было вычислено более точно.

Свойства квадратного корня из двух

Половина √2 приблизительно равна 0.70710 67811 86548; эта величина даёт в геометрии и тригонометрии координаты единичного вектора,образующего угол 45° с координатными осями:

Одно из интересных свойств √2 состоит в следующем:

.Потому что

Это является результатом свойства серебряного сечения.

Другое интересное свойство √2:

Квадратный корень из двух может быть выражен в мнимых единицах i используя только квадратные корни и арифметические операции:

и

Квадратный корень из 2 является единственным числом, отличным от 1, чья бесконечная тетрация равна его квадрату.

Квадратный корень из двух может быть также использован для приближения π:

С точки зрения высшей алгебры, является корнем многочлена и поэтому является целым алгебраическим числом. Множество чисел вида , где — рациональные числа, образует алгебраическое поле. Оно обозначается и является подполем поля вещественных чисел.

Доказательство иррациональности

Применим доказательство от противного: допустим, рационален, то есть представляется в виде несократимой дроби , где и — целые числа. Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пусть , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и — иррациональное число.

Непрерывная дробь

Квадратный корень из двух может быть представлен в виде непрерывной дроби:

Подходящие дроби данной непрерывной дроби дают приближённые значения, быстро сходящиеся к точному квадратному корню из двух. Способ их вычисления прост: если обозначить предыдущую подходящую дробь , то последующая имеет вид . Скорость сходимости здесь меньше, чем у метода Ньютона, но вычисления гораздо проще. Выпишем несколько первых приближений:

Квадрат последней приведенной дроби равен (округлённо) 2,000000177.

Размер бумаги

Квадратный корень из двух является пропорцией формата бумаги ISO 216. Соотношение сторон таково, что при разрезании листа пополам параллельно его короткой стороне получатся два листа той же пропорции.

См. также

dikc.academic.ru

Квадратный корень из 2 — это… Что такое Квадратный корень из 2?

Квадратный корень из 2 равен длине гипотенузы в прямоугольном треугольнике с длиной катетов 1.

Квадратный корень из числа 2 — положительное вещественное число, которое при умножении само на себя даёт число 2. Обозначение: Приведём значение корня из 2 с 65 знаками после запятой:

1,414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 948 073 176 679 737 99…

Геометрически корень из 2 можно представить как длину диагонали квадрата со стороной 1 (это следует из теоремы Пифагора). Вероятно, это было первое известное в истории математики иррациональное число (то есть число, которое нельзя точно представить в виде дроби).

\sqrt{2}. Квадратный корень из 2.

Хорошим и часто используемым приближением к является дробь . Несмотря на то, что числитель и знаменатель дроби лишь двузначные целые, оно отличается от реального значения меньше, чем на 1/10000.

История

\tfrac{99}{70} Вавилонская глиняная табличка с примечаниями.

Вавилонская глиняная табличка (ок. 1800—1600 до н. э.) даёт приближённое значение в четырёх шестидесятеричных цифрах, что составляет 8 десятичных цифр:

Другое раннее приближение этого числа в древнеиндийском математическом тексте, Шульба-сутры (ок. 800—200 до н. э.) даётся следующим образом:

Пифагорейцы обнаружили, что диагональ квадрата несоизмерима с его стороной, или на современном языке, что квадратный корень из двух является иррациональным. Мало что известно с определённостью о времени и обстоятельствах этого выдающегося открытия, но традиционно его авторство приписывается Гиппасу из Метапонта.

Алгоритмы вычисления

Существует множество алгоритмов для вычисления значения квадратного корня из двух. В результате алгоритма получается приблизительное значение в виде обыкновенной или десятичной дроби. Самый популярный алгоритм для этого, который используется во многих компьютерах и калькуляторах, это вавилонский метод вычисления квадратных корней. Он состоит в следующем:

Чем больше повторений в алгоритме (то есть, чем больше «n»), тем лучше приближение квадратного корня из двух. Каждое повторение приблизительно удваивает количество правильных цифр. Приведём несколько первых приближений:

  • 3/2 = 1.5
  • 17/12 = 1.416…
  • 577/408 = 1.414215…
  • 665857/470832 = 1.4142135623746…

В 1997 году Ясумаса Канада вычислил значение √2 до 137,438,953,444 десятичных знаков после запятой. В феврале 2007 года рекорд был побит: Шигеру Кондо вычислил 200 миллиардов десятичных знаков после запятой в течение 13 дней и 14 часов, используя процессор 3.6 GHz с 16 ГБ ОЗУ. Среди математических констант только было вычислено более точно.

Свойства квадратного корня из двух

Половина √2 приблизительно равна 0.70710 67811 86548; эта величина даёт в геометрии и тригонометрии координаты единичного вектора,образующего угол 45° с координатными осями:

Одно из интересных свойств √2 состоит в следующем:

.Потому что

Это является результатом свойства серебряного сечения.

Другое интересное свойство √2:

Квадратный корень из двух может быть выражен в мнимых единицах i используя только квадратные корни и арифметические операции:

и

Квадратный корень из 2 является единственным числом, отличным от 1, чья бесконечная тетрация равна его квадрату.

Квадратный корень из двух может быть также использован для приближения π:

С точки зрения высшей алгебры, является корнем многочлена и поэтому является целым алгебраическим числом. Множество чисел вида , где — рациональные числа, образует алгебраическое поле. Оно обозначается и является подполем поля вещественных чисел.

Доказательство иррациональности

Применим доказательство от противного: допустим, рационален, то есть представляется в виде несократимой дроби , где и — целые числа. Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пусть , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и — иррациональное число.

Непрерывная дробь

Квадратный корень из двух может быть представлен в виде непрерывной дроби:

Подходящие дроби данной непрерывной дроби дают приближённые значения, быстро сходящиеся к точному квадратному корню из двух. Способ их вычисления прост: если обозначить предыдущую подходящую дробь , то последующая имеет вид . Скорость сходимости здесь меньше, чем у метода Ньютона, но вычисления гораздо проще. Выпишем несколько первых приближений:

Квадрат последней приведенной дроби равен (округлённо) 2,000000177.

Размер бумаги

Квадратный корень из двух является пропорцией формата бумаги ISO 216. Соотношение сторон таково, что при разрезании листа пополам параллельно его короткой стороне получатся два листа той же пропорции.

См. также

partners.academic.ru

КВАДРАТНЫЙ КОРЕНЬ — это… Что такое КВАДРАТНЫЙ КОРЕНЬ?


КВАДРАТНЫЙ КОРЕНЬ
КВАДРАТНЫЙ КОРЕНЬ

Словарь иностранных слов, вошедших в состав русского языка.- Чудинов А.Н., 1910.

КВАДРАТНЫЙ КОРЕНЬ

Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней.- Михельсон А.Д., 1865.

.

  • КВАДРАТНЫЙ
  • КВАДРАТНЫЙ КОРЕНЬ ДАННОГО ЧИСЛА

Смотреть что такое «КВАДРАТНЫЙ КОРЕНЬ» в других словарях:

  • Квадратный корень из 2 — равен длине гипотенузы в прямоугольном треугольнике с длиной катетов 1. Квадратный корень из числа 2  положительное …   Википедия

  • квадратный корень из — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN sqrt …   Справочник технического переводчика

  • Квадратный корень — У этого термина существуют и другие значения, см. Корень (значения). Квадратный корень из (корень 2 й степени)  это решение уравнения вида . Наиболее часто под и подразумеваются числа, но в некоторых приложениях они могут быть и другими… …   Википедия

  • Квадратный корень из 3 — Иррациональные числа γ ζ(3)  √2  √3  √5  φ  α  e  π  δ Система счисления Оценка числа √3 Двоичная 1.1011101101100111101… Десятичная 1.7320508075688772935… …   Википедия

  • Квадратный корень из 5 — Иррациональные числа γ ζ(3)  √2  √3  √5  φ  α  e  π  δ Система счисления Оценка числа √5 Двоичная 10.0011110001101111… Десятичная 2.23606797749978969… Шестнадцатеричная …   Википедия

  • КВАДРАТНЫЙ КОРЕНЬ ДАННОГО ЧИСЛА — число, которое по умножении само на себя дает данное число; напр. кв. корень 16 есть 4. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 …   Словарь иностранных слов русского языка

  • квадратный корень из суммы квадратов — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN root sum square …   Справочник технического переводчика

  • Быстрый инверсный квадратный корень — Вычисление освещения и отражения (показано на примере шутер от первого лица OpenArena) использует в коде быстрый инверсный квадратный корень для вычисления углов падения и отражения. Быстрый инверсный квадратный корень (иногда называемый Быстрый… …   Википедия

  • Быстрый обратный квадратный корень — Вычисление освещения и отражения (показано на примере шутера от первого лица OpenArena) использует в коде быстрый инверсный квадратный корень для вычисления углов падения и отражения …   Википедия

  • Метод «квадратный корень суммы квадратов» — 3.13 Метод «квадратный корень суммы квадратов» Метод оценки максимальной реакции конструкции с помощью квадратного корня суммы квадратов модальных значений реакции. Источник: ИСО 3010: Основы расчета конструкций Сейсмические воздействия на… …   Словарь-справочник терминов нормативно-технической документации


dic.academic.ru

Квадратный корень из 2 — это… Что такое Квадратный корень из 2?

Квадратный корень из 2 равен длине гипотенузы в прямоугольном треугольнике с длиной катетов 1.

Квадратный корень из числа 2 — положительное вещественное число, которое при умножении само на себя даёт число 2. Обозначение: Приведём значение корня из 2 с 65 знаками после запятой:

1,414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 948 073 176 679 737 99…

Геометрически корень из 2 можно представить как длину диагонали квадрата со стороной 1 (это следует из теоремы Пифагора). Вероятно, это было первое известное в истории математики иррациональное число (то есть число, которое нельзя точно представить в виде дроби).

\sqrt{2}. Квадратный корень из 2.

Хорошим и часто используемым приближением к является дробь . Несмотря на то, что числитель и знаменатель дроби лишь двузначные целые, оно отличается от реального значения меньше, чем на 1/10000.

История

\tfrac{99}{70} Вавилонская глиняная табличка с примечаниями.

Вавилонская глиняная табличка (ок. 1800—1600 до н. э.) даёт приближённое значение в четырёх шестидесятеричных цифрах, что составляет 8 десятичных цифр:

Другое раннее приближение этого числа в древнеиндийском математическом тексте, Шульба-сутры (ок. 800—200 до н. э.) даётся следующим образом:

Пифагорейцы обнаружили, что диагональ квадрата несоизмерима с его стороной, или на современном языке, что квадратный корень из двух является иррациональным. Мало что известно с определённостью о времени и обстоятельствах этого выдающегося открытия, но традиционно его авторство приписывается Гиппасу из Метапонта.

Алгоритмы вычисления

Существует множество алгоритмов для вычисления значения квадратного корня из двух. В результате алгоритма получается приблизительное значение в виде обыкновенной или десятичной дроби. Самый популярный алгоритм для этого, который используется во многих компьютерах и калькуляторах, это вавилонский метод вычисления квадратных корней. Он состоит в следующем:

Чем больше повторений в алгоритме (то есть, чем больше «n»), тем лучше приближение квадратного корня из двух. Каждое повторение приблизительно удваивает количество правильных цифр. Приведём несколько первых приближений:

  • 3/2 = 1.5
  • 17/12 = 1.416…
  • 577/408 = 1.414215…
  • 665857/470832 = 1.4142135623746…

В 1997 году Ясумаса Канада вычислил значение √2 до 137,438,953,444 десятичных знаков после запятой. В феврале 2007 года рекорд был побит: Шигеру Кондо вычислил 200 миллиардов десятичных знаков после запятой в течение 13 дней и 14 часов, используя процессор 3.6 GHz с 16 ГБ ОЗУ. Среди математических констант только было вычислено более точно.

Свойства квадратного корня из двух

Половина √2 приблизительно равна 0.70710 67811 86548; эта величина даёт в геометрии и тригонометрии координаты единичного вектора,образующего угол 45° с координатными осями:

Одно из интересных свойств √2 состоит в следующем:

.Потому что

Это является результатом свойства серебряного сечения.

Другое интересное свойство √2:

Квадратный корень из двух может быть выражен в мнимых единицах i используя только квадратные корни и арифметические операции:

и

Квадратный корень из 2 является единственным числом, отличным от 1, чья бесконечная тетрация равна его квадрату.

Квадратный корень из двух может быть также использован для приближения π:

С точки зрения высшей алгебры, является корнем многочлена и поэтому является целым алгебраическим числом. Множество чисел вида , где — рациональные числа, образует алгебраическое поле. Оно обозначается и является подполем поля вещественных чисел.

Доказательство иррациональности

Применим доказательство от противного: допустим, рационален, то есть представляется в виде несократимой дроби , где и — целые числа. Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пусть , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и — иррациональное число.

Непрерывная дробь

Квадратный корень из двух может быть представлен в виде непрерывной дроби:

Подходящие дроби данной непрерывной дроби дают приближённые значения, быстро сходящиеся к точному квадратному корню из двух. Способ их вычисления прост: если обозначить предыдущую подходящую дробь , то последующая имеет вид . Скорость сходимости здесь меньше, чем у метода Ньютона, но вычисления гораздо проще. Выпишем несколько первых приближений:

Квадрат последней приведенной дроби равен (округлённо) 2,000000177.

Размер бумаги

Квадратный корень из двух является пропорцией формата бумаги ISO 216. Соотношение сторон таково, что при разрезании листа пополам параллельно его короткой стороне получатся два листа той же пропорции.

См. также

biograf.academic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о