Логарифм с основанием 10: Логарифм — Википедия – примеры решения перехода к новому основанию натурального логарифма и таблица или шпаргалка для этого в 10 классе

Содержание

примеры решения перехода к новому основанию натурального логарифма и таблица или шпаргалка для этого в 10 классе

Сегодня мы поговорим о формулах логарифмов и дадим показательные примеры решения. Ранее мы уже познакомились с понятием логарифма. А также рассмотрели основные свойства и примеры решения.

Формулы логарифмов сами по себе подразумевают шаблоны решения согласно основным свойствам логарифмов. Прежде применять формулы логарифмов для решения напомним для вас, сначала все свойства.

Формулы логарифмов. Логарифмы примеры решения

Формулы и свойства логарифмов

Формулы и свойства логарифмов
Формулы и свойства логарифмов
Формулы и свойства логарифмов

Формулы и свойства логарифмов
Формулы и свойства логарифмов

Теперь на основе этих формул(свойств), покажем примеры решения логарифмов.

Примеры решения логарифмов на основании формул

Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b, при этом b > 0, a > 0, а 1.

Согласно определения logab = x, что равносильно ax = b, поэтому logaax = x.

Логарифмы, примеры:

log28 = 3, т.к. 23 = 8

log749 = 2, т.к. 72 = 49

log51/5 = -1, т.к. 5-1 = 1/5

Десятичный логарифм — это обычный логарифм, в основании которого находится 10. Обозначается как lg.

lg100 = 2

log10100 = 2, т.к. 102 = 100

Натуральный логарифм — также обычный логарифм логарифм, но уже с основанием е (е = 2,71828… — иррациональное число). Обозначается как ln.

Формулы или свойства логарифмов желательно запомнить, потому что они понадобятся нам в дальнейшем при решении логарифмов, логарифмических уравнений и неравенств. Давайте еще раз отработаем каждую формулу на примерах.

Основное логарифмическое тождество
a logab = b
Пример.
82log83 = (82log83)2 = 32 = 9

Логарифм произведения равен сумме логарифмов loga (bc) = logab + logac
Пример.
log38,1 + log310 = log3 (8,1*10) = log381 = 4

Логарифм частного равен разности логарифмов
loga (b/c) = logab — logac
Пример.
9 log550/9 log52 = 9 log550- log52 = 9 log525 = 9 2 = 81

Свойства степени логарифмируемого числа и основания логарифма

Показатель степени логарифмируемого числа logab m = mlogab

Показатель степени основания логарифма loganb =1/n*logab

loganb m = m/n*logab,

если m = n, получим loganb n = logab

Пример.

log49 = log223 2 = log23

Переход к новому основанию
logab = logcb/logca,

если c = b, получим logbb = 1

тогда logab = 1/logba

Пример.

log0,83*log31,25 = log0,83*log0,81,25/log0,83 = log0,81,25 = log4/55/4 = -1

Как видите, формулы логарифмов не так сложны как кажутся. Теперь рассмотрев примеры решения логарифмов мы можем переходить к логарифмическим уравнениям.

Источник: https://reshit.ru/formuly-logarifmov-logarifmy-primery-resheniya

Логарифм: что это? Все формулы. Простейшие уравнения и неравенства

Формулы и свойства логарифмов

Сейчас речь пойдет о трех страшных буквах: l o g.Существовать в нашем бытии они просто так не могут. Обязательно должен быть какой-нибудь индекс — число снизу (основание логарифма) и число после букв (аргумент логарифма).

Прежде, чем мы перейдем к тому, что такое логарифм, решим парочку подводящих примеров.

Чтобы справиться с этим примером, мы проговариваем в голове: какое число нужно дважды (т.к. корень квадратный) умножить само на себя, чтобы получить 81.

Формулы и свойства логарифмов

А этот пример можно решить по алгоритму (решения показательных уравнений), а можно так же провести разговор с самим собой (главное не вслух, я считаю это нормально, но кого-то вы можете напугать разговором с самим собой): сколько раз нужно число 3 умножить само на себя, чтобы получить 27. Постепенным перемножением мы дойдем до ответа.

Тогда, если дело касается логарифма:

можно сказать так: в какую степень нужно возвести 3 (число снизу — основание логарифма), чтобы получить 27 (число слева — аргумент логарифма). Не напоминает выше стоящий пример?

Формулы и свойства логарифмов

На самом деле в этом и заключается основная формула (определение логарифма):

Формулы и свойства логарифмов

Логарифм говорит нам (кому-то кричит): логарифм числа «b» по основанию «a» равняется числу «c». Тогда без логарифма это можно сформулировать так: чтобы получить число «b», требуется число «a» возвести в степень «c». Логарифм — это действие, обратное возведению в степень.

У отца log есть два родных сына: ln и lg. Так же, как сыновья отличаются возрастом (мы говорим о максимальной точности), так и эти логарифмы отличаются основанием (числовым индексом снизу).

Формулы и свойства логарифмов

Данные логарифмы придумали для упрощения записи. На самом деле в прикладной математики именно логарифмы по такому основанию встречаются чаще всех остальных. А мы все в глубине души народ ленивый, так что почему бы себе жизнь не упростить?

Что нужно запомнить: ln — это обычный логарифм только по основанию e ( e — это число Эйлера, e = 2,7182…, мой номер телефона, кстати, — это последние 11 цифр числа Эйлера, так что буду ждать звонка).

А lg — это обычный логарифм по основанию 10 (10ая система — это система счисления, в которой мы живем, столько пальцев на руках у среднего человека. В общем 10 — это как 9, только на 1 больше).

Как мы не можем существовать без еды, воды, интернета…  Так и логарифм не представляет свое существование без ОДЗ.

Всегда, когда существует логарифм, должно быть:

«Почему это так?» — это первый вопрос, который я предоставляю тебе. Советую начать с того, что логарифм — это обратное действие от возведения в степень.

А теперь  разберем теорию на практике:

В какую степень нужно возвести два (число в основании), чтобы получить шестнадцать (аргумент логарифма).

Формулы и свойства логарифмов

Два нужно четыре раза умножить само на себя, чтобы получить 16.

Ответ: 4.

Источник: https://ik-study.ru/ege_math/logharifmy

Логарифмы: правила, основные свойства и формулы :

Логарифмы и правила действий с ними достаточно емкие и простые. Следовательно, разобраться в данной теме вам не составит труда. После того как вы узнаете все правила натуральных логарифмов, любая задача решится самостоятельно.

Первое знакомство с этой темой может показаться скучным и бессмысленным, но именно при помощи логарифмов решились многие проблемы математиков XVI века. «О чем это?» — подумали вы.

Прочтите статью до конца и узнаете, что этот раздел «царицы наук» может быть интересен не только математикам, ученым точных наук, но и простым ученикам средних школ.

Определение логарифма

Формулы и свойства логарифмов

Начнем с определения логарифма. Как гласят многие учебники: логарифмом числа b по основанию a (logab) является некое число с, для которого выполняется такое равенство: b=ac.

То есть, говоря простыми словами, логарифм — определенная степень, в которую возводим основание, чтобы получить данное число. Но важно помнить, что логарифм вида logab имеет смысл только при: a>0; a — число, отличное от 1; b>0, следовательно, делаем вывод, что логарифм можно найти только у положительных чисел.

Классификация логарифмов по основанию

Логарифмы могут быть с любым положительным числом в основании. Но также существует два вида: натуральный и десятичный логарифмы:

  • Натуральный логарифм — логарифм с основанием е (е — число Эйлера, численно приблизительно равняется 2,7, иррациональное число, которое ввели для показательной функции y = ex), обозначается как ln a = logea;
  • Десятичный логарифм — логарифм с основанием 10, то есть log10a = lg a.

Основные правила логарифмов

Для начала нужно познакомиться с основным логарифмическим тождеством: alogab=b, далее следуют два таких основных правила:

  • loga1 = 0 — так как любое число в нулевой степени равно 1;
  • logaa = 1.

Благодаря открытию логарифма для нас не составит труда решить абсолютно любое показательно уравнение, ответ которого нельзя выразить натуральным числом, а только иррациональным. Например: 5х = 9, х = log59 (так как натурального х для данного уравнения не существует).

Действия с логарифмами:

Формулы и свойства логарифмов

  • loga(x · y) = logax+ logay — чтобы найти логарифм произведения, нужно сложить логарифмы сомножителей. Обратите внимание на то, что основания логарифмов одинаковы. Если записать это в обратном порядке, то получим правило сложения логарифмов.
  • loga xy = logax — logay — чтобы найти логарифм частного, нужно найти разность логарифмов делимого и делителя. Обратите внимание: основания у логарифмов одинаковы. При записи в обратном порядке получаем правило вычитания логарифмов.
  • logakxp = (p/k)*logax — таким образом, если в аргументе и основании логарифма стоят степени, то их можно выносить за знак логарифма.
  • logax = logac xc — частный случай предыдущего правила, когда показатели степеней равны, их можно сократить.
  • logax = (logbx)(logba) — так называемый модуль перехода, процедура приведения логарифма к другому основанию.
  • logax = 1/logxa — частный случай перехода, смена мест основания и данного числа. Все выражение, образно говоря, переворачивается, и логарифм с новым основанием оказывается в знаменателе.

История возникновения логарифмов

Формулы и свойства логарифмов

В XVI веке возникла необходимость проведения многих приближенных вычислений для решения практических задач, главным образом, в астрономии (например, определение положения судна по Солнцу или звездам).

Эта потребность быстро росла и значительную трудность создавало умножение и деление многозначных чисел. И ученый-математик Непер при тригонометрических расчетах решил заменить трудоемкое умножение на обыкновенное сложение, сопоставив для этого некоторые прогрессии.

Тогда деление, аналогично, заменяется на процедуру попроще и надежнее — вычитание, а дабы извлечь корень n-ой степени, нужно разделить логарифм подкоренного выражения на n. Решение такой нелегкой задачи в математике явно отображало цели Непера в науке.

Вот как он писал об этом в начале своей книги «Рабдология»:

Я всегда старался, насколько позволяли мои силы и способности, освободить людей от трудности и скуки вычислений, докучливость которых обыкновенно отпугивает очень многих от изучения математики.

Название логарифма предложил сам Непер, он был получен путем совмещения греческих слов, которые в сочетании означали “число отношений”.

Основание логарифма ввел Спейдел. Его заимствовал Эйлер из теории о степенях и перенес в теорию логарифмов. Понятие логарифмирования стало известным благодаря Коппе в XIX веке. А использование натуральных и десятичных логарифмов, а также их обозначения появились благодаря Коши.

В 1614 году Джон Непер издал на латыни сочинение «Описание удивительной таблица логарифмов». Там было изложено краткое описание логарифмов, правил и их свойств. Так термин «логарифм» утвердился в точных науках.

Операцию логарифмирования и первое упоминание о ней появилось благодаря Валлису и Иоганну Бернулли, а окончательно установлена она была Эйлером в XVIII веке.

Формулы и свойства логарифмов

Именно заслуга Эйлера в распространении логарифмической функции вида y = logax на комплексную область. В первой половине XVIII века вышла его книга «Введение в анализ бесконечных», где были современные определения показательной и логарифмической функций.

Логарифмическая функция

Функция вида y = logах (имеет смысл, только если: а > 0, а ≠ 1).

Логарифмическая функция определяется множеством всех положительных чисел, так как запись logах существует только при условии — х > 0;.

Данная функция может принимать абсолютно все значения из множества R (действительных чисел). Так как у всякого действительного числа b есть положительное x, чтобы выполнялось равенство logaх = b, то есть, это уравнение имеет корень — х = аb (следует из того, что logaab= b).

Функция возрастает на промежутке a>0, а убывает на промежутке 01.

Следует помнить, что любые графики логарифмической функции у = logах имеют одну стационарную точку (1;0), так как logа 1 = 0. Это хорошо видно на иллюстрации графика ниже.

Формулы и свойства логарифмов

Как видим на изображениях, функция не имеет четности или нечетности, не имеет наибольших или наименьших значений, не ограничена сверху или снизу.

Логарифмическая функция y = logаx и показательная функция y = aх, где (а>0, а≠1), взаимно обратные. Это можно видеть на изображении их графиков.

Решение задач с логарифмами

Обычно решение задачи, содержащей логарифмы, основано на преобразовании их в стандартный вид или же направлено на упрощение выражений под знаком логарифма. Или же стоит переводить обычные натуральные числа в логарифмы с нужным основанием, проводить дальнейшие операции по упрощению выражения.

Есть некие тонкости, которые не стоит забывать:

  • При решении неравенств, когда обе части стоят под логарифмами по правилу с одним основанием, не спешите «отбрасывать» знак логарифма. Помните о промежутках монотонности логарифмической функции. Так как, если основание больше 1 (случай, когда функция возрастает) — знак неравенства останется без изменений, но когда основание больше 0 и меньше 1 (случай, когда функция убывает) — знак неравенства изменится на противоположный;
  • Не забывайте определения логарифма: logах = b, а>0, а≠1 и х>0, чтобы не потерять корней из-за неучтенной области допустимых значений. ОДЗ (область допустимых значений) существует практически для всех сложных функций.

При решении логарифмических уравнений рекомендуется пользоваться равносильными преобразованиями. Также, необходимо быть внимательным и учитывать возможные преобразования, которые способны привести к потере некоторых корней.

Это банальные, но масштабные ошибки, с которыми столкнулись многие на пути поиска верного ответа для задания. Правил решения логарифмов не так уж и много, поэтому эта тема проще, чем другие и последующие, но в ней стоит хорошо разобраться.

Вывод

Формулы и свойства логарифмов

Данная тема с первого взгляда может показаться сложной и громоздкой, но, исследуя ее глубже и глубже, начинаешь понимать, что тема просто заканчивается, а сложностей так ничего и не вызвало. Мы рассмотрели все свойства, правила и даже ошибки, касающиеся темы логарифмов. Успехов в обучении!

Источник: https://www.syl.ru/article/407401/logarifmyi-pravila-osnovnyie-svoystva-i-formulyi

Свойства логарифмов

Логарифмом положительного числа b по основанию a (a>0, a не равно 1) называют такое число с, что ac = b: log a b=c⇔ a c =b (a>0,a≠1,b>0)

Обратите внимание: логарифм от неположительного числа не определен. Кроме того, в основании логарифма должно быть положительное число, не равное 1. Например, если мы возведем -2 в квадрат, получим число 4, но это не означает, что логарифм по основанию -2 от 4 равен 2.

Основное логарифмическое тождество

a log a b =b (a>0,a≠1) (2)

Важно, что области определения правой и левой частей этой формулы отличаются. Левая часть определена только при b>0, a>0 и a ≠ 1. Правая часть определена при любом b, а от a вообще не зависит. Таким образом, применение основного логарифмического «тождества» при решении уравнений и неравенств может привести к изменению ОДЗ.

Два очевидных следствия определения логарифма

log a a=1 (a>0,a≠1) (3) log a 1=0 (a>0,a≠1) (4)

Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень — единицу.

Логарифм произведения и логарифм частного

log a (bc)= log a b+ log a c (a>0,a≠1,b>0,c>0) (5)

log a b c = log a b− log a c (a>0,a≠1,b>0,c>0) (6)

Хотелось бы предостеречь школьников от бездумного применения данных формул при решении логарифмических уравнений и неравенств. При их использовании «слева направо» происходит сужение ОДЗ, а при переходе от суммы или разности логарифмов к логарифму произведения или частного — расширение ОДЗ.

Действительно, выражение log a (f(x)g(x)) определено в двух случаях: когда обе функции строго положительны либо когда f(x) и g(x) обе меньше нуля.

Преобразуя данное выражение в сумму log a f(x)+ log a g(x) , мы вынуждены ограничиваться только случаем, когда f(x)>0 и g(x)>0. Налицо сужение области допустимых значений, а это категорически недопустимо, т. к. может привести к потере решений. Аналогичная проблема существует и для формулы (6).

Степень можно выносить за знак логарифма

log a b p =p log a b (a>0,a≠1,b>0) (7)

И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:

log a (f (x) 2 =2 log a f(x)

Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть — только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.

Формула перехода к новому основанию

log a b= log c b log c a (a>0,a≠1,b>0,c>0,c≠1) (8)

Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.

Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):

log a b= 1 log b a (a>0,a≠1,b>0,b≠1) (9)

Десятичным логарифмом числа x называется логарифм по основанию 10. Десятичные логарифмы используются довольно часто, поэтому для них введено специальное обозначение: log10x = lg x. Все перечисленные выше формулы сохраняют актуальность для десятичных логарифмов. Например, lg(xy)=lgx+lgy (x>0,y>0) .

Натуральным логарифмом числа x (обозначение lnx) называется логарифм х по основанию e. Число e — иррациональное, приближенно равно 2,71. Например, ln e = 1. Пользуясь формулой (8), можно любой логарифм свести к десятичным или натуральным логарифмам: log a b= lgb lga = lnb lna (a>0,a≠1,b>0)

Несколько простых примеров с логарифмами

Пример 1. Вычислите: lg2 + lg50. Решение. lg2 + lg50 = lg100 = 2. Мы воспользовались формулой суммы логарифмов (5) и определением десятичного логарифма.

Пример 2. Вычислите: lg125/lg5. Решение. lg125/lg5 = log5125 = 3. Мы использовали формулу перехода к новому основанию (8).

a log a b =b (a>0,a≠1)
log a a=1 (a>0,a≠1)
log a 1=0 (a>0,a≠1)
log a (bc)= log a b+ log a c (a>0,a≠1,b>0,c>0)
log a b c = log a b− log a c (a>0,a≠1,b>0,c>0)
log a b p =p log a b (a>0,a≠1,b>0)
log a b= log c b log c a (a>0,a≠1,b>0,c>0,c≠1)
log a b= 1 log b a (a>0,a≠1,b>0,b≠1)

Источник: http://www.repetitor2000.ru/svoistva_logarifmov_01.html

таблица-шпаргалка свойств, формулы, примеры, график

Логарифм числа – это показатель степени, в которую нужно возвести одно число, чтобы получить другое.

Если число b в степени y равняется x:

by = x

Значит логарифм числа x по основанию b равен y:

y = logb(x)

Например:

24 = 16

log2(16) = 4

Логарифм как обратная функция экспоненциальной функции

Логарифмическая функция y = logb(x) является обратной функцией экспоненциальной функции x = by.

Так что, если мы вычислим экспоненциальную функцию логарифма х (х > 0), получится:

f (f -1(x)) = blogb(x) = x

Или если мы вычислим логарифм экспоненциальной функции х:
f -1(f (x)) = logb(bx) = x

Натуральный логарифм (ln)

Натуральный логарифм – это логарифм по основанию е.

ln(x) = loge(x)

Число e – это константа, которая может определяться как предел:

Число e через предел

или так:

Число e через предел

Обратный логарифм

Обратный логарифм (или антилогарифм) числа n – это число, логарифм которого по основанию a равен числу n.

ant logan = an

Таблица свойств логарифмов

Ниже представлены основные свойства логарифмов в табличном виде.

Свойство Формула Пример
Основное логарифмическое тождествоalogab = b2log28 = 8
Логарифм произведенияlogb(x ∙ y) = logb(x) + logb(y)log10(37) = log10(3) + log10(7)
Логарифм деленияlogb(x / y) = logb(x)logb(y)log10(3 / 7) = log10(3)log10(7)
Логарифм степениlogb(x y) = y ∙ logb(x)log10(28) = 8log10(2)
Логарифм корняЧисло e через пределЧисло e через предел
Перестановка основания логарифмаlogb(c) = 1 / logc(b)log2(8) = 1 / log8(2)
Замена основаня логарифмаlogb(x) = logc(x) / logc(b)log2(8) = log10(8) / log10(2)
Производная логарифмаf (x) = logb(x)f ‘ (x) = 1 / ( x ln(b) )
Интеграл логарифмаlogb(x) dx = x ∙ ( logb(x)— 1 / ln(b)) + Clog2(x) dx = x ∙ ( log2(x)— 1 / ln(2)) + C
Логарифм отрицательного числаlogb(x) не определен, при x≤ 0
Логарифм числа 0logb(0) не определен
Логарифм числа 1logb(1) = 0log2(1) = 0
Логарифм числа, равного основаниюlogb(b) = 1log2(2) = 1
Логарифм бесконечностиlim logb(x) = ∞, при x→∞

microexcel.ru

Логарифмическая функция

Функция, которая определена формулой f(x)=loga(x) – это логарифмическая функция с основанием a. При этом a>0, a≠1.

График функции логарифма

График логарифмической функции (логарифмика) может быть двух типов, в зависимости от значения основания a:

  • a > 1График логарифма с основанием больше 1
  • 0 < a < 1График логарифма с основанием от 0 до 1

Материалы для подготовки к ЕГЭ по математике ЕГЭ-Студия

Предыдущую статью о показательных уравнениях мы начали с уравнения 2x = 8. Там всё было ясно: x = 3.

А теперь рассмотрим уравнение 2x = 7.

По графику функции y = 2x мы видим, что это уравнение имеет корень, и притом единственный.


Ясно, что этот корень — не целое число (так как 22 = 4, 23 = 8). Более того, оказывается, что он не является даже рациональным числом, т. е. не представляется в виде обыкновенной дроби. Интуитивно мы чувствуем лишь, что он меньше 3, но не намного.

Этот корень обозначается log27 (читается: «логарифм семи по основанию два». Он является иррациональным числом, т. е. бесконечной непериодической десятичной дробью. Калькулятор даёт: log27 = 2,807354922057604107…

Итак, наше число log27 — это показатель степени, в которую надо возвести 2, чтобы получить 7.

Теперь дадим общее определение логарифма. Пусть a > 0 и a ≠ 1 (условия те же, что и для основания показательной функции).

Определение. Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b.

Иными словами,

Например:

  так как  

, так как 

  так как  ;

, так как  .

Логарифм с основанием 10 называется десятичным и обозначается lg. Например, lg 100 = 2, lg 1000 = 3, lg 0,01 = −2.

Логарифм с основанием e называется натуральным и обозначается ln.

Обратите внимание: логарифм определён только для положительных чисел. Причина заключается в том, что показательная функция может принимать лишь положительные значения. Например, число log2(−4) не существует: в какую бы степень мы ни возводили 2, мы никогда не получим −4.

Не забывайте также про ограничения на основание логарифма: 0 < a < 1 или a > 1.

Основные формулы

По определению, logab — это показатель степени, в которую надо возвести число a, чтобы получить число b:

Формула (1) называется основным логарифмическим тождеством.
Вот еще один вариант записи основного логарифмического тождества:

logaax=x.

Перечислим свойства логарифмов. Они являются простыми следствиями правил действия со степенями. Все логарифмы ниже считаются определёнными.

Логарифм произведения — это сумма логарифмов:

loga(bc) = logab + logac.(2)

Логарифм частного — это разность логарифмов:

(3)

Показатель степени логарифмируемого числа «спрыгивает» перед логарифмом:

(4)

Показатель степени основания логарифма тоже «спрыгивает», но в виде обратного числа:

(5)

Формулы (4) и (5) вместе дают:

log_{a^{n}}b=\frac{1}{n}log_{a}b(6)

В частности, если m = n, мы получаем формулу:

log_{a^{n}}b=\frac{1}{n}log_{a}b(7)

 

Например, log_{a^{n}}b=\frac{1}{n}log_{a}b.

Наконец, важнейшая формула перехода к новому основанию:

log_{a^{n}}b=\frac{1}{n}log_{a}b(8)

В частности, если c = b, то logbb = 1, и тогда:

log_{a^{n}}b=\frac{1}{n}log_{a}b(9)

 

Приведём несколько примеров из банка заданий.
1. log_{a^{n}}b=\frac{1}{n}log_{a}b (применили формулу (2) суммы логарифмов).

2. log_{a^{n}}b=\frac{1}{n}log_{a}b (применили основное логарифмическое тождество(1))

3. (применили формулу (4).

4. (применили формулу (9), перейдя к новому основанию 0,8).

5. (применили формулу (3) разности логарифмов)

Немного истории

Теперь вы поняли, что такое логарифмы и как ими пользоваться. Но для чего они всё-таки нужны? Или это просто такая математическая игрушка с хитрой инструкцией по применению?

Понятие логарифма и логарифмические таблицы появились в 17 веке, и значение их было огромно.

Это в наши дни вычисления не представляют труда — у каждого есть калькулятор. А как считали в «докомпьютерные» времена?

Складывать и вычитать можно было на счётах, а вот умножать и делить приходилось «в столбик» — медленно и трудно.

В 15–17 веках, в эпоху великих географических открытий, стали бурно развиваться торговля, экономика и наука. Требования к математике росли: расчёты становились более сложными, а точность — например, для решения навигационных задач — нужна была всё более высокая.

Необходим был инструмент, позволяющий упростить и ускорить расчёты, и таким инструментом явились логарифмы.

Предположим, что b и c — большие числа, которые надо перемножить. Появление таблиц логарифмов (например, с основанием 10) существенно упростило эту задачу. Теперь вычислителю достаточно было найти по таблицам десятичные логарифмы чисел b и c, сложить их (на счётах) и получить логарифм произведения: lgb + lgc = lg(bc).

А затем по таблице логарифмов найти само произведение чисел b и c.

Недаром французский математик и астроном Лаплас сказал, что изобретение логарифмов удлинило жизнь вычислителей. Логарифмическая линейка (которой инженеры пользовались до 70-х годов двадцатого века) была не менее прогрессивным изобретением, чем современный калькулятор.

Но это еще не всё! Мы не занимались бы логарифмами, если бы они имели лишь историческую, «музейную» ценность. О неожиданных применениях логарифмов мы расскажем в следующей статье, посвящённой логарифмической функции.

Изучение логарифмов в старшей школе

Понятие логарифма

При решении показательных уравнений удается представить обе части уравнения в виде степеней с одинаковыми основаниями и рациональными показателями. Так, например, при решении уравнения мы заменяем степенью и из равенства степеней с одинаковыми основаниями делаем вывод о равенстве показателей: х = −5/6. Однако, чтобы решить, казалось бы, более простое уравнение 2х = 3, стандартных знаний оказывается недостаточно. Дело в том, что число 3 нельзя представить в виде степени с основанием 2 и рациональным показателем.

Действительно, если бы равенство , где m и n — натуральные числа, было верным, то, возведя его в степень n, мы должны были бы получить верное равенство 2m = 3n. Но последнее равенство неверно, так как левая его часть является четным числом, а правая — нечетным. Значит, не может быть верным и равенство .

Рисунок 1

С другой стороны, график непрерывной функции y = 2x пересекается с прямой y = 3, и, значит, уравнение 2x = 3 имеет корень. Таким образом, перед нами стоят два вопроса: «Как записать этот корень?» и «Как его вычислить?».

Показатель степени, в которую нужно возвести число a (a > 0, a ≠ 1), чтобы получить число b, называется логарифмом b по основанию a и обозначается logab.

Теперь мы можем записать корень уравнения 2х = 3:

х = loga3

Равенства ax = b и x = logab, в которых число a положительно и не равно единице, число b положительно, а число x может быть любым, выражают одно и то же соотношение между числами a, b и x. Подставив в первое равенство выражение x из второго, получим основное логарифмическое тождество.

Рисунок 1

Понятие логарифма в методическом пособии

Задание

Решите уравнение: а) 2x = 64; б) Рисунок 1; в) Рисунок 1; г) 4x = 0; д) 7x = −12.

После проверки ученикам предлагается ответить на вопрос, какое из заданий показалось им наиболее трудным. Вероятный ответ: 2 (в), так как в нем нужно было приводить дробь к степени числа 5. Затем школьникам предлагается высказать мнение о сравнительной с заданием 2 (в) трудности уравнения 2x = 3. На первый взгляд кажется, что это уравнение проще, однако представить 3 в виде степени числа 2 школьникам не удается.

Дальше изучение нового материала проводится в соответствии с учебником. При этом в зависимости от уровня класса рассматривается или не рассматривается дополнительный материал о невозможности представления 3 в виде 2r , где r = m/n.

После этого диалог с классом можно строить примерно так:

— Как вы думаете, имеет ли уравнение 2x = 3 корень? Ответ обоснуйте. [Если построить график функции у = 2x и провести прямую у = 3, то они пересекутся в одной точке, значит, уравнение имеет один корень.]
— Что можно сказать о корне уравнения ax = b, где а > 0 и а ≠ 1? При всех ли значениях b оно имеет корни?

Затем вводится определение логарифма числа b по основанию а и записывается основное логарифмическое тождество Рисунок 1. При этом выписывание равенства происходит синхронно с повторным чтением определения теперь уже в обратном, по сравнению с учебником, порядке. Теперь можно записать корень уравнения 2х = 3: х = loga3 и предложить школьникам серию самостоятельных работ.

Логарифмическая функция

Рисунок 2

Выразим x из равенства y = logax, получим x = ay. Последнее равенство задает функцию x = ay, график которой симметричен графику показательной функции y = ax относительно прямой y = x.

Показательная функция x = ay является монотонной, и, значит, разные значения y соответствуют разным значениям x, но это говорит о том, что y = logax, в свою очередь, является функцией x.

Показательная функция y = ax и логарифмическая функция y = logax являются взаимно обратными. Сравнивая их графики, можно отметить некоторые основные свойства логарифмической функции.

Свойства функции y = logax, a > 0, a ≠ 11:

  1. Функция y = logax определена и непрерывна на множестве положительных чисел.
  2. Область значений функции y = logax — множество действительных чисел.
  3. При 0 < a < 1 функция y = logax является убывающей; при a > 1 функция y = logax является возрастающей.
  4. График функции y = logax проходит через точку (1; 0).
  5. Ось ординат — вертикальная асимптота графика функции y = loga.
Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник

Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник

Учебник входит в учебно-методический комплекс по математике для 10–11 классов, изучающих предмет на углубленном уровне. Теоретический материал в нем разделен на обязательный и дополнительный. Каждая глава завершается домашней контрольной работой, а каждый пункт главы — контрольными вопросами и заданиями. Учебник соответствует Федеральному государственному образовательному стандарту среднего (полного) общего образования, имеет гриф «Рекомендовано» и включен в Федеральный перечень учебников.

Купить

Решение логарифмических уравнений и неравенств на основе свойств логарифмической функции

Освобождаясь от внешнего логарифма, имеющего основание 3, мы ссылаемся на возрастание соответствующей логарифмической функции, то есть на то, что большему значению логарифма соответствует большее значение выражения, стоящего под его знаком. Однако следует иметь в виду, что если функцию y = log3 log0,5(2x + 1) считать логарифмической, то ее аргумент не переменная x, а все выражение log0,5(2x + 1). Если же все-таки рассматривать x как аргумент функции y = log3 log0,5(2x + 1), то эта функция окажется убывающей, так как при увеличении значения x увеличивается значение выражения 2x + 1, уменьшается значение выражения log0,5(2x + 1) и, соответственно, уменьшается значение самой функции.

Свойства логарифмов

Связь двух форм записи соотношения между числами a, b и x (речь о ax = b и x = logab) позволяет получить свойства логарифмов, основываясь на известных свойствах степеней.

Рассмотрим, например, произведение степеней с одинаковым основанием: axay. Пусть x = b и a y = c. Перейдем к логарифмической форме: x = logab и y = logac, тогда bc = a logab × a logac = a logab + logac. От показательной формы равенства bc = a logab + logac перейдем к логарифмической форме:

loga(bc) = logab + logac

Заметим, что в левой части формулы числа a и b могут быть отрицательными. Тогда формула будет выглядеть так:

loga(bc) = loga|b| + loga|c|

Аналогично можно получить еще два свойства для логарифмов частного и степени.

  • логарифм произведения loga (bc) = loga |b| + loga |c|
  • логарифм частного Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник
  • логарифм степени logabp = p loga|b|

Последнее свойство дает возможность вывести важную формулу, с помощью которой можно выразить логарифм с одним основанием через логарифм с другим основанием.

Пусть logab = x. Перейдем к показательной форме ax = b. Прологарифмируем это равенство по основанию c, т.е. найдем логарифмы с основанием c обеих частей этого равенства: logcax = logcb. Применяя к левой части свойство логарифма степени, получим x logca = logcb или Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник, откуда Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник.

Формула перехода от одного основания логарифма к другому

Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник

Полезно запомнить частный случай формулы перехода, когда одно из оснований является степенью другого:

Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник

Рассмотренные свойства и формула перехода «работают», конечно, только когда все входящие в них выражения имеют смысл.

Что ещё почитать?

Логарифмы на ЕГЭ

Логарифмы встречаются на ЕГЭ: как во второй части (обычно, это задание 15), так и, реже, в первой части. Задания из аттестации — одно из средств мотивации детей на уроках. Зная, что упражнение на доске аналогично заданию ЕГЭ, ученик будет внимательнее следить за его решением.

Разберем несколько таких заданий.

Из первой части (определение логарифма на ЕГЭ профильного уровня)

Решите уравнение log3(x+1)2 + log3|x+1| = 6 . Если корней несколько, укажите наименьший из них.

Решение. Решаем квадратное относительно log3|x+1| уравнение. Его корни 2 и −3.

log3|x+1| = 2, |x+1| = 9, x = −10 — это наименьший из корней.

Ответ: −10.

Из второй части (логарифмическое неравенство на ЕГЭ профильного уровня)

Решите неравенство Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник.

Решение. ОДЗ: x > 0, x ≠ 1. Перейдем к логарифмам по основанию 10:

Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник;

Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник;

Умножим числитель и знаменатель на 2, чтобы уйти от радикала:

Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник;

Нули числителя: 2/3, 3, с учетом положительности x, нуль заменяется на 1.

Ответ: Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. Углубленный уровень. 10 класс. Учебник

Алгебра в таблицах. 7-11классы. Справочное пособие

Алгебра в таблицах. 7-11 классы. Справочное пособие

Пособие содержит таблицы по всем наиболее важным разделам школьного курса арифметики, алгебры, начал анализа. В таблицах кратко изложена теория по каждой теме, приведены основные формулы, графики и примеры решения типовых задач. В конце книги помещен предметный указатель. Пособие будет полезно учащимся 7-11 классов, абитуриентам, студентам, учителям и родителям.

Купить
Из второй части (логарифмическое уравнение с параметром на ЕГЭ профильного уровня)

Найдите все значения a, для которых при любом положительном значении b уравнение Алгебра в таблицах. 7-11классы. Справочное пособие имеет хотя бы одно решение, меньше 1/3.

Решение. Найдем ОДЗ: Алгебра в таблицах. 7-11классы. Справочное пособие

Стандартно приводим логарифмы к одному основанию

Алгебра в таблицах. 7-11классы. Справочное пособие,

Алгебра в таблицах. 7-11классы. Справочное пособие.

Получили квадратное уравнение относительно Алгебра в таблицах. 7-11классы. Справочное пособие.

Оно должно иметь корень при Алгебра в таблицах. 7-11классы. Справочное пособие

Обозначим, что Алгебра в таблицах. 7-11классы. Справочное пособие и рассмотрим квадратичную функцию y = t— bt — 2a.

Ветви ее графика направлены вверх, а вершина, поскольку b > 0, расположена в левой координатной полуплоскости. Первая ветвь параболы пересекает ось абсцисс правее t = 0, значит при t = 0 y < 0. Получаем −2a < 0 a > 0.

Ответ: a > 0.

Учебник «Алгебра и начала математического анализа. Углубленный уровень. 10 класс» схож по структуре с учебником базового уровня, однако предполагает больше часов на изучение сложных задач. Эти и другие издания линейки вы можете апробировать прямо сейчас, воспользовавшись акцией «5 учебников бесплатно». Методическое пособие представлено в свободном доступе. Приглашаем познакомиться с другими вебинарами экспертов и порекомендовать нам интересующую вас тему для последующих трансляций.


#ADVERTISING_INSERT#


логарифм по основанию 10 — с английского на русский

См. также в других словарях:

  • логарифм по основанию 10 — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN logarithm to base 10logarithm to the base 10 …   Справочник технического переводчика

  • логарифм по основанию 2 — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN base 2 logarithmic representation …   Справочник технического переводчика

  • ЛОГАРИФМ — ЛОГАРИФМ, вспомогательный прием (формула) для произведения вычислений, выведенный в 1614 г. Джоном НЕПЕРОМ и разработанный впоследствии английским математиком Генри Бриггсом (1561 1631). Логарифмом числа ( ) является показатель степени (х), в… …   Научно-технический энциклопедический словарь

  • ЛОГАРИФМ — (logarithm) Степень, в которую надо возвести какое либо служащее основанием число, большее 1, чтобы получить какое либо определенное положительное число. Если х является логарифмом с основанием у от z, то z=уx. Логарифмы имеют такое свойство, что …   Экономический словарь

  • ЛОГАРИФМ — (от греческого logos отношение и arithmos число) числа N по основанию a (O …   Современная энциклопедия

  • Логарифм — (от греческого logos отношение и arithmos число) числа N по основанию a (O …   Иллюстрированный энциклопедический словарь

  • Логарифм — График двоичного логарифма Логарифм числа …   Википедия

  • ЛОГАРИФМ — число, применение которого позволяет упростить многие сложные операции арифметики. Использование в вычислениях вместо чисел их логарифмов позволяет заменить умножение более простой операцией сложения, деление вычитанием, возведение в степень… …   Энциклопедия Кольера

  • Логарифм —         числа N по основанию а, показатель степени m, в которую следует возвести число а (основание Л.), чтобы получить N; обозначается logaN. Итак, m = logaN, если ам = N. Например, log10 100 = 2; log2 1/32 = 5; loga 1 = 0, т. к. 100 = 102, 1/32 …   Большая советская энциклопедия

  • ЛОГАРИФМ — числа Nпо основанию а показатель степени т, в к рую следует возвести число (основание Л.), чтобы получить N;обозначается logaN, т. е. m=logaN, если am=N. Каждому положительному числу соответствует при данном основании единственный действительный… …   Математическая энциклопедия

  • ЛОГАРИФМ — [от греч. logos слово, здесь (соотношение и arithmos число] числа N по основанию а показатель степени т, в к рую следует возвести а, чтобы получить N; обозначается logаN. Т. о., т = logaN, если ат = N (предполагается, что а > 0, а не равно 1).… …   Большой энциклопедический политехнический словарь

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *