Логарифм с корнем в основании
Как преобразовать логарифм с корнем в основании?
Для этого следует корень представить в виде степени с рациональным показателем и показатель степени вынести за знак логарифма.
Схематически преобразование логарифма с корнем в основании можно изобразить так:
В частности, если показатель степени, стоящей под знаком логарифма, равен 1:
Примеры.
(a>0, a≠1, b>0).
После преобразования корня в основании логарифма в степень с дробным показателем и вынесения этой степени за знак логарифма, число можно внести в показатель степени выражения, стоящего под знаком логарифма.
Например,
www.logarifmy.ru
Как решать логарифмы с корнем в основании. Решение логарифмических уравнений
\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)
Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).
Примеры: | \(\log_{5}{25}=2\) | т.к. \(5^{2}=25\) | ||
\(\log_{3}{81}=4\) | т.к. \(3^{4}=81\) | |||
\(\log_{2}\)\(\frac{1}{32}\) \(=-5\) | т.к. \(2^{-5}=\)\(\frac{1}{32}\) |
Аргумент и основание логарифма
Любой логарифм имеет следующую «анатомию»:
Аргумент логарифма обычно пишется на его уровне, а основание — подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».
Как вычислить логарифм?
Чтобы вычислить логарифм — нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?
Например , вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)
а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:
\(\log_{4}{16}=2\)
\(\log_{3}\)\(\frac{1}{3}\) \(=-1\)
в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!
\(\log_{\sqrt{5}}{1}=0\)
г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.
\(\log_{\sqrt{7}}{\sqrt{7}}=1\)
д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из мы знаем, что – это дробная степень, и значит квадратный корень — это степень \(\frac{1}{2}\) .
\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)
Пример : Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)
Решение :
\(\log_{4\sqrt{2}}{8}=x\) | Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма: | |
\((4\sqrt{2})^{x}=8\) | Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить двойки: | |
\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\) | Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\) | |
\(2^{\frac{5}{2}x}=2^{3}\) | Основания равны, переходим к равенству показателей | |
\(\frac{5x}{2}\) \(=3\) | | Умножим обе части уравнения на \(\frac{2}{5}\) |
| Получившийся корень и есть значение логарифма |
Ответ : \(\log_{4\sqrt{2}}{8}=1,2\)
Зачем придумали логарифм?
Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).
А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.
Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).
Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм — это просто число . Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714…..\)
Пример : Решите уравнение \(4^{5x-4}=10\)
Решение :
\(4^{5x-4}=10\) | \(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма. Воспользуемся определением логарифма: | |
\(\log_{4}{10}=5x-4\) | Зеркально перевернем уравнение, чтобы икс был слева | |
\(5x-4=\log_{4}{10}\) | Перед нами . Перенесем \(4\) вправо. И не пугайтесь логарифма, относитесь к нему как к обычному числу. | |
\(5x=\log_{4}{10}+4\) | Поделим уравнение на 5 | |
\(x=\)\(\frac{\log_{4}{10}+4}{5}\) | | Вот наш корень. Да, выглядит непривычно, но ответ не выбирают. |
Ответ : \(\frac{\log_{4}{10}+4}{5}\)
Десятичный и натуральный логарифмы
Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:
Натуральный логарифм: логарифм, у которого основание — число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).
То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\)
Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).
То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\) , где \(a\) — некоторое число.
Основное логарифмическое тождество
У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:
Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.
Вспомним краткую запись определения логарифма:
если \(a^{b}=c\), то \(\log_{a}{c}=b\)
То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.
Остальные свойства логарифмов вы можете найти . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.
Пример : Найдите значение выражения \(36^{\log_{6}{5}}\)
Решение :
Ответ : \(25\)
Как число записать в виде логарифма?
Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).
Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается
\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}…\)
Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.
Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:
\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}…\)
И с четверкой:
\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}…\)
И с минус единицей:
\(-1=\) \(\log_{2}\)\(\frac{1}{2}\) \(=\) \(\log_{3}\)\(\frac{1}{3}\) \(=\) \(\log_{4}\)\(\frac{1}{4}\) \(=\) \(\log_{5}\)\(\frac{1}{5}\) \(=\) \(\log_{6}\)\(\frac{1}{6}\) \(=\) \(\log_{7}\)\(\frac{1}{7}\) \(…\)
И с одной третьей:
\(\frac{1}{3}\) \(=\log_{2}{\sqrt{2}}=\log_{3}{\sqrt{3}}=\log_{4}{\sqrt{4}}=\log_{5}{\sqrt{5}}=\log_{6}{\sqrt{6}}=\log_{7}{\sqrt{7}}…\)
Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)
Пример : Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)
Решение :
Ответ : \(1\)
Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть с
icetek.ru
Логарифм корня | Логарифмы
Как преобразовать логарифм степени и логарифм корня?
Если под знаком логарифма стоит положительное выражение, показатель степени можно вынести за знак логарифма.
(x>0).
Например,
Если в показателе степени стоит сумма или разность, за знак логарифма выражение следует выносить, взяв его в скобки:
Если показатель степени под знаком логарифма — нечетное число, то основание степени должно быть положительным (так как при возведении в степень с нечётным показателем отрицательного числа результат — отрицательное число).
Таким образом,
Если выражение, стоящее под знаком логарифма, может принимать как положительные, так и отрицательные значения, то при вынесении за знак логарифма чётного показателя оставшееся основание степени нужно записать под знаком модуля.
Например,
Чтобы преобразовать логарифм корня, нужно от корня перейти к степени с дробным показателем, после чего воспользоваться предыдущим правилом.
Например,
Если выражение под корнем — степень с чётным показателем, после преобразования под знаком логарифма запишем его под знаком модуля:
www.logarifmy.ru