Масло проводник или диэлектрик – Пропускает ли моторное масло электрический ток?

Проводники и диэлектрики

Проводники

К проводникам относятся все металлы и их сплавы, а также электротехнический уголь(каменный уголь, графит, сажа, смола и т.д.)
К жидким проводникам относятся:вода, раствор солей, кислот и щелочей.
К газообразным относятся ионизированные газы.
Электрический ток в твердых проводниках-это направленное движение свободных электронов под действием ЭДС.
ЭДС-электронно-движущая сила.

Свойства проводников:

  1. Электрические
    • Удельное сопротивление веществ от которого зависит электропроводимость
    • Сверхпроводимость-это свойство некоторых материалов при температуре равной 101(-273) проводить эл.ток без препятствий, т.е. удельное сопротивление этих материалов равно нулю
  2. Физические
    • плотность
    • температура плавления
  3. Механические
    • Прочность на изгиб, растяжение и т.д., а также способность обрабатываться на станках
  4. Химические
    • Свойства взаимодействовать с окружающей или противостоять коррозии
    • Свойства соединятся при помощи пайки, сварки

Диэлектрики

Не пропускают электрический ток.Диэлектрики обладают высоким удельным сопротивлением.Используются для защиты проводника от влаги, механических повреждений, пыли.

Диэлектрики бывают
  • твердые-все неметаллы;
  • жидкие-масла, синтетические жидкости СОВОЛ, СОВТОЛ
  • газообразные-все газы:воздух, кислород, азот и т.д.
Свойства диэлектриков:
  1. Электрические свойства
    • Электрический пробой-устанавление большого тока, под действием высокого электрического напряжения к электроиоляционному материалу определенной толщины.
    • Электрическая прочность-это величина, равная напряжению, при котором может быть пробит электроизоляционному материал толщиной в единицу длины.
  2. Физико-химические свойства
    • Нагревостойкость-это способность диэлектрика длительно выдерживать заданную рабочую температуру без заметного изменения своих электроизоляционных качеств.
    • Холодостойкость-способность материала переносить резкие перепады температуры, от +120, до - 120
    • Смачиваемость-способность материала отторгать влагу, испытания проводятся в климатических камерах, типа ELKA, где изделие подвергается увлажнению, создается ТУМАН и мгновенный перепад температуры-СУШКА, и так несколько циклов!
  3. Химические
    • Должны противостоять активной(агрессивной) среде
    • Способность склеиваться
    • Растворение в лаках и растворителях, склеиваться
  4. Механические
    • Защита металлических проводников от коррозии
    • Радиационная стойкость
    • Вязкость(для жидких диэлектриков)
    • Вязкость-время истечения жидкости из сосуда, имеющего определенную форму и отверстие
    • Предел прочности, твердости
    • Обработка инструментом

Читайте также:

www.modelzd.ru

Ребят, срочный технический вопрос - актуально до утра, у друга на авто умерла форсунка, можно ли ехать? [Архив] - Страница 2 - Passat WORLD


Просмотр полной версии : Ребят, срочный технический вопрос - актуально до утра, у друга на авто умерла форсунка, можно ли ехать?



Страницы : 1 [2] 3

У меня недавно была похожая ситуация, померили мы давления топлива, даванули на пробку как положено. Стал выезжать и вдруг машину заколбасило, из под капота дым и вонь пошла.. Под горочку скатился обратно к Ване Карелу и стали разбираться, что и как. Машина отказывалась заводиться, ошибок нет, давление в норме, только вот при выключении насоса сразу давление падает. Скинули рампу и там увидели заклинившую форсунку. Полный цилиндр бензина:tik и уже видимо в турбине и кате. Пока искали новую форсунку, там всё высохло. Помставили другую форсу и потом еле завели, пока там всё прочихалось. Еще потом целый час воняло бензином:tik


Всем спасибо, проблему решили и заодно несколько других. Помер компьютер, в разъемы попало масло, оно оказывается со временем поднимается по проводам, что-то там закоротило (там ваще оголенные провода почему-то были) и линия управления форсункой умерла - комп постоянно держал ее открытой и лило по максимуму. Причем комп ошибки сам в себе не видел. Форсунка живая. Проверяли все на каком то хитром Мерседесовском стенде и просто лампочкой, подключив к разъему форсунки. Мозги вскрыли, что-то они там перепаяли из других блоков, все заизолировали и места где проводка входит в разъемы промазали герметиком. В итоге все заработало. Заодно поменяли пару дохлых датчиков (в других местах не могли найти где это все умерло, тут нашли). Машинка поехала отлично, ошибок 3*тьфу больше нет. О как. Мастер сказал что если своим ходом бы ехали - машина могла бы сгореть или цилиндр мог бы переполниться бензином и был бы гидроудар. В итоге ехали на галстуке, со стороны наверное весело выглядело - я на Пассате с московскими номерами тащил местную грузинскую машину :)))


енот

22.08.2013, 15:33

Мозги вскрыли, что-то они там перепаяли из других блоков
вот это самый настоящий ремонт мерседеса. на завод к ним в Германию обязательно фотоотчет отправьте :haha::haha: что бы знали как тут у нас все сурово :haha:


вот это самый настоящий ремонт мерседеса. на завод к ним в Германию обязательно фотоотчет отправьте :haha::haha: что бы знали как тут у нас все сурово :haha:
Дык этта, все ж заработало! Что самое интересное то. Они в блоке цепи паяли, микросхему какую-то, кондеры и еще что-то. Под микроскопом (!) каким то хитрым паяльником. И все, блок живой. Однако.


Paspartu

22.08.2013, 15:52

Дык этта, все ж заработало! Что самое интересное то. Они в блоке цепи паяли, микросхему какую-то, кондеры и еще что-то. Под микроскопом (!) каким то хитрым паяльником. И все, блок живой. Однако.
Грузины паяли? 🙂


Очень уж всё это странно. Масло не может закоротить-оно диэлектрик. Даже если материнскую плату опустить в аквариум с маслом, комп будет работать. А тут...:-k


Масло не может закоротить-оно диэлектрик.

Это если масло свежее, а если на нём проехали тысяч 7 км., то не известно какой состав у него будет.


Масло не может закоротить-оно диэлектрик
Данунафиг:tik


Паяли не грузины а русские мастера, но они тут местные. Русский сервис, в 10 утра уже очередь 15 машин уже, очень толковые тут, делают самые печальные случаи, по электрике лучше никого нет тут. Хз что там закоротило но внутри перепаяли, взяли аналогичные детали с похожего блока, распаяли и все ожило. Сказали из-за масла. Оно туда годами поступало и хз с чем вперемешку. Еще внутри оголенные провода были, хотя их не должно там быть и что-то коротило. Я был уверен что форсунка, но они сразу без диагностики сказали что это мозги. Хз откуда знают


shariksmol

22.08.2013, 18:06

Данунафиг
что ну нафик? дизтопливо тоже не проводит, если оно без воду конечно. И в трансформаторных будках масло залито не просто так.
я смотрю советы на следующий день пошли :mrgreen: они за это время уже наверное дотолкали до сервиса.


что ну нафик? дизтопливо тоже не проводит
Ну если ты так считаешь, то опусти фазу в масло, потом встань босиком на бетонный пол и сунь руку в масло:pop::mrgreen:

--- Добавлено чуть позже ---

И в трансформаторных будках масло залито не просто так.
Скажу по-секрету оно туда залито не в качестве диэлектрика:-$


shariksmol

22.08.2013, 18:25

не в качестве диэлектрика
этоя и сам в курсе.

--- Добавлено чуть позже ---

Ну если ты так считаешь,
я нет, но вверху товарищ - да.:mrgreen: я просто знаю, что в дизель сам лампочку включал и сувал полностью - все окей. и отец у меня проработал в этой сфере - про дизеля как бы не наслышан. если не прав - пускай буду не прав - на нобелевскую не претендую. :mrgreen:



Powered by vBulletin® Copyright © 2019 vBulletin Solutions, Inc. All rights reserved. Перевод: zCarot

passatworld.ru

Ответы@Mail.Ru: Вода в чистом виде

Вода в чистом виде является диэлектриком и ток не проводит. На Кольском полуострове вода с очень низкой минерализацией. Однажды купил нагревательный прибор работающий по принципу " два гвоздя в розетку".Представьте, Кольская вода в нем не кипела. Чтобы начался процесс кипения приходилось в воду добавлять щепотку соли, то есть делать электролит. В чистом виде в воде нет носителей электрического тока или положительных или отрицательных заряженных частиц.

второе, конечно.

По утверждениям ученых - диэлектрик. Но меня всегда интересует вопрос: если вода диэлектрик, то почему она закипает (проверяли на дистилированной) , если в нее поместить два гвоздя, подключенных к розетке?? ? З. Ы. Также интересно: почему в сыром помещении вероятность удара током повышается???

скорее у вас что то проблеммы с физикой вода - отличный проводник тока . электролиз . меры безопасности при работе с электрикой - сухие руки. Почитайте что такое - диполь.

Проводник. Диэлектрическая постоянная: вода - 81, воздух - около 1, парафин - 2. Это при 18 град. С.

Вода не является диэлектриком в прямом понимании. В абсолютно чистом виде в идеальных условиях она является слабым проводником. В обычных условиях чистой воды не бывает-она всегда с примесями, что делает её проводником.

Возьмите мегаомметр и проверьте сопротивление. Если покажет "бесконечность" - то диэлектрик.

touch.otvet.mail.ru

Необходимо сравнить свойства проводников, диэлектриков и полупроводников

Полупроводники — вещества, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких эВ (электрон-вольта) , то есть соизмерима с kT. Например, алмаз можно отнести к широкозонным полупроводникам, а InAs — к узкозонным. В зависимости от того, отдаёт ли атом примеси электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается. Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства изоляторов Проводник — вещество, проводящее электрический ток. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, углерод в виде угля и графита) . Пример проводящих жидкостей — электролиты. Пример проводящих газов — ионизированный газ (плазма) . Некоторые вещества при нормальных условиях являющиеся изоляторами при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п. Проводниками также называют части электрических цепей — соединительные провода и шины. Микроскопическое описание проводников связано с электронной теорией металлов. Наиболее простая модель описания проводимости известна с начала прошлого века и была развита Друде. Проводники бывают первого и второго рода. К проводникам первого рода относят те проводники, в которых имеется электронная проводимость (посредством движения электронов) . К проводникам второго рода относят проводники с ионной проводимостью (электролиты) Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см-3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твердого тела диэлектрик - вещество с шириной запрещенной зоны больше 3 эВ. Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию. К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком. Диэлектрики используются не только как изоляционные материалы. Ряд диэлектриков проявляют интересные физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики. При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов. Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли) . В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материал используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.

Проводники К проводникам относятся все металлы и их сплавы, а также электротехнический уголь (каменный уголь, графит, сажа, смола и т. д.) К жидким проводникам относятся: вода, раствор солей, кислот и щелочей. К газообразным относятся ионизированные газы. Электрический ток в твердых проводниках-это направленное движение свободных электронов под действием ЭДС. ЭДС-электронно-движущая сила. Свойства проводников: 1.Электрические -Удельное сопротивление веществ от которого зависит электропроводимость. -Сверхпроводимость-это свойство некоторых материалов при температуре равной 101(-273) проводить эл. ток без препятствий, т. е. удельное сопротивление этих материалов равно нулю 2.Физические -плотность -температура плавления 3.Механические -Прочность на изгиб, растяжение и т. д., а также способность обрабатываться на станках. 4.Химические -Свойства взаимодействовать с окружающей или противостоять коррозии. -Свойства соединятся при помощи пайки, сварки. Диэлектрики Не пропускают электрический ток. Диэлектрики обладают высоким удельным сопротивлением. Используются для защиты проводника от влаги, механических повреждений, пыли. Диэлектрики бывают -твердые-все неметаллы; -жидкие-масла, синтетические жидкости СОВОЛ, СОВТОЛ; -газообразные-все газы: воздух, кислород, азот и т. д. Свойства диэлектриков: 1.Электрические свойства -Электрический пробой-устанавление большого тока, под действием высокого электрического напряжения к электроиоляционному материалу определенной толщины. -Электрическая прочность-это величина, равная напряжению, при котором может быть пробит электроизоляционному материал толщиной в единицу длины. 2.Физико-химические свойства -Нагревостойкость-это способность диэлектрика длительно выдерживать заданную рабочую температуру без заметного изменения своих электроизоляционных качеств. -Холодостойкость-способность материала переносить резкие перепады температуры, от +120, до - 120 -Смачиваемость-способность материала отторгать влагу, испытания проводятся в климатических камерах, типа ELKA, где изделие подвергается увлажнению, создается ТУМАН и мгновенный перепад температуры-СУШКА, и так несколько циклов! 3.Химические -Должны противостоять активной (агрессивной) среде -Способность склеиваться -Растворение в лаках и растворителях, склеиваться 4.Механические -Защита металлических проводников от коррозии -Радиационная стойкость -Вязкость (для жидких диэлектриков) Вязкость-время истечения жидкости из сосуда, имеющего определенную форму и отверстие -Предел прочности, твердости -Обработка инструментом

touch.otvet.mail.ru

Жидкие диэлектрики — Мегаэнциклопедия Кирилла и Мефодия — статья

Жидкими диэлектриками являются насыщенные ароматические, хлорированные и фторированные углеводороды, ненасыщенные парафиновые и вазелиновые масла, кремнийорганические соединения (полиорганосилоксаны), сжиженные газы, дистиллированная вода, расплавы некоторых халькогенидов и др. Для жидких диэлектриков характерна ковалентная связь электронов в молекулах, а между молекулами действуют ван-дер-ваальсовые силы.

Жидкие диэлектрики применяются в электроизоляционной технике в качестве пропитывающих и заливочных составов при производстве электро- и радиотехнической аппаратуры: в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры. По применению они делятся на жидкости для конденсаторов, кабелей, циркулярных систем охлаждения выпрямительных установок и турбогенераторов, масляных выключателей. Электрическая прочность, диэлектрическая проницаемость и теплопроводность жидких диэлектриков имеет более высокие значения по сравнению с воздухом и другими газами при атмосферном давлении. Поэтому электроизоляционные жидкие диэлектрики должны обеспечивать повышение электрической прочности твердой пористой изоляции, отвод тепла от обмоток трансформатора, гашение электрической дуги в масляных выключателях. В импульсном электрическом поле их электрическая прочность возрастает.

Основными характеристиками диэлектрических жидкостей являются диэлектрическая проницаемость, электропроводность и электрическая прочность.

Диэлектрическая проницаемость является истинной характеристикой жидкостей и характеризуется дипольным моментом и поляризуемостью молекул. Собственная проводимость жидких диэлектриков имеет электронную и ионную составляющие. Она обусловлена автоэлектронной эмиссией с катода, электролитической диссоциацией молекул, ионизацией молекул. Электрические свойства жидких диэлектриков в значительной мере зависят от степени их очистки. Загрязнения, как правило, снижают электрическую прочность жидких диэлектриков и увеличивают проводимость за счет возрастания количества ионов и заряженных коллоидных частиц.

Проводимость жидкостей определяется ионизацией молекул и наличием в жидкости примесей. Основными примесями, уменьшающими электрическую прочность, являются микрочастицы, микропузырьки и вода. Очистка диэлектрических жидкостей (дистилляцией, частичной кристаллизацией, адсорбцией, ионным обменом) приводит к уменьшению электропроводности и диэлектрических потерь и возрастанию электрической прочности. Электрическая прочность в значительной степени является технологической характеристикой жидкого диэлектрика и электродов, способов приготовления и эксплуатации изоляционного промежутка. На нее влияют не только те примеси, которые определяют электропроводность, но и форма и материал электродов, длительность импульса, наличие пузырьков.

Наиболее распространенными жидкими диэлектриками, применяемыми в качестве электроизоляционных материалов, являются:

нефтяные масла — трансформаторное, конденсаторное и кабельное;

синтетические жидкие диэлектрики — полихлордифенил (совол, совтол), кремнийорганические и фторорганические;

растительные технические масла (касторовое, льняное, конопляное и тунговое) в электроизоляционной технике применяются ограниченно.

Нефтяные масла — слабовязкие, практически неполярные жидкости. По химическому составу представляют смесь различных углеводородов парафинового, нафтенового, ароматического и нафтено-ароматического рядов с небольшим (до 1% масс) содержанием присадок, улучшающих их стойкость к термоокислительному старению, а также температурно-вязкостные характеристики. Нефтяное трансформаторное масло получило наиболее широкое применение в высоковольтных аппаратах: трансформаторах, масляных выключателях, высоковольтных водах. Нефтяное трансформаторное масло является неполярным диэлектриком. Поэтому в чистом масле диэлектрические потери обусловлены в основном токами проводимости, величина которых мала, следовательно, малы и диэлектрические потери. При 20оС и 100 Гц = 2, 2-2, 3, = 1010-1013Ом.м, Епр= 10-28 кВ/мм. В механизме пробоя основное влияние на образование газоразрядного канала проводимости имеет нерастворенная в масле полярная полупроводящая и проводящая примесь. Вода, растворенная в масле, увеличивает электропроводность и электрические потери, но мало влияет на электрическую прочность. Вода, выделенная в виде мелкодисперсных капель, вызывает резкое увеличение неоднородности поля, что приводит к снижению пробивного напряжения.

Нефтяное конденсаторное масло получают из трансформаторного путем его более глубокой очистки адсорбентами. Его электрические свойства лучше, чем у трансформаторного масла. При 20оС и 1 Гц = 2, 1-2, 3, = 1011-1012Ом.м, Епр= 14-18 кВ/мм. Используют для пропитки бумажных конденсаторов, в особенности силовых. При пропитке в результате заполнения пор бумаги маслом увеличиваются диэлектрическая проницаемость и электрическая прочность бумаги, следовательно, возрастают емкость конденсатора и его рабочее напряжение.

Нефтяное кабельное масло применяют для пропитки бумажной изоляции силовых кабелей с рабочим напряжением до 35 кВ в свинцовой или алюминиевой оболочке, а также для заполнения металлических оболочек маслонаполненных кабелей на напряжение до 110кВ и выше.

Конденсаторные масла отличаются от трансформаторных масел более тщательной очисткой и меньшими значениями tg (до 2.10-4). Недостатки нефтяных масел — пожаро- и взрывоопасность, невысокая стойкость к тепловому и электрическому старению, гигроскопичность.

Наибольшее применение получили синтетические жидкости на основе хлорированных углеводородов (совол, совтол), что связано с их высокой термической устойчивостью, электрической стабильностью, негорючестью. Однако в связи с токсичностью хлорированных углеводородов их применение сначала ограничивалось, а в настоящее время почти повсеместно запрещено.

Жидкие диэлектрики на основе кремнийорганических соединений (полиорганосилоксанов) являются нетоксичными и экологически безопасными. Они не вызывают коррозии металлов, обладают очень низкой гигроскопичностью и морозостойкостью. Эти жидкости представляют собой полимеры с низкой степенью полимеризации, в молекулах которых содержится повторяющаяся силоксанная группировка: Кремний-кислородная связь имеет высокую термическую и химическую стойкость, поэтому кремнийорганические соединения устойчивы при высоких температурах (до 250 оС). По своим диэлектрическим характеристикам полиорганосилоксановые жидкости приближаются к неполярным диэлектрикам. При 20 оС и 100 Гц = 2, 4-2, 8, = 1011-1012Ом.м, Епр= 14-18 кВ/мм. Полиорганосилоксановые жидкости используют в импульсных трансформаторах, специальных конденсаторах, работающих при повышенной температуре, блоках радио- и электронной аппаратуры и в некоторых других случаях. Их недостаток — сравнительно быстрая воспламеняемость, кроме того, они значительно дороже нефтяных масел.

Жидкие диэлектрики на основе фторорганических соединений отличаются негорючестью, высокой химической, окислительной и термической стабильностью, высокими электрофизическими и теплопередающими свойствами. Молекулы фторорганических жидкостей состоят из атомов углерода и фтора, при этом молекулярную цепь образуют атомы углерода. Фторорганические жидкости — неполярные диэлектрики. При 20 оС и 100 Гц = 2, 2-2, 5, ρ = 1012-1014Ом.м, Епр= 12-19 кВ/мм. Они обеспечивают более интенсивный отвод тепла от охлаждаемых обмоток и магнитопроводов трансформатора, чем нефтяные масла и кремнийорганические соединения. Применяются для наполнения небольших трансформаторов, блоков электронного оборудования и других электрических аппаратов в тех случаях, когда рабочие температуры велики для других видов жидких диэлектриков. Некоторые перфторированные жидкие диэлектрики могут использоваться для создания испарительного охлаждения в силовых трансформаторах. Недостатки — токсичность некоторых видов фторорганических жидкостей, высокая стоимость.

К растительным маслам относятся касторовое, тунговое, льняное, конопляное. Растительные масла — слабополярные диэлектрики. Касторовое масло имеет высокую нагревостойкость и используется как пластификатор и для пропитки бумажных конденсаторов. Тунговое, льняное и конопляное масла относятся к «высыхающим» маслам. Высыхание обусловлено не испарением жидкости, а химическим процессом, в основе которого лежит окислительная полимеризация. Используются в качестве пленкообразующих в лаках (в том числе электроизоляционных), эмалях и красках.

Касторовое масло получается из семян клещевины; иногда используется для пропитки бумажных конденсаторов. Плотность касторового масла 0, 95-0, 97 Мг/м3, температура застывания от минус 10 до минус 180 °С; диэлектрическая постоянная Ɛ равна 4, 0 - 4, 5 при температуре 200 °С; Епр=15-20 Мв/м. Касторовое масло не растворяется в бензине, но растворяется в этиловом спирте.

Льняное масло золотисто - желтого цвета получается из семян льна. Его плотность 0, 93-0, 94 Мг/м3, температура застывания - около -200 °С.

Тунговое (древесное) масло получают из семян тунгового дерева, которое разводится на Дальнем Востоке и на Кавказе. Тунговое масло не является пищевым и даже токсично. Плотность тунгового масла — 94 Мг/м3, температура застывания — от 0 до минус 50 °С.
По сравнению с льняным маслом тунговое высыхает быстрее. Оно даже в толстом слое высыхает более равномерно и дает водонепроницаемую пленку, чем льняное.

Высыхающие масла применяются в электропромышленности для изготовления электроизоляционных масляных лаков, лакотканей, для пропитки дерева и для других целей. В последнее время наблюдается тенденция к замене высыхающих масел синтетическими материалами. Невысыхающие масла могут применяться в качестве жидких диэлектриков.

megabook.ru

Является ои вакуум проводником? Вообще, в чем отличие в строении диэлектриков и проводников?

<a rel="nofollow" href="http://ru.wikipedia.org/wiki/Вакуумный_электронный_прибор" target="_blank" >Собственно, в кинескопе телевизора так оно и есть. </a> Вакуум является проводником. Вернее, в нём движется поток электронов. В принципе, он и является лучшим проводником, потому что электронам или ионам ничто не мешает двигаться. Никакие кристаллические решётки и прочие препятствия. Из металлов лучшей проводимостью (при обычной температуре) обладает серебро. Затем идут медь, золото и алюминий. В сверхпроводящем состоянии проводимость стремится к бесконечности.

Вакуум это очень сильный диэлектрик

Если на школьном уровне, то ток в вакууме можно получить с помощью лампы-диода. Катод надо сильно нагреть - он начнёт испускать электроны, а положительный анод будет их притягивать. В растворах электролитов ток течёт за счёт положительных и отрицательных ионов. У диэлектриков практически нет свободных электрических зарядов, поэтому ток не проводят.

Проводник от диэлектрика отличается наличием свободных электронов, необходимых для прохождения тока. В вакууме их нет

прежде всего вакуум - свободное от вещества пространство, нет вещества - нет и частиц, а следственно вакуум не может быть ни проводником, ни диэлектриком (он не проводит ток, но и не может накапливать заряд)

touch.otvet.mail.ru

Руководство по материалам электротехники для всех. Разбираемся с

Экология потребления. Наука и техника: Начинаем разбирать диэлектрики. Статья полностью посвящена неорганическим диэлектрикам: фарфору, стеклу, слюде, керамике, асбесту, элегазу и воде.

Неорганические диэлектрики

Материалы, которые применяются в электронной технике меняются по мере прогресса. Так, ранее широко использовалось, к примеру, дерево, шелк, эбонит. Сегодня же многие материалы вытеснены более дешевыми, технологичными заменителями. 

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками

Фарфор


Фарфор — плотная прочная керамика, получаемая обжигом смеси каолина, кварца, полевого шпата и глины. Аналогичен фарфоровой чашке у вас на кухне, только реже покрывается глазурью.
 

Примеры применения


Высокотемпературные изоляторы. В виде фарфоровых бус для изоляции концов нагревательных спиралей. Чешуеподобная конструкция позволяет изгибаться не обнажая проводник.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Корпус ртутной дуговой лампы от светолучевого осциллографа. Рама из алюминиевого сплава, чёрный корпус — карболит, фарфоровые бусы изолируют проводники, которыми подключается лампа. Лампа очень сильно нагревается во время работы. Кучка фарфоровых бус от различных нагревателей.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Свечи зажигания от двигателя внутреннего сгорания. Центральный электрод изолирован фарфором. Ни один другой диэлектрик не способен выдержать длительное воздействие температуры, давления, горючего внутри камеры сгорания.

Детали электроизделий. Если заглянуть внутрь патрона для лампы, то часть, которая содержит ламели подключения скорее всего сделана из фарфора, он может длительное время работать при повышенной температуре лампы накаливания без потери свойств. Корпуса предохранителей, розеток, держатели контактов ламп — везде, где есть опасность нагрева, фарфор вне конкуренции.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Держатели ламелей розетки, патрона изготовлены из фарфора. Чёрный корпус патронов — карболит.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Мощные резисторы имеют основу из фарфоровой трубки. У зеленого резистора обмотка скрыта под эмалью.

Изоляторы на столбах. На фото изолятор со столба, ликвидированного в ходе реконструкции линии. 30 лет солнца, ветра, птичьего помета, дождей, морозов нисколько не повлияли на фарфор, он по прежнему выглядит как новенький, достаточно было помыть изолятор с мылом.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Фарфоровые изоляторы линий электропередач. Между фарфоровым изолятором и стальным крюком втулка из полиэтилена, для защиты фарфора от трещин. Дисковая форма изоляторов позволяет воде стекать не образуя сплошного слоя, замыкающего проводник на опору.
 

Недостатки


Хрупкий, как и все керамики. Перетянутый винт, удар — и фарфор осыпается.
 

Стекло


В зависимости от требований могут использоваться разные сорта стекол, от легкоплавких натриевых до тугоплавких кварцевых. Основной плюс стекла, помимо его термостойкости — прозрачность для видимого света (а кварцевое прозрачно еще и для ультрафиолета). Также немаловажный плюс — возможность визуально оценить целостность, трещины обычно видны.

Примеры применения

Корпуса радиоламп, осветительных ламп, предохранителей. Кварцевые трубки — корпуса нагревателей, электрогрилей.

Недостатки.

Хрупкое, не выносит ударов. Некоторые сорта стекла растрескиваются при резком неравномерном нагреве.

Типичный признак (но не обязательный!) кварцевого стекла — большое количество свилей в направлении экструзии стекла.

Интересные факты о стекле

Здесь стоит дополнительно сказать про сапфировое стекло, закаленное стекло и химически закаленное стекло. В рекламных описаниях множества электронных устройств для массового потребления можно встретить упоминания этих видов стекол.
 

  • Сапфировое стекло формально стеклом не является (оно не аморфное, как стекла, а кристаллическое), но, в силу внешнего сходства, так именуется. Сапфировое стекло — это тонкие пластинки лейкосапфира (чистый Al2O3 — оксид алюминия). Лейкосапфир тверже обычных стекол, поэтому используется для защиты оптики от пыли, абразивного истирания песчинками в военной технике, и в дорогих устройствах бытового назначения. Стекло наручных часов из сапфира дольше останется нецарапанным. При этом, получение сапфировых стекол большого размера по вменяемой цене затруднительно, поэтому планшеты с сапфировым стеклом мы увидим нескоро.
  • Закаленное стекло. Стекло хорошо сопротивляется сжатию и плохо — растяжению. Повысить механическую прочность стекла можно его закалкой — стекло разогревают до высоких температур и резко и равномерно охлаждают. В результате в стекле образуются механические напряжения, которые увеличивают механическую прочность. Чаще всего закалку стекла делают для безопасности. Обычное стекло, если в него кинуть камнем, разбивается на несколько довольно крупных осколков, которые могут нанести серьезную травму. Закаленное стекло при разрушении дает много мелких осколков, которые значительно безопаснее. Поэтому все стекла в автомобиле, в торговых центрах, стеклянные полки мебели — закалены. Изделие из закаленного стекла обработке не подлежит, если попытаетесь стеклянную полочку для ванной подрезать, она с хлопком рассыпется в крошку, поэтому закалка производится после обработки. 
  • Химически закаленное стекло. Например, часто упоминаемое Gorilla glass. Для тонких пластинок стекла термический способ закалки не подходит, поэтому пластинки стекла обрабатывают в растворе, который, к примеру, замещает ион натрия на ион калия. Так как ион калия крупнее, то поверхностные слои стекла как бы «распирает» более крупными атомами в решетке, создавая как раз требуемые механические напряжения. Как итог — такое стекло прочнее, лучше сопротивляется царапинам.

Слюда


Слюда. Природный слоистый материал, обладает термостойкостью, прочностью, прекрасный диэлектрик. Слюды — большой класс слоистых минералов, из них в технике используется в основном мусковит и иногда биотит и флогопит.

По английски слюда — Mica, отсюда производные названия материалов на базе слюд — миканиты, микалента, микафолий, микалекс и т.д.

Слюда, добытая в руднике, разбирается, сортируется. Крупные куски вручную расщепляются на пластинки — так получается щипаная слюда — прозрачные однородные пластинки. Такая слюда обладает самым высоким качеством и идет на ответственные применения — в вакуумной технике, окна ввода/вывода излучения и т.д. К сожалению, крупные однородные куски слюды без дефектов — редкость, поэтому пластинки из слюды разной формы склеивают воедино, так получается миканит. Если в качестве подложки для наклеивания пластинок слюды использовать ткань (стеклоткань, бумагу) получается микалента, микафолий, стекломиканит. Совсем мелкие отходы слюды размалываются, и в виде водной пульпы отливаются на сетку, также как бумага. После удаления воды частички слюды слипаются в единое полотно — получается слюдяная бумага (слюдинит, слюдопласт). Получившееся полотно для прочности может пропитываться органическим связующим. Гибкость слюдяной бумаги позволяет наматывать её в качестве изоляции. Также намоткой можно получить стержни, трубки. Если пропитать слюду расплавленным стеклом, то получившийся прочный материал называется микалекс.

Перемолотая в пыль слюда — компонент пигментов, благодаря своей «чешуйчастости» дает перламутровый эффект. В пигментах используется в основном биотит.

Синтетический материал — фторфлогопит (synthetic mica) — это слюда (флогопит) где -OH группы заменены фтором. Фторфлогопит более прочен и термически стоек, выглядит также как слюда, тоже слоистый но абсолютно прозрачный/белый, а не желтоватого оттенка, как природная слюда. Увы, пока с этим материалом живьем не сталкивался.
 

Примеры применения


Конструктивные элементы для удержания нагревательных элементов в фенах, калориферах, тепловентиляторах, паяльниках и т.д.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Нагреватели бытовых тепловентиляторов. Конструкция слева менее материалоемкая, но значительно менее надежная, особенно в условиях механических нагрузок.

Как защитное окошко выхода микроволнового излучения от магнетрона в микроволновках. (обычно попадая на слюду еда обугливается, и становясь проводником, начинает бурно искрить, от чего владельцы микроволновки со страху микроволновку выбрасывают, хотя достаточно вырезать из листа слюды и заменить окошко.)

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Окошко вывода микроволнового излучения из слюды.

Благодаря тому, что тонкие пластинки слюды не пропускают газы, но пропускают энергичные заряженные частицы — слюдяные окошки используются в конструкциях счетчиков альфа и бета частиц.

Используется в конструкциях радиоламп — удерживает электроды на своих местах.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Восьмигранная пластинка изготовлена из слюды.

Используется как материал слюдяных конденсаторов. Слюда выступает диэлектриком, а электродами — проводящее напыление металла на пластинках слюды. Данный вид конденсаторов встречается всё реже и реже, вытесненный конденсаторами на базе полимерных пленок. Слюдяные конденсаторы могут работать при высокой температуре.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Слюдяные конденсаторы производства СССР полувековой давности.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Пластинки слюды в конденсаторе. Металлизация на пластинках формирует обкладки.

До появления и широкого распространения теплопроводящих изолирующих прокладок из полимерных материалов, вроде Номакон, слюдяные пластинки использовались для электрической изоляции компонентов при сохранении теплового контакта, например, когда необходимо на один радиатор закрепить несколько транзисторов, корпуса которых под разными напряжениями.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Пластинки природной щипаной слюды.
 

Интересные факты о слюде


Раньше, несколько веков назад, когда не умели делать тонкие оконные стекла, светопрозрачные конструкции делали расщепляя природную слюду. Так как большие куски слюды без дефектов были редкостью, то и окна принимали причудливую форму.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Природная слюда прозрачна. Слюдоматериалы полученные переработкой природной слюды как правило непрозрачны.

Слюда — достаточно мягкий материал, слюдяная пластинка (как и большинство материалов на её базе) легко режется ножницами. В силу своей слоистой природы, склеивание слюды — занятие малонадежное, сила сцепления меж слоев невысокая, поэтому при производстве детали из слюды скрепляют механически- заклепки, люверсы, винты и т. д.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Электрические соединения с нагревательным элементом выполнены полыми заклепками.
 

Алюмооксидные керамики


Очень похожи по внешнему виду на фарфор, только лучше. Содержат практически чистый Al2O3

Твёрдая, прочная керамика, из которой изготавливают:

Корпуса микросхем, обычно ответственного применения.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Корпуса процессоров раньше делали керамическими, но рост тепловыделения и конкуренция по цене вынудили отказаться от этого материала. Именно с керамическим корпусом процессоров был связан анекдот про нового русского и плитку в ванной от Intel.

Корпуса электровакуумных приборов.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Корпус вакуумной колбы магнетрона изготовлен из меди и алюмооксидной керамики. Керамика видна на фото, фиолетовый поясок между колпачком и корпусом.

Алюмооксидная керамика очень твёрдая, обрабатывается как и многие керамики алмазным инструментом. Обломок керамического корпуса микросхемы — отличное орудие для написания посланий на лобовом стекле автомобиля, оставляет четкие ровные царапины не хуже стеклореза.

Данный вид керамики плотный, не впитывает влагу, удерживает вакуум, не трескается при резком перепаде температур и тепловом ударе. При этом сцепление металлических пленок с поверхностью высокое, позволяет делать на керамике дорожки, герметично приваривать металлические детали.
 

Асбест


Уникальный, непревзойденный материал. Природное волокно, «горный лен». Является огнестойким диэлектриком. Использовалось во множестве применений, начиная от армирующей добавки в полимеры, заканчивая изоляцией нагревательных приборов. Выпускается в виде листов, нити, пряжи. Чаще всего используется именно как теплоизолятор, как диэлектрик только в установках невысокого (до 1 кВ) напряжения.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Кусок асбестокартона и старый грязный асбестовый шнур. Асбест на ощупь очень мягкий и не колется как стеклоткани.

Широко применялся в строительстве. Шифер — это цемент, упрочненный волокнами асбеста, практически вечный материал. Высоко ценилась его дешевизна и огнестойкость. Но есть одно но:

Асбест — канцероген. Причем канцероген 1-го класса (от МАИР), наравне с мышьяком, формальдегидом. Длительное наблюдение показало, что изделия из асбеста пылят волокном, которое при вдыхании может провоцировать заболевание легких — асбестоз. Прежде всего в группе риска работники предприятий по добыче и переработке асбеста. В меньшей степени подвержены опасности те, кто ежедневно эксплуатируют изделия из асбеста. В остальных случаях нет причин для паники, если у вас на даче крыша покрыта шифером, а печь в бане прикрыта асбестокартоном, то вы скорее всего умрете не от асбеста, а от заболеваний сердечно-сосудистой системы.

Асбест и изделия из асбеста до сих пор широко производятся, поскольку в некоторых задачах заменить асбест без потери свойств попросту нечем (или слишком дорого). Асбест отличный материал при конструировании экспериментальных устройств, содержащих нагреватели или раскаленные части. На куске асбестокартона можно спокойно газовой горелкой греть детали до 1000 °C, при этом он сохранит свою форму. Асбестовая нить удобна для стягивания нихрома в нагревателях.
 

Вода


Это абсолютно контринтуитивно, но этот пункт включен сюда, чтобы взорвать вам мозг. Вода практически не проводит ток! Везде учат, что вода хороший проводник электричества, и обычно это так. Но очень чистая деионизированная вода, которая не содержит ничего кроме H2O ток не проводит — её удельное сопротивление 18 МОм⋅см. Та вода, которая проводит ток — недостаточно чистая. Измерение электрической проводимости — довольно простой способ оценки качества и чистоты воды.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Бутылка деионизированной воды из радиомагазина. Печатные платы электронных устройств стоит промывать только дистилированной или деионизированной водой, иначе соли, содержащиеся в воде, могут наделать бед.

Имея сильно полярные и подвижные молекулы, вода не только изолятор, но и имеет очень высокую диэлектрическую проницаемость — около 81 при комнатной температуре (у большинства обычных диэлектриков она не превышает 20-30). На этом основаны емкостные измерители влажности: небольшое количество воды между обкладками конденсатора резко повышает его емкость.

К сожалению, вода — прекрасный растворитель, а растворенные в ней вещества обычно образуют электролиты. Стоит постоять дистиллированной воде на воздухе, и она растворяет в себе углекислый газ, образуя электролит — слабый раствор угольной кислоты. Вода способна растворять и стенки сосуда, в котором находится. Малейшая примесь солей, особенно хлоридов и сульфидов натрия, калия, кальция, резко повышает проводимость воды. Поэтому на практике в роли диэлектрика вода никуда не годится.
 

Элегаз


Диэлектрики могут быть газообразными. Сухой воздух — хороший диэлектрик, но в некоторых задачах его электроизоляционные свойства недостаточны. Пример газообразного диэлектрика — гексафторид серы или «элегаз», он тяжелее воздуха и имеет пробивное напряжение в несколько раз выше, чем у воздуха, что позволяет сделать электрическую машину компактнее.

Довольно забавный опыт, когда вдохнув гелия голос человека становится выше с элегазом выглядит иначе — голос становится ниже. Так как элегаз тяжелее воздуха, в нем может плавать легкая лодка.  опубликовано econet.ru 

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

econet.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *