Модуль косинус х график – Attention Required! | Cloudflare

Модуль в тригонометрических уравнениях: найти и обезвредить

Достаточно часто в задачах повышенной сложности встречаются тригонометрические уравнения, содержащие модуль. Большинство из них требуют эвристического подхода к решению, который совсем не знаком большинству школьников.

Предлагаемые ниже задачи призваны познакомить вас с наиболее характерными приемами решения тригонометрических уравнений содержащих модуль.

Задача 1. Найти разность (в градусах) наименьшего положительного и наибольшего отрицательного корней уравнения 1 + 2sin x · |cos x| = 0.

Решение.

Раскроем модуль:

1) Если cos x ≥ 0, то исходное уравнение примет вид 1 + 2sin x · cos x = 0.

Воспользуемся формулой синуса двойного угла, получим:

1 + sin 2x = 0; sin 2x = -1;

2x = -π/2 + 2πn, n € Z;

x = -π/4 + πn, n € Z. Так как cos x ≥ 0, то x = -π/4 + 2πk, k € Z.

2) Если cos x < 0, то заданное уравнение имеет вид 1 – 2sin x · cos x = 0. По формуле синуса двойного угла, имеем:

1 – sin 2x = 0; sin 2x = 1;

2x = π/2 + 2πn, n € Z;

x = π/4 + πn, n € Z. Так как cos x < 0, то x = 5π/4 + 2πk, k € Z.

3) Наибольший отрицательный корень уравнения: -π/4; наименьший положительный корень уравнения: 5π/4.

Искомая разность: 5π/4 – (-π/4) = 6π/4 = 3π/2 = 3 · 180°/2 = 270°.

Ответ: 270°.

Задача 2. Найти (в градусах) наименьший положительный корень уравнения |tg x| + 1/cos x = tg x.

Решение.

Раскроем модуль:

1) Если tg x ≥ 0, тогда

tg x + 1/cos x = tg x;

1/cos x = 0.

В полученном уравнении корней нет.

2) Если tg x < 0, тогда  

-tg x + 1/cos x = tg x;

1/cos x – 2tg x = 0;

1/cos x – 2sin x / cos x = 0;

(1 – 2sin x) / cos x = 0;

 1 – 2sin x = 0 и cos x ≠ 0.

С помощью рисунка 1 и условия tg x < 0 находим, что x = 5π/6 + 2πn, где n € Z.Модуль в тригонометрических уравнениях: найти и обезвредить

3) Наименьший положительный корень уравнения 5π/6. Переведем это значение в градусы:

 5π/6 = 5 · 180°/6 = 5 · 30° = 150°.

Ответ: 150°.

Задача 3. Найти количество различных корней уравнения sin |2x| = cos 2x на промежутке [-π/2; π/2].

Решение.

Запишем уравнение в виде sin|2x| – cos 2x = 0 и рассмотрим функцию y = sin |2x| – cos 2x. Так как функция является четной, то найдем ее нули при x ≥ 0.

sin 2x – cos 2x = 0; разделим обе части уравнения на cos 2x ≠ 0, получим:

tg 2x – 1 = 0;

tg 2x = 1;

2x = π/4 + πn, n € Z;

x = π/8 + πn/2, n € Z.

Воспользовавшись четностью функции, получим, что корнями исходного уравнения являются числа вида

± (π/8 + πn/2), где n € Z.

Промежутку [-π/2; π/2] принадлежат числа: -π/8; π/8.

Итак, два корня уравнения принадлежат заданному промежутку.

Ответ: 2.

Данное уравнения можно было бы решить и раскрытием модуля.

Задача 4. Найти количество корней уравнения sin x – (|2cos x – 1|)/(2cos x – 1) · sin2 x = sin2 x на промежутке [-π; 2π].

Решение.

1) Рассмотрим случай, когда 2cos x – 1 > 0, т.е. cos x > 1/2, тогда уравнение принимает вид:

sin x – sin2 x = sin2 x;

sin x – 2sin2 x = 0;

sin x(1 – 2sin x) = 0;

sin x = 0 или 1 – 2sin x = 0;

sin x = 0 или sin x = 1/2.

Используя рисунок 2 и условие cos x > 1/2, найдем корни уравнения:

x = π/6 + 2πn или x = 2πn, n € Z.

2) Рассмотрим случай, когда 2cos x – 1 < 0, т.е. cos x < 1/2, тогда исходное уравнение принимает вид:

sin x + sin2 x = sin

2 x;

sin x = 0;

x = 2πn, n € Z.

Используя рисунок 2 и условие cos x < 1/2, находим, что x = π + 2πn, где n € Z.Модуль в тригонометрических уравнениях: найти и обезвредить

Объединим два случая, получим:

x = π/6 + 2πn или x = πn.

3) Промежутку [-π; 2π] принадлежат корни: π/6; -π; 0; π; 2π.

Таким образом, заданному промежутку принадлежат пять корней уравнения.

Ответ: 5.

Задача 5. Найти количество корней уравнения (x – 0,7)2 |sin x| + sin x = 0 на промежутке [-π; 2π].

Решение.

1) Если sin x ≥ 0, то исходное уравнение принимает вид (x – 0,7)2 sin x + sin x = 0. После вынесения общего множителя sin x за скобки, получим:

sin x((x – 0,7)2 + 1) = 0; так как (x – 0,7)2 + 1 > 0 при всех действительных x, то sinx = 0, т.е.  x = πn, n € Z.

2) Если sin x < 0, то -(x – 0,7)2 sin x + sin x = 0;

sin x((x – 0,7)2 – 1) = 0;

sinx = 0 или (x – 0,7)2 + 1 = 0. Так как  sin x < 0, то (x – 0,7)2 = 1. Извлекаем квадратный корень из левой и правой частей последнего уравнения, получим:

x – 0,7 = 1 или x – 0,7 = -1, а значит x = 1,7 или x = -0,3.

С учетом условия sinx < 0 получим, что sin (-0,3) ≈ sin (-17,1°) < 0 и sin (1,7) ≈ sin (96,9°) > 0, значит только число -0,3 является корнем исходного уравнения.

3) Промежутку [-π; 2π] принадлежат числа: -π; 0; π; 2π; -0,3.

Таким образом, уравнение имеет пять корней на заданном промежутке.

Ответ: 5.

Заняться подготовкой к урокам или экзаменам можно при помощи различных образовательных ресурсов, которые есть в сети. В настоящее время любому Модуль в тригонометрических уравнениях: найти и обезвредить

человеку просто необходимо использовать новые информационные технологии, ведь правильное, а главное уместное их применение будет способствовать повышению мотивации в изучении предмета, повысит интерес и поможет лучше усвоить необходимый материал. Но не стоит забывать о том, что компьютер не учит думать, полученную информацию обязательно необходимо обрабатывать, понимать и запоминать. Поэтому вы можете обратиться за помощью к нашим онлайн репетиторам, которые помогут вам разобраться с решением интересующих вас задач.

 Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(60)
4 Найти точное значение sin(30 град. )
5 Найти точное значение sin(60 град. )
6 Найти точное значение
tan(30 град. )
7 Найти точное значение arcsin(-1)
8 Найти точное значение sin(pi/6)
9 Найти точное значение cos(pi/4)
10 Найти точное значение sin(45 град. )
11 Найти точное значение sin(pi/3)
12 Найти точное значение arctan(-1)
13 Найти точное значение
cos(45 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение tan(60)
16 Найти точное значение csc(45 град. )
17 Найти точное значение tan(60 град. )
18 Найти точное значение sec(30 град. )
19 Преобразовать из радианов в градусы (3pi)/4
20 График
y=sin(x)
21 Преобразовать из радианов в градусы pi/6
22 Найти точное значение cos(60 град. )
23 Найти точное значение cos(150)
24 Найти точное значение tan(45)
25 Найти точное значение sin(30)
26 Найти точное значение sin(60)
27 Найти точное значение
cos(pi/2)
28 Найти точное значение tan(45 град. )
29 График y=sin(x)
30 Найти точное значение arctan(- квадратный корень 3)
31 Найти точное значение csc(60 град. )
32 Найти точное значение sec(45 град. )
33 Найти точное значение csc(30 град. )
34 Найти точное значение sin(0)
35 Найти точное значение sin(120)
36 Найти точное значение cos(90)
37 Преобразовать из радианов в градусы pi/3
38 Найти точное значение sin(45)
39 Найти точное значение tan(30)
40 Преобразовать из градусов в радианы 45
41 Найти точное значение tan(60)
42 Упростить квадратный корень x^2
43 Найти точное значение cos(45)
44 Упростить sin(theta)^2+cos(theta)^2
45 Преобразовать из радианов в градусы pi/6
46 Найти точное значение cot(30 град. )
47 Найти точное значение arccos(-1)
48 Найти точное значение arctan(0)
49 График y=cos(x)
50 Найти точное значение cot(60 град. )
51 Преобразовать из градусов в радианы 30
52 Упростить ( квадратный корень x+ квадратный корень 2)^2
53 Преобразовать из радианов в градусы (2pi)/3
54 Найти точное значение sin((5pi)/3)
55 Упростить 1/( кубический корень от x^4)
56 Найти точное значение sin((3pi)/4)
57 Найти точное значение tan(pi/2)
58 Найти угол А tri{}{90}{}{}{}{}
59 Найти точное значение sin(300)
60 Найти точное значение cos(30)
61 Найти точное значение cos(60)
62 Найти точное значение cos(0)
63 Найти точное значение arctan( квадратный корень 3)
64 Найти точное значение cos(135)
65 Найти точное значение cos((5pi)/3)
66 Найти точное значение cos(210)
67 Найти точное значение sec(60 град. )
68 Найти точное значение sin(300 град. )
69 Преобразовать из градусов в радианы 135
70 Преобразовать из градусов в радианы 150
71 Преобразовать из радианов в градусы (5pi)/6
72 Преобразовать из радианов в градусы (5pi)/3
73 Преобразовать из градусов в радианы 89 град.
74 Преобразовать из градусов в радианы 60
75 Найти точное значение sin(135 град. )
76 Найти точное значение sin(150)
77 Найти точное значение sin(240 град. )
78 Найти точное значение cot(45 град. )
79 Преобразовать из радианов в градусы (5pi)/4
80 Упростить 1/( кубический корень от x^8)
81 Найти точное значение sin(225)
82 Найти точное значение sin(240)
83 Найти точное значение cos(150 град. )
84 Найти точное значение tan(45)
85 Вычислить sin(30 град. )
86 Найти точное значение sec(0)
87 Упростить arcsin(-( квадратный корень 2)/2)
88 Найти точное значение cos((5pi)/6)
89 Найти точное значение csc(30)
90 Найти точное значение arcsin(( квадратный корень 2)/2)
91 Найти точное значение tan((5pi)/3)
92 Найти точное значение tan(0)
93 Вычислить sin(60 град. )
94 Найти точное значение arctan(-( квадратный корень 3)/3)
95 Преобразовать из радианов в градусы (3pi)/4
96 Вычислить arcsin(-1)
97 Найти точное значение sin((7pi)/4)
98 Найти точное значение arcsin(-1/2)
99 Найти точное значение sin((4pi)/3)
100 Найти точное значение csc(45)

www.mathway.com

Свойства функции y = cosx и её график — урок. Алгебра, 10 класс.

Функция y=cosx определена на всей числовой прямой, и множеством её значений является отрезок −1;1.

Следовательно, график этой функции расположен в полосе между прямыми y=−1 и y=1.

Так как функция y=cosx периодическая с периодом 2π, то достаточно построить её график на каком-нибудь промежутке длиной 2π, например, на отрезке −π≤x≤π, тогда на промежутках, получаемых сдвигами выбранного отрезка на 2πn,n∈&integers;, график будет таким же.

Функция y=cosx является чётной. Поэтому её график симметричен относительно оси \(Oy\).

Для построения графика на отрезке −π≤x≤π достаточно построить его для 0≤x≤π, а затем симметрично отразить его относительно оси \(Oy\).

 

Найдём несколько точек, принадлежащих графику на этом отрезке 0≤x≤π: cos0=1;cosπ6=32;cosπ4=22;cosπ3=12;cosπ2=0;cosπ=−1.

 

Итак, график функции y=cosx построен на всей числовой прямой.

 

cosx1.png

Свойства функции y=cosx

1. Область определения — множество &reals; всех действительных чисел.

 

2. Множество значений — отрезок −1;1.

 

3. Функция y=cosx периодическая с периодом 2π.

 

4. Функция y=cosx — чётная.

 

5. Функция y=cosx принимает:

— значение, равное \(0\), при x=π2&plus;πn,n∈&integers;;

— наибольшее значение, равное \(1\), при x=2πn,n∈&integers;;

— наименьшее значение, равное \(-1\), при  x=π&plus;2πn,n∈&integers;;

— положительные значения на интервале −π2;π2 и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈&integers;;

— отрицательные значения на интервале π2;3π2 и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈&integers;.

 

6. Функция y=cosx:

— возрастает на отрезке π;2π и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈&integers;;

— убывает на отрезке 0;π и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈&integers;.

www.yaklass.ru

Тригонометрические уравнения с модулем

Раскрытие модуля по определению

Модулем числа а называется само это число а, если а ≥ 0, и число -а, если а < 0.

Согласно этому определению, в уравнениях модуль можно раскрывать следующим образом:

№1. Решить уравнение.

№2. Решить уравнение.

Решаем уравнение первой системы:

2sin2x-sinx=0

sinx(2sinx-1)=0

sinx=0 или sinx= (оба уравнения удовлетворяют условию sinx≥0)

Решаем уравнение второй системы, и выбирая те, которые удовлетворяют условию sinx<0,

получаем х =

Серии ответов можно записать объединяя

№3. Решить уравнение.

Решение. Раскрывая знак модуля, получаем системы:

Решая уравнение первой системы, получим Из значений нужно выбрать те, которые удовлетворяют неравенству системы х ≥ -3. Это при n=0, 1, 2, 3…

Решая уравнение второй системы, получим Из этого множества значений нужно выбрать те, которые удовлетворяют неравенству х < -3. Это значения при m= -1, -2, -3…

Ответ: при n=0, 1, 2, 3…; при m = -1, -2, -3…и х = -3

№4 Решить уравнение.

Решение. Правая часть уравнения неотрицательна, значит, неотрицательна и левая часть, поэтому, раскрывая знак модуля, получим только одну систему

Решаем уравнение системы:

соsx=cosx(x+1,5)2

cosx(1-(x+1,5)2)=0

cosx=0 или x+1,5=1 или x-1,5 = -1

х= -0,5 х = -2,5

Условию cosx≥0 не удовлетворяет х = -2,5 (3 четверть)

Ответ:

№5. Найти все решения уравнения на отрезке [0;4].

Решение. Перепишем уравнение в виде

Раскрывая знак модуля, получаем системы:

Решая первую систему, получим

 Из серии в нужном промежутке [0;4] лежат точки 0 и ; , а из серии

Решая вторую систему, получим систему , которая не имеет решений.

Ответ:

№6 Решить уравнение.

Решение. Правая часть уравнения неотрицательна, значит, неотрицательна и левая часть, тогда 2х-4≥0, 2(х-2)≥0 , х-2≥0. Если х-2≥0. то при раскрытия правого модуля по определению рассматривается только один случай:

х=2    

Выберем те корни, которые удовлетворяют условию: х-2≥0;     х≥2

№7. Решить уравнение.

Решение. ОДЗ:

Раскрывая знак модуля, получаем системы:

Решая первую систему, получим cos2x=0, и из решений надо выбрать те, при которых sinx>0. На круге видно, что это точки вида

Решая вторую систему, получим уравнение соs2x=2,не имеющее решений.

Ответ:

№8. Решить уравнение.

Решение. Преобразуем уравнение следующим образом:

Обратная замена:

Ответ:

№9. Решить уравнение.

Решение. Выражение под первым модулем всегда неотрицательно, и его можно сразу отбросить. Второй модуль раскрываем по определению.

Решить уравнение первой система аналитически невозможно, исследуем поведение левой и правой частей на данных промежутках. Функция f(x) =-x2+15x-45=(-x2+15x-44)-1≤-1

при причем, f(х)= -1 в точках 4 и 11.Левая часть cos при любых х, причем, в точках 4 и 11 не равна -1, значит, система решений не имеет.

При решении уравнения второй системы получается:

В промежутке только одно целое нечетное число 3, т.е

Ответ: 9

Другие способы раскрытия модулей.

Уравнения вида можно решать и следующим способом:

№10. Решить уравнение.

Решение. Левая часть уравнения неотрицательна, значит, неотрицательна и правая часть, тогда cosx <0, тогда уравнение равносильно системе

Рассмотрим две системы:

Решая уравнение первой системы получим: cosx-2sinx=0

Учитывая, что cosx≤0, x = arctg Вторая система решений не имеет.

Ответ: x = arctg.

№11. Решить уравнение.

cosx

Решение.

№12. Решить уравнение.

Решение. Уравнение равносильно sinx = ± cosx

Ответ:

Задачи для самостоятельного решения:

urok.1sept.ru

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(60)
4 Найти точное значение sin(30 град. )
5 Найти точное значение sin(60 град. )
6 Найти точное значение tan(30 град. )
7 Найти точное значение arcsin(-1)
8 Найти точное значение sin(pi/6)
9 Найти точное значение cos(pi/4)
10 Найти точное значение sin(45 град. )
11 Найти точное значение sin(pi/3)
12 Найти точное значение arctan(-1)
13 Найти точное значение cos(45 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение tan(60)
16 Найти точное значение csc(45 град. )
17 Найти точное значение tan(60 град. )
18 Найти точное значение sec(30 град. )
19 Преобразовать из радианов в градусы (3pi)/4
20 График y=sin(x)
21 Преобразовать из радианов в градусы pi/6
22 Найти точное значение cos(60 град. )
23 Найти точное значение cos(150)
24 Найти точное значение tan(45)
25 Найти точное значение sin(30)
26 Найти точное значение sin(60)
27 Найти точное значение cos(pi/2)
28 Найти точное значение tan(45 град. )
29 График y=sin(x)
30 Найти точное значение arctan(- квадратный корень 3)
31 Найти точное значение csc(60 град. )
32 Найти точное значение sec(45 град. )
33 Найти точное значение csc(30 град. )
34 Найти точное значение sin(0)
35 Найти точное значение sin(120)
36 Найти точное значение cos(90)
37 Преобразовать из радианов в градусы pi/3
38 Найти точное значение sin(45)
39 Найти точное значение tan(30)
40 Преобразовать из градусов в радианы 45
41 Найти точное значение tan(60)
42 Упростить квадратный корень x^2
43 Найти точное значение cos(45)
44 Упростить sin(theta)^2+cos(theta)^2
45 Преобразовать из радианов в градусы pi/6
46 Найти точное значение cot(30 град. )
47 Найти точное значение arccos(-1)
48 Найти точное значение arctan(0)
49 График y=cos(x)
50 Найти точное значение cot(60 град. )
51 Преобразовать из градусов в радианы 30
52 Упростить ( квадратный корень x+ квадратный корень 2)^2
53 Преобразовать из радианов в градусы (2pi)/3
54 Найти точное значение sin((5pi)/3)
55 Упростить 1/( кубический корень от x^4)
56 Найти точное значение sin((3pi)/4)
57 Найти точное значение tan(pi/2)
58 Найти угол А tri{}{90}{}{}{}{}
59 Найти точное значение sin(300)
60 Найти точное значение cos(30)
61 Найти точное значение cos(60)
62 Найти точное значение cos(0)
63 Найти точное значение arctan( квадратный корень 3)
64 Найти точное значение cos(135)
65 Найти точное значение cos((5pi)/3)
66 Найти точное значение cos(210)
67 Найти точное значение sec(60 град. )
68 Найти точное значение sin(300 град. )
69 Преобразовать из градусов в радианы 135
70 Преобразовать из градусов в радианы 150
71 Преобразовать из радианов в градусы (5pi)/6
72 Преобразовать из радианов в градусы (5pi)/3
73 Преобразовать из градусов в радианы 89 град.
74 Преобразовать из градусов в радианы 60
75 Найти точное значение sin(135 град. )
76 Найти точное значение sin(150)
77 Найти точное значение sin(240 град. )
78 Найти точное значение cot(45 град. )
79 Преобразовать из радианов в градусы (5pi)/4
80 Упростить 1/( кубический корень от x^8)
81 Найти точное значение sin(225)
82 Найти точное значение sin(240)
83 Найти точное значение cos(150 град. )
84 Найти точное значение tan(45)
85 Вычислить sin(30 град. )
86 Найти точное значение sec(0)
87 Упростить arcsin(-( квадратный корень 2)/2)
88 Найти точное значение cos((5pi)/6)
89 Найти точное значение csc(30)
90 Найти точное значение arcsin(( квадратный корень 2)/2)
91 Найти точное значение tan((5pi)/3)
92 Найти точное значение tan(0)
93 Вычислить sin(60 град. )
94 Найти точное значение arctan(-( квадратный корень 3)/3)
95 Преобразовать из радианов в градусы (3pi)/4
96 Вычислить arcsin(-1)
97 Найти точное значение sin((7pi)/4)
98 Найти точное значение arcsin(-1/2)
99 Найти точное значение sin((4pi)/3)
100 Найти точное значение csc(45)

www.mathway.com

График косинуса, с примерами построения

График косинуса имеет вид как показано на рисунке 1. Кривая, задающая график косинуса, называется косинусоидой.

Рис. 1

График функции пересекает ось в точках Максимальные значения, равные функция принимает в точках а минимальные, равные – при График функции возрастает при и убывает при

Примеры решения задач

ПРИМЕР 1
Задание Построить график функции
Решение Искомый график получается из графика функции в результате параллельного переноса вдоль оси ординат вверх на 1 единицу (рис. 2)

Рис. 2

ПРИМЕР 2
Задание Построить график функции
Решение Искомый график получается из графика функции в результате параллельного переноса вдоль оси абсцисс вправо на (рис. 3).

Рис. 3

ПРИМЕР 3
Задание Построить график функции
Решение Заданный график построим с помощью элементарных преобразований графика функции Сначала графика функции растянем вдоль оси ординат в три раза (увеличим расстояния от каждой точки графика до оси абсцисс в три раза), получим график функции (рис. 4).

Рис. 4

Затем, отразим график функции симметрично относительно оси абсцисс, получим искомый график (рис. 5).

Рис. 5

Читайте также:

Разность косинусов

Косинус суммы

Сумма синусов

Таблица брадиса косинусы

Косинус умножить на косинус (Произведение косинусов)

Тригонометрический круг (окружность)

ru.solverbook.com

Функция y=cos t, её свойства и график. Видеоурок. Алгебра 9 Класс

На этом уроке вы узнаете, что такое функция y=cost. Мы проведем аналогии между функциями косинуса и синуса, изучим основные свойства и терминологию

Вспомним определение косинуса:

 – любое действительное число, ему соответствует единственная точка  на числовой окружности. Как эта точка получается: начало отсчета ­– точка , дуга  откладывается против часовой стрелки, если  – положительное число и по часовой стрелке, если отрицательное. Длина дуги равняется модулю числа . Задали произвольное  и получили единственную точку , у которой есть единственная пара координат . Первую координату назвали косинусом (), а вторую – синусом () (рис. 1).

В соответствии с данным правилом, мы дали определение двум функциям:  и .

Иллюстрация для определения косинуса

Рис. 1. Иллюстрация для определения косинуса

Построим график функции Иллюстрация для определения косинуса из определения по точкам.

Если мы захотим узнать значение косинуса в иных точках, то используем формулу Иллюстрация для определения косинуса.

Например:

Иллюстрация для определения косинуса

Иллюстрация для определения косинуса

Иллюстрация для определения косинуса

Получается, зная значения косинуса при Иллюстрация для определения косинуса и данную формулу, вполне можно узнать значения косинуса для любых значений Иллюстрация для определения косинуса. Для этого используется симметрия функции косинуса (благодаря ее четности) и периодичность, учитывая, что период у косинуса равен Иллюстрация для определения косинуса.

Построим график косинуса по точкам (рис. 2):

На отрезке Иллюстрация для определения косинуса отметим точки, кратные Иллюстрация для определения косинуса, Иллюстрация для определения косинуса, как показано на рисунке, это значения аргумента.

 График функции косинуса по точкам

Рис. 2. График функции косинуса по точкам

Для начала необходимо нарисовать график лишь на отрезке Иллюстрация для определения косинуса. Так как функция четная, график симметричен относительно оси ординат – получим и график на отрезке  График функции косинуса по точкам. В результате имеем график на отрезке  График функции косинуса по точкам. Так как этот промежуток длиной в период ( График функции косинуса по точкам, то этого достаточно, чтобы впоследствии нарисовать весь график.

Изучим функцию и построим график косинуса, используя график синуса и связь между синусом и косинусом:

 График функции косинуса по точкам

Эта формула позволяет, зная график синуса, сдвинуть его на  График функции косинуса по точкам в нужную сторону и получить график косинуса.

Докажем данную формулу.

Произвольному числу  соответствует единственная точка , тогда числу  График функции косинуса по точкам будет соответствовать тоже единственная точка  График функции косинуса по точкам. Мы знаем, как получились точки  и  График функции косинуса по точкам, причем  График функции косинуса по точкам или длина дуги  График функции косинуса по точкам (рис. 3).

 График функции косинуса по точкам

Иллюстрация к доказательству формулы связи синуса и косинуса

Рис. 3. Иллюстрация к доказательству формулы связи синуса и косинуса

Итак, имеется две точки  и  График функции косинуса по точкам. Косинус  – это отрезок Иллюстрация к доказательству формулы связи синуса и косинуса. Синус  График функции косинуса по точкам – это отрезок Иллюстрация к доказательству формулы связи синуса и косинуса. Докажем, что эти отрезки равны.

Исходя из графика, можно сделать вывод, что эти отрезки равны по знаку. Оба отрезка входят в соответствующие треугольники в качестве сторон, значит, нам можно доказать равенство треугольников, чтобы доказать равенство сторон.

Докажем, что дуга Иллюстрация к доказательству формулы связи синуса и косинуса равна дуге Иллюстрация к доказательству формулы связи синуса и косинуса.

Дуга Иллюстрация к доказательству формулы связи синуса и косинуса получается, если отнять от дуги Иллюстрация к доказательству формулы связи синуса и косинуса дугу Иллюстрация к доказательству формулы связи синуса и косинуса: Иллюстрация к доказательству формулы связи синуса и косинуса.

Дуга Иллюстрация к доказательству формулы связи синуса и косинуса получается, если отнять от дуги Иллюстрация к доказательству формулы связи синуса и косинуса дугу Иллюстрация к доказательству формулы связи синуса и косинуса: Иллюстрация к доказательству формулы связи синуса и косинуса.

Из этих двух равенств следует, что дуги Иллюстрация к доказательству формулы связи синуса и косинуса и Иллюстрация к доказательству формулы связи синуса и косинуса равны. А значит, центральный угол Иллюстрация к доказательству формулы связи синуса и косинуса равен центральному углу Иллюстрация к доказательству формулы связи синуса и косинуса. Получается, что накрест лежащие углы также равны, а значит, Иллюстрация к доказательству формулы связи синуса и косинуса. В результате получаем, что Иллюстрация к доказательству формулы связи синуса и косинуса по углу и гипотенузе, так как они прямоугольные, Иллюстрация к доказательству формулы связи синуса и косинуса и гипотенузы являются радиусами в одной и той же окружности. Из равенства треугольников получаем равенство отрезков Иллюстрация к доказательству формулы связи синуса и косинуса, значит, Иллюстрация к доказательству формулы связи синуса и косинуса.

Построим теперь график Иллюстрация для определения косинуса (здесь заменена буква  на более привычную Иллюстрация для определения косинуса), или, что то же самое, график Иллюстрация к доказательству формулы связи синуса и косинуса. Этот график можно построить, если синусоиду Иллюстрация к доказательству формулы связи синуса и косинуса сдвинуть влево на  График функции косинуса по точкам. Итак, строится график Иллюстрация к доказательству формулы связи синуса и косинуса, сдвигаем каждую точку на  График функции косинуса по точкам влево, получаем кривую Иллюстрация для определения косинуса (рис. 4).

Построение графика косинуса, сдвигом графика синуса

Рис. 4. Построение графика коси

interneturok.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *