Модуль равен 1 – . ., ,

Модуль числа

Мóдуль числá a — это расстояние от начала координат до точки А(a).

Чтобы понять это определение, подставим вместо переменной a любое число, например 3, и снова прочитаем его:

Мóдуль числá 3 — это расстояние от начала координат до точки А(3).

То есть модуль это ни что иное как обычное расстояние. Давайте попробуем увидеть расстояние от начала координат до точки А(3)

Расстояние от начала координат до точки А(3) составляет 3 (три единицы или три шага).

Модуль числа обозначает двумя вертикальными линиями, например:

Модуль числа 3 обозначается так: |3|

Модуль числа 4 обозначается так: |4|

Модуль числа 5 обозначается так: |5|

Мы искали модуль числа 3 и выяснили, что он равен 3. Так и записываем:

|3| = 3

Читается как «Модуль числа три равен три»

Теперь попробуем найти модуль числа −3. Опять же возвращаемся к определению и подставляем в него число −3. Только вместо точки

A используем новую точку B. Точку A мы уже использовали в первом примере.

Модулем числа −3 называют расстояние от начала координат до точки B(−3).

Расстояние от одного пункта до другого не может быть отрицательным. Модуль это тоже расстояние, поэтому тоже не может быть отрицательным.

Модуль числа −3 равен 3. Расстояние от начала координат до точки B(−3) равно трём единицам:

|−3| = 3

Читается как «Модуль числа минус три равен три»


Модуль числа 0 равен 0, так как точка с координатой 0 совпадает  с началом координат. То есть расстояние от начала координат до точки O(0) равно нулю:

|0| = 0

«Модуль нуля равен нулю»

Сделаем выводы:

  • Модуль числа не может быть отрицательным;
  • Для положительного числа и нуля модуль равен самомý числу, а для отрицательного – противоположному числу;
  • Противоположные числа имеют равные модули.

Противоположные числа

Числа, отличающиеся только знаками называют противоположными.

Например, числа −2 и 2 являются противоположными. Они отличаются только знаками. У числá −2 знак минуса, а у числá 2 знак плюса, но мы его не видим, поскольку плюс как говорилось ранее, не записывают.

Еще примеры противоположных чисел:

−1 и 1

−3 и 3

−5 и 5

−9 и 9

Противоположные числа имеют равные модули. Например, найдём модули чисел −3 и 3

|−3| и |3|

3 = 3

На рисунке видно, что расстояние от начала координат до точек A(−3) и B(3) одинаково равно двум шагам.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?


Используй кнопку ниже

Навигация по записям

spacemath.xyz

Модуль числа. | tutomath

Модуль числа вводится новое понятие в математике. Разберем подробно, что такое модуль числа и как с ним работать?

Рассмотрим пример:

Мы вышли из дома в магазин. Прошли 300 м, математически это выражение можно записать как +300, смысл числа 300 от знака “+” не поменяется. Расстояние или модуль числа в математике это одно и тоже можно записать так: |300|=300. Знак модуля числа обозначается двумя вертикальными линиями.

Модуль числа

А потом в обратном направлении прошли 200м. Математически обратный путь мы можем записать как -200. Но мы не говорим так “мы прошли минус двести метров”, хотя мы вернулись, потому что расстояние как величина остается положительной. Для этого в математике ввели понятие модуля. Записать расстояние или модуль числа -200 можно так: |-200|=200.

Модуль числа 200

Свойства модуля.

Определение:
Модуль числа или абсолютная величина числа – это расстояние от отправной точки до точки назначения.

Модуль целого числа не равного нулю, всегда положительное число.

Записывается модуль так:

1. Модуль положительного числа равно самому числу.
|a|=a

2. Модуль отрицательного числа равно противоположному числу.
|-a|=a

3. Модуль нуля, равен нулю.
|0|=0

4. Модули противоположных чисел равны.
|a|=|-a|=

a

Вопросы по теме:
Что такое модуль числа?
Ответ: модуль — это расстояние от отправной точки до точки назначения.

Если перед целым числом поставить знак “+” , что произойдет?
Ответ: число не поменяет свой смысл, например, 4=+4.

Если перед целым числом поставить знак “-” , что произойдет?
Ответ: число изменится на противоположное число, например, 4 и -4.

У каких чисел одинаковый модуль?
Ответ: у положительных чисел и нуля модуль будет тот же. Например, 15=|15|.

У каких чисел модуль – противоположное число?
Ответ: у отрицательных чисел, модуль будет равен противоположному числу. Например, |-6|=6.

Пример №1:
Найдите модуль чисел: а) 0 б) 5 в) -7?

Решение:
а) |0|=0
б) |5|=5
в)|-7|=7

Пример №2:
Существуют ли два различных числа, модули которых равны?

Решение:
|10|=10
|-10|=10

Модули противоположных чисел равны.

Пример №3:
Какие два противоположных числа, имеют модуль 9?

Решение:
|9|=9
|-9|=9

Ответ: 9 и -9.

Пример №4:
Выполните действия: а) |+5|+|-3| б) |-3|+|-8| в)|+4|-|+1|

Решение:
а) |+5|+|-3|=5+3=8
б) |-3|+|-8|=3+8=11
в)|+4|-|+1|=4-1=3

Пример №5:
Найдите: а) модуль числа 2 б) модуль числа 6 в) модуль числа 8 г) модуль числа 1 д) модуль числа 0.
Решение:

а) модуль числа 2 обозначается как |2| или |+2| это одно и тоже.
|2|=2

б) модуль числа 6 обозначается как |6| или |+6| это одно и тоже.
|6|=6

в) модуль числа 8 обозначается как |8| или |+8| это одно и тоже.
|8|=8

г) модуль числа 1 обозначается как |1| или |+1| это одно и тоже.
|1|=1

д) модуль числа 0 обозначается как |0|, |+0| или |-0| это одно и тоже.

|0|=0

tutomath.ru

Модуль числа

Модуль числа — это расстояние от этого числа до нуля на координатной прямой.

Модуль обозначается с помощью символа: | |.

  • Запись |6| читается как «модуль числа 6», или «модуль шести».
  • Запись |8| читается как «модуль 8-ми».
Модуль положительного числа равен самому числу. Например, |2| = 2.
Модуль отрицательного числа равен противоположному числу <=> |-3| = 3.
Модуль нуля равен нулю, то есть |0| = 0.
Модули противоположных чисел равны, то есть |-a| = |a|.

Для лучшего понимания 🔥 темы: «модуль числа» предлагаем воспользоваться методом ассоциаций. 😨

Представим, что модуль числа — это баня 🛁

, а знак «минус» — грязь 💩.

Оказываясь под знаком модуля (то есть в «бане») отрицательное число «моется» 💦, и выходит без знака «минус» — чистым ⛄✨.

МодульМодуль

В бане могут «мыться» 🚿 (то есть стоять под знаком модуля) и отрицательные 💩, и положительные числа ⛄, и число ноль 🍩. Однако будучи «чистым» положительные числа ⛄

, и ноль 🍩 свой знак при выходе из «бани» 🚿 (то есть из под знака модуля) не меняют ✅!

Модуль числаМодуль числа

 


История модуля числа или 6 интересных фактов о модуле числа

1. Слово «модуль» произошел от латинского названия modulus, что в переводе обозначает слово «мера».
2. Ввел в обращение этот термин ученик Исаака Ньютона — английский математик и философ Роджер Котс (1682 – 1716).
3. Великий немецкий физик, изобретатель, математик и философ Готфрид Лейбниц в своих работах и трудах использовал функцию модуля, которую он обозначил mod x.
4. Обозначение модуля было введено в 1841 году немецким математиком
Карлом Вейерштрассом (1815 — 1897).

5. При написании модуль обозначается с помощью символа: | |.
6. Еще одной версии термин «модуль» был введен в 1806 году французским
математиком по имени Жан Робер Аргáн (1768 — 1822). Но это не совсем так.
В начале девятнадцатого века математики Жан Робер Аргáн (1768 — 1822)
и Огюстен Луи Коши (1789 — 1857) ввели понятие «модуль комплексного числа»,
который изучается в курсе высшей математики.


Решение задач на тему «Модуль числа»

Задача №1. Расположи выражения: -|12|, 0, 54, |-(-2)|, -17 в порядке возрастания.

Решение:

Для начала раскроем скобки и модули:

— | 12 | = — 12
| — ( — 2) | = 2

Далее осталось расположить числа: -12, 0, 54, 2, -17 в порядке возрастания. Получим следующее неравенство:

-17 < -12 < 0 < 2 < 54, что будет равносильно:
-17 < -|12| < 0 < | — ( — 2) | < 54.

Ответ: -17 < -|12| < 0 < | — ( — 2) | < 54.

Задача№2. Нужно расположить выражения: -|-14|, -|30|, |-16|, -21, | -(-9) |

в порядке убывания.

Решение:

Для начала раскроем скобки и модули:

— | — 14| = — 14
— |30| = -30
|-16| = 16
| -(-9) | = 9

Далее осталось расположить числа: -14, -30, 16, -21, 9 в порядке убывания. Получим следующее неравенство:

16 > 9 > -14 > — 21 > — 30 что будет равносильно:
|-16| > | -(-9) | > — | — 14| > — 21 > — |30|.

Ответ: |-16| > | -(-9) | > — | — 14| > — 21 > — |30|

shkolnaiapora.ru

Модуль нуля | Математика

Чему равен модуль нуля?

Модуль числа a — это расстояние в единичных отрезках от начала координат до точки с координатой a.

Поскольку начало отсчёта на координатной прямой  — точка с координатой 0, расстояние от начала координат до точки с координатой 0 равно нулю.

Таким образом, модуль нуля равен нулю.

   

Так как расстояние не может быть отрицательным числом, модуль любого другого числа, как положительного, так и отрицательного, больше нуля:

   

где a≠0.

Таким образом, модуль любого числа является неотрицательным числом:

   

где a — любое число.

Только модуль нуля равен нулю.

Следовательно, если модуль равен нулю, то выражение, стоящее под знаком модуля, равняется нулю. Используем этот факт для решения уравнений.

   

Так как модуль равен нулю, выражение, стоящее под знаком модуля, равно нулю:

   

   

   

   

   

   

   

   

www.for6cl.uznateshe.ru

Модуль комплексного числа, формула и примеры

Если рассмотреть плоскость с прямоугольной системой координат, то любому комплексному числу можно сопоставить точку на этой плоскости с соответствующими координатами: , и радиус-вектор комплексного числа, т.е. вектор, соединяющий начало координат с точкой на плоскости, соответствующей числу.

Данная плоскость называется комплексной. Действительные числа располагаются на горизонтальной (вещественной) оси, мнимые части – на вертикальной (мнимой) оси.

Таким образом, модуль вычисляется как квадратный корень из суммы квадратов действительной и мнимой частей комплексного числа.

Если является действительным числом, то его модуль равен абсолютной величине этого действительного числа.

Например.

Свойства модуля

  1. Модуль комплексного числа не отрицателен: , при этом в том и только том случае, если ;
  2. Модуль суммы двух комплексных чисел меньше либо равен сумме модулей: ;
  3. Модуль произведения двух комплексных чисел равен произведению модулей: , в том числе ;
  4. Модуль частного двух комплексных чисел равен частному модулей: ;
  5. , т.е. модуль разности комплексных чисел равен расстоянию между этими числами на комплексной плоскости.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Добавить комментарий

Ваш адрес email не будет опубликован.